1
|
Bak DH, Na J, Im SI, Oh CT, Kim JY, Park SK, Han HJ, Seok J, Choi SY, Ko EJ, Mun SK, Ahn SW, Kim BJ. Antioxidant effect of human placenta hydrolysate against oxidative stress on muscle atrophy. J Cell Physiol 2018; 234:1643-1658. [PMID: 30132871 DOI: 10.1002/jcp.27034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/25/2018] [Indexed: 01/07/2023]
Abstract
Sarcopenia, which refers to the muscle loss that accompanies aging, is a complex neuromuscular disorder with a clinically high prevalence and mortality. Despite many efforts to protect against muscle weakness and muscle atrophy, the incidence of sarcopenia and its related permanent disabilities continue to increase. In this study, we found that treatment with human placental hydrolysate (hPH) significantly increased the viability (approximately 15%) of H2 O2 -stimulated C2C12 cells. Additionally, while H2 O2 -stimulated cells showed irregular morphology, hPH treatment restored their morphology to that of cells cultured under normal conditions. We further showed that hPH treatment effectively inhibited H2 O2 -induced cell death. Reactive oxygen species (ROS) generation and Mstn expression induced by oxidative stress are closely associated with muscular dysfunction followed by atrophy. Exposure of C2C12 cells to H2 O2 induced abundant production of intracellular ROS, mitochondrial superoxide, and mitochondrial dysfunction as well as myostatin expression via nuclear factor-κB (NF-κB) signaling; these effects were attenuated by hPH. Additionally, hPH decreased mitochondria fission-related gene expression (Drp1 and BNIP3) and increased mitochondria biogenesis via the Sirt1/AMPK/PGC-1α pathway and autophagy regulation. In vivo studies revealed that hPH-mediated prevention of atrophy was achieved predominantly through regulation of myostatin and PGC-1α expression and autophagy. Taken together, our findings indicate that hPH is potentially protective against muscle atrophy and oxidative cell death.
Collapse
Affiliation(s)
- Dong-Ho Bak
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Jungtae Na
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Song I Im
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Chang Taek Oh
- Research Institute, Research & Development Center, Green Cross WellBeing Corporation, Seongnam, Korea
| | - Jeom-Yong Kim
- Research Institute, Research & Development Center, Green Cross WellBeing Corporation, Seongnam, Korea
| | - Sun-Kyu Park
- Research Institute, Research & Development Center, Green Cross WellBeing Corporation, Seongnam, Korea
| | - Hae Jung Han
- Research Institute, Research & Development Center, Green Cross WellBeing Corporation, Seongnam, Korea
| | - Joon Seok
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Sun Young Choi
- Department of Dermatology, College of Medicine, Seoul Paik Hospital Inje University, Seoul, Korea
| | - Eun Jung Ko
- Myongji Hospital, College of Medicine, Seonam University, Goyang, Korea
| | - Seog-Kyun Mun
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Suk-Won Ahn
- Department of Neurology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| |
Collapse
|
2
|
Inborn errors of energy metabolism associated with myopathies. J Biomed Biotechnol 2010; 2010:340849. [PMID: 20589068 PMCID: PMC2877206 DOI: 10.1155/2010/340849] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/19/2010] [Accepted: 02/22/2010] [Indexed: 12/31/2022] Open
Abstract
Inherited neuromuscular disorders affect approximately one in 3,500 children. Structural muscular defects are most common; however functional impairment of skeletal and cardiac muscle in both children and adults may be caused by inborn errors of energy metabolism as well. Patients suffering from metabolic myopathies due to compromised energy metabolism may present with exercise intolerance, muscle pain, reversible or progressive muscle weakness, and myoglobinuria. In this review, the physiology of energy metabolism in muscle is described, followed by the presentation of distinct disorders affecting skeletal and cardiac muscle: glycogen storage diseases types III, V, VII, fatty acid oxidation defects, and respiratory chain defects (i.e., mitochondriopathies). The diagnostic work-up and therapeutic options in these disorders are discussed.
Collapse
|
4
|
Tarnopolsky MA, Raha S. Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med Sci Sports Exerc 2006; 37:2086-93. [PMID: 16331134 DOI: 10.1249/01.mss.0000177341.89478.06] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondrial myopathies are caused by genetic mutations that directly influence the functioning of the electron transport chain (ETC). It is estimated that 1 of 8,000 people have pathology inducing mutations affecting mitochondrial function. Diagnosis often requires a multifaceted approach with measurements of serum lactate and pyruvate, urine organic acids, magnetic resonance spectroscopy (MRS), muscle histology and ultrastructure, enzymology, genetic analysis, and exercise testing. The ubiquitous distribution of the mitochondria in the human body explains the multiple organ involvement. Exercise intolerance is a common but often an overlooked hallmark of mitochondrial myopathies. The muscle consequences of ETC dysfunction include increased reliance on anaerobic metabolism (lactate generation, phosphocreatine degradation), enhanced free radical production, reduced oxygen extraction and electron flux through ETC, and mitochondrial proliferation or biogenesis (see article by Hood in current issue). Treatments have included antioxidants (vitamin E, alpha lipoic acid), electron donors and acceptors (coenzyme Q10, riboflavin), alternative energy sources (creatine monohydrate), lactate reduction strategies (dichloroacetate) and exercise training. Exercise is a particularly important modality in diagnosis as well as therapy (see article by Taivassalo in current issue). Increased awareness of these disorders by exercise physiologists and sports medicine practitioners should lead to more accurate and more rapid diagnosis and the opportunity for therapy and genetic counseling.
Collapse
|
5
|
Sharma U, Atri S, Sharma MC, Sarkar C, Jagannathan NR. Biochemical characterization of muscle tissue of limb girdle muscular dystrophy: an 1H and 13C NMR study. NMR IN BIOMEDICINE 2003; 16:213-223. [PMID: 14558119 DOI: 10.1002/nbm.832] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The metabolic differences between the muscle biopsies of patients with limb girdle muscular dystrophy (LGMD) and normal controls were characterized using high-resolution 1H and 13C NMR spectroscopy. In all, 44 metabolites were unambiguously assigned in the perchloric acid extracts of skeletal muscle tissue, using 2D double quantum filtered (DQF COSY), total correlation (TOCSY), and 1H/13C heteronuclear multiple quantum coherence (HMQC) spectroscopy. The concentrations of glycolytic substrate, glucose (p=0.03), gluconeogenic amino acids, glutamine (p=0.02) and alanine (p=0.009) together with glycolytic product, lactate (p=0.04), were found to be significantly lowered in LGMD patients as compared with controls. The reduction in the concentration of glucose may be attributed to the decrease in the concentration of gluconeogenic amino acids in the degenerated muscle. Reduction in the rate of anaerobic glycolysis and lowered substrate concentration appear to be the possible reasons for the decrease in the concentration of lactate. A significant reduction in the concentration of choline in LGMD patients was also observed compared with controls. Lower concentration of choline may be the result of decreased rate of membrane turnover in LGMD patients. The data presented here provide an insight into the potentials of in-vitro NMR spectroscopy in the study of muscle metabolism.
Collapse
Affiliation(s)
- Uma Sharma
- Department of NMR, All India Institute of Medical Sciences, New Delhi-110 029, India
| | | | | | | | | |
Collapse
|
6
|
Sharma U, Atri S, Sharma MC, Sarkar C, Jagannathan NR. Skeletal muscle metabolism in Duchenne muscular dystrophy (DMD): an in-vitro proton NMR spectroscopy study. Magn Reson Imaging 2003; 21:145-53. [PMID: 12670601 DOI: 10.1016/s0730-725x(02)00646-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The metabolic differences in the skeletal muscle of patients with Duchenne muscular dystrophy (DMD) and normal subjects (controls) were investigated using in-vitro high-resolution proton NMR spectroscopy. In all, 56 metabolites were unambiguously identified in the perchloric acid extract of muscle tissue using one- and two-dimensional NMR. The concentrations of glycolytic substrate glucose (Glc; p < 0.05), gluconeogenic amino acids such as glutamine (Gln; p < 0.05) and alanine (Ala; p < 0.05) and the glycolytic product lactate (Lac; p < 0.05) were statistically significantly lower in DMD patients as compared to controls. A significant reduction in the concentrations of total creatine (TCr; p < 0.05), glycerophosphoryl choline + phosphoryl choline + carnitine (GPC/PC/Car; p < 0.05), choline (Cho; p < 0.05) and acetate (Ace; p < 0.05) was also observed in these patients. Decrease in the level of glucose may be attributed to the reduction in the concentrations of gluconeogenic substrates or membrane abnormalities in degenerated muscle of DMD patients. Lower levels of choline containing compounds indicate membrane abnormalities. Decrease in the concentration of lactate in the muscle of DMD patients may be due to the reduction in anaerobic glycolytic activity or lower substrate concentration. The decrease in the concentration of acetate may reflect reduced transport of fatty acids into mitochondria due to decreased concentration of carnitine in DMD patients. Kreb's cycle intermediate alpha-ketoglutarate was observed only in the diseased muscle, which is suggestive of predominant oxidative metabolism for energy generation.
Collapse
Affiliation(s)
- Uma Sharma
- Department of NMR, All India Institute of Medical Sciences, New Delhi 110 029, India
| | | | | | | | | |
Collapse
|
7
|
Heiman-Patterson TD, Argov Z, Chavin JM, Kalman B, Alder H, DiMauro S, Bank W, Tahmoush AJ. Biochemical and genetic studies in a family with mitochondrial myopathy. Muscle Nerve 1997; 20:1219-24. [PMID: 9324076 DOI: 10.1002/(sici)1097-4598(199710)20:10<1219::aid-mus2>3.0.co;2-f] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We present a family with severe exercise intolerance, progressive proximal weakness, and lactic acidemia. Fifteen of 24 family members in five generations were affected. Since the affected males do not have offspring at this time, the family pedigree is consistent with either maternal or autosomal dominant inheritance. Muscle histochemistry showed ragged-red fibers and electron microscopy showed globular mitochondrial inclusions. Biochemical analysis showed reduced muscle activities of mitochondrial NADH-cytochrome c reductase (1 of 2 patients), succinate-cytochrome c reductase (2 patients), and cytochrome c oxidase (2 patients). For 1 patient, sequence analysis of 44% of the muscle mitochondrial DNA including all 22 transfer RNA regions showed no point mutation with pathogenic significance. Southern blot analysis showed no deletion. Six affected members of the family were treated with methylprednisolone (0.25 mg/kg) for 3 months. Muscle strength, serum lactate, and energy metabolism at rest (measured by 31P magnetic resonance spectroscopy) significantly improved with treatment.
Collapse
Affiliation(s)
- T D Heiman-Patterson
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|