1
|
Ikram M, Park TJ, Ali T, Kim MO. Antioxidant and Neuroprotective Effects of Caffeine against Alzheimer's and Parkinson's Disease: Insight into the Role of Nrf-2 and A2AR Signaling. Antioxidants (Basel) 2020; 9:antiox9090902. [PMID: 32971922 PMCID: PMC7554764 DOI: 10.3390/antiox9090902] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
This paper reviews the results of studies conducted on the role of caffeine in the management of different neurological disorders, such as Parkinson's disease (PD) and Alzheimer's disease (AD). To highlight the potential role of caffeine in managing different neurodegenerative diseases, we identified studies by searching PubMed, Web of Science, and Google Scholar by scrutinizing the lists of pertinent publications. According to the collected overall findings, caffeine may reduce the elevated oxidative stress; inhibit the activation of adenosine A2A, thereby regulating the accumulation of Aβ; reduce the hyperphosphorylation of tau; and reduce the accumulation of misfolded proteins, such as α-synuclein, in Alzheimer's and Parkinson's diseases. The studies have suggested that caffeine has promising protective effects against different neurodegenerative diseases and that these effects may be used to tackle the neurological diseases and/or their consequences. Here, we review the ongoing research on the role of caffeine in the management of different neurodegenerative disorders, focusing on AD and PD. The current findings suggest that caffeine produces potent antioxidant, inflammatory, and anti-apoptotic effects against different models of neurodegenerative disease, including AD, PD, and other neurodegenerative disorders. Caffeine has shown strong antagonistic effects against the adenosine A2A receptor, which is a microglial receptor, and strong agonistic effects against nuclear-related factor-2 (Nrf-2), thereby regulating the cellular homeostasis at the brain by reducing oxidative stress, neuroinflammation, regulating the accumulation of α-synuclein in PD and tau hyperphosphorylation, amyloidogenesis, and synaptic deficits in AD, which are the cardinal features of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Muhammad Ikram
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (T.A.)
| | - Tae Ju Park
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow 0747 657 5394, UK;
| | - Tahir Ali
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (T.A.)
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (T.A.)
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
2
|
Composition of Royal Jelly (RJ) and Its Anti-Androgenic Effect on Reproductive Parameters in a Polycystic Ovarian Syndrome (PCOS) Animal Model. Antioxidants (Basel) 2020; 9:antiox9060499. [PMID: 32517356 PMCID: PMC7346114 DOI: 10.3390/antiox9060499] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Royal jelly (RJ) has been shown to contribute its positive effects upon imbalance in the reproductive system. However, it remains unknown as to whether RJ has an anti-androgenic effect on reproductive parameters in a polycystic ovarian syndrome (PCOS) animal model. Composition of RJ was assessed by phytochemical screening and the LC–MS method. Forty immature female rats (3 weeks, 40–50 g) were randomly divided into five groups (n = 8 per group), i.e., control, testosterone (T), T+100RJ (100 mg/kg/day), T+200RJ (200 mg/kg/day RJ), and T+400RJ (400 mg/kg/day RJ) groups. Hyperandrogenism was induced by daily subcutaneous injection of T propionate for 3 weeks, followed by oral RJ for 4 weeks. The T+200RJ group had a significantly higher follicle-stimulating hormone level, and significantly lower luteinizing hormone, testosterone, and estradiol levels in comparison to the T group. Malondialdehyde level and glutathione peroxidase activity were significantly lower, while total antioxidant capacity level was significantly higher in the T+200RJ group compared to the T group. Histologically, the T+200RJ group showed recovery of various stages of ovarian follicular development. RJ at 200 mg/kg/day for 4 weeks significantly improved reproductive parameters in PCOS rats partly due to its anti-androgenic effect through antioxidant action and probably due to modulation on estrogenic activity, which needs further study to evaluate its exact mechanism of action.
Collapse
|
3
|
Xia B, Wang J. Adenosine Inhibits Ovarian Cancer Growth Through Regulating RhoGDI2 Protein Expression. Drug Des Devel Ther 2019; 13:3837-3844. [PMID: 32109988 PMCID: PMC7041303 DOI: 10.2147/dddt.s219028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/18/2019] [Indexed: 11/24/2022] Open
Abstract
Objective This study aimed to investigate the effect of adenosine (Ado) on the growth of ovarian cancer and to explore the related mechanisms. Methods The effect of Ado on the proliferation of A2780 human ovarian cancer cells was examined according to the MTT method. Moreover, the nude mouse model of subcutaneous A2780 xenograft was constructed, and then, Ado and cisplatin were administered intraperitoneally to investigate the effect of Ado on tumor growth in vivo. Immunohistochemistry (IHC) was carried out to study the effect of Ado on the expression of Rho-specific guanine nucleotide dissociation inhibitor 2 (RhoGDI2) in the subcutaneous xenografts. Afterwards, the commercially constructed RhoGDI2 siRNA plasmid was transfected into A2780 cells, and tube formation assay was conducted to determine the effect of down-regulating RhoGDI2 expression on the regulation of angiogenesis in ovarian cancer by Ado. Besides, Western blotting was performed to detect the effect of RhoGDI2 down-regulation on the regulation of matrix metalloproteinase 2 (MMP-2), MMP-9, vascular endothelial growth factor (VEGF), transforming growth factor beta (TGF-β), tumor necrosis factor (TNF-α), and platelet endothelial cell adhesion molecule-1 (PECAM-1 or CD31) expression in ovarian cancer cells by Ado. Results The relative viability of cells subsequent to Ado treatment proved to be both concentration- and time dependent. IHC results showed that Ado evidently enhanced the RhoGDI2 protein expression. In addition, interference with RhoGDI2 outstandingly attenuated the ability of Ado to suppress tumor cell invasion and induce angiogenesis in vitro. Furthermore, molecular mechanism studies indicated that Ado remarkably inhibited the expression of MMP-2, MMP-9, VEGF, TGF-β, TNF-α, and CD31, while interference with RhoGDI2 restored the expression of the above-mentioned angiogenic factors. Conclusion Ado inhibits the growth of A2780 human ovarian cancer cells through inhibiting tumor cell invasion and angiogenesis in a RhoGDI2-dependent manner.
Collapse
Affiliation(s)
- Bing Xia
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Central South University, Changsha 410078, People's Republic of China
| | - Jing Wang
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Central South University, Changsha 410078, People's Republic of China
| |
Collapse
|
4
|
Lee SC, Lee H, Oh KB, Hwang IS, Yang H, Park MR, Ock SA, Woo JS, Im GS, Hwang S. Production and Breeding of Transgenic Cloned Pigs Expressing Human CD73. Dev Reprod 2017; 21:157-165. [PMID: 28785737 PMCID: PMC5532308 DOI: 10.12717/dr.2017.21.2.157] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 11/17/2022]
Abstract
One of the reasons to causing blood coagulation in the tissue of xenografted
organs was known to incompatibility of the blood coagulation and
anti-coagulation regulatory system between TG pigs and primates. Thus,
overexpression of human CD73 (hCD73) in the pig endothelial cells is considered
as a method to reduce coagulopathy after pig-to-non-human-primate
xenotransplantation. This study was performed to produce and breed transgenic
pigs expressing hCD73 for the studies immune rejection responses and could
provide a successful application of xenotransplantation. The transgenic cells
were constructed an hCD73 expression vector under control porcine Icam2 promoter
(pIcam2-hCD73) and established donor cell lines expressing hCD73. The numbers of
transferred reconstructed embryos were 127 ± 18.9. The pregnancy and delivery
rate of surrogates were 8/18 (44%) and 3/18 (16%). The total number of delivered
cloned pigs were 10 (2 alive, 7 mummy, and 1 died after birth). Among them,
three live hCD73-pigs were successfully delivered by Caesarean section, but one
was dead after birth. The two hCD73 TG cloned pigs had normal reproductive
ability. They mated with wild type (WT) MGH (Massachusetts General Hospital)
female sows and produced totally 16 piglets. Among them, 5 piglets were
identified as hCD73 TG pigs. In conclusion, we successfully generated the hCD73
transgenic cloned pigs and produced their litters by natural mating. It can be
possible to use a mate for the production of multiple transgenic pigs such as
α-1,3-galactosyltransferase knock-out /hCD46 for xenotransplantation.
Collapse
Affiliation(s)
- Seung-Chan Lee
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Haesun Lee
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - In-Sul Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Hyeon Yang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Mi-Ryung Park
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Sun-A Ock
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Jae-Seok Woo
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Gi-Sun Im
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| |
Collapse
|
5
|
Kang H, Shih YRV, Nakasaki M, Kabra H, Varghese S. Small molecule-driven direct conversion of human pluripotent stem cells into functional osteoblasts. SCIENCE ADVANCES 2016; 2:e1600691. [PMID: 27602403 PMCID: PMC5007071 DOI: 10.1126/sciadv.1600691] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/02/2016] [Indexed: 05/05/2023]
Abstract
The abilities of human pluripotent stem cells (hPSCs) to proliferate without phenotypic alteration and to differentiate into tissue-specific progeny make them a promising cell source for regenerative medicine and development of physiologically relevant in vitro platforms. Despite this potential, efficient conversion of hPSCs into tissue-specific cells still remains a challenge. Herein, we report direct conversion of hPSCs into functional osteoblasts through the use of adenosine, a naturally occurring nucleoside in the human body. The hPSCs treated with adenosine not only expressed the molecular signatures of osteoblasts but also produced calcified bone matrix. Our findings show that the adenosine-mediated osteogenesis of hPSCs involved the adenosine A2bR. When implanted in vivo, using macroporous synthetic matrices, the human induced pluripotent stem cell (hiPSC)-derived donor cells participated in the repair of critical-sized bone defects through the formation of neobone tissue without teratoma formation. The newly formed bone tissues exhibited various attributes of the native tissue, including vascularization and bone resorption. To our knowledge, this is the first demonstration of adenosine-induced differentiation of hPSCs into functional osteoblasts and their subsequent use to regenerate bone tissues in vivo. This approach that uses a physiologically relevant single small molecule to generate hPSC-derived progenitor cells is highly appealing because of its simplicity, cost-effectiveness, scalability, and impact in cell manufacturing, all of which are decisive factors for successful translational applications of hPSCs.
Collapse
Affiliation(s)
- Heemin Kang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yu-Ru V. Shih
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Manando Nakasaki
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Harsha Kabra
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shyni Varghese
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Corresponding author.
| |
Collapse
|
6
|
The role of alpha-2 adrenoceptors in the anticonvulsant effects of adenosine on pentylenetetrazole-induced seizure threshold in mice. Pharmacol Biochem Behav 2014; 126:36-42. [PMID: 25242809 DOI: 10.1016/j.pbb.2014.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/04/2014] [Accepted: 09/13/2014] [Indexed: 11/23/2022]
Abstract
Adenosine has anticonvulsant effects in various models of seizures. Alpha-2 adrenoceptors have also demonstrated different effects in different models of epilepsy. In this study, the role of alpha-2 adrenoceptors in the anticonvulsant effects of adenosine in mice was determined according to the method of intravenous pentylenetetrazole-induced seizure. In this study, N(6)-cyclohexyladenosine (CHA) (a selective A1 receptor agonist), clonidine (an alpha-2 adrenoceptors agonist), yohimbine (an alpha-2 adrenoceptors antagonist) and 8-cyclopentyl-1,3-dimethylxanthine (8-CPT) (a selective A1 receptor antagonist) were used. CHA at doses of 0.5, 1 and 2mg/kg significantly increased seizure threshold with the maximum anticonvulsant effect at 2mg/kg. Yohimbine (0.1, 1 and 10mg/kg), clonidine (0.1, 0.5, 1 and 2mg/kg) and 8-CPT (0.5, 1, 2 and 4mg/kg) had no effect on seizure by itself. Combination of yohimbine (10mg/kg) and CHA (0.25mg/kg) increased clonic seizure latency showing that yohimbine and CHA have an additive effect. Increasing the seizure threshold created by combining ineffective doses of yohimbine (10mg/kg) and CHA (0.25mg/kg) was completely inhibited by 8-CPT (4mg/kg) or clonidine (1 and 2mg/kg). Clonidine (0.5, 1 and 2mg/kg) inhibited the anticonvulsant effects of CHA (2mg/kg). Combination of 8-CPT (1mg/kg) and clonidine (0.5mg/kg) which completely inhibited the anticonvulsant effect of CHA (2mg/kg) indicates that 8-CPT and clonidine have an additive effect. In conclusion, adenosine and yohimbine exhibit an additive effect on the enhancement of the pentylenetetrazole-induced seizure threshold in mice, indicating the interaction of alpha-2 adrenoceptors and A1 adenosine receptors.
Collapse
|
7
|
Huang CL, Yang JM, Wang KC, Lee YC, Lin YL, Yang YC, Huang NK. Gastrodia elata prevents huntingtin aggregations through activation of the adenosine A₂A receptor and ubiquitin proteasome system. JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:162-168. [PMID: 21924340 DOI: 10.1016/j.jep.2011.08.075] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/16/2011] [Accepted: 08/30/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastrodia elata Blume (Fam. Orchidaceae) is a traditional Chinese herbal medicine for treating headaches, dizziness, tetanus, epilepsy, and numbness of the limbs, which suggests that it has neuroprotective effect. AIM OF THE STUDY To validate the neuroprotection of Gastrodia elata in preventing neurodegenerations, such as Huntington's disease (HD). MATERIALS AND METHODS MTT assay was used to validate the protection of Gastrodia elata. In pheochromocytoma (PC12) cell. Transient transfection of mutant huntingtin (Htt) in PC12 cell was used as an in vitro model of HD. Filter retardation assay was used to measure Htt-induced protein aggregations. Proteasome activity was monitored by transfection of pZsProSensor-1 and imaged by a confocal laser scanning microscope. RESULTS This protection of Gastrodia elata could be blocked by an A(2A)-R antagonist and a protein kinase A (PKA) inhibitor, indicating an A(2A)-R signaling event. Gastrodia elata could reverse mutant Htt-induced protein aggregations and proteasome de-activation through A(2A)-R signaling. In addition, activation of PKA tended to activate proteasome activity and reduce mutant Htt protein aggregations. The proteasome inhibitor, MG 132, blocked Gastrodia elata-mediated suppression of mutant Htt aggregations. CONCLUSION Gastrodia elata prevented mutant Htt aggregations and increased proteasomal activity by targeting the A(2A)-R through PKA-dependent pathway.
Collapse
Affiliation(s)
- Chuen-Lin Huang
- Medical Research Center, Cardinal Tien Hospital, Hsintien, New Taipei County, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
8
|
Tsai CF, Huang CL, Lin YL, Lee YC, Yang YC, Huang NK. The neuroprotective effects of an extract of Gastrodia elata. JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:119-25. [PMID: 21925258 DOI: 10.1016/j.jep.2011.08.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/26/2011] [Indexed: 05/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastrodia elata (GE) Blume (family Orchidaceae) is a traditional Chinese herbal medicine for treating headaches, dizziness, tetanus, and epilepsy, indicating neuronal protective functions. AIM OF THE STUDY To evaluate the neuroprotection of GE and its molecular mechanism in preventing serum deprivation-induced PC12 cell apoptosis. MATERIALS AND METHODS An MTT assay and Hoechst staining were used to respectively validate serum deprivation-induced cell death and apoptosis. Cyclic (c)AMP formation and protein kinase (PK)A activity were also measured after GE treatment. Western blotting was used to detect the phosphorylation of the cAMP response element-binding (CREB) protein. Transient transfection of a dominant negative CREB was used to validate the importance of CREB. RESULTS GE targeted the adenosine A(2A) receptor (A(2A)-R). GE increased cAMP formation, PKA activity, and phosphorylation of the CREB protein. GE-induced CREB protein phosphorylation and protection was blocked by a PKA inhibitor and overexpression of the dominant negative CREB, respectively. CONCLUSIONS These results support the neuroprotective effects of GE. The protective mechanism might be mediated through an A(2A)-R/cAMP/PKA/CREB-dependent pathway.
Collapse
Affiliation(s)
- Chung-Fen Tsai
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taiwan
| | | | | | | | | | | |
Collapse
|
9
|
Hattori N, Nomoto H, Fukumitsu H, Mishima S, Furukawa S. AMP N(1)-oxide, a unique compound of royal jelly, induces neurite outgrowth from PC12 cells via signaling by protein kinase A independent of that by mitogen-activated protein kinase. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2007; 7:63-8. [PMID: 18955270 PMCID: PMC2816379 DOI: 10.1093/ecam/nem146] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Accepted: 08/20/2007] [Indexed: 01/08/2023]
Abstract
Earlier we identified adenosine monophosphate (AMP) N1-oxide as a unique compound of royal jelly (RJ) that induces neurite outgrowth (neuritegenesis) from cultured rat pheochromocytoma PC12 cells via the adenosine A2A receptor. Now, we found that AMP N1-oxide stimulated the phosphorylation of not only mitogen-activated protein kinase (MAPK) but also that of cAMP/calcium-response element-binding protein (CREB) in a dose-dependent manner. Inhibition of MAPK activation by a MEK inhibitor, PD98059, did not influence the AMP N1-oxide-induced neuritegenesis, whereas that of protein kinase A (PKA) by a selective inhibitor, KT5720, significantly reduced neurite outgrowth. AMP N1-oxide also had the activity of suppressing the growth of PC12 cells, which correlated well with the neurite outgrowth-promoting activity. KT5720 restored the growth of AMP N1-oxide-treated PC12 cells. It is well known that nerve growth factor suppresses proliferation of PC12 cells before causing stimulation of neuronal differentiation. Thus, AMP N1-oxide elicited neuronal differentiation of PC12 cells, as evidenced by generation of neurites, and inhibited cell growth through adenosine A2A receptor-mediated PKA signaling, which may be responsible for characteristic actions of RJ.
Collapse
Affiliation(s)
- Noriko Hattori
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Mitahora-higashi, Gifu 502-8585, Japan and Nagaragawa Research Center, API Co., Ltd, Nagara, Gifu 502-0071, Japan
| | | | | | | | | |
Collapse
|
10
|
Liu DZ, Zhu J, Jin DZ, Zhang LM, Ji XQ, Ye Y, Tang CP, Zhu XZ. Behavioral recovery following sub-chronic paeoniflorin administration in the striatal 6-OHDA lesion rodent model of Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2007; 112:327-32. [PMID: 17451897 DOI: 10.1016/j.jep.2007.03.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 03/04/2007] [Accepted: 03/13/2007] [Indexed: 05/15/2023]
Abstract
In the present studies, the effect of paeoniflorin (PF), one of the main compounds extracted from Paeoniae radix, in alleviating the neurological impairment following unilateral striatal 6-hydroxydopamine (6-OHDA) lesion was examined in Sprague-Dawley rats. Sub-chronic PF (2.5, 5 and 10 mg/kg, s.c., twice daily for 11 days) administration dose-dependently reduced apomorphine (APO)-induced rotation, suggesting that PF had an ameliorative effect on the 6-OHDA-induced neurological impairment. Notably, PF had no direct action on dopamine D(1) receptor or dopamine D(2) receptor indicated by the competitive binding experiments. These results suggest that PF, an active component of Paeoniae radix, might provide an opportunity to introduce a non-dopaminergic management of Parkinson's disease.
Collapse
Affiliation(s)
- Da-Zhi Liu
- Department of Pharmacology II, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu HQ, Zhang WY, Luo XT, Ye Y, Zhu XZ. Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson's disease by activation of adenosine A1 receptor. Br J Pharmacol 2006; 148:314-25. [PMID: 16582933 PMCID: PMC1751566 DOI: 10.1038/sj.bjp.0706732] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. This study examined whether Paeoniflorin (PF), the major active components of Chinese herb Paeoniae alba Radix, has neuroprotective effect in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD). 2. Subcutaneous administration of PF (2.5 and 5 mg kg(-1)) for 11 days could protect tyrosine hydroxylase (TH)-positive substantia nigra neurons and striatal nerve fibers from death and bradykinesia induced by four-dose injection of MPTP (20 mg kg(-1)) on day 8. 3. When given at 1 h after the last dose of MPTP, and then administered once a day for the following 3 days, PF (2.5 and 5 mg kg(-1)) also significantly attenuated the dopaminergic neurodegeneration in a dose-dependent manner. Post-treatment with PF (5 mg kg(-1)) significantly attenuated MPTP-induced proinflammatory gene upregulation and microglial and astrocytic activation. 4. Pretreatment with 0.3 mg kg(-1) 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor (A1AR) antagonist, 15 min before each dose of PF, reversed the neuroprotective and antineuroinflammatory effects of PF. 5. In conclusion, this study demonstrated that PF could reduce the MPTP-induced toxicity by inhibition of neuroinflammation by activation of the A1AR, and suggested that PF might be a valuable neuroprotective agent for the treatment of PD.
Collapse
Affiliation(s)
- Hua-Qing Liu
- Department of Pharmacology II, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Wei-Yu Zhang
- Department of Pharmacology II, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xue-Ting Luo
- Department of Pharmacology II, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Yang Ye
- Department of Pharmacology II, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xing-Zu Zhu
- Department of Pharmacology II, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
- Author for correspondence:
| |
Collapse
|
12
|
Liu DZ, Xie KQ, Ji XQ, Ye Y, Jiang CL, Zhu XZ. Neuroprotective effect of paeoniflorin on cerebral ischemic rat by activating adenosine A1 receptor in a manner different from its classical agonists. Br J Pharmacol 2006; 146:604-11. [PMID: 16086036 PMCID: PMC1751175 DOI: 10.1038/sj.bjp.0706335] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The effects of paeoniflorin (PF), a compound isolated from Paeony radix, on neurological impairment and histologically measured infarction volume following transient and permanent focal ischemia were examined in Sprague-Dawley rats. In transient ischemia model, rats were subjected to a 1.5-h occlusion of the middle cerebral artery (MCA). The administration of PF (2.5 and 5 mg kg(-1), s.c.) produced a dose-dependent decrease in both neurological impairment and the histologically measured infarction volume. Similar results were also obtained when PF (2.5, 5, and 10 mg kg(-1), s.c.) was given in permanent ischemia model. The neuroprotective effect of PF (10 mg kg(-1), s.c.) was abolished by pretreatment of DPCPX (0.25 mg kg(-1), s.c.), a selective adenosine A1 receptor (A1R) antagonist. PF (10, 40, and 160 mg kg(-1), i.v.) had no effect on mean arterial pressure (MAP) and heart rates (HR) in the conscious rat. Additionally, PF (10(-3) mol l(-1)) had no effect on noradrenaline- (NA-) or high K+ concentration-induced contractions of isolated rabbit primary artery. In competitive binding experiments, PF did not compete with the binding of [3H]DPCPX, but displaced the binding of [3H]NECA to the membrane preparation of rat cerebral cortex. This binding manner was distinguished from the classical A1R agonists. The results demonstrated that activation of A1R might be involved in PF-induced neuroprotection in cerebral ischemia in rat. However, PF had no 'well-known' cardiovascular side effects of classical A1R agonists. The results suggest that PF might have the potential therapeutic value as an anti-stroke drug.
Collapse
MESH Headings
- Adenosine-5'-(N-ethylcarboxamide)/metabolism
- Animals
- Benzoates/administration & dosage
- Benzoates/metabolism
- Benzoates/pharmacology
- Binding, Competitive
- Bridged-Ring Compounds/administration & dosage
- Bridged-Ring Compounds/metabolism
- Bridged-Ring Compounds/pharmacology
- Cerebral Cortex/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Glucosides/administration & dosage
- Glucosides/metabolism
- Glucosides/pharmacology
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/prevention & control
- Inhibitory Concentration 50
- Ischemic Attack, Transient/pathology
- Ischemic Attack, Transient/prevention & control
- Male
- Monoterpenes
- Neuroprotective Agents/administration & dosage
- Neuroprotective Agents/metabolism
- Neuroprotective Agents/pharmacology
- Paeonia
- Plant Roots
- Rats
- Rats, Sprague-Dawley
- Receptor, Adenosine A1/drug effects
- Receptor, Adenosine A1/metabolism
- Time Factors
- Xanthines/administration & dosage
- Xanthines/pharmacology
Collapse
Affiliation(s)
- Da-Zhi Liu
- Department of Pharmacology, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Ke-Qiang Xie
- Department of Pharmacology, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xin-Quan Ji
- Department of Pharmacology, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Cheng-Liang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xing-Zu Zhu
- Department of Pharmacology, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
- Author for correspondence:
| |
Collapse
|
13
|
Sun CN, Cheng HC, Chou JL, Lee SY, Lin YW, Lai HL, Chen HM, Chern Y. Rescue of p53 blockage by the A(2A) adenosine receptor via a novel interacting protein, translin-associated protein X. Mol Pharmacol 2006; 70:454-66. [PMID: 16617164 DOI: 10.1124/mol.105.021261] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Blockage of the p53 tumor suppressor has been found to impair nerve growth factor (NGF)-induced neurite outgrowth in PC-12 cells. We report herein that such impairment could be rescued by stimulation of the A(2A) adenosine receptor (A(2A)-R), a G protein-coupled receptor implicated in neuronal plasticity. The A(2A)-R-mediated rescue occurred in the presence of protein kinase C (PKC) inhibitors or protein kinase A (PKA) inhibitors and in a PKA-deficient PC-12 variant. Thus, neither PKA nor PKC was involved. In contrast, expression of a truncated A(2A)-R mutant harboring the seventh transmembrane domain and its C terminus reduced the rescue effect of A(2A)-R. Using the cytoplasmic tail of the A(2A)-R as bait, a novel-A(2A)-R-interacting protein [translin-associated protein X (TRAX)] was identified in a yeast two-hybrid screen. The authenticity of this interaction was verified by pull-down experiments, coimmunoprecipitation, and colocalization of these two molecules in the brain. It is noteworthy that reduction of TRAX using an antisense construct suppressed the rescue effect of A(2A)-R, whereas overexpression of TRAX alone caused the same rescue effect as did A(2A)-R activation. Results of [(3)H]thymidine and bromodeoxyuridine incorporation suggested that A(2A)-R stimulation inhibited cell proliferation in a TRAX-dependent manner. Because the antimitotic activity is crucial for NGF function, the A(2A)-R might exert its rescue effect through a TRAX-mediated antiproliferative signal. This antimitotic activity of the A(2A)-R also enables a mitogenic factor (epidermal growth factor) to induce neurite outgrowth. We demonstrate that the A(2A)-R modulates the differentiation ability of trophic factors through a novel interacting protein, TRAX.
Collapse
Affiliation(s)
- Chung-Nan Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hattori N, Nomoto H, Mishima S, Inagaki S, Goto M, Sako M, Furukawa S. Identification of AMP N1-oxide in royal jelly as a component neurotrophic toward cultured rat pheochromocytoma PC12 cells. Biosci Biotechnol Biochem 2006; 70:897-906. [PMID: 16636457 DOI: 10.1271/bbb.70.897] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An extract of royal jelly (RJ) induced processes from cultured rat pheochromocytoma PC12 cells. Active components were isolated, and identified as adenosine monophosphate (AMP) and AMP N1-oxide. AMP N1-oxide was more than 20 times as active as AMP, judging from the minimal concentration to elicit activity. AMP N1-oxide was thought to be responsible for about half of the process-forming activity of whole RJ. Chemically-synthesized AMP N1-oxide was active similarly to the molecule purified from RJ, confirming AMP N1-oxide as the active entity. AMP N1-oxide also suppressed proliferation of PC12 cells and stimulated expression of neurofilament M, a specific protein of mature neurons, demonstrating the stimulatory activity of AMP N1-oxide to induce neuronal differentiation of PC12 cells. Pharmacological experiments suggested that AMP N1-oxide actions are mediated by adenyl cyclase-coupled adenosine receptors, including A2A. Thus AMP N1-oxide is a key molecule that characterizes RJ, and is not found in natural products other than RJ.
Collapse
Affiliation(s)
- Noriko Hattori
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Lu MK, Cheng JJ, Lai WL, Lin YR, Huang NK. Adenosine as an active component of Antrodia cinnamomea that prevents rat PC12 cells from serum deprivation-induced apoptosis through the activation of adenosine A2A receptors. Life Sci 2006; 79:252-8. [PMID: 16443241 DOI: 10.1016/j.lfs.2005.12.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 12/14/2005] [Accepted: 12/31/2005] [Indexed: 10/25/2022]
Abstract
Antrodia cinnamomea (formerly named Antrodia camphorata) is a rare medicinal fungus. We previously reported that it exhibits antioxidative, vasorelaxative, anti-inflammatory, and anti-angiogenic effects. When serum deprivation-induced apoptosis in neuronal-like PC12 cells was used as a stress model, the extract of A. cinnamomea displayed effectiveness in preventing serum-deprived apoptosis. Since our previous data show that the extract of A. cinnamomea contains adenosine (ADO), we attempt to investigate if the active component is ADO and to identify its targeting site in this study. After pre-incubation with ADO deaminase, neither ADO nor the extract of A. cinnamomea exerted any protection, demonstrating that the active component of A. cinnamomea is ADO. Furthermore, an ADO A(2A) receptor (A(2A)-R) antagonist was used and was able to block the protective effects of ADO and the extract of A. cinnamomea, demonstrating that the ADO targeting site in this model is A(2A)-R. Taken together, the protective effect of A. cinnamomea is owed to its active component, ADO, which acts through activation of A(2A)-R to prevent serum deprivation-induced PC12 cell apoptosis.
Collapse
Affiliation(s)
- Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Taipei, Taiwan, No 155-1, Section 2, Li-Nung Street., Shipai, Pei-tou District (112), Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
16
|
Bilodeau ML, Ji M, Paris M, Andrisani OM. Adenosine signaling promotes neuronal, catecholaminergic differentiation of primary neural crest cells and CNS-derived CAD cells. Mol Cell Neurosci 2005; 29:394-404. [PMID: 15886017 DOI: 10.1016/j.mcn.2005.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 03/17/2005] [Accepted: 03/18/2005] [Indexed: 11/22/2022] Open
Abstract
In neural crest (NC) cultures cAMP signaling is an instructive signal in catecholaminergic, sympathoadrenal cell development. However, the extracellular signals activating the cAMP pathway during NC cell development have not been identified. We demonstrate that in avian NC cultures, evidenced by tyrosine hydroxylase expression and catecholamine biosynthesis, adenosine and not adrenergic signaling, together with BMP2, promotes sympathoadrenal cell development. In NC cultures, addition of the adenosine receptor agonist NECA in the presence of BMP2 promotes sympathoadrenal cell development, whereas the antagonist CGS 15943 or the adenosine degrading enzyme adenosine deaminase (ADA) suppresses TH expression. Importantly, NC cells express A2A and A2B receptors which couple with Gsalpha increasing intracellular cAMP. Employing the CNS-derived catecholaminergic CAD cell line, we also demonstrate that neuronal differentiation mediated by serum withdrawal is further enhanced by treatment with IBMX, a cAMP-elevating agent, or the adenosine receptor agonist NECA, acting via cAMP. By contrast, the adenosine receptor antagonist CGS 15943 or the adenosine degrading enzyme ADA inhibits CAD cell neuronal differentiation mediated by serum withdrawal. These results support that adenosine is a physiological signal in neuronal differentiation of the CNS-derived catecholaminergic CAD cell line and suggest that adenosine signaling is involved in NC cell development in vivo.
Collapse
Affiliation(s)
- Matthew L Bilodeau
- Department of Basic Medical Sciences, 1246 Lynn Hall, Purdue University, West Lafayette, IN 47907-1246, USA
| | | | | | | |
Collapse
|
17
|
Mori Y, Higuchi M, Masuyama N, Gotoh Y. Adenosine A2A receptor facilitates calcium-dependent protein secretion through the activation of protein kinase A and phosphatidylinositol-3 kinase in PC12 cells. Cell Struct Funct 2005; 29:101-10. [PMID: 15665505 DOI: 10.1247/csf.29.101] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Adenosine modulates a variety of cellular functions including calcium-dependent exocytosis. Activation of adenosine A(2A) receptor (A(2A)-R) facilitates neurotransmitter release in some cell types, although the underlying mechanisms are not fully understood. In this study, we found that treatment of PC12 cells with the A(2A)-R agonist CGS21680 promotes calcium-evoked secretion of the fusion protein between neuropeptide Y and modified yellow fluorescence protein (NPY-Venus). CGS21680 treatment of PC12 cells transiently increased the phosphorylation of p38 and JNK MAP kinases and Akt, as well as that of ATF2 and CREB, reaching maximal levels at around 10-15 min of CGS21680 treatment. Importantly, pretreatment of PC12 cells with the PI3K inhibitor LY294002, together with the protein kinase A (PKA) inhibitor KT5720, significantly inhibited CGS21680 enhancement of calcium-dependent NPY-Venus release. Moreover, expression of a dominant-negative form of Akt and the PKA inhibitory polypeptide protein kinase inhibitor (PKI) co-operatively inhibited the facilitating effect of CGS21680 on secretion of NPY-Venus. These data suggest that the PI3K-Akt and PKA pathways play a critical role in A(2A)-R-mediated facilitation of calcium-dependent secretion. We also found that CGS21680 treatment promoted recruitment of the NPY-Venus-containing vesicles to the proximity of the plasma membrane at around 10-15 min of CGS21680 treatment, which may in part account for the facilitated secretion by A(2A)-R activation.
Collapse
Affiliation(s)
- Yasunori Mori
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
18
|
Khalpey Z, Yuen AH, Kalsi KK, Kochan Z, Karbowska J, Slominska EM, Forni M, Macherini M, Bacci ML, Batten P, Lavitrano M, Yacoub MH, Smolenski RT. Loss of ecto-5'nucleotidase from porcine endothelial cells after exposure to human blood: Implications for xenotransplantation. Biochim Biophys Acta Mol Basis Dis 2005; 1741:191-8. [PMID: 15955461 DOI: 10.1016/j.bbadis.2005.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 03/01/2005] [Accepted: 03/21/2005] [Indexed: 10/25/2022]
Abstract
The endothelial cell surface expression of ecto-5'-nucleotidase (E5'N, CD73) is thought to be essential for the extracellular formation of cytoprotective, anti-thrombotic and immunosuppressive adenosine. Decreased E5'N activity may play a role in xenograft acute vascular rejection, preventing accommodation and tolerance mechanisms. We investigated the extent of changes in E5'N activity and other enzymes of purine metabolism in porcine hearts or endothelial cells when exposed to human blood or plasma and studied the role of humoral immunity in this context. Pig hearts, wild type (WT, n = 6) and transgenic (T, n = 5) for human decay accelerating factor (hDAF), were perfused ex vivo with fresh human blood for 4 h. Pig aortic endothelial cells (PAEC) were exposed for 3 h to autologous porcine plasma (PP), normal (NHP) or heat inactivated human plasma (HHP), with and without C1-inhibitor. Enzyme activities were measured in heart or endothelial cell homogenates with an HPLC based procedure. The baseline activity of E5'N in WT and T porcine hearts were 6.60 +/- 0.33 nmol/min/mg protein and 8.54 +/- 2.10 nmol/min/mg protein respectively (P < 0.01). Ex vivo perfusion of pig hearts with fresh human blood for 4 h resulted in a decrease in E5'N activity to 4.01 +/- 0.32 and 4.52 +/- 0.52 nmol/min/mg protein (P < 0.001) in WT and T hearts respectively, despite attenuation of hyperacute rejection in transgenic pigs. The initial PAEC activity of E5'N was 9.10 +/- 1.40 nmol/min/mg protein. Activity decreased to 6.76 +/- 0.57 and 4.58 +/- 0.47 nmol/min/mg protein (P < 0.01) after 3 h exposure of HHP and NHP respectively (P < 0.05), whereas it remained unchanged at 9.62 +/- 0.88 nmol/min/mg protein when incubated with PP controls. C1-inhibitor partially preserved E5'N activity, similar to the effect of HHP. Adenosine deaminase, adenosine kinase and AMP deaminase (other enzymes of purine metabolism) showed a downward trend in activity, but none were statistically significant. We demonstrate a specific decrease in E5'N activity in pig hearts following exposure to human blood which impairs adenosine production resulting in a loss of a cytoprotective phenotype, contributing to xenograft rejection. This effect is triggered by human humoral immune responses, and complement contributes but does not fully mediate E5'N depletion.
Collapse
Affiliation(s)
- Zain Khalpey
- Heart Science Centre, Imperial College at Harefield Hospital, Middlesex UB9 6JH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
O'Driscoll CM, Gorman AM. Hypoxia induces neurite outgrowth in PC12 cells that is mediated through adenosine A2A receptors. Neuroscience 2005; 131:321-9. [PMID: 15708476 DOI: 10.1016/j.neuroscience.2004.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2004] [Indexed: 11/20/2022]
Abstract
Development of the nervous system is a complex process, involving coordinated regulation of diverse cellular processes including proliferation, differentiation and synaptogenesis. Disturbances to brain development such as pre- and perinatal hypoxia have been linked to behavioural and late onset of neurological disorders. This study examines the effect of hypoxia on neurite outgrowth in PC12 cells. Hypoxia not only caused a rapid induction of neurite outgrowth, but also synergistically enhanced nerve growth factor (NGF)-induced neurite outgrowth up to 24 h. Transactivation of TrkA receptors was ruled out since the TrkA inhibitor K252a did not block hypoxia-induced neurite outgrowth. Adenosine deaminase prevented hypoxia-induced neurite outgrowth indicating that the effect is mediated by adenosine. Use of the specific adenosine A2A receptor agonist CGS21680 and antagonist 8-3(chlorostyryl)caffeine demonstrated that activation of this receptor is critical for hypoxia-induced neurite outgrowth. Hypoxia-induced neurite outgrowth was blocked by the adenylate cyclase inhibitor, MDL-12,330A, indicating a role for activation of this enzyme in the pathway. Hypoxia was further shown to cause a decrease in growth-associated protein (GAP)-43 levels and a lack of induction of betaIII tubulin, in contrast to NGF treatment which resulted in increased cellular levels of both of these proteins. These findings suggest that hypoxia induces neurite outgrowth in PC12 cells via a pathway distinct from that activated by NGF. Thus, exposure to hypoxia at critical stages of development may contribute to aberrant neurite outgrowth and could be a factor in the pathogenesis of certain delayed developmental neurological disorders.
Collapse
Affiliation(s)
- C M O'Driscoll
- Department of Biochemistry, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
20
|
Steffansen B, Nielsen CU, Brodin B, Eriksson AH, Andersen R, Frokjaer S. Intestinal solute carriers: an overview of trends and strategies for improving oral drug absorption. Eur J Pharm Sci 2004; 21:3-16. [PMID: 14706808 DOI: 10.1016/j.ejps.2003.10.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A large amount of absorptive intestinal membrane transporters play an important part in absorption and distribution of several nutrients, drugs and prodrugs. The present paper gives a general overview on intestinal solute carriers as well as on trends and strategies for targeting drugs and/or prodrugs to these carriers in order to increasing oral bioavailability and distribution. A number of absorptive intestinal transporters are described in terms of gene and protein classification, driving forces, substrate specificities and cellular localization. When targeting absorptive large capacity membrane transporters in the small intestine in order to increase oral bioavailabilities of drug or prodrug, the major influence on in vivo pharmacokinetics is suggested to be dose-dependent increase in bioavailability as well as prolonged blood circulation due to large capacity facilitated absorption, and renal re-absorption, respectively. In contrast, when targeting low-capacity transporters such as vitamin transporters, dose independent saturable absorption kinetics are suggested. We thus believe that targeting drug substrates for absorptive intestinal membrane transporters could be a feasible strategy for optimizing drug bioavailability and distribution.
Collapse
Affiliation(s)
- Bente Steffansen
- Department of Pharmaceutics, The Danish University of Pharmaceutical Sciences, 2 Universitetsparken, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
21
|
Huang NK. Adenosine A2A receptors regulate oxidative stress formation in rat pheochromocytoma PC12 cells during serum deprivation. Neurosci Lett 2003; 350:127-31. [PMID: 12972169 DOI: 10.1016/s0304-3940(03)00860-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activation of A2A adenosine receptors (A2A-Rs) was found to prevent reactive oxygen species (ROS) formation and apoptosis in serum-deprived pheochromocytoma PC12 cells. A protein kinase A (PKA) inhibitor not only blocked the anti-apoptotic roles of A2A-R but also reversed A2A-R-induced suppression of ROS formation, indicating a PKA-dependent pathway in preventing ROS formation and apoptosis. PKA stimulators and antioxidants prevented serum-deprived ROS formation and apoptosis. In addition, A2A-R activation also prevented H2O2-induced cell death, further suggesting the protective roles of A2A-R in antagonizing oxidative stress and cell death. Finally, antioxidative system-interrupting agents attenuated A2A-R-mediated protection. Taken together, these data indicate that PKA-dependent regulation and attenuation of oxidative stress by A2A-R may play at least some roles in preventing serum-deprived PC12 cell apoptosis.
Collapse
Affiliation(s)
- Nai-Kuei Huang
- National Research Institute of Chinese Medicine, No. 155-1, Li-Nung Street, Sec. 2, Ship-Pai, Peitou, Taipei 112, Taiwan, ROC.
| |
Collapse
|
22
|
de Boer AG, van der Sandt ICJ, Gaillard PJ. The role of drug transporters at the blood-brain barrier. Annu Rev Pharmacol Toxicol 2003; 43:629-56. [PMID: 12415123 DOI: 10.1146/annurev.pharmtox.43.100901.140204] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic interface between the blood and the brain. It eliminates (toxic) substances from the endothelial compartment and supplies the brain with nutrients and other (endogenous) compounds. It can be considered as an organ protecting the brain and regulating its homeostasis. Until now, many transport systems have been discovered that play an important role in maintaining BBB integrity and brain homeostasis. In this review, we focus on the role of carrier- and receptor-mediated transport systems (CMT, RMT) at the BBB. These include CMT systems, such as P-glycoprotein, multidrug-resistance proteins 1-7, nucleoside transporters, organic anion transporters, and large amino-acid transporters; RMT systems, such as the transferrin-1 and -2 receptors; and the scavenger receptors SB-AI and SB-BI.
Collapse
Affiliation(s)
- A G de Boer
- Blood-Brain Barrier Research Group, Division of Pharmacology, Leiden/Amsterdam Center for Drug Research, University of Leiden, The Netherlands.
| | | | | |
Collapse
|
23
|
Wu L, Li H, Li YQ. Adenosine suppresses the response of neurons to gaba in the superficial laminae of the rat spinal dorsal horn. Neuroscience 2003; 119:145-54. [PMID: 12763076 DOI: 10.1016/s0306-4522(03)00074-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
With the nystatin-perforated whole-cell patch-clamp recording technique, the modulatory effects of adenosine on GABA-activated whole-cell currents were investigated in neurons acutely dissociated from the superficial laminae (laminae I and II) of the rat spinal dorsal horn. The results showed that: (1) GABA acted on GABA(A) receptor and elicited inward Cl(-) currents (I(GABA)) at a holding potential (V(H)) of -40 mV; (2) adenosine suppressed GABA-induced Cl(-) current with affecting neither the reversal potential of I(GABA) nor the apparent affinity of GABA to its receptor; (3) N6-cyclo-hexyladenosine, a selective A(1) adenosine receptor agonist, mimicked the suppressing effect of adenosine on I(GABA), whereas 8-cyclopentyl-1,3-dipropylxanthine, a selective A(1) adenosine receptor antagonist, blocked the suppressing effect of adenosine; (4) chelerythrine, an inhibitor of protein kinase C, reduced the suppressing effect of adenosine on I(GABA); (5) pretreatment with 1,2-bis-(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxy-methyl) ester, a Ca(2+) chelator, did not affect adenosine-induced suppression of I(GABA). The results indicate that: (1) the suppression of adenosine on I(GABA) is mediated by adenosine A(1) receptor and through a Ca(2+)-independent protein kinase C transduction pathway; (2) the interactions between adenosine and GABA might be involved in the modulation of nociceptive information transmission at spinal cord level.
Collapse
Affiliation(s)
- L Wu
- Department of Anatomy and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an 710032, China
| | | | | |
Collapse
|
24
|
Majumdar S, Aggarwal BB. Adenosine suppresses activation of nuclear factor-kappaB selectively induced by tumor necrosis factor in different cell types. Oncogene 2003; 22:1206-18. [PMID: 12606947 DOI: 10.1038/sj.onc.1206184] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2002] [Revised: 10/18/2002] [Accepted: 10/23/2002] [Indexed: 11/09/2022]
Abstract
Adenosine is an endogenous immunomodulator that has been shown to exhibit anti-inflammatory and immunosuppressive properties through a mechanism that is not fully established. Owing to the pivotal role of nuclear factor (NF)-kappaB in these responses, we tested the hypothesis that adenosine mediates its effects through suppression of NF-kappaB activation. We investigated the effects of adenosine on NF-kappaB activation induced by various inflammatory agents in human myeloid KBM-5 cells. The treatment of these cells with adenosine suppressed TNF-induced NF-kappaB activation, but had no effect on activation of another redox-sensitive transcription factor, AP-1. These effects were not restricted to myeloid cells, as NF-kappaB activation in other lymphocytic and epithelial cell types was also inhibited. The effect on TNF-induced NF-kappaB activation was selective as adenosine had minimal effect on NF-kappaB activation induced by H(2)O(2), PMA, LPS, okadaic acid, or ceramide, suggesting differences in the pathway leading to NF-kappaB activation by different agents. Adenosine also suppressed NF-kappaB-dependent reporter gene expression activated by TNF or by overexpression of TNFR1, TRAF 2, NIK, and p65 subunit of NF-kappaB. The suppression of TNF-induced NF-kappaB activation by adenosine was found not to be because of inhibition of TNF-induced IkappaBalpha phosphorylation and degradation or IkappaBalpha kinase activation. The suppression of TNF-induced NF-kappaB activation was unique to adenosine, as neither its metabolites (inosine, AMP, and ATP) nor pyrimidines (thymidine and uridine) had any effect. Overall, our results clearly demonstrate that adenosine selectively suppresses TNF-induced NF-kappaB activation, which may contribute to its role in suppression of inflammation and of the immune system.
Collapse
MESH Headings
- Adenosine/pharmacology
- Alkaline Phosphatase/biosynthesis
- Alkaline Phosphatase/genetics
- Antigens, CD/physiology
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Ceramides/pharmacology
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Reporter
- HeLa Cells/drug effects
- HeLa Cells/metabolism
- Humans
- Hydrogen Peroxide/pharmacology
- I-kappa B Kinase
- I-kappa B Proteins/physiology
- Jurkat Cells/drug effects
- Jurkat Cells/metabolism
- Kidney/cytology
- Kidney/embryology
- Leukemia, Myeloid/pathology
- Lipopolysaccharides/pharmacology
- Monocytes/drug effects
- Monocytes/metabolism
- NF-KappaB Inhibitor alpha
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/physiology
- Okadaic Acid/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/physiology
- Proteins/antagonists & inhibitors
- Proteins/physiology
- Purinergic P1 Receptor Agonists
- Receptors, Purinergic P1/physiology
- Receptors, Tumor Necrosis Factor/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- TNF Receptor-Associated Factor 2
- Tetradecanoylphorbol Acetate/pharmacology
- Thymidine/pharmacology
- Transcription, Genetic/drug effects
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/pharmacology
- Uridine/pharmacology
- NF-kappaB-Inducing Kinase
Collapse
Affiliation(s)
- Sekhar Majumdar
- Cytokine Research Laboratory, Department of Bioimmunotherapy, The University of Texas, TX 77030, USA
| | | |
Collapse
|
25
|
Hajhashemi V, Ghannadi A, Pezeshkian SK. Antinociceptive and anti-inflammatory effects of Satureja hortensis L. extracts and essential oil. JOURNAL OF ETHNOPHARMACOLOGY 2002; 82:83-87. [PMID: 12241981 DOI: 10.1016/s0378-8741(02)00137-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Satureja hortensis L. (Lamiaceae) is a medicinal plant used in Iranian folk medicine as muscle and bone pain reliever. In the present study, hydroalcoholic extract, polyphenolic fraction and essential oil of the aerial parts of the herb were prepared and evaluated for the analgesic activity using light tail flick, formalin and acetic acid-induced writhing in mice. Also, the anti-inflammatory effects of the above-mentioned preparations were assessed using carrageenan-induced paw edema in rats. Results showed that in the light tail flick test neither the essential oil nor the extracts could exert any significant effect. The hydroalcoholic extract (2000 mg/kg, p.o.) and the essential oil (200 mg/kg, p.o.) inhibited the mice writhing responses caused by acetic acid. In formalin test, hydroalcoholic extract (500-2000 mg/kg, p.o.), polyphenolic fraction (250-1000 mg/kg, p.o.) and the essential oil (50-200 mg/kg, p.o.) showed analgesic activity and pretreatment with naloxone (1 mg/kg, i.p.) or caffeine (20 mg/kg, i.p.) failed to reverse this antinociceptive activity. Polyphenolic fraction (1000 mg/kg, p.o.) and the essential oil (200 mg/kg) reduced edema caused by carrageenan. These results suggest that S. hortensis L. has antinociceptive and anti-inflammatory effects and probably mechanism(s) other than involvement of opioid and adenosine receptors mediate(s) the antinociception.
Collapse
Affiliation(s)
- Valiollah Hajhashemi
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | | |
Collapse
|
26
|
Abstract
We examined the scratch (itch) inducing effect of 1,8-cineole (cineole), a monoterpene oxide present in many plant essential oils and the possible role of mast cells in the response. Subcutaneous injection of cineole (10, 20 and 40 microl/site) or the mast cell degranulating agent, compound 48/80 (25, 50 and 100 microg/site) into the rostral back of mice induced a scratching behavior. This response of cineole as well as that of 48/80 was markedly suppressed in mice subjected to mast cell desensitization by repeated injections of 48/80. The cineole-induced scratching was also significantly diminished in animals pretreated with diphenhydramine, the histamine H1-receptor antagonist or cyproheptadine, the dual histamine/serotonin-receptor antagonist. Furthermore, the scratch-inducing effect of cineole was greatly reduced in mice that received the opioid antagonist naloxone or the selective adenosine A1-receptor agonist, N6-cyclopentyladenosine (CPA), but not the more selective adenosine A2-receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA). The data suggest a likely role for mast cells in cineole-induced scratching behavior of mice, possibly involving adenosinergic and opioidergic mechanisms.
Collapse
Affiliation(s)
- F A Santos
- Department of Physiology and Pharmacology, Federal University of Ceará (FM), Fortaleza, Brazil
| | | |
Collapse
|
27
|
Macchia M, Bertini S, Di Bussolo V, Manera C, Martini C, Minutolo F, Mori C, Saccomanni G, Tuscano D, Ferrarini PL. 4-[6-(Dansylamino)hexylamino]-7-methyl-2-phenyl-1,8-naphthyridine as a new potential fluorescent probe for studying A1-adenosine receptor. FARMACO (SOCIETA CHIMICA ITALIANA : 1989) 2002; 57:783-6. [PMID: 12420873 DOI: 10.1016/s0014-827x(02)01275-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A new fluorescent ligand for adenosine receptors, obtained by the insertion of a dansylamino-moiety with a linear hexyl spacer in the N4 position of a 1,8-naphthyridine adenosine receptor ligand, proved to possess a high affinity and selectivity for the A1 receptor subtype.
Collapse
Affiliation(s)
- Marco Macchia
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cheng HC, Shih HM, Chern Y. Essential role of cAMP-response element-binding protein activation by A2A adenosine receptors in rescuing the nerve growth factor-induced neurite outgrowth impaired by blockage of the MAPK cascade. J Biol Chem 2002; 277:33930-42. [PMID: 12114502 DOI: 10.1074/jbc.m201206200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We found in the present study that stimulation of the A(2A) adenosine receptor (A(2A)-R) using an A(2A)-selective agonist (CGS21680) rescued the blockage of nerve growth factor (NGF)-induced neurite outgrowth when the NGF-evoked MAPK cascade was suppressed by an MEK inhibitor (PD98059) or by a dominant-negative MAPK mutant (dnMAPK). This action of A(2A)-R (designated as the A(2A)-rescue effect) can be blocked by two inhibitors of protein kinase A (PKA) and was absent in a PKA-deficient PC12 variant. Activation of the cAMP/PKA pathway by forskolin exerted the same effect as that by A(2A)-R stimulation. PKA, thus, appears to mediate the A(2A)-rescue effect. Results from cAMP-response element-binding protein (CREB) phosphorylation at serine 133, trans-reporting assays, and overexpression of two dominant-negative CREB mutants revealed that A(2A)-R stimulation led to activation of CREB in a PKA-dependent manner and subsequently reversed the damage of NGF-evoked neurite outgrowth by PD98059 or dnMAPK. Expression of an active mutant of CREB readily rescued the NGF-induced neurite outgrowth impaired by dnMAPK, further strengthening the importance of CREB in the NGF-mediated neurite outgrowth process. Moreover, simultaneous activation of the A(2A)-R/PKA/CREB-mediated and the phosphatidylinositol 3-kinase pathways caused neurite outgrowth that was not suppressed by a selective inhibitor of TrkA, indicating that transactivation of TrkA was not involved. Collectively, CREB functions in conjunction with the phosphatidylinositol 3-kinase pathway to mediate the neurite outgrowth process in PC12 cells.
Collapse
Affiliation(s)
- Hsiao-Chun Cheng
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | | | | |
Collapse
|
29
|
Bivalacqua TJ, Champion HC, Lambert DG, Kadowitz PJ. Vasodilator responses to adenosine and hyperemia are mediated by A(1) and A(2) receptors in the cat vascular bed. Am J Physiol Regul Integr Comp Physiol 2002; 282:R1696-709. [PMID: 12010752 DOI: 10.1152/ajpregu.00394.2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemodynamic responses to adenosine, the A(1) receptor agonists N(6)-cyclopentyladenosine (CPA) and adenosine amine congener (ADAC), and the A(2) receptor agonist 5'-(N-cyclopropyl)-carboxamido-adenosine (CPCA) were investigated in the hindquarter vascular bed of the cat under constant-flow conditions. Injections of adenosine, CPA, ADAC, CPCA, ATP, and adenosine 5'-O-(3-thiotriphosphate) (ATPgamma S) into the perfusion circuit induced dose-related decreases in perfusion pressure. Vasodilator responses to the A(1) agonists were reduced by the A(1) receptor antagonists KW-3902 and CGS-15943, whereas responses to CPCA were reduced by the A(2) antagonist KF-17837. Vasodilator responses to adenosine were reduced by KW-3902, CGS-15943, and by KF-17837, suggesting a role for both A(1) and A(2) receptors. Vasodilator responses to ATP and the nonhydrolyzable ATP analog ATP gamma S were not attenuated by CGS-15943 or KF-17837. After treatment with the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester, the cyclooxygenase inhibitor sodium meclofenamate, or the ATP-dependent K(+) (K) channel antagonists U-37883A or glibenclamide, responses to adenosine and ATP were not altered. Responses to adenosine, CPA, and CPCA were increased in duration by rolipram, a type 4 cAMP phosphodiesterase inhibitor, but were not altered by zaprinast, a type 5 cGMP phosphodiesterase inhibitor. When blood flow was interrupted for a 30-s period, the magnitude and duration of the reactive vasodilator response were reduced by A(1) and A(2) receptor antagonists. These data suggest that vasodilator responses to adenosine and the A(1) and A(2) agonists studied are not dependent on the release of cyclooxygenase products, nitric oxide, or the opening of K channels in the regional vascular bed of the cat. The present data suggest a role for cAMP in mediating responses to adenosine and suggest that vasodilator responses to adenosine and to reactive hyperemia are mediated in part by A(1) and A(2) receptors in the hindquarter vascular bed of the cat.
Collapse
Affiliation(s)
- Trinity J Bivalacqua
- Department of Pharmacology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
30
|
Kalsi K, Lawson C, Dominguez M, Taylor P, Yacoub MH, Smolenski RT. Regulation of ecto-5'-nucleotidase by TNF-alpha in human endothelial cells. Mol Cell Biochem 2002; 232:113-9. [PMID: 12030367 DOI: 10.1023/a:1014806916844] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ecto-5'-nucleotidase (E5'N, CD73) is key enzyme responsible for formation of anti-inflammatory and immunosuppressive adenosine from extracellular nucleotides as well as an important surface molecule involved in cellular signalling. In this study we provide evidence that the pro-inflammatory cytokine, tumour necrosis factor-alpha (TNF-alpha) may reduce the capacity of human endothelial cells to produce adenosine by a decrease in surface expression and in the activity of E5'N. Human umbilical vein endothelial cells incubated for 24 h with TNF-alpha lost 54% of the activity of E5'N while activities of the other enzymes involved in adenosine metabolism remained unaffected. Immunofluorescence staining with anti-E5'N (1E9) following exposure to TNF-alpha, showed reduced numbers of positive cells. TNF-alpha induced down-regulation of E5'N was prevented by addition of the PLC inhibitor neomycin, but not by inhibitors of MAPK-like pathways (MEK and p38). Therefore, we conclude that TNF-alpha through activation of endogenous PLC leads to cleavage of the GPI-linkage of E5'N resulting in loss of E5'N from the extracellular surface. This change may lead to decrease in formation of adenosine and could be an important mechanism of endothelial activation during inflammation.
Collapse
Affiliation(s)
- Kameljit Kalsi
- Imperial College School of Medicine, National Heart and Lung Institute at Harefield Hospital, Middlesex, UK
| | | | | | | | | | | |
Collapse
|
31
|
Patel MK, Pinnock RD, Lee K. Adenosine exerts multiple effects in dorsal horn neurones of the adult rat spinal cord. Brain Res 2001; 920:19-26. [PMID: 11716807 DOI: 10.1016/s0006-8993(01)02844-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the present study, we have examined the effects of adenosine and its analogues on the electrophysiological properties of dorsal horn neurones in the rat adult spinal cord. Adenosine and the A1 receptor agonist R-phenylisopropyl adenosine (RPIA) reversibly hyperpolarised these neurones via the generation of an outward current at -60 mV that was inhibited by pre-application of barium or Rp-adenosine 3', 5'-cyclic monophosphothioate triethylamine. In contrast, the A2a receptor agonist 2-[p-(2-carboxyethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680) had no effect on the resting membrane properties of these neurones. Stimulation of the dorsal root evoked non-NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) at -60 mV that were completely abolished by 2,3-dihydroxy-6-nitro-7-sulophamoyl-benzo(F)quinoxalone (NBQX). Bath application of adenosine or RPIA reversibly inhibited these EPSCs in a concentration-dependent manner via a presynaptic action. In contrast, CGS21680 increased the amplitude of the EPSC in 20% of neurones tested and decreased the EPSC amplitude in 30% of neurones tested. It is concluded that adenosine exerts multiple effects upon the electrophysiological properties of dorsal horn neurones in the adult spinal cord via interaction with multiple receptors. These findings have important implications in the understanding of adenosine action in preclinical models of pain.
Collapse
Affiliation(s)
- M K Patel
- Pfizer Global Research and Development, Cambridge Laboratories, Cambridge University Forvie Site, CB2 2QB, Cambridge, UK
| | | | | |
Collapse
|
32
|
de Miranda FGG, Vilar JC, Alves IAN, Cavalcanti SCDH, Antoniolli ÂR. Antinociceptive and antiedematogenic properties and acute toxicity of Tabebuia avellanedae Lor. ex Griseb. inner bark aqueous extract. BMC Pharmacol 2001; 1:6. [PMID: 11574048 PMCID: PMC56902 DOI: 10.1186/1471-2210-1-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2001] [Accepted: 09/13/2001] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Tabebuia avellanedae is a tree from the Bignoniaceae family. Commonly know as "pau d'arco" in Brazil, its inner bark is used as analgesic, anti-inflammatory, antineoplasic and diuretic at the Brazilian northeast. A validation of the plant usage has not been previously performed. RESULTS Antinociceptive and antiedematogenic effects of Tabebuia avellanedae Lor. ex Griseb. inner bark were measured by nociceptive experimental models in mice. A rat paw edema test induced by carrageenan (1%) was also performed in rats to access the plant's antiedematogenic effect. The inner bark aqueous extract, administered via oral in three different concentration, namely 100, 200 and 400 mg/Kg, reduced the nociception produced by acetic acid (0.6% in water, i.p.) by 49.9%, 63.7% and 43.8%, respectively. The aqueous extract (200 and 400 mg/Kg, p.o.) reduced formalin (1%) effects only at the second phase of the experiment by 49.3% and 53.7%, respectively. Naloxone (5 mg/Kg, i.p.) was not able to revert the extract effect, however caffeine (10 mg/Kg, i.p.) reverted its effect by 19.8% at the second phase of the formalin test. The aqueous extract (200 mg/Kg, p.o.) inhibited edema by 12.9% when we used the rat paw edema model. The acute toxicity was low in mice. CONCLUSION The T. avellanedae inner bark aqueous extract presented antinociceptive and antiedematogenic activities at the used models, with a possible antinociceptive effect associated to the adenosine system.
Collapse
Affiliation(s)
| | - Jeane Carvalho Vilar
- Departamento de Fisiologia, CCBS, Universidade Federal de Sergipe, São Cristovão, Sergipe, 49100-000, Brazil
| | - Ivana Andréa Nunes Alves
- Departamento de Fisiologia, CCBS, Universidade Federal de Sergipe, São Cristovão, Sergipe, 49100-000, Brazil
| | | | - Ângelo Roberto Antoniolli
- Departamento de Fisiologia, CCBS, Universidade Federal de Sergipe, São Cristovão, Sergipe, 49100-000, Brazil
| |
Collapse
|
33
|
Zanferrari C, Razumovsky AY, Lavados PM, Sen S, Oppenheimer SM. Effect of adenosine on cerebral blood flow velocity. J Neuroimaging 2001; 11:272-9. [PMID: 11462294 DOI: 10.1111/j.1552-6569.2001.tb00046.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Evidence suggests that adenosine (ADN) is a potent vasodilator of cerebral vessels. However, the feasibility of manipulating human cerebral vascular resistance with ADN has not been assessed by means of TCD. The purpose of this study was to quantitatively estimate the change in middle cerebral artery cerebral blood flow velocity (CBFV) in response to intravenous ADN infusion in humans. METHODS Eleven patients with subacute cerebrovascular events (ischemic stroke, transient ischemic attack, or hemorrhage) undergoing adenosine-thallium stress testing were studied before, during, and after ADN infusion to evaluate the effect of ADN on cerebral blood flow velocity. Continuous blood pressure (BP), heart rate (HR), respiration rate (RR), end-tidal CO2 (ET-CO2), and transcranial Doppler ultrasonography monitoring of CBFV and pulsatility index (PI) in both middle cerebral arteries were performed. RESULTS The mean CBFVs were 65.4 +/- 19.2 cm/s before, 55.4 +/- 18.1 cm/s during, and 64.1 +/- 22.5 cm/s after ADN infusion, which represents a statistically significant decrease during ADN test compared with both baseline (P = .007) and posttest levels (P = .017). The PI was increased during the test (0.91 +/- 0.2) when compared with baseline (0.71 +/- 0.1) (P = .007). During ADN injection, mean HR increased (P = .004) and mean ET-CO2 levels decreased significantly (P = .003). Mean BP and RR did not change significantly. CONCLUSIONS The authors hypothesize that any direct vasodilatory effect of ADN on the distal cerebral peripheral vasculature may be negated by an effect of ADN on depth of respiration resulting in hypocapnia and secondary distal vasoconstriction.
Collapse
Affiliation(s)
- C Zanferrari
- Institute of Neurology, University of Parma, Italy
| | | | | | | | | |
Collapse
|
34
|
Huang NK, Lin YW, Huang CL, Messing RO, Chern Y. Activation of protein kinase A and atypical protein kinase C by A(2A) adenosine receptors antagonizes apoptosis due to serum deprivation in PC12 cells. J Biol Chem 2001; 276:13838-46. [PMID: 11278423 DOI: 10.1074/jbc.m008589200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We found in the present study that stimulation of A(2A) adenosine receptors (A(2A)-R) prevents apoptosis in PC12 cells. This A(2A)-protective effect was blocked by protein kinase A (PKA) inhibitors and was not observed in a PKA-deficient PC12 variant. Stimulation of PKA also prevented apoptosis, suggesting that PKA is required for the protective effect of A(2A)-R. A general PKC inhibitor, but not down-regulation of conventional and novel PKCs, readily blocked the protective effect of A(2A)-R stimulation and PKA activation, suggesting that atypical PKCs (aPKCs) serve a critical role downstream of PKA. Consistent with this hypothesis, stimulation of A(2A)-R or PKA enhanced nuclear aPKC activity. In addition, the A(2A)-protective effect was blocked by a specific inhibitor of one aPKC, PKCzeta, whereas overexpression of a dominant-positive PKCzeta enhanced survival. In contrast, inhibitors of MAP kinase and phosphatidylinositol 3-kinase did not modulate the A(2A)-protective effect. Dominant-negative Akt also did not alter the A(2A)-protective effect, whereas it significantly reduced the protective action of nerve growth factor. Collectively, these data suggest that aPKCs can function downstream of PKA to mediate the A(2A)-R-promoted survival of PC12 cells. Furthermore, the results indicate that different extracellular stimuli can employ distinct signaling pathways to protect against apoptosis induced by the same insult.
Collapse
Affiliation(s)
- N K Huang
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
35
|
Abstract
The cellular events mediating necrotic neuron death are now reasonably well understood, and involve excessive extracellular accumulation of glutamate and free cytosolic calcium. When such necrotic neurological insults occur, neurons are not passively buffeted, but instead mobilize a variety of defenses in an attempt to decrease the likelihood of neuron death, or to decrease the harm to neighboring neurons (by decreasing the likelihood of inflammation). This review considers some of these defenses, organizing them along the lines of those which decrease neuronal excitability, decrease extracellular glutamate accumulation, decrease cytosolic calcium mobilization, decrease calcium-dependent degenerative events, enhance neuronal energetics, and bias a neuron towards apoptotic, rather than necrotic, death. Although these are currently perceived as a disparate array of cellular adaptations, some experimental approaches are suggested that may help form a more unified subdiscipline of cellular defenses against neurological insults. Such an advance would help pave the way for the rational design of therapeutic interventions against necrotic insults.
Collapse
Affiliation(s)
- R M Sapolsky
- Department of Biological Sciences, Stanford University School of Medicine, Stanford, California 94305-5020, USA.
| |
Collapse
|
36
|
Simoni J, Simoni G, Wesson DE, Griswold JA, Feola M. A novel hemoglobin-adenosine-glutathione based blood substitute: evaluation of its effects on human blood ex vivo. ASAIO J 2000; 46:679-92. [PMID: 11110264 DOI: 10.1097/00002480-200011000-00007] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Chemically modified hemoglobin (Hb) solutions are under current investigation as potential red cell substitutes. Researchers at Texas Tech University have developed a novel free Hb based blood substitute product. This blood substitute is composed of purified bovine Hb cross-linked intramolecularly with o-adenosine-5'-triphosphate and intermolecularly with o-adenosine, and conjugated with reduced glutathione (GSH). In this study, we compared the effects of our novel blood substitute and unmodified (U) Hb, by using allogenic plasma as the control, on human blood components: red blood cells (RBCs), platelets, monocytes (Mo), and low-density lipoproteins (LDLs). The pro-oxidant potential of both Hb solutions on RBCs was examined by the measurement of osmotic and mechanical fragility, conjugated dienes (CD), lipid hydroperoxides (LOOH), thiobarbituric acid reactants (TBAR-S), isoprostanes (8-iso PGF2alpha) and intracellular GSH. The oxidative modification of LDLs was assessed by CD, LOOH, and TBAR-S, and the degree of apolipoprotein (apo) B cross-linking. The effects of Hb on platelets have been studied by monitoring their responses to the aggregation agonists: collagen, ADP, epinephrine, and arachidonic acid. Monocytes were cultured with Hb solutions or plasma and tested for TNF-alpha and IL-1beta release, then examined by electron microscopy. Results indicate that native UHb initiates oxidative stress of many blood components and aggravates inflammatory responses of Mo. It also caused an increase in RBC osmotic and mechanical fragility (p < 0.001). While the level of GSH was slightly changed, the lipid peroxidation of RBC increased (p < 0.001). UHb was found to be a stimulator of 8-iso PGF2alpha synthesis, a potent modulator of LDLs, and an effective potentiator of agonist induced platelet aggregation. Contrarily, our novel blood substitute did not seem to induce oxidative stress nor to increase Mo inflammatory reactions. The osmotic and mechanical fragility of RBCs was similar to that of the control. Such modified Hb failed to alter LDLs, increase the production of 8-iso PGF2alpha, but markedly inhibited platelet aggregation. The effect of this novel blood substitute can be linked with the cytoprotective and anti-inflammatory properties of adenosine, which is used as a cross-linker and surface modifier, and a modification procedure that lowers the hemoglobin pro-oxidant potential.
Collapse
Affiliation(s)
- J Simoni
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock 79430, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
The gastrointestinal system anatomically is positioned to perform two distinct functions: to digest and absorb ingested nutrients and to sustain barrier function to prevent transepithelial migration of bacteria and antigens. Alterations in these basic functions contribute to a variety of clinical scenarios. These primary functions intrinsically require splanchnic blood flow at both the macrovascular and microvascular levels of perfusion. Therefore, a greater understanding of the mechanisms that regulate intestinal vascular perfusion in the normal state and during pathophysiological conditions would be beneficial. The purpose of this review is to summarize the current understanding regarding the regulatory mechanisms of intestinal blood flow in fasted and fed conditions and during pathological stress.
Collapse
Affiliation(s)
- P J Matheson
- Center for Excellence in Applied Microcirculatory Research, University of Louisville, Louisville, Kentucky 40292, USA.
| | | | | |
Collapse
|
38
|
Martinez-Tica JF, Zornow MH. Effects of adenosine agonists and an antagonist on excitatory transmitter release from the ischemic rabbit hippocampus. Brain Res 2000; 872:110-5. [PMID: 10924682 DOI: 10.1016/s0006-8993(00)02483-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to determine the effects of adenosine agonists and an antagonist on ischemia-induced extracellular glutamate concentrations in an animal model of transient cerebral ischemia using in vivo cerebral microdialysis. Fifty New Zealand white rabbits were randomly assigned to one of five groups (normothermia, hypothermia, cyclopentyladenosine (CPA), theophylline, or propentofylline). Microdialysis probes were stereotactically placed in the dorsal hippocampus. Twenty minutes before the onset of ischemia, either 1 mg/kg CPA, 5 mg/kg propentofylline, or 20 mg/kg theophylline were administered intravenously. Esophageal temperature was maintained at 38 degrees C, except in the hypothermic animals, which were cooled to 30 degrees C throughout the entire experiment. Two 12-min periods of cerebral ischemia, separated by a 105-min interval of reperfusion, were produced by inflating a neck tourniquet. High-performance liquid chromatography was used to determine the glutamate concentration in the microdialysate. There were no significant increases in glutamate concentrations during the first ischemic period in any of the five groups. During the second ischemic episode, glutamate concentrations in the normothermic group peaked at levels approximately three times higher than the initial values. A similar pattern of changes in glutamate concentrations was observed in the CPA, propentofylline, and theophylline groups. In the hypothermic group, the concentrations of glutamate remained at baseline levels during the entire experiment. Contrary to expectations, neither the adenosine agonists (CPA, propentofylline) nor the antagonist (theophylline) had any effect on extracellular glutamate concentrations in the peri-ischemic period. Although adenosine and its analogs may be cerebroprotective agents, their mechanism of action is not fully understood. The data derived from this study indicates that the acute administration of such agents had no effect on ischemia-induced glutamate release within the hippocampus under these experimental conditions. Based on these results, further work is needed to compare in vivo versus in vitro experimental results in acute and long-term treatment studies with adenosine receptor agonists and antagonists.
Collapse
Affiliation(s)
- J F Martinez-Tica
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555-0591, USA
| | | |
Collapse
|
39
|
Kichenin K, Decollogne S, Angignard J, Seman M. Cardiovascular and pulmonary response to oral administration of ATP in rabbits. J Appl Physiol (1985) 2000; 88:1962-8. [PMID: 10846006 DOI: 10.1152/jappl.2000.88.6.1962] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular purines such as ATP and adenosine participate in the regulation of cardiovascular and respiratory functions through specific P1 and P2 purine receptors. These properties have mainly been described after intravenous infusion. Experiments reported herein were designed to explore the possible effect of oral ATP administration (3 or 20 mg. kg(-1). day(-1)) on vascular, cardiac, and pulmonary functions in rabbits. Whereas a unique oral dose of ATP has no effect, chronic supplementation during 14 days reduces peripheral vascular resistance, pulmonary resistance, and respiratory frequency and increases arterial PO(2). No effect on central blood pressure and heart rate is observed, but an increase of the left ventricular work index is noticed subsequent to the diminution of vascular resistance. Rather similar cardiovascular modifications are observed in rabbits given 20 mg. kg(-1). day(-1) adenosine for 14 days but without variation of respiratory parameters. These original effects of repeated oral treatment with ATP may result from an adaptive metabolic response to nucleoside supplementation that might affect the turnover of extracellular purines leading to P1- and/or P2-receptor activation.
Collapse
Affiliation(s)
- K Kichenin
- Groupe d'Immunologie Denis Diderot, Université Paris 7, CP7124, 75251 Paris Cedex 05, France
| | | | | | | |
Collapse
|
40
|
Abstract
Adenosine is known to modulate cell growth in a variety of mammalian cells either via the activation of receptors or through metabolism. We investigated the effect of adenosine on Baby Hamster Kidney (BHK) cell growth and attempted to determine its mechanism of modulation. In wild-type BHK cells, adenosine evoked a biphasic response in which a low concentration of adenosine (1-5 microM) produced an inhibition of colony formation but at higher concentrations (up to 50 microM) this inhibition was progressively reversed. However, no biphasic response was observed in an "adenosine kinase" deficient BHK mutant, "5a", which suggests that adenosine kinase plays an important role in the modulation of growth response to adenosine. Adenosine receptors did not appear to have a role in regulating cell growth of BHK cells. Specific A1 and A2 receptor antagonists were unable to reverse the effect of adenosine on cell growth. Even though a specific A3 adenosine receptor antagonist MRS-1220 partly reversed the inhibition in colony formation at 1 microM adenosine, it also affected the transport of adenosine. Thus adenosine transport and metabolism appears to play the major role in this modulation of cell growth as 5'-amino-5'-deoxyadenosine, an adenosine kinase inhibitor, reversed the inhibition of cell growth observed at 1 microM adenosine. These results, taken together, would suggest that adenosine modulates cell growth in BHK mainly through its transport and metabolism to adenine nucleotides.
Collapse
Affiliation(s)
- R A Mittal
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
41
|
Malek RL, Nie Z, Ramkumar V, Lee NH. Adenosine A(2A) receptor mRNA regulation by nerve growth factor is TrkA-, Src-, and Ras-dependent via extracellular regulated kinase and stress-activated protein kinase/c-Jun NH(2)-terminal kinase. J Biol Chem 1999; 274:35499-504. [PMID: 10585422 DOI: 10.1074/jbc.274.50.35499] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that nerve growth factor (NGF) down-regulates adenosine A(2A) receptor (A(2A)AR) mRNA in PC12 cells. To define cellular mechanisms that modulate A(2A)AR expression, A(2A)AR mRNA and protein levels were examined in three PC12 sublines: i) PC12nnr5 cells, which lack the high affinity NGF receptor TrkA, ii) srcDN2 cells, which overexpress kinase-defective Src, and iii) 17.26 cells, which overexpress a dominant-inhibitory Ras. In the absence of functional TrkA, Src, or Ras, NGF-induced down-regulation of A(2A)AR mRNA and protein was significantly impaired. However, regulation of A(2A)AR expression was reconstituted in PC12nnr5 cells stably transfected with TrkA. Whereas NGF stimulated the mitogen-activated protein kinases p38, extracellular regulated kinase 1 and 2 (ERK1/ERK2), and stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK) in PC12 cells, these kinases were activated only partially or not at all in srcDN2 and 17.26 cells. Inhibiting ERK1/ERK2 with PD98059 or inhibiting SAPK/JNK by transfecting cells with a dominant-negative SAPKbeta/JNK3 mutant partially blocked NGF-induced down-regulation of A(2A)AR expression in PC12 cells. In contrast, inhibiting p38 with SB203580 had no effect on the regulation of A(2A)AR mRNA and protein levels. Treating SAPKbeta/JNK3 mutant-transfected PC12 cells with PD98059 completely abolished the NGF-induced decrease in A(2A)AR mRNA and protein levels. These results reveal a role for ERK1/ERK2 and SAPK/JNK in regulating A(2A)AR expression.
Collapse
Affiliation(s)
- R L Malek
- Department of Molecular and Cellular Biology, The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | | | | | | |
Collapse
|
42
|
Giraldez L, Zanetti F, Girardi E. Striatum adenosine A2 receptors are modified during seizure: effect of cyclopentyladenosine administration. Neurochem Res 1999; 24:1217-23. [PMID: 10492516 DOI: 10.1023/a:1020964721242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rat CNS adenosine A2A receptors were studied after administration of the convulsant drug 3-mercaptopropionic acid (MP) and the adenosine analogue cyclopentyladenosine (CPA) by means of a quantitative autoradiographic method. Specific binding was quantified in striatum only. The highest density was found in caudate-putamen (2.50 fmol/mm2), followed by nuclei accumbens (1.85 fmol/mm2) and the lowest values in the olfactory tubercle (1.26 fmol/mm2). These differences were statistically significant. MP administration (150 mg/kg) caused significant increases (12-18%) in caudate-putamen and nuclei accumbens in both stages: seizure and postseizure and no changes in the olfactory tubercle. CPA administration (2 mg/kg) originated a rise of 16% in nuclei accumbens but no change in the other two regions. When CPA was injected 30 minutes before MP, an increase (18 to 45%) in caudate-putamen and nuclei accumbens at seizure and postseizure stages was observed. Saturation results, in striatal membrane fraction, indicate that receptor sites increased their maximal binding capacity (Bmax) while the apparent dissociation constant (Kd) remained unchanged. These results suggest the involvement of the adenosine A2A receptors in convulsant activity and that CPA administration at the dose selected brings about a rise in neuronal excitability in this area.
Collapse
Affiliation(s)
- L Giraldez
- Instituto de Biología Celular y de Neurociencia Prof Eduardo De Robertis, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | |
Collapse
|
43
|
Foley TD. The lipid peroxidation product 4-hydroxynonenal potently and selectively inhibits synaptic plasma membrane ecto-ATPase activity, a putative regulator of synaptic ATP and adenosine. Neurochem Res 1999; 24:1241-8. [PMID: 10492519 DOI: 10.1023/a:1020921006221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Synaptic plasma membrane (SPM)-bound, extracellular-facing (ecto) ATPases are Mg2+- or Ca2+-activated enzymes that regulate the synaptic levels of the excitatory neurotransmitter ATP and provide ADP for the further ecto-nucleotidase-mediated production of the inhibitory neuromodulator adenosine. The present results show that low concentrations (IC50 = 4 microM) of the lipid peroxidation product 4-hydroxynonenal (HNE) inhibited up to about 80% of the ecto-ATPase activity of SPM purified from rat brain cerebral cortex. In contrast, low concentrations of HNE did not inhibit the activity of the "intracellular"-facing Na+, K+, Mg2+-ATPase. In addition, the inhibition of SPM ecto-ATPase activity by HNE was largely irreversible and pH-dependent. Furthermore, structure-activity studies demonstrate that inhibition was dependent on the presence of the reactive functional groups of HNE. These findings suggest that HNE selectively inhibits SPM ecto-ATPase activity by a mechanism that may involve the covalent modification of functionally-critical nucleophilic amino acids. It is proposed that inhibition of SPM ecto-ATPase activity could contribute to the mechanisms by which lipid peroxidation and HNE formation promote excitotoxicity.
Collapse
Affiliation(s)
- T D Foley
- Section on Neurochemistry, LCS, DICBR, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, MD 20852, USA.
| |
Collapse
|
44
|
Knutsen LJ, Lau J, Petersen H, Thomsen C, Weis JU, Shalmi M, Judge ME, Hansen AJ, Sheardown MJ. N-substituted adenosines as novel neuroprotective A(1) agonists with diminished hypotensive effects. J Med Chem 1999; 42:3463-77. [PMID: 10479279 DOI: 10.1021/jm960682u] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and pharmacological profile of a series of neuroprotective adenosine agonists are described. Novel A(1) agonists with potent central nervous system effects and diminished influence on the cardiovascular system are reported and compared to selected reference adenosine agonists. The novel compounds featured are derived structurally from two key lead structures: 2-chloro-N-(1-phenoxy-2-propyl)adenosine (NNC 21-0041, 9) and 2-chloro-N-(1-piperidinyl)adenosine (NNC 90-1515, 4). The agonists are characterized in terms of their in vitro profiles, both binding and functional, and in vivo activity in relevant animal models. Neuroprotective properties assessed after postischemic dosing in a Mongolian gerbil severe temporary forebrain ischemia paradigm, using hippocampal CA1 damage endpoints, and the efficacy of these agonists in an A(1) functional assay show similarities to some reference adenosine agonists. However, the new compounds we describe exhibit diminished cardiovascular effects in both anesthetized and awake rats when compared to reference A(1) agonists such as (R)-phenylisopropyladenosine (R-PIA, 5), N-cyclopentyladenosine (CPA, 2), 4, N-[(1S,trans)-2-hydroxycyclopentyl]adenosine (GR 79236, 26), N-cyclohexyl-2'-O-methyladenosine (SDZ WAG 994, 27), and N-[(2-methylphenyl)methyl]adenosine (Metrifudil, 28). In mouse permanent middle cerebral artery occlusion focal ischemia, 2-chloro-N-[(R)-[(2-benzothiazolyl)thio]-2-propyl]adenosine (NNC 21-0136, 12) exhibited significant neuroprotection at the remarkably low total intraperitoneal dose of 0.1 mg/kg, a dose at which no cardiovascular effects are observed in conscious rats. The novel agonists described inhibit 6, 7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate-induced seizures, and in mouse locomotor activity higher doses are required to reach ED(50) values than for reference A(1) agonists. We conclude that two of the novel adenosine derivatives revealed herein, 12 and 5'-deoxy-5'-chloro-N-[4-(phenylthio)-1-piperidinyl]adenosine (NNC 21-0147, 13), representatives of a new series of P(1) ligands, reinforce the fact that novel selective adenosine A(1) agonists have potential in the treatment of cerebral ischemia in humans.
Collapse
Affiliation(s)
- L J Knutsen
- Health Care Discovery and Development, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Doriat JF, Koziel V, Humbert AC, Daval JL. Medium- and long-term alterations of brain A1 and A2A adenosine receptor characteristics following repeated seizures in developing rats. Epilepsy Res 1999; 35:219-28. [PMID: 10413317 DOI: 10.1016/s0920-1211(99)00014-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to assess long-lasting consequences of recurrent seizures during development, the effects of repeated seizures in developing rats were investigated on brain adenosine A1 and A2A receptors. The characteristics of A1 and A2A receptors were analyzed by measuring the binding of the selective agonists [3H]CHA (N6-cyclohexyladenosine) and [3H]CGS 21680 (2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamido adenosine), respectively, on cerebral membrane preparations, whereas receptor coupling to G-proteins was examined by using a GTP analogue (Gpp(NH)p; guanylyl-5'-imidodiphosphate). Seizures were induced by bicuculline once a day at two different developmental stages: either from postnatal day 5 to postnatal day 7 (P5-P7) or from P15 to P17. Adenosine receptors were then studied at P15, P25 and P60. P5-P7 seizures led to an increase in A1 receptor density at P60 and to a decrease in their coupling to G-proteins at P15, but they did not affect A2A receptors. P15-P17 seizures decreased the coupling of A1 receptors to G-proteins at P25 and P60, reduced the density of A2A receptors at P25 and increased their affinity at P60. These results depict a persistent sensitivity of both A1 and A2A brain adenosine receptors to repeated seizures, with selective receptor alterations according to the cerebral maturational stage when seizures occur. In respect to the neuromodulatory and anticonvulsant properties of adenosine, such changes might be implicated in long-term functional brain reorganization after early seizures and future susceptibility to convulsive disorders.
Collapse
Affiliation(s)
- J F Doriat
- J.E. 2164 Adaptation Néonatale et Développement, Université Henri Poincaré-Nancy 1, France
| | | | | | | |
Collapse
|
46
|
Matheson PJ, Spain DA, Harris PD, Garrison RN, Wilson MA. Glucose and glutamine gavage increase portal vein nitric oxide metabolite levels via adenosine A2b activation. J Surg Res 1999; 84:57-63. [PMID: 10334890 DOI: 10.1006/jsre.1999.5604] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Postprandial intestinal hyperemia is a complex vascular response during nutrient absorption. Many mediators have been studied including enteric reflexes, GI hormones, and absorption-stimulated metabolic mediators such as pH and adenosine. We have shown that nitric oxide (NO) mediates premucosal arteriolar dilation during glucose absorption and that glucose-induced portal vein NO metabolite production requires adenosine A2b receptor activation. We hypothesize that Na+-linked absorption of l-glutamine or l-glycine might also stimulate NO release in the enteroportal circulation via adenosine A2b receptors. METHODS Male Sprague-Dawley rats (190-220 g) were anesthetized with urethane/alpha-chloralose and cannulated for hemodynamic monitoring and blood sampling. A right paramedian abdominal incision was made for access to both the stomach (gavage) and the portal vein (blood sampling). Animals received intragastric nutrient gavage (saline, d-glucose, l-glutamine, racemic glycine, or oleic acid) with and without adenosine A2b receptor blockade. NO metabolites (NOx) were measured by a fluorescent modified-Greiss assay at baseline and 30 min after nutrient gavage. RESULTS Glucose and glutamine gavage increased portal NOx levels compared to baseline, while glycine and oleic acid gavage did not. Adenosine A2b antagonism returned NOx levels to baseline in both glucose and glutamine gavage animals, but did not alter portal NOx levels in glycine- or oleic acid-treated animals. CONCLUSIONS These data suggest that nutrient-induced adenosine is involved in a signaling process from the intestinal epithelium to nitric oxide-producing cells elsewhere in the vasculature. Adenosine A2b receptors are required for NO production during Na+-linked glucose or glutamine absorption.
Collapse
Affiliation(s)
- P J Matheson
- Center for Excellence in Applied Microcirculatory Research and Department of Surgery, University of Louisville and Louisville Veterans Affairs Medical Center, Louisville, Kentucky, 40206, USA
| | | | | | | | | |
Collapse
|
47
|
De Sarro G, De Sarro A, Di Paola ED, Bertorelli R. Effects of adenosine receptor agonists and antagonists on audiogenic seizure-sensible DBA/2 mice. Eur J Pharmacol 1999; 371:137-45. [PMID: 10357250 DOI: 10.1016/s0014-2999(99)00132-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have studied the effects of selective and non-selective adenosine receptor agonists and antagonists in audiogenic-seizure-sensitive DBA/2 mice, an animal model of generalized reflex epilepsy. With the exception of the adenosine A3 receptor agonist, N6-(3-iodobenzyl)-5'-N-methylcarboxamidoadenosine (IB-MECA), all the agonists studied prevented the development of audiogenic seizures in a dose-dependent manner. The ED50 values against the clonic phase of the audiogenic seizures were low, that is: 0.06 mg/kg, i.p., for the adenosine A1 receptor agonist, 2-chloro-N6-cyclopentyladenosine (CCPA), 0.02 and 0.03 mg/kg, i.p., for the adenosine A2A receptor agonists, 2-(4-(2-carboxyethyl)-phenylamino)-5'-N-ethylcarboxamidoadenosine (CGS 21680) and 2-hexynyl-5'-N-ethyl-carboxamidoadenosine (2-HE-NECA), and 0.7 mg/kg, i.p., for the adenosine A1/A3 receptor agonist, N6-2-(4-aminophenyl)ethyladenosine (APNEA). Conversely, the non-selective agonist, N-ethyl-carboxamidoadenosine (NECA), was highly potent, the ED50 being 0.0005 mg/kg, i.p. In the absence of auditory stimulation, the adenosine receptor antagonists increased the incidence of both clonic and tonic seizures in DBA/2 mice. The ED50 values were: for caffeine, 207.5 mg/kg, i.p., for the adenosine A1 receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), 327.8 mg/kg i.p., for the adenosine A2A receptor antagonists, 3,7-dimethyl-1-propylxanthine (DPMX), 86.7 mg/kg i.p., for the (E,18%-Z,82%)7-methyl-8-(3,4-dimethoxystyryl)-1,3-dipropylxanthine (KF 17837), 69.1 mg/kg i.p., and 5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo-(4,3-c)1,2,4-triazolo(1,5 -c)-pyrimidine (SCH 58261), 321.8 mg/kg i.p. The rank order of convulsant potency in our epileptic model, following intracerebroventricular administration, was DPCPX > DMPX > 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC) > KF 17837 > Caffeine > SCH 58261 > 5-amino-9-chloro-2-(2-furyl)-1,2,4-triazolo(1,5-c)quinazoline (CGS 15943). Following a subconvulsant audiogenic stimulus of 83 dB, all adenosine receptor antagonists induced both tonic and clonic seizures. The ED50 values for such proconvulsant effects were: for caffeine 0.04 mg/kg, i.p., for the adenosine A receptor antagonist, DPCPX, 5.84 mg/kg, i.p., for the adenosine A2A receptor antagonists, DMPX, 0.02 mg/kg, i.p., CGS 15943, 0.29 mg/kg i.p., KF 17837, 0.57 mg/kg, i.p., CSC 0.12 mg/kg, i.p. and SCH 58261 0.07 mg/kg, i.p., respectively. These data suggest that stimulation of adenosine A1 and A2A receptors is involved in the suppression of seizures.
Collapse
Affiliation(s)
- G De Sarro
- Department of Experimental and Clinical Medicine, School of Medicine, University of Catanzaro, Italy.
| | | | | | | |
Collapse
|
48
|
Abstract
Adenosine is known to produce biphasic effects in the renal tissues via adenosine receptors. However, the presence of more than one subtype of adenosine receptor on a type of kidney cell or tissue has not been conclusively demonstrated. To address this issue, we investigated the presence of A1 and A2 adenosine receptors in baby hamster kidney (BHK) cells by use of radioligand binding and the reverse transcription-polymerase chain reaction. Ligand binding studies with (3H)-DPCPX revealed a single class of binding site with a K(D) of 9.2 +/- 2.0 nM, a Bmax of 1.7 +/- 0.2 pmol/mg protein and a pharmacological profile characteristic of A1 adenosine receptor on the BHK cell membrane. As the presence of A2 adenosine receptors could not be conclusively determined by ligand binding studies, the more sensitive method of RT-PCR was employed. The presence of A1 and A2B adenosine receptors was detected by RT-PCR with specific primers and the subsequent sequencing of the resultant amplification product. The sequences obtained were 75-90% homologous to the respective adenosine receptor mRNA of rat, mouse and human.
Collapse
Affiliation(s)
- R A Mittal
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
49
|
Macchia M, Salvetti F, Barontini S, Calvani F, Gesi M, Hamdan M, Lucacchini A, Pellegrini A, Soldani P, Martini C. Fluorescent probes for adenosine receptors: synthesis and biology of N6-dansylaminoalkyl-substituted NECA derivatives. Bioorg Med Chem Lett 1998; 8:3223-8. [PMID: 9873707 DOI: 10.1016/s0960-894x(98)00582-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
New fluorescent ligands for adenosine receptors are described; these compounds were obtained by the insertion, in the N6 position of NECA (a potent adenosine agonist), of dansylaminoalkyl moieties with alkyl spacers of increasing carbon chain length (from 3 to 12). Among them, the compound with a C6 alkyl spacer proved to be the most interesting one, showing a marked selectivity for the A1 receptor subtype; furthermore, in fluorescence microscopy assays it proved to be able to visualize and localize this receptor subtype at the level of the molecular layer of the rate cerebellar cortex.
Collapse
Affiliation(s)
- M Macchia
- GlaxoWellcome Medicines Research Center, Verona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Martini C, Trincavelli L, Fiorini M, Nardi M, Bazzichi L, Lucacchini A. Effect of FMLP stimulation on [3H]-NECA binding to adenosine receptors in neutrophils membranes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 431:89-94. [PMID: 9598037 DOI: 10.1007/978-1-4615-5381-6_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- C Martini
- Istituto Policattedra di Discipline Biologiche, University of Pisa, Italy
| | | | | | | | | | | |
Collapse
|