1
|
Aquili L. The Role of Tryptophan and Tyrosine in Executive Function and Reward Processing. Int J Tryptophan Res 2020; 13:1178646920964825. [PMID: 33149600 PMCID: PMC7586026 DOI: 10.1177/1178646920964825] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/10/2020] [Indexed: 01/31/2023] Open
Abstract
The serotonergic precursor tryptophan and the dopaminergic precursor tyrosine have been shown to be important modulators of mood, behaviour and cognition. Specifically, research on the function of tryptophan has characterised this molecule as particularly relevant in the context of pathological disorders such as depression. Moreover, a large body of evidence has now been accumulated to suggest that tryptophan may also be involved in executive function and reward processing. Despite some clear differentiation with tryptophan, the data reviewed in this paper illustrates that tyrosine shares similar functions with tryptophan in the regulation of executive function and reward, and that these processes in turn, rather than acting in isolation, causally influence each other.
Collapse
Affiliation(s)
- Luca Aquili
- College of Health & Human Sciences, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
2
|
Königschulte W, Civai C, Hildebrand P, Gaber TJ, Fink GR, Zepf FD. Effects of serotonin depletion and dopamine depletion on bimodal divided attention. World J Biol Psychiatry 2020; 21:183-194. [PMID: 30295116 DOI: 10.1080/15622975.2018.1532110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Objectives: This study aimed to explore the effects of acute phenylalanine tyrosine depletion (APTD) and acute tryptophan depletion (ATD) on bimodal divided attention. A balanced amino acid mixture (BAL) served as control condition.Methods: Fifty-three healthy adults (final analyzed sample was N = 49, age: M = 23.8 years) were randomly assigned to APTD, ATD or BAL in a double-blind, between-subject approach. Divided attention was assessed after 4 h. Blood samples were taken before and 6 h after challenge intake.Results: Amino acid concentrations following challenge intake significantly decreased (all P ≤ 0.01). There was a significant difference in the mean reaction time (RT) towards auditory stimuli, but not towards visual stimuli between the groups. Post-hoc comparison of mean RTs (auditory stimuli) showed a significant difference between ATD (RT = 604.0 ms, SD = 56.9 ms) and APTD (RT = 556.4 ms, SD = 54.2 ms; P = 0.037), but no RT difference between ATD and BAL or APTD and BAL (RT = 573.6 ms, SD = 45.7 ms).Conclusions: The results indicate a possible dissociation between the effects of a diminished brain 5-HT and DA synthesis on the performance in a bimodal divided attention task. The difference was exclusively observed within the RT towards auditory signals.
Collapse
Affiliation(s)
- W Königschulte
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Aachen & Jülich, Germany
| | - C Civai
- School of Psychology, University of Kent, Canterbury, UK
| | - P Hildebrand
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Aachen & Jülich, Germany
| | - T J Gaber
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Aachen & Jülich, Germany
| | - G R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany.,Department of Neurology, University of Cologne, Cologne, Germany
| | - F D Zepf
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Aachen & Jülich, Germany.,Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Germany.,Centre and Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, School of Medicine, Division of Psychiatry and Clinical Neurosciences & Division of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, Australia.,Telethon Kids Institute, Perth, Australia
| |
Collapse
|
3
|
Sugiyama E, Guerrini MM, Honda K, Hattori Y, Abe M, Källback P, Andrén PE, Tanaka KF, Setou M, Fagarasan S, Suematsu M, Sugiura Y. Detection of a High-Turnover Serotonin Circuit in the Mouse Brain Using Mass Spectrometry Imaging. iScience 2019; 20:359-372. [PMID: 31614319 PMCID: PMC6818351 DOI: 10.1016/j.isci.2019.09.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/12/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
Monoamine neurotransmitters are released by specialized neurons regulating behavioral, motor, and cognitive functions. Although the localization of monoaminergic neurons in the brain is well known, the distribution and kinetics of monoamines remain unclear. Here, we generated a murine brain atlas of serotonin (5-HT), dopamine (DA), and norepinephrine (NE) levels using mass spectrometry imaging (MSI). We found several nuclei rich in both 5-HT and a catecholamine (DA or NE) and identified the paraventricular nucleus of the thalamus (PVT), where 5-HT and NE are co-localized. The analysis of 5-HT fluctuations in response to acute tryptophan depletion and infusion of isotope-labeled tryptophan in vivo revealed a close kinetic association between the raphe nuclei, PVT, and amygdala but not the other nuclei. Our findings imply the existence of a highly dynamic 5-HT-mediated raphe to PVT pathway that likely plays a role in the brain monoamine system. A murine brain atlas of monoamine (5-HT, DA, NE) levels was generated via MS imaging We identified several nuclei rich in both 5-HT and a catecholamine (DA or NE) The paraventricular nucleus of the thalamus (PVT) had high levels of 5-HT and NE The level of 5-HT in raphe to PVT pathway changed dynamically in response to blood Trp level
Collapse
Affiliation(s)
- Eiji Sugiyama
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Matteo M Guerrini
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Tsurumi Ward, Suehirocho, 1 Chome-7-22, Yokohama, Kanagawa Prefecture 230-0045, Japan
| | - Kurara Honda
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yuko Hattori
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8585, Japan
| | - Patrik Källback
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, 75124 Uppsala, Sweden; Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Box 591 BMC, 75124 Uppsala, Sweden
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, 75124 Uppsala, Sweden; Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Box 591 BMC, 75124 Uppsala, Sweden
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Sidonia Fagarasan
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Tsurumi Ward, Suehirocho, 1 Chome-7-22, Yokohama, Kanagawa Prefecture 230-0045, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| |
Collapse
|
4
|
Tryptophan supplementation and serotonin function: genetic variations in behavioural effects. Proc Nutr Soc 2018; 77:174-188. [DOI: 10.1017/s0029665117004451] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The neurotransmitter serotonin has a role in affective disorders such as depression and anxiety, as well as sleep, cognitive function and appetite. This review examines the evidence that serotonin-related genotypes may moderate the behavioural effects of supplementation with the serotonin precursor amino acidl-tryptophan (TRP), on which synthesis of serotonin (or 5-hydroxytryptamine; 5-HT) depends. However, 95 % of serotonin is synthesised and used in the periphery, and TRP is also metabolised via non-5-HT routes such as the kynurenine pathway. Moreover, understanding of genotypes involved in regulation of serotonin raises questions over the generalisability of TRP effects on behaviour across individuals with varied serotonergic genotypes. To date, only differences between variants of the 5-HT transporter-linked promoter region (5-HTTLPR) have been investigated in relation to behavioural effects of TRP supplementation. Effects of 5-HTTLPR genotypes are usually compared between the alleles that are either high (L/L′) or low (S/S′) expressing of mRNA for the 5-HT transporter receptor. Yet, another key genetic variable is sex: in women, the S/S′ genotype predicts sensitivity to improved mood and reduced cortisol by TRP supplementation, during stressful challenges, whereas the L/L′ genotype protects against stress-induced mood deterioration. In men, the L/L′ genotype may confer risk of stress-induced increases in negative affect; there are insufficient data to assess effects on male S/S′ genotypes. However, better-powered studies to detect sex by genotype by stress by TRP interactions, as well as consideration of more genotypes, are needed before strong conclusions and recommendations for behavioural effects of TRP treatment can be reached.
Collapse
|
5
|
Linden M, Helmbold K, Kempf J, Sippas S, Filss C, Langen KJ, Eisert A, Zepf FD. Dietary tryptophan depletion in humans using a simplified two amino acid formula - a pilot study. Food Nutr Res 2016; 60:29272. [PMID: 27989269 PMCID: PMC5165058 DOI: 10.3402/fnr.v60.29272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/26/2016] [Accepted: 11/03/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Acute tryptophan depletion (ATD) is a well-established dietary method in translational brain research used to briefly lower central nervous serotonin (5-hydroxytryptamine (5-HT)) synthesis. A simplified two amino acid ATD formula (ATDPHE/LEU) was developed while reducing the overall amount of amino acids (AAs), with the objective of administration especially in children and adolescents in future studies. OBJECTIVE This study investigated tryptophan (TRP) influx rates across the blood-brain barrier (BBB) after dietary ATDPHE/LEU administration relative to the ATD Moja-De protocol that has been established for use in children and adolescents. DESIGN Seventy-two healthy adults (50% females) were randomized into four groups and administered ATD Moja-De, its TRP-balanced control condition (BAL), ATDPHE/LEU, or its respective control mixture (BALPHE/LEU) in a counterbalanced, double-blind, between-subjects design. Blood samples were collected at baseline and at hourly intervals for 6 h after AA intake. Questionnaires about mood, taste, and challenge tolerance were completed at fixed time points. RESULTS Both challenge mixtures significantly reduced central nervous TRP influx as calculated by Michaelis-Menten kinetics relative to baseline and the respective control conditions with only mild and comparable side effects. A greater decline in TRP influx over the BBB after ATDPHE/LEU administration when compared with ATD Moja-De was detected without group effects for taste, challenge tolerance, and mood. There was unintended initial short increase in plasma TRP concentrations observed after ATDPHE/LEU intake, and a possible redistribution between free and protein-bound TRP triggered by protein synthesis stimulated by the ingested AAs may account for this finding. Moreover, a decline in TRP influx after BALPHE/LEU administration over a 6-h period was observed, and the large amount of PHE in the BALPHE/LEU mixture may be a possible explanation for this particular phenomenon, which could have led to an unexpected increase in displacement of TRP at the BBB in this control condition. CONCLUSIONS This pilot study provides preliminary evidence for the possibility of lowering TRP influx as calculated by Michaelis-Menten kinetics into the brain by using a simplified ATD protocol in humans. The simplified composition of only two AAs, the lower overall AA amount, and the appropriate tolerance are characteristics of the newly developed ATDPHE/LEU protocol. Future studies focusing on the effects of the ATDPHE/LEU protocol and its respective control condition on CSF 5-HIAA concentrations, as well as neurochemical studies in rodents, are needed to further validate this newly developed AA mixture before definite conclusions about its usability in ATD-related research in humans, its specificity, and additional effects can be made.
Collapse
Affiliation(s)
- Maike Linden
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Jülich Aachen Research Alliance, Jülich, Germany
| | - Katrin Helmbold
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Jülich Aachen Research Alliance, Jülich, Germany
| | - Janina Kempf
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Jülich Aachen Research Alliance, Jülich, Germany.,Faculty of Arts and Social Sciences, Maastricht University, Maastricht, The Netherlands
| | - Shabnam Sippas
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Jülich Aachen Research Alliance, Jülich, Germany.,Faculty of Arts and Social Sciences, Maastricht University, Maastricht, The Netherlands
| | - Christian Filss
- Section JARA-Brain, Jülich-Aachen Research Alliance (JARA), Jülich, Germany
| | - Karl-Josef Langen
- Section JARA-Brain, Jülich-Aachen Research Alliance (JARA), Jülich, Germany.,Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Centre Jülich, Jülich, Germany.,Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Albrecht Eisert
- Department of Pharmacy, RWTH Aachen University, Aachen, Germany
| | - Florian Daniel Zepf
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Jülich Aachen Research Alliance, Jülich, Germany.,Centre and Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, School of Psychiatry and Clinical Neurosciences & School of Paediatrics and Child Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, Australia.,Specialised Child and Adolescent Mental Health Services (CAMHS), Department of Health in Western Australia, Perth, Australia;
| |
Collapse
|
6
|
Dougherty DM, Mullen J, Hill-Kapturczak N, Liang Y, Karns TE, Lake SL, Mathias CW, Roache JD. Effects of tryptophan depletion and a simulated alcohol binge on impulsivity. Exp Clin Psychopharmacol 2015; 23:109-21. [PMID: 25730415 PMCID: PMC4388789 DOI: 10.1037/a0038943] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Researchers have suggested binge drinkers experience disproportionate increases in impulsivity during the initial period of drinking, leading to a loss of control over further drinking, and that serotonergic mechanisms may underlie such effects. We examined the effects of a simulated alcohol binge and tryptophan depletion on 3 types of impulsivity-response initiation (immediate memory task [IMT]), response inhibition (GoStop task), and delay discounting (single key impulsivity paradigm [SKIP])-and tested whether observed effects were related to real-world binging. Adults (N = 179) with diverse drinking histories completed a within-subject crossover design over 4 experimental days. Each day, participants underwent 1 of 4 test conditions: tryptophan depletion/alcohol, tryptophan depletion/placebo, tryptophan-balanced control/alcohol, or tryptophan-balanced control/placebo. The simulated binge involved consuming 0.3 g/kg of alcohol at 5, 6, and 7 hr after consuming the tryptophan-depletion/balanced mixture. Impulsivity was measured before and after each drink. Relative to the placebo beverage condition, when alcohol was consumed, impulsive responding was increased at moderate and high levels of intoxication on the IMT and the GoStop but only at high levels of intoxication on the SKIP. Tryptophan depletion had no effect on impulsivity. Effects of alcohol and tryptophan manipulations on impulsivity were unrelated to patterns of binge drinking outside the laboratory. The effects of alcohol consumption on impulsivity depend on the component of impulsivity and the dose of alcohol consumed. Such effects do not appear to be a result of reduced serotonin synthesis. In addition, real-world binge drinking behaviors were unrelated to behavioral changes observed in the laboratory.
Collapse
Affiliation(s)
- Donald M. Dougherty
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, San Antonio, TX,Corresponding Author: Donald M. Dougherty, Ph.D., Professor and Director of the Division of Neurobehavioral Research, Department of Psychiatry, The University of Texas Health Science Center at San Antonio, NRLC MC 7793, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA, , Phone: 210-567-2745; Fax: 210-567-2748
| | - Jillian Mullen
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Nathalie Hill-Kapturczak
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Yuanyuan Liang
- Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Tara E. Karns
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Sarah L. Lake
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Charles W. Mathias
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - John D. Roache
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| |
Collapse
|
7
|
The effect of acute tryptophan depletion on mood and impulsivity in polydrug ecstasy users. Psychopharmacology (Berl) 2014; 231:707-16. [PMID: 24142202 DOI: 10.1007/s00213-013-3287-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 09/07/2013] [Indexed: 12/19/2022]
Abstract
RATIONALE Several studies suggest users of 3,4-methylenedioxymethamphetamine (ecstasy) have low levels of serotonin. Low serotonin may make them susceptible to lowered mood. OBJECTIVE This work aims to study the acute effects on mood and impulsivity of lowering serotonin levels with acute tryptophan depletion in polydrug ecstasy users and to determine whether effects were different in men and women. METHODS In a double-blind cross-over study, participants who had used ecstasy at least 25 times (n = 13) and nonuser controls (n = 17) received a tryptophan-deficient amino acid mixture and a control amino acid mixture containing tryptophan, at least 1 week apart. Mood was measured using the profile of mood states, and impulsivity was measured with the Go/No-Go task. RESULTS The main result shows that a lowering of mood after acute tryptophan depletion occurred only in female polydrug ecstasy users (n = 7), relative to controls (n = 9). Results from the Go/No-Go task suggested that impulsivity was not increased by acute tryptophan depletion in polydrug ecstasy users. LIMITATION The group sizes were small, when males and females were considered separately. CONCLUSIONS Women polydrug ecstasy users appear to be more susceptible than men to the effects of lowered serotonin levels. If use of ecstasy alone or in conjunction with other drugs causes progressive damage of serotonin neurons, women polydrug ecstasy users may become susceptible to clinical depression.
Collapse
|
8
|
Young SN. Acute tryptophan depletion in humans: a review of theoretical, practical and ethical aspects. J Psychiatry Neurosci 2013; 38:294-305. [PMID: 23428157 PMCID: PMC3756112 DOI: 10.1503/jpn.120209] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The acute tryptophan depletion (ATD) technique has been used extensively to study the effect of low serotonin in the human brain. This review assesses the validity of a number of published criticisms of the technique and a number of previously unpublished potential criticisms. The conclusion is that ATD can provide useful information when results are assessed in conjunction with results obtained using other techniques. The best-established conclusion is that low serotonin function after tryptophan depletion lowers mood in some people. However, this does not mean that other variables, altered after tryptophan depletion, are necessarily related to low serotonin. Each aspect of brain function has to be assessed separately. Furthermore, a negative tryptophan depletion study does not mean that low serotonin cannot influence the variable studied. This review suggests gaps in knowledge that need to be filled and guidelines for carrying out ATD studies.
Collapse
Affiliation(s)
- Simon N. Young
- Correspondence to: S.N. Young, Department of Psychiatry, McGill University, 1033 Pine Ave. W, Montréal QC H3A 1A1;
| |
Collapse
|
9
|
Young SN. The effect of raising and lowering tryptophan levels on human mood and social behaviour. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110375. [PMID: 23440461 DOI: 10.1098/rstb.2011.0375] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acute tryptophan depletion (ATD) studies indicate that low serotonin can lower mood and also increase aggression, although results vary somewhat between studies with similar participants. Lowering of mood after ATD is related to the susceptibility of the study participants to clinical depression, and some participants show no effect on mood. This indicates that low serotonin can contribute to lowered mood, but cannot-by itself-cause lowered mood, unless other unknown systems interact with serotonin to lower mood. Studies using tryptophan supplementation demonstrate that increased serotonin can decrease quarrelsomeness and increase agreeableness in everyday life. Social interactions that are more agreeable and less quarrelsome are associated with better mood. Thus, serotonin may have direct effects on mood, but may also be able to influence mood through changes in social behaviour. The increased agreeableness and decreased quarrelsomeness resulting from increases in serotonin will help foster congenial relations with others and should help to increase social support. As social support and social isolation have an important relationship with both physical and mental health, more research is needed on the implications of the ability of serotonin to modulate social behaviour for the regulation of mood, and for future physical and mental health.
Collapse
Affiliation(s)
- Simon N Young
- Department of Psychiatry, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
10
|
Badawy AAB, Dougherty DM, Richard DM. Specificity of the acute tryptophan and tyrosine plus phenylalanine depletion and loading tests I. Review of biochemical aspects and poor specificity of current amino Acid formulations. Int J Tryptophan Res 2011; 2010:23-34. [PMID: 20676231 PMCID: PMC2911801 DOI: 10.4137/ijtr.s5134] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The acute tryptophan or tyrosine plus phenylalanine depletion and loading tests are powerful tools for studying the roles of serotonin, dopamine and noradrenaline in normal subjects and those with behavioural disorders. The current amino acid formulations for these tests, however, are associated with undesirable decreases in ratios of tryptophan or tyrosine plus phenylalanine to competing amino acids resulting in loss of specificity. This could confound biochemical and behavioural findings. Compositions of current formulations are reviewed, the biochemical principles underpinning the tests are revisited and examples of unintended changes in the above ratios and their impact on monoamine function and behaviour will be demonstrated from data in the literature. The presence of excessive amounts of the 3 branched-chain amino acids Leu, Ile and Val is responsible for these unintended decreases and the consequent loss of specificity. Strategies for enhancing the specificity of the different formulations are proposed.
Collapse
|
11
|
van Donkelaar EL, Blokland A, Ferrington L, Kelly PAT, Steinbusch HWM, Prickaerts J. Mechanism of acute tryptophan depletion: is it only serotonin? Mol Psychiatry 2011; 16:695-713. [PMID: 21339754 DOI: 10.1038/mp.2011.9] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The method of acute tryptophan depletion (ATD), which reduces the availability of the essential amino acid tryptophan (TRP), the dietary serotonin (5-hydroxytryptamine (5-HT)) precursor, has been applied in many experimental studies. ATD application leads to decreased availability of TRP in the brain and its synthesis into 5-HT. It is therefore assumed that a decrease in 5-HT release and subsequent blunted neurotransmission is the underlying mechanism for the behavioural effects of ATD. However, direct evidence that ATD decreases extracellular 5-HT concentrations is lacking. Furthermore, several studies provide support for alternative underlying mechanisms of ATD. This may question the utility of the method as a selective serotonergic challenge tool. As ATD is extensively used for investigating the role of 5-HT in cognitive functions and psychiatric disorders, the potential of alternative mechanisms and possible confounding factors should be taken into account. It is suggested that caution is required when interpreting ATD effects in terms of a selective serotonergic effect.
Collapse
Affiliation(s)
- E L van Donkelaar
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
12
|
da Silva Alves F, Schmitz N, Figee M, Abeling N, Hasler G, van der Meer J, Nederveen A, de Haan L, Linszen D, van Amelsvoort T. Dopaminergic modulation of the human reward system: a placebo-controlled dopamine depletion fMRI study. J Psychopharmacol 2011; 25:538-49. [PMID: 20530591 DOI: 10.1177/0269881110367731] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reward related behaviour is linked to dopaminergic neurotransmission. Our aim was to gain insight into dopaminergic involvement in the human reward system. Combining functional magnetic resonance imaging with dopaminergic depletion by α-methylparatyrosine we measured dopamine-related brain activity in 10 healthy volunteers. In addition to blood-oxygen-level-dependent (BOLD) contrast we assessed the effect of dopaminergic depletion on prolactin response, peripheral markers for dopamine and norepinephrine. In the placebo condition we found increased activation in the left caudate and left cingulate gyrus during anticipation of reward. In the α-methylparatyrosine condition there was no significant brain activation during anticipation of reward or loss. In α-methylparatyrosine, anticipation of reward vs. loss increased activation in the right insula, left frontal, right parietal cortices and right cingulate gyrus. Comparing placebo versus α-methylparatyrosine showed increased activation in the left cingulate gyrus during anticipation of reward and the left medial frontal gyrus during anticipation of loss. α-methylparatyrosine reduced levels of dopamine in urine and homovanillic acid in plasma and increased prolactin. No significant effect of α-methylparatyrosine was found on norepinephrine markers. Our findings implicate distinct patterns of BOLD underlying reward processing following dopamine depletion, suggesting a role of dopaminergic neurotransmission for anticipation of monetary reward.
Collapse
|
13
|
van der Plasse G, Feenstra MGP. WITHDRAWN: Is acute tryptophan depletion a valid method to assess central serotonergic function? Neurosci Biobehav Rev 2011:S0149-7634(11)00053-4. [PMID: 21435352 DOI: 10.1016/j.neubiorev.2011.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/16/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Geoffrey van der Plasse
- Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Department of Psychiatry, PO Box 85500, 3508 GAUtrecht,The Netherlands
| | | |
Collapse
|
14
|
Bongiovanni R, Kirkbride B, Newbould E, Durkalski V, Jaskiw GE. Relationships between large neutral amino acid levels in plasma, cerebrospinal fluid, brain microdialysate and brain tissue in the rat. Brain Res 2010; 1334:45-57. [DOI: 10.1016/j.brainres.2010.03.111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 03/29/2010] [Accepted: 03/31/2010] [Indexed: 11/30/2022]
|
15
|
Tryptophan Depletion and Serotonin Release — A Critical Reappraisal. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/s1569-7339(10)70082-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
16
|
Neuhaus AH, Goldberg TE, Hassoun Y, Bates JA, Nassauer KW, Sevy S, Opgen-Rhein C, Malhotra AK. Acute dopamine depletion with branched chain amino acids decreases auditory top-down event-related potentials in healthy subjects. Schizophr Res 2009; 111:167-73. [PMID: 19356906 PMCID: PMC3725721 DOI: 10.1016/j.schres.2009.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 03/13/2009] [Accepted: 03/16/2009] [Indexed: 11/28/2022]
Abstract
Cerebral dopamine homeostasis has been implicated in a wide range of cognitive processes and is of great pathophysiological importance in schizophrenia. A novel approach to study cognitive effects of dopamine is to deplete its cerebral levels with branched chain amino acids (BCAAs) that acutely lower dopamine precursor amino acid availability. Here, we studied the effects of acute dopamine depletion on early and late attentive cortical processing. Auditory event-related potential (ERP) components N2 and P3 were investigated using high-density electroencephalography in 22 healthy male subjects after receiving BCAAs or placebo in a randomized, double-blind, placebo-controlled crossover design. Total free serum prolactin was also determined as a surrogate marker of cerebral dopamine depletion. Acute dopamine depletion increased free plasma prolactin and significantly reduced prefrontal ERP components N2 and P3. Subcomponent analysis of N2 revealed a significant attenuation of early attentive N2b over prefrontal scalp sites. As a proof of concept, these results strongly suggest that BCAAs are acting on basic information processing. Dopaminergic neurotransmission seems to be involved in auditory top-down processing as indexed by prefrontal N2 and P3 reductions during dopamine depletion. In healthy subjects, intact early cortical top-down processing can be acutely dysregulated by ingestion of BCAAs. We discuss the potential impact of these findings on schizophrenia research.
Collapse
Affiliation(s)
- Andres H. Neuhaus
- Department of Psychiatry Research, Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, New York City, NY, USA
,Department of Psychiatry and Psychotherapy, Charité University Medicine, Campus Benjamin Franklin, Berlin, Germany
| | - Terry E. Goldberg
- Department of Psychiatry Research, Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, New York City, NY, USA
| | - Youssef Hassoun
- Department of Psychiatry Research, Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, New York City, NY, USA
| | - John A. Bates
- Department of Psychiatry Research, Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, New York City, NY, USA
| | - Katharine W. Nassauer
- Department of Psychiatry Research, Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, New York City, NY, USA
| | - Serge Sevy
- Department of Psychiatry Research, Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, New York City, NY, USA
| | - Carolin Opgen-Rhein
- Department of Psychiatry Research, Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, New York City, NY, USA
,Department of Psychiatry and Psychotherapy, Charité University Medicine, Campus Benjamin Franklin, Berlin, Germany
| | - Anil K. Malhotra
- Department of Psychiatry Research, Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, New York City, NY, USA
| |
Collapse
|
17
|
van Ruitenbeek P, Sambeth A, Vermeeren A, Young SN, Riedel WJ. Effects of L-histidine depletion and L-tyrosine/L-phenylalanine depletion on sensory and motor processes in healthy volunteers. Br J Pharmacol 2009; 157:92-103. [PMID: 19413574 PMCID: PMC2697785 DOI: 10.1111/j.1476-5381.2009.00203.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/22/2008] [Accepted: 01/05/2009] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Animal studies show that histamine plays a role in cognitive functioning and that histamine H3-receptor antagonists, which increase histaminergic function through presynaptic receptors, improve cognitive performance in models of clinical cognitive deficits. In order to test such new drugs in humans, a model for cognitive impairments induced by low histaminergic functions would be useful. Studies with histamine H1-receptor antagonists have shown limitations as a model. Here we evaluated whether depletion of L-histidine, the precursor of histamine, was effective in altering measures associated with histamine in humans and the behavioural and electrophysiological (event-related-potentials) effects. EXPERIMENTAL APPROACH Seventeen healthy volunteers completed a three-way, double-blind, crossover study with L-histidine depletion, L-tyrosine/L-phenylalanine depletion (active control) and placebo as treatments. Interactions with task manipulations in a choice reaction time task were studied. Task demands were increased using visual stimulus degradation and increased response complexity. In addition, subjective and objective measures of sedation and critical tracking task performance were assessed. KEY RESULTS Measures of sedation and critical tracking task performance were not affected by treatment. L-histidine depletion was effective and enlarged the effect of response complexity as measured with the response-locked lateralized readiness potential onset latency. CONCLUSIONS AND IMPLICATIONS L-histidine depletion affected response- but not stimulus-related processes, in contrast to the effects of H1-receptor antagonists which were previously found to affect primarily stimulus-related processes. L-histidine depletion is promising as a model for histamine-based cognitive impairment. However, these effects need to be confirmed by further studies.
Collapse
Affiliation(s)
- P van Ruitenbeek
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
18
|
Richard DM, Dawes MA, Mathias CW, Acheson A, Hill-Kapturczak N, Dougherty DM. L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications. Int J Tryptophan Res 2009; 2:45-60. [PMID: 20651948 PMCID: PMC2908021 DOI: 10.4137/ijtr.s2129] [Citation(s) in RCA: 398] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
An essential component of the human diet, L-tryptophan is critical in a number of metabolic functions and has been widely used in numerous research and clinical trials. This review provides a brief overview of the role of L-tryptophan in protein synthesis and a number of other metabolic functions. With emphasis on L-tryptophan's role in synthesis of brain serotonin, details are provided on the research uses of L-tryptophan, particularly L-tryptophan depletion, and on clinical trials that have been conducted using L-tryptophan supplementation. The ability to change the rates of serotonin synthesis in the brain by manipulating concentrations of serum tryptophan is the foundation of much research. As the sole precursor of serotonin, experimental research has shown that L-tryptophan's role in brain serotonin synthesis is an important factor involved in mood, behavior, and cognition. Furthermore, clinical trials have provided some initial evidence of L-tryptophan's efficacy for treatment of psychiatric disorders, particularly when used in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Dawn M Richard
- Neurobehavioral Research Laboratory and Clinic, Department of Psychiatry
| | - Michael A Dawes
- Neurobehavioral Research Laboratory and Clinic, Department of Psychiatry
| | - Charles W Mathias
- Neurobehavioral Research Laboratory and Clinic, Department of Psychiatry
| | - Ashley Acheson
- Research Imaging Center, University of Texas Health Science Center at San Antonio, U.S.A
| | | | - Donald M Dougherty
- Neurobehavioral Research Laboratory and Clinic, Department of Psychiatry
| |
Collapse
|
19
|
Jans LAW, Lieben CKJ, Smits LT, Blokland A. Pharmacokinetics of acute tryptophan depletion using a gelatin-based protein in male and female Wistar rats. Amino Acids 2008; 37:349-57. [PMID: 18683016 PMCID: PMC2705715 DOI: 10.1007/s00726-008-0160-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 07/18/2008] [Indexed: 11/13/2022]
Abstract
The essential amino acid tryptophan is the precursor of the neurotransmitter serotonin. By depleting the body of tryptophan, brain tryptophan and serotonin levels are temporarily reduced. In this paper, several experiments are described in which dose and treatment effects of acute tryptophan depletion (ATD) using a gelatin-based protein–carbohydrate mixture were studied in male and female Wistar rats. Two or three doses of tryptophan depleting mixture resulted in 65–70% depletion after 2–4 h in males. ATD effects were similar in females, although females may return to baseline levels faster. Treatment effects after four consecutive days of ATD were similar to the effects of 1 day of treatment. Object recognition memory was impaired 2, 4, and 6 h after the first of two doses of ATD, suggesting that the central effects occurred rapidly and continued at least 6 h, in spite of decreasing treatment effects on plasma tryptophan levels at that time point. The method of acute tryptophan depletion described here can be used to study the relationship between serotonin and behaviour in both male and female rats.
Collapse
Affiliation(s)
- L A W Jans
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | |
Collapse
|
20
|
Jaskiw GE, Newbould E, Bongiovanni R. Tyrosine availability modulates potassium-induced striatal catecholamine efflux in vivo. Brain Res 2008; 1209:74-84. [DOI: 10.1016/j.brainres.2008.02.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 11/17/2022]
|
21
|
Preece MA, Sibson NR, Raley JM, Blamire A, Styles P, Sharp T. Region-specific effects of a tyrosine-free amino acid mixture on amphetamine-induced changes in BOLD fMRI signal in the rat brain. Synapse 2007; 61:925-32. [PMID: 17701967 DOI: 10.1002/syn.20442] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Acute depletion of tyrosine using a tyrosine-free amino acid mixture offers a novel dietary approach to inhibit activated dopamine pathways in the brain. This study investigated the potential of in vivo functional magnetic resonance imaging (fMRI) methods as a noninvasive means to detect effects of tyrosine depletion on dopamine function. METHODS Changes in blood-oxgenation level dependent (BOLD) contrast induced by administration of the dopamine-releasing agent, amphetamine (3 mg/kg i.v.), were measured in halothane-anaesthetised rats. RESULTS Amphetamine evoked changes in BOLD signal intensity with the greatest effects observed in the nucleus accumbens (-7.7%), prefrontal cortex (-13.6%), and motor cortex (+12.5%). Pretreatment with a tyrosine-free amino acid mixture attenuated the response to amphetamine in some regions (nucleus accumbens and prefrontal cortex), but not others (motor cortex). Amphetamine itself had no effect in thalamus and hippocampus but, surprisingly, increased the BOLD signal after the amino acid mixture. CONCLUSION These experiments demonstrate that amphetamine evokes region-specific changes in the BOLD signal in rats, and that this effect is attenuated in some but not all regions by tyrosine depletion. The data support the application of fMRI techniques for studying the effects of tyrosine depletion on dopamine function in animals and also humans.
Collapse
Affiliation(s)
- Mark A Preece
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
Dougherty DM, Marsh DM, Mathias CW, Dawes MA, Bradley DM, Morgan CJ, Badawy AAB. The effects of alcohol on laboratory-measured impulsivity after L: -Tryptophan depletion or loading. Psychopharmacology (Berl) 2007; 193:137-50. [PMID: 17377773 DOI: 10.1007/s00213-007-0763-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 03/02/2007] [Indexed: 12/20/2022]
Abstract
RATIONALE Indirect evidence supports a link between serotonergic activity and individual differences in the behavioral response to alcohol, but few studies have experimentally demonstrated that an individual's biological state can influence the sensitivity to alcohol-induced behaviors. OBJECTIVE Our purpose was to temporarily modify serotonin synthesis in healthy individuals to determine how altered biological states may interact with alcohol administration to affect impulsive behavior. MATERIALS AND METHODS In a repeated-measures design, 18 normal controls consumed a 50-g L: -tryptophan (Trp) depleting (ATD) or loading (ATL) amino-acid beverage that temporarily decreased or increased (respectively) serotonin synthesis before receiving either a moderate dose of alcohol (0.65 g/kg) or placebo. All participants completed three impulsivity testing sessions on each of the five experimental days. Session one was a baseline session. Session two included testing after ATD-only or ATL-only. Session three included: (1) placebo after ATL (ATL+PBO); (2) placebo after ATD (ATD+PBO); (3) alcohol after ATL (ATL+ALC); (4) alcohol after ATD (ATD+ALC); and (5) Alcohol-only conditions. Impulsivity was assessed using the Immediate Memory Task (Dougherty et al., Behav Res Methods Instrum Comput 34:391-398, 2002), a continuous performance test yielding commission errors that have been previously validated as a component of impulsive behavior. RESULTS Primary findings were that ATD-only increased impulsive responding compared to ATL-only, and ATD+ALC increased commission errors to levels higher than either the ATL+ALC or Alcohol-only conditions. CONCLUSIONS These findings demonstrate that reduced serotonin synthesis can produce increased impulsivity even among non-impulsive normal controls, and that the behavioral effects of alcohol are, in part, dependent on this biological state.
Collapse
Affiliation(s)
- Donald M Dougherty
- Neurobehavioral Research Laboratory and Clinic, Department of Psychiatry and Behavioral Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Christofides J, Bridel M, Egerton M, Mackay GM, Forrest CM, Stoy N, Darlington LG, Stone TW. Blood 5-hydroxytryptamine, 5-hydroxyindoleacetic acid and melatonin levels in patients with either Huntington's disease or chronic brain injury. J Neurochem 2006; 97:1078-88. [PMID: 16573644 DOI: 10.1111/j.1471-4159.2006.03807.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Following a study of oxidative tryptophan metabolism to kynurenines, we have now analysed the blood of patients with either Huntington's disease or traumatic brain injury for levels of 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and melatonin. There were no differences in the baseline levels of these compounds between patients and healthy controls. Tryptophan depletion did not reduce 5-HT levels in either the controls or in the patients with Huntington's disease, but it increased 5-HT levels in patients with brain injury and lowered 5-HIAA in the control and Huntington's disease groups. An oral tryptophan load did not modify 5-HT levels in the patients but increased 5-HT in control subjects. The tryptophan load restored 5-HIAA to baseline levels in controls and patients with brain injury, but not in those with Huntington's disease, in whom 5-HIAA remained significantly depressed. Melatonin levels increased on tryptophan loading in all subjects, with levels in patients with brain injury increasing significantly more than in controls. Baseline levels of neopterin and lipid peroxidation products were higher in patients than in controls. It is concluded that both groups of patients exhibit abnormalities in tryptophan metabolism, which may be related to increased inflammatory status and oxidative stress. Interactions between the kynurenine, 5-HT and melatonin pathways should be considered when interpreting changes of tryptophan metabolism.
Collapse
Affiliation(s)
- J Christofides
- West Park Biochemistry Laboratories, Epsom General Hospital, Epsom, Surrey, UK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mackay GM, Forrest CM, Stoy N, Christofides J, Egerton M, Stone TW, Darlington LG. Tryptophan metabolism and oxidative stress in patients with chronic brain injury. Eur J Neurol 2006; 13:30-42. [PMID: 16420391 DOI: 10.1111/j.1468-1331.2006.01220.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The kynurenine pathway generates the excitotoxic N-methyl-d-aspartate receptor agonist, quinolinic acid and the glutamate antagonist, kynurenic acid, as well as free-radical generators. We investigated the status of the pathway following severe brain injury sustained at least 1 year previously in 15 patients compared with controls. At baseline, patients with brain injury showed increased levels of neopterin, erythrocyte sedimentation rate, C-reactive protein and peroxidation products in the blood compared with controls, indicating persistent inflammation and oxidative stress. At baseline and following tryptophan depletion, more tryptophan was converted to kynurenine in patients than controls, but less kynurenine was converted into the neuroprotectant, kynurenic acid. This suggests that neuroprotection by kynurenic acid may be inadequate in brain-damaged patients even many years after injury. On tryptophan loading, patients metabolized more kynurenine into kynurenic acid than controls, a process which may be neuroprotective. In addition, lower levels of 3-hydroxykynurenine and 3-hydroxyanthranilic acid in patients after tryptophan loading should be protective since these compounds generate free radicals. The results suggest that for brain-damaged patients, increased activation of the kynurenine pathway, oxidative stress and raised levels of inflammation continue many years after the original insult, possibly contributing to the continuing cerebral dysfunction in these patients.
Collapse
Affiliation(s)
- G M Mackay
- Institute of Biomedical and Life Sciences, University of Glasgow, and Royal Hospital for Neuro-disability, London, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Clark L, Roiser JP, Cools R, Rubinsztein DC, Sahakian BJ, Robbins TW. Stop signal response inhibition is not modulated by tryptophan depletion or the serotonin transporter polymorphism in healthy volunteers: implications for the 5-HT theory of impulsivity. Psychopharmacology (Berl) 2005; 182:570-8. [PMID: 16163530 DOI: 10.1007/s00213-005-0104-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 06/17/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Reduced serotonin neurotransmission is implicated in disorders of impulse control, but the involvement of serotonin in inhibitory processes in healthy human subjects remains unclear. OBJECTIVES To investigate the effects of an acute manipulation of serotonin and genotype at a functional polymorphism in a gene coding for the serotonin transporter (5-HTT) on an established measure of response inhibition. METHODS Serotonin function was reduced by the acute tryptophan depletion (ATD) procedure in a double-blind, crossover design in 42 healthy subjects. The Stop Signal Task (SST) was administered 5-7 h after drink administration. The influences of 5-HTT polymorphism, gender and trait impulsivity were investigated. RESULTS ATD was associated with significant depletion of plasma tryptophan levels but did not increase the stop signal reaction time in comparison to the balanced (placebo) amino acid mixture. Subjects possessing the short allele of the 5-HTT polymorphism were not more impulsive on the SST than subjects homozygous for the long allele under placebo conditions and were not disproportionately sensitive to the effects of ATD. There was no effect of gender or trait impulsivity on ATD-induced change. CONCLUSIONS We find no support for the involvement of brain serotonin neurotransmission in this form of inhibitory control in healthy human subjects.
Collapse
Affiliation(s)
- L Clark
- Department of Experimental Psychology, University of Cambridge, Downing Street, and Department of Medical Genetics, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Aquilani R, Iadarola P, Contardi A, Boselli M, Verri M, Pastoris O, Boschi F, Arcidiaco P, Viglio S. Branched-chain amino acids enhance the cognitive recovery of patients with severe traumatic brain injury. Arch Phys Med Rehabil 2005; 86:1729-35. [PMID: 16181934 DOI: 10.1016/j.apmr.2005.03.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate whether supplementation with branched-chain amino acids (BCAAs) in patients with severe traumatic brain injury (TBI) improves recovery of cognition and influences plasma concentrations of tyrosine and tryptophan, which are precursors of, respectively, catecholamine and serotonin neurotransmitters in the brain. DESIGN Forty patients with TBI were randomly assigned to 15 days of intravenous BCAA supplementation (19.6g/d) (n=20) or an isonitrogenous placebo (n=20). SETTING Tertiary care rehabilitation setting in Italy. PARTICIPANTS Forty men (mean age, 32+/-15 y) with TBI and 20 healthy subjects (controls) matched for age, sex, and sedentary lifestyle. INTERVENTION Supplementation with BCAAs. MAIN OUTCOME MEASURES Disability Rating Scale (DRS) and plasma concentrations of BCAAs, tyrosine, and tryptophan. RESULTS Fifteen days after admission to the rehabilitation department, the DRS score had improved significantly in both the placebo group (P<.05 vs baseline) and in the BCAA-supplemented group (P<.01 vs baseline). The difference between the 2 groups was significant (P<.004). Plasma tyrosine concentration improved in the group given BCAA supplementation, and tryptophan concentration increased in patients receiving placebo. CONCLUSIONS Supplemental BCAAs enhance the retrieval of DRS without causing negative effects on tyrosine and tryptophan concentration.
Collapse
Affiliation(s)
- Roberto Aquilani
- Servizio di Fisiopatologia Metabolico-Nutrizionale e Nutrizione Clinica
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Stoy N, Mackay GM, Forrest CM, Christofides J, Egerton M, Stone TW, Darlington LG. Tryptophan metabolism and oxidative stress in patients with Huntington's disease. J Neurochem 2005; 93:611-23. [PMID: 15836620 DOI: 10.1111/j.1471-4159.2005.03070.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abnormalities in the kynurenine pathway may play a role in Huntington's disease (HD). In this study, tryptophan depletion and loading were used to investigate changes in blood kynurenine pathway metabolites, as well as markers of inflammation and oxidative stress in HD patients and healthy controls. Results showed that the kynurenine : tryptophan ratio was greater in HD than controls in the baseline state and after tryptophan depletion, indicating increased indoleamine dioxygenase activity in HD. Evidence for persistent inflammation in HD was provided by elevated baseline levels of C-reactive protein, neopterin and lipid peroxidation products compared with controls. The kynurenate : kynurenine ratio suggested lower kynurenine aminotransferase activity in patients and the higher levels of kynurenine in patients at baseline, after depletion and loading, do not result in any differences in kynurenic acid levels, providing no supportive evidence for a compensatory neuroprotective role for kynurenic acid. Quinolinic acid showed wide variations in blood levels. The lipid peroxidation data indicate a high level of oxidative stress in HD patients many years after disease onset. Levels of the free radical generators 3-hydroxykynurenine and 3-hydroxyanthranilic acid were decreased in HD patients, and hence did not appear to contribute to the oxidative stress. It is concluded that patients with HD exhibit abnormal handling of tryptophan metabolism and increased oxidative stress, and that these factors could contribute to ongoing brain dysfunction.
Collapse
Affiliation(s)
- N Stoy
- Royal Hospital for Neuro-Disability, Putney, London, UK
| | | | | | | | | | | | | |
Collapse
|
28
|
Young SN, Leyton M. The role of serotonin in human mood and social interaction. Insight from altered tryptophan levels. Pharmacol Biochem Behav 2002; 71:857-65. [PMID: 11888576 DOI: 10.1016/s0091-3057(01)00670-0] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alterations in brain tryptophan levels cause changes in brain serotonin synthesis, and this has been used to study the implication of altered serotonin levels in humans. In the acute tryptophan depletion (ATD) technique, subjects ingest a mixture of amino acids devoid of tryptophan. This results in a transient decline in tissue tryptophan and in brain serotonin. ATD can result in lower mood and increase in irritability or aggressive responding. The magnitude of the effect varies greatly depending on the susceptibility of the subject to lowered mood or aggressivity. Unlike ATD, tryptophan can be given chronically. Tryptophan is an antidepressant in mild to moderate depression and a small body of data suggests that it can also decrease aggression. Preliminary data indicate that tryptophan also increases dominant behavior during social interactions. Overall, studies manipulating tryptophan levels support the idea that low serotonin can predispose subjects to mood and impulse control disorders. Higher levels of serotonin may help to promote more constructive social interactions by decreasing aggression and increasing dominance.
Collapse
Affiliation(s)
- Simon N Young
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, H3A 1A1, Montréal, Québec, Canada.
| | | |
Collapse
|
29
|
Moreno FA, Gelenberg AJ, Heninger GR, Potter RL, McKnight KM, Allen J, Phillips AP, Delgado PL. Tryptophan depletion and depressive vulnerability. Biol Psychiatry 1999; 46:498-505. [PMID: 10459399 DOI: 10.1016/s0006-3223(99)00095-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Rapid and transient depletion of tryptophan (TRP) causes a brief depressive relapse in most patients successfully treated with and taking selective serotonin reuptake inhibitors, but little change in drug-free, symptomatic depressed patients. This study investigates the effects of TRP depletion in drug-free subjects in clinical remission from a prior major depressive episode (MDE). METHODS Twelve subjects with a prior MDE, currently in clinical remission and drug-free for at least 3 months (patients), and 12 healthy subjects without personal or family history of Axis I disorder (controls), received TRP depletion. The study was conducted in a double-blind, controlled [full (102-g) and quarter-strength (25 g) 15-amino acid drinks], crossover fashion. Behavioral ratings and plasma TRP levels were obtained prior to, during, and after testing. RESULTS All subjects experienced significant depletion of plasma TRP on both test-drinks, showing a significant dose-response relation. Healthy control subjects had minimal mood changes, but patients had a depressive response of greater magnitude. CONCLUSIONS In the context of prior TRP depletion studies with antidepressant-treated, and drug-free symptomatic depressed patients, these results suggest that depression may be caused not by an abnormality of 5-HT function, but by dysfunction of other systems or brain regions modulated by 5-HT.
Collapse
Affiliation(s)
- F A Moreno
- Department of Psychiatry, College of Medicine, University of Arizona Health Science Center, Tucson 85724, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Knott VJ, Howson AL, Perugini M, Ravindran AV, Young SN. The effect of acute tryptophan depletion and fenfluramine on quantitative EEG and mood in healthy male subjects. Biol Psychiatry 1999; 46:229-38. [PMID: 10418698 DOI: 10.1016/s0006-3223(98)00338-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Efforts to model putative serotonergic deficits associated with affective disorders have frequently involved acute tryptophan depletion (ATD) as a manipulation strategy aimed at lowering brain serotonin synthesis. In an attempt to widen the scope of the measurement probes used in these investigations, the central actions of ATD and a subsequent dose of fenfluramine were examined via utilization of quantitative electroencephalography (EEG) and mood ratings. METHODS Electroencephalograms (EEG) and subjective mood ratings were assessed in 28 healthy men before and after double-blind ingestion of a tryptophan-depleting (T-) amino acid mixture, or a nutritionally balanced (B) amino acid mixture containing tryptophan, and again after a single-blind oral dose of D,L-fenfluramine hydrochloride (60 mg). RESULTS Compared to the B mixture, the T- mixture reduced total plasma tryptophan by more than 75% 5 hours after ingestion. Tryptophan depletion was associated with a modest lowering of mood and a slowing of EEG as indicated by increases in delta amplitude. Fenfluramine caused no change in mood but increased fast wave (beta) activity in anterior recordings when administered after the T-, but not after the B mixture. CONCLUSIONS Quantitative EEG measurements may be a promising method for studying the central mechanisms underlying serotonin-mediated changes in mood and behavior.
Collapse
Affiliation(s)
- V J Knott
- Department of Psychiatry, University of Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
31
|
Ravindran AV, Griffiths J, Merali Z, Knott VJ, Anisman H. Influence of acute tryptophan depletion on mood and immune measures in healthy males. Psychoneuroendocrinology 1999; 24:99-113. [PMID: 10098222 DOI: 10.1016/s0306-4530(98)00040-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Depressive illness has been associated with variations of several aspects of immune functioning, as well as alterations of cytokine production in stimulated lymphocytes. In the present investigation we sought to determine whether pharmacologically-induced reductions of mood in healthy, male subjects would be associated with alterations in the levels of circulating IL-1 beta or IL-6 or to in vitro lymphocyte proliferation in response to T cell mitogens, PHA and Con A. Lowering tryptophan levels by means of a tryptophan-deficient amino acid mixture, which reduced plasma tryptophan and serotonin (5-HT) levels, produced a lowering of mood in a subset of male subjects (that had no personal or family history of depression) relative to subjects that received a balanced amino acid mixture. Correlational analyses revealed that the change of mood (particularly depression and anger) in subjects that received the tryptophan-free mixture was related to the extent of the tryptophan or 5-HT reductions. However, while fenfluramine administration resulted in recovery of tryptophan and 5-HT levels, this was not accompanied by recovery of mood. Furthermore, it was observed that the lowering of tryptophan levels and the reduced mood were not accompanied by variations of the cytokine levels or cell proliferation. Evidently, transient and modest alterations of 5-HT or mood induced by a tryptophan-free amino acid mixture were insufficient to promote variations of immune activity or circulating IL-1 beta or IL-6 levels. Even if depression were related to immune disturbances, the mood and 5-HT alterations associated with this type of manipulation may be too brief to promote immune changes comparable with those ordinarily associated with severe or chronic depressive illness.
Collapse
Affiliation(s)
- A V Ravindran
- Department of Psychiatry, University of Ottawa, Royal Ottawa Hospital, Ont., Canada
| | | | | | | | | |
Collapse
|
32
|
Price LH, Malison RT, McDougle CJ, Pelton GH, Heninger GR. The neurobiology of tryptophan depletion in depression: effects of intravenous tryptophan infusion. Biol Psychiatry 1998; 43:339-47. [PMID: 9513749 DOI: 10.1016/s0006-3223(97)00284-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Previous work has suggested that acute depletion of the serotonin (5-HT) precursor tryptophan (TRP) causes transient compensatory changes in the 5-HT system that might be exploited for their antidepressant effects. In this study, neuroendocrine and mood responses to intravenous (i.v.) infusion of TRP were examined in order to evaluate central 5-HT function in depressed patients undergoing acute TRP depletion. METHODS Thirty-eight drug-free patients with DSM-III-R major depression participated. Each patient underwent two randomized, double-blind TRP depletion tests, one sham and one active. At the estimated time of maximum TRP depletion, each patient received an i.v. infusion of TRP 100 mg/kg. Blood was obtained for serum cortisol, prolactin, and growth hormone. Mood was assessed using standardized rating scales. RESULTS The cortisol response to i.v. TRP was significantly greater during TRP depletion than during sham depletion. Depressive symptoms showed a tendency to decrease after i.v. TRP following active, but not sham, TRP depletion. CONCLUSIONS These findings are consistent with the present hypothesis and previous evidence that acute TRP depletion in drug-free depressed patients induces compensatory upregulation of postsynaptic 5-HT receptors. These changes are insufficient to serve as a means of effecting clinical improvement, but suggest that the antidepressant properties of rapid, marked manipulations of 5-HT function warrant further study.
Collapse
Affiliation(s)
- L H Price
- Butler Hospital, Department of Psychiatry and Human Behavior, Brown University School of Medicine, Providence, Rhode Island 02906, USA
| | | | | | | | | |
Collapse
|
33
|
Bhatti T, Gillin JC, Seifritz E, Moore P, Clark C, Golshan S, Stahl S, Rapaport M, Kelsoe J. Effects of a tryptophan-free amino acid drink challenge on normal human sleep electroencephalogram and mood. Biol Psychiatry 1998; 43:52-9. [PMID: 9442344 DOI: 10.1016/s0006-3223(97)80252-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Serotonin has been implicated in the regulation of sleep and mood. In animals a tryptophan-free amino acid drink (TFD) challenge has been found to reduce brain serotonin. We hypothesized this TFD would produce alterations in electroencephalographic (EEG) sleep commonly associated with depression, i.e. an enhancement of rapid eye movement (REM) sleep, and adversely affect mood ratings in humans. METHODS We investigated the effects of a TFD challenge in 11 healthy male subjects on EEG sleep and mood (assessed by Profile of Mood States). All subjects received on separate occasions an experimental drink containing approximately 100 g of an amino acid mixture (100% TFD) and a control drink containing one fourth strength (25% TFD) of the experimental drink 5 hours prior to sleep (6:00 PM). RESULTS Both drinks significantly decreased plasma tryptophan levels 5 hours postchallenge (11:00 PM). Both drinks significantly decreased REM latency, and the 25% TFD also increased REM time and REM% compared to baseline. No significant changes were found in subjective ratings of depression; however, subjects reported confusion and tension and a decrease in elation, vigor, and friendliness compared with baseline. CONCLUSIONS These TFD findings further support the involvement of serotonin deficiency in EEG sleep findings commonly seen in depression.
Collapse
Affiliation(s)
- T Bhatti
- Department of Psychiatry, University of California at San Diego 92161, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nishizawa S, Benkelfat C, Young SN, Leyton M, Mzengeza S, de Montigny C, Blier P, Diksic M. Differences between males and females in rates of serotonin synthesis in human brain. Proc Natl Acad Sci U S A 1997; 94:5308-13. [PMID: 9144233 PMCID: PMC24674 DOI: 10.1073/pnas.94.10.5308] [Citation(s) in RCA: 623] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rates of serotonin synthesis were measured in the human brain using positron emission tomography. The sensitivity of the method is indicated by the fact that measurements are possible even after a substantial lowering of synthesis induced by acute tryptophan depletion. Unlike serotonin levels in human brain, which vary greatly in different brain areas, rates of synthesis of the indolamine are rather uniform throughout the brain. The mean rate of synthesis in normal males was found to be 52% higher than in normal females; this marked difference may be a factor relevant to the lower incidence of major unipolar depression in males.
Collapse
Affiliation(s)
- S Nishizawa
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H3A 2B4 Canada
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Smeraldi E, Diaferia G, Erzegovesi S, Lucca A, Bellodi L, Moja EA. Tryptophan depletion in obsessive-compulsive patients. Biol Psychiatry 1996; 40:398-402. [PMID: 8874841 DOI: 10.1016/0006-3223(95)00393-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Twelve patients with obsessive-compulsive disorder were studied after the administration of a mixture of amino acids devoid of tryptophan (TRP) or a mixture containing all the essential amino acids, in a double-blind, crossover design. The TRP-free mixture caused a marked depletion of plasma TRP. After TRP decrease, mean ratings of obsessions and compulsions, measured by Visual Analogue Scales (VAS) ratings, did not worsen. In contrast with other reports in literature, TRP depletion also failed to alter mood in our subjects.
Collapse
Affiliation(s)
- E Smeraldi
- Department of Neuropsychiatric Sciences, S. Raffaele Hospital, University of Milan, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Moja EA, Lucini V, Benedetti F, Lucca A. Decrease in plasma phenylalanine and tyrosine after phenylalanine-tyrosine free amino acid solutions in man. Life Sci 1996; 58:2389-95. [PMID: 8691983 DOI: 10.1016/0024-3205(96)00242-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
After an overnight fast, 5 male healthy subjects ingested increasing amounts of a solution containing a fixed proportion of seven essential amino acids (L-isoleucine, 13.3%; L-leucine, 21.0%; L-lysine, 15.2%; L-methionine, 21.0%; L-threonine, 9.5%; L-tryptophan, 4.8% and L-valine, 15.2%) and lacking phenylalanine and tyrosine. The solutions caused a rapid fall in plasma phenylalanine and tyrosine which was proportional to the total amount of amino acids ingested. Following the highest dose administered (31.5 g) plasma phenylalanine and tyrosine fell to a minimum of, respectively, 12.7% and 29.8% the initial levels and remained markedly reduced at 6 hours after treatment. The decrease of tyrosine and phenylalanine levels was associated with a decrease of systolic and diastolic arterial pressure.
Collapse
Affiliation(s)
- E A Moja
- Chair of Medical Psychology, University of Milan, Padiglione L.I.T.A., Ospedale L. Sacco
| | | | | | | |
Collapse
|
37
|
Young SN, Pihl RO, Benkelfat C, Palmour R, Ellenbogen M, Lemarquand D. The effect of low brain serotonin on mood and aggression in humans. Influence of baseline mood and genetic factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 398:45-50. [PMID: 8906239 DOI: 10.1007/978-1-4613-0381-7_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- S N Young
- Department of Psychiatry McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Moja EA, Benedetti F. Sexual behavior in male and female rats after a tryptophan-free amino acid mixture. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 398:89-91. [PMID: 8906246 DOI: 10.1007/978-1-4613-0381-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- E A Moja
- Medical School University of Milano, Italy
| | | |
Collapse
|
39
|
Benedetti F, Moja EA. Failure of a tryptophan-free amino acid mixture to modify sexual behavior in the female rat. Physiol Behav 1993; 54:1235-7. [PMID: 8295969 DOI: 10.1016/0031-9384(93)90354-i] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Female Wistar rats, weekly injected with estradiol valerate after ovariectomy, were trained to cause a sexual contact with a potent male by operating a lever. Contact-response latencies, which vary according to the nature of the sexual contact, were measured as an index of the female's sexual motivation. In these experimental conditions the administration of a tryptophan-free amino acid mixture, which has been proved to decrease brain serotonin and to enhance male mounting behavior, failed to modify the sexual motivation of the female rats.
Collapse
Affiliation(s)
- F Benedetti
- Chair of Medical Psychology II, Medical School, University of Milano, Italy
| | | |
Collapse
|
40
|
Heuther G, Hajak G, Reimer A, Poeggeler B, Blömer M, Rodenbeck A, Rüther E. The metabolic fate of infused L-tryptophan in men: possible clinical implications of the accumulation of circulating tryptophan and tryptophan metabolites. Psychopharmacology (Berl) 1992; 109:422-32. [PMID: 1365857 DOI: 10.1007/bf02247718] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
L-Tryptophan (Trp) was widely used as a natural tool for the support of serotonin-mediated brain functions and as a challenge probe for the assessment of serotonin-mediated neuroendocrine responses. The metabolic fate of the administered Trp and the kinetics of the accumulation of Trp metabolites in the circulation, however, have never thoroughly been investigated. This study describes the time- and dose-dependent alterations in the plasma levels of various Trp metabolites and large neutral amino acids after the infusion of Trp to healthy young men (1, 3 and 5 g; placebo-controlled, double-blind, cross-over study during day- and night-time). The major Trp metabolites (kynurenine, indole acetic acid and indole lactic acid) in plasma increased dose-dependently but rather slowly after Trp administration to reach their maximal plasma levels (up to 10-fold after the 5 g dose) at about 3 h p.i., and remained at an elevated level (about 5-fold) for up to 8 h. N-acetyl-Trp and 5-hydroxy-Trp rose rapidly and massively after Trp infusions, at the 5 g dose more than 200- and 20-fold, respectively, and declined rapidly to about 5-fold baseline levels within 2 h. Whole blood serotonin levels were almost unaffected by the Trp infusions. A rather slow increase of 5-hydroxyindole acetic acid was seen, reaching maximum values (3-fold at the 5 g dose) at about 2 h after the infusion of Trp. Additionally, a dose-dependent rise of circulating melatonin was observed after L-Trp infusions. The administration of L-Trp caused a depletion of the concentrations of the other large neutral amino acids and a dose dependent decrease of the ratio between plasma tyrosine and the sum of the plasma concentrations of the other large neutral amino acids. Apparently, none of the existing pathways of peripheral Trp metabolism is saturated by its substrate, Trp in men. At least some of the central effects reported after L-Trp administration may be mediated by the Trp-stimulated formation of neuroactive metabolites or by the decreased availability of tyrosine for catecholamine synthesis.
Collapse
Affiliation(s)
- G Heuther
- Department of Psychiatry, University of Göttingen, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|