1
|
Petersen JM, Bryon A, Bézier A, Drezen JM, van Oers MM. Transcriptional dynamics during Heliothis zea nudivirus 1 infection in an ovarian cell line from Helicoverpa zea. J Gen Virol 2025; 106:002066. [PMID: 39804289 PMCID: PMC11728702 DOI: 10.1099/jgv.0.002066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Nudiviruses (family Nudiviridae) are double-stranded DNA viruses that infect various insects and crustaceans. Among them, Heliothis zea nudivirus 1 (HzNV-1) represents the rare case of a lepidopteran nudivirus inducing a sexual pathology. Studies about molecular pathological dynamics of HzNV-1 or other nudiviruses are scarce. Hence, this study aims to provide a transcriptomic profile of HzNV-1 in an ovary-derived cell line of Helicoverpa zea (HZ-AM1), during early (3, 6 and 9 h post-infection) and advanced (12 and 24 h post-infection) stages of infection. Total RNA was extracted from both virus- and mock-infected cells, and RNA-seq analysis was performed to examine both virus and host transcriptional dynamics. Hierarchical clustering was used to categorize viral genes, while differential gene expression analysis was utilized to pinpoint host genes that are significantly affected by the infection. Hierarchical clustering classified the 154 HzNV-1 genes into four temporal phases, with early phases mainly involving transcription and replication genes and later phases including genes for virion assembly. In addition, a novel viral promoter motif was identified in the upstream region of early-expressed genes. Host gene analysis revealed significant upregulation of heat shock protein genes and downregulation of histone genes. The identification of temporal patterns in viral gene expression enhances the molecular understanding of nudivirus pathology, while the identified differentially expressed host genes highlight the key pathways most hijacked by HzNV-1 infection.
Collapse
Affiliation(s)
- Jirka Manuel Petersen
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, Netherlands
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS - Université de Tours, 37200 Tours, France
| | - Astrid Bryon
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, Netherlands
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS - Université de Tours, 37200 Tours, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS - Université de Tours, 37200 Tours, France
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, Netherlands
| |
Collapse
|
2
|
Petersen JM, Burgess AL, van Oers MM, Herniou EA, Bojko J. Nudiviruses in free-living and parasitic arthropods: evolutionary taxonomy. Trends Parasitol 2024; 40:744-762. [PMID: 39019701 DOI: 10.1016/j.pt.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
The nudiviruses (family: Nudiviridae) are large double-stranded DNA (dsDNA) viruses that infect insects and crustaceans, and have most recently been identified from ectoparasitic members (fleas and lice). This virus family was created in 2014 and has since been expanded via the discovery of multiple novel viral candidates or accepted members, sparking the need for a new taxonomic and evolutionary overview. Using current information (including data from public databases), we construct a new comprehensive phylogeny, encompassing 49 different nudiviruses. We use this novel phylogeny to propose a new taxonomic structure of the Nudiviridae by suggesting two new viral genera (Zetanudivirus and Etanudivirus), from ectoparasitic lice. We detail novel emerging relationships between nudiviruses and their hosts, considering their evolutionary history and ecological role.
Collapse
Affiliation(s)
- Jirka Manuel Petersen
- Laboratory of Virology, Wageningen University and Research, 6708, PB, Wageningen, The Netherlands; Institut de Recherche sur la Biologie de l'Insecte, UMR7261 CNRS - Université de Tours, 37200 Tours, France.
| | - Amy L Burgess
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK; National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, 6708, PB, Wageningen, The Netherlands
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261 CNRS - Université de Tours, 37200 Tours, France
| | - Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK; National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| |
Collapse
|
3
|
Larem A, Ben Tiba S, Fritsch E, Undorf-Spahn K, Wennmann JT, Jehle JA. Effects of a Covert Infection with Phthorimaea operculella granulovirus in Insect Populations of Phthorimaea operculella. Viruses 2019; 11:E337. [PMID: 30970670 PMCID: PMC6520744 DOI: 10.3390/v11040337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 01/27/2023] Open
Abstract
Virus infections of insects can easily stay undetected, neither showing typical signs of a disease, nor being lethal. Such a stable and most of the time covert infection with Phthorimaea operculella granulovirus (PhopGV) was detected in a Phthorimaea operculella laboratory colony, which originated from Italy (Phop-IT). This covert virus (named PhopGV-R) was isolated, purified and characterized at the genetic level by full genome sequencing. Furthermore, the insect colony Phop-IT was used to study the crowding effect, double infection with other PhopGV isolates (CR3 and GR1), and co-infection exclusion. An infection with a second homologous virus (PhopGV-CR3) activated the covert virus, while a co-infection with another virus isolate (PhopGV-GR1) led to its suppression. This study shows that stable virus infections can be common for insect populations and have an impact on population dynamics because they can suppress or enable co-infection with another virus isolate of the same species.
Collapse
Affiliation(s)
- Andreas Larem
- Institute for Biological Control, Federal Research Centre for Cultivated Plants, Julius Kühn Institute, Heinrichstraße 243, 64287 Darmstadt, Germany.
| | - Saoussen Ben Tiba
- Institute for Biological Control, Federal Research Centre for Cultivated Plants, Julius Kühn Institute, Heinrichstraße 243, 64287 Darmstadt, Germany.
| | - Eva Fritsch
- Institute for Biological Control, Federal Research Centre for Cultivated Plants, Julius Kühn Institute, Heinrichstraße 243, 64287 Darmstadt, Germany.
| | - Karin Undorf-Spahn
- Institute for Biological Control, Federal Research Centre for Cultivated Plants, Julius Kühn Institute, Heinrichstraße 243, 64287 Darmstadt, Germany.
| | - Jörg T Wennmann
- Institute for Biological Control, Federal Research Centre for Cultivated Plants, Julius Kühn Institute, Heinrichstraße 243, 64287 Darmstadt, Germany.
| | - Johannes A Jehle
- Institute for Biological Control, Federal Research Centre for Cultivated Plants, Julius Kühn Institute, Heinrichstraße 243, 64287 Darmstadt, Germany.
| |
Collapse
|
4
|
Diversity of large DNA viruses of invertebrates. J Invertebr Pathol 2017; 147:4-22. [DOI: 10.1016/j.jip.2016.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 11/17/2022]
|
5
|
Wu YL, Wu CP, Liu CYY, Hsu PWC, Wu EC, Chao YC. A non-coding RNA of insect HzNV-1 virus establishes latent viral infection through microRNA. Sci Rep 2011; 1:60. [PMID: 22355579 PMCID: PMC3216547 DOI: 10.1038/srep00060] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/22/2011] [Indexed: 11/17/2022] Open
Abstract
Heliothis zea nudivirus-1 (HzNV-1) is an insect virus previously known as Hz-1 baculovirus. One of its major early genes, hhi1, is responsible for the establishment of productive viral infection; another gene, pag1, which expresses a non-coding RNA, is the only viral transcript detectable during viral latency. Here we showed that this non-coding RNA was further processed into at least two distinct miRNAs, which targeted and degraded hhi1 transcript. This is a result strikingly similar to a recent report that herpes simplex virus produces tightly-regulated latent specific miRNAs to silence its own key early transcripts. Nevertheless, proof for the establishment of viral latency by miRNA is still lacking. We further showed that HzNV-1 latency could be directly induced by pag1-derived miRNAs in cells infected with a pag1-deleted, latency-deficient virus. This result suggests the existence of a novel mechanism, where miRNAs can be functional for the establishment of viral latency.
Collapse
Affiliation(s)
- Yueh-Lung Wu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 105; Taiwan
| | | | | | | | | | | |
Collapse
|
6
|
Heliothis zea nudivirus 1 gene hhi1 induces apoptosis which is blocked by the Hz-iap2 gene and a noncoding gene, pag1. J Virol 2011; 85:6856-66. [PMID: 21543471 DOI: 10.1128/jvi.01843-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Heliothis zea nudivirus 1 (HzNV-1 or Hz-1 virus), previously regarded as a nonoccluded baculovirus, recently has been placed in the Nudivirus genus. This virus generates HzNV-1 HindIII-I 1 (hhi1) and many other transcripts during productive viral infection; during latent viral infection, however, persistency-associated gene 1 (pag1) is the only gene expressed. In this report, we used transient expression assays to show that hhi1 can trigger strong apoptosis in transfected cells, which can be blocked, at least partially, by the inhibitor of apoptosis genes Autographa californica iap2 (Ac-iap2) and H. zea iap2 (Hz-iap2). In addition to these two genes, unexpectedly, pag1, which encodes a noncoding RNA with no detectable protein product, was found to efficiently suppress hhi1-induced apoptosis. The assay of pro-Sf-caspase-1 processing by hhi1 transfection did not detect the small P12 subunit at any of the time intervals tested, suggesting that hhi1 of HzNV-1 induces apoptosis through alternative caspase pathways.
Collapse
|
7
|
The early gene hhi1 reactivates Heliothis zea nudivirus 1 in latently infected cells. J Virol 2009; 84:1057-65. [PMID: 19889784 DOI: 10.1128/jvi.01548-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heliothis zea nudivirus 1 (HzNV-1), previously known as Hz-1 virus, is an insect virus able to establish both productive and latent infections in several lepidopteran insect cells. Here, we have cloned and characterized one of the HzNV-1 early genes, hhi1, which maps to the HindIII-I fragment of the viral genome. During the productive viral infection, a 6.2-kb hhi1 transcript was detectable as early as 0.5 h postinfection (hpi). The level of transcript reached a maximum at 2 hpi and gradually decreased after 4 hpi. The transcript was not detectable during the latent phase of viral infection. Upon cycloheximide treatment, much higher levels of hhi1 transcript were detected throughout the productive viral infection cycle, suggesting that newly synthesized proteins are not needed for the expression of hhi1. Nevertheless, viral coinfection can further stimulate the expression of transfected hhi1 promoter in a plasmid. Transient hhi1 expression in latently infected cells resulted in a significant increase in virus titer and viral DNA propagation, suggesting that hhi1 plays a critical role in viral reactivation. Additional experiments showed that six early genes, which possibly function in transcription or DNA replication, were activated in the latent cells upon hhi1 transfection. Among these six genes, orf90 and orf121 expression could be induced by hhi1 alone without the need for other viral genes. Our discovery should be useful for future mechanistic study of the switches of latent/productive HzNV-1 viral infections.
Collapse
|
8
|
Vilaplana L, Wilson K, Redman EM, Cory JS. Pathogen persistence in migratory insects: high levels of vertically-transmitted virus infection in field populations of the African armyworm. Evol Ecol 2009. [DOI: 10.1007/s10682-009-9296-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
|
10
|
McIntosh AH, Grasela JJ, Ignoffo CM. In vitro host range of the Hz-1 nonoccluded virus in insect cell lines. In Vitro Cell Dev Biol Anim 2007; 43:196-201. [PMID: 17492336 DOI: 10.1007/s11626-007-9032-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
A total of 13 insect cell lines spanning 4 orders (Lepidoptera, Coleoptera, Diptera, and Homoptera) were tested for their ability to replicate the nonoccluded virus Hz-1. Only the Lepidopteran cell lines supported replication of the virus with TN-CL1 and BCIRL-HZ-AM1 producing the highest titers of 2.4 x 10(8) tissue culture infective dose (TCID)50/ml and 2.0 x 10(8) TCID50/ml, respectively. A codling moth cell line (CP-169) was the only Lepidopteran cell line that did not replicate the virus and transfection of this cell line with Hz-1 DNA failed to replicate the virus. Also, transfection with DNA from a recombinant baculovirus carrying the red fluorescent protein gene (AcMNPVhsp70 Red) was not expressed in CP-169 cells. The replication cycle of Hz-1 in BCIRL-HZ-AM1 cells showed that this virus replicated rapidly starting at 16 h postinoculation (p.i.) and reaching a peak titer of 1.0 x 10(8) TCID50/ml 56 h postinoculation. Hz-1 when compared with several other baculoviruses has the widest in vitro host spectrum.
Collapse
Affiliation(s)
- Arthur H McIntosh
- Agricultural Research Service, Biological Control of Insects Research Laboratory, United States Department of Agriculture, 1503 South Providence Road, Research Park, Columbia, MO 65203-3535, USA.
| | | | | |
Collapse
|
11
|
Cheng CH, Liu SM, Chow TY, Hsiao YY, Wang DP, Huang JJ, Chen HH. Analysis of the complete genome sequence of the Hz-1 virus suggests that it is related to members of the Baculoviridae. J Virol 2002; 76:9024-34. [PMID: 12186886 PMCID: PMC136428 DOI: 10.1128/jvi.76.18.9024-9034.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2002] [Accepted: 06/06/2002] [Indexed: 11/20/2022] Open
Abstract
We report the complete sequence of a large rod-shaped DNA virus, called the Hz-1 virus. This virus persistently infects the Heliothis zea cell lines. The Hz-1 virus has a double-stranded circular DNA genome of 228,089 bp encoding 154 open reading frames (ORFs) and also expresses a persistence-associated transcript 1, PAT1. The G+C content of the Hz-1 virus genome is 41.8%, with a gene density of one gene per 1.47 kb. Sequence analysis revealed that a 9.6-kb region at 43.6 to 47.8 map units harbors five cellular genes encoding proteins with homology to dUTP pyrophosphatase, matrix metalloproteinase, deoxynucleoside kinase, glycine hydroxymethyltransferase, and ribonucleotide reductase large subunit. Other cellular homologs were also detected dispersed in the viral genome. Several baculovirus homologs were detected in the Hz-1 virus genome. These include PxOrf-70, PxOrf-29, AcOrf-81, AcOrf-96, AcOrf-22, VLF-1, RNA polymerase LEF-8 (orf50), and two structural proteins, p74 and p91. The Hz-1 virus p74 homolog shows high structural conservation with a double transmembrane domain at its C terminus. Phylogenetic analysis of the p74 revealed that the Hz-1 virus is evolutionarily distant from the baculoviruses. Another distinctive feature of the Hz-1 virus genome is a gene that is involved in insect development. However, the remainder of the ORFs (81%) encoded proteins that bear no homology to any known proteins. In conclusion, the sequence differences between the Hz-1 virus and the baculoviruses outnumber the similarities and suggest that the Hz-1 virus may form a new family of viruses distantly related to the Baculoviridae:
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
12
|
Chen HH, Tso DJ, Yeh WB, Cheng HJ, Wu TF. The thymidylate synthase gene of Hz-1 virus: a gene captured from its lepidopteran host. INSECT MOLECULAR BIOLOGY 2001; 10:495-503. [PMID: 11881814 DOI: 10.1046/j.0962-1075.2001.00289.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The sequence analysis of a thymidylate synthase gene was identified in the Hz-1 virus HindIII-D fragment. The viral thymidylate synthase gene encodes a protein of 295 amino acids, and is closely related to that of insect, mammals and herpesvirus. The thymidylate synthase gene identified was a genuine viral gene in that it was only detected in cells infected with Hz-1 virus but not in the mock infected cells, by Southern blot analysis and by RT-PCR. Results of phylogenetic analysis based on non-synonymous and amino acid distances suggested that the TS gene of Hz-1 virus was grouped closely with that of Bombyx mori. High bootstrap values confirmed that the thymidylate synthase of Hz-1 virus was acquired by a capture event from its lepidopteran host. Results of both sequence divergences and phylogenetic analysis suggested that TS genes in insect viruses, Hz-1, CIV, and MsEPV may have a different history or originated from different capture events.
Collapse
Affiliation(s)
- H H Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| | | | | | | | | |
Collapse
|
13
|
Hawtin RE, King LA, Possee RD. Prospects for the development of a genetically engineered baculovirus insecticide. ACTA ACUST UNITED AC 1992. [DOI: 10.1002/ps.2780340103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Wood HA, Burand JP. Persistent and productive infections with the Hz-1 baculovirus. Curr Top Microbiol Immunol 1986; 131:119-33. [PMID: 3816297 DOI: 10.1007/978-3-642-71589-1_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Larsson R. Baculovirus-like particles in the midgut epithelium of the phantom midge, Chaoborus crystallinus (Diptera, Chaoboridae). J Invertebr Pathol 1984. [DOI: 10.1016/0022-2011(84)90010-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Nonoccluded baculovirus- and filamentous virus-like particles in the spotted cucumber beetle, diabrotica undecimpunctata (coleoptera: chrysomelid). J Invertebr Pathol 1984. [DOI: 10.1016/0022-2011(84)90142-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Crawford AM, Sheehan C. Persistent baculovirus infections: Spodoptera frugiperda NPV and Autographa californica NPV in Spodoptera frugiperda cells. Arch Virol 1983; 78:65-79. [PMID: 6360080 DOI: 10.1007/bf01310859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Establishment of a persistent infection of Spodoptera frugiperda nuclear polyhedrosis virus (NPV) in Spodoptera frugiperda (S.f.) cells occurred in three phases: the first phase was characterised by high levels of cell infection and death, the second phase by decreasing cell infection levels leading to the final phase where less than one per cent of the cells were infected during any subculture. The virus persisted at this level of infection provided the cells were maintained by regular subculturing and incubated at the optimum growth temperature of 27 degrees C. Because of the low proportion of cells infected, cultures of virus-free cells could be selected ('cured') by dilution of the persistent infection without the use of viral antiserum. Unlike the parent S.f. cells, cultures of cured cells were partially resistant to infection with S. frugiperda NPV or infection with an unrelated baculovirus Autographa californica NPV. A. californica NPV, which is cytolytic for the parent S.f. cell line, established a persistent infection in the cured cells. The establishment pattern was similar to that previously found for S. frugiperda NPV and only one to five per cent of the cells were infected at equilibrium. Cured cells from the A. californica NPV persistent infection were highly resistant to infection with both S. frugiperda NPV and A. californica NPV. All attempts to find a viral interference phenomenon to explain the resistance of the cured cells were unsuccessful. All cell types adsorbed virus equally well. Slower growth of S.f. cells cured from the persistent A. californica NPV infection is the only difference so far observed between any of the S.f. cell types.
Collapse
|
18
|
Goodwin RH, Topkins GJ, Gettig RR, Adams JR. Characterization and culture of virus replicating continuous insect cell lines from the bollworm,Heliothis zea (boddie). ACTA ACUST UNITED AC 1982. [DOI: 10.1007/bf02796325] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|