1
|
Diller JR, Thoner TW, Ogden KM. Mammalian orthoreoviruses exhibit rare genotype variability in genome constellations. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 110:105421. [PMID: 36871695 PMCID: PMC10112866 DOI: 10.1016/j.meegid.2023.105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Mammalian orthoreoviruses (reoviruses) are currently classified based on properties of the attachment protein, σ1. Four reovirus serotypes have been identified, three of which are represented by well-studied prototype human reovirus strains. Reoviruses contain ten segments of double-stranded RNA that encode 12 proteins and can reassort during coinfection. To understand the breadth of reovirus genetic diversity and its potential influence on reassortment, the sequence of the entire genome should be considered. While much is known about the prototype strains, a thorough analysis of all ten reovirus genome segment sequences has not previously been conducted. We analyzed phylogenetic relationships and nucleotide sequence conservation for each of the ten segments of more than 60 complete or nearly complete reovirus genome sequences, including those of the prototype strains. Using these relationships, we defined genotypes for each segment, with minimum nucleotide identities of 77-88% for most genotypes that contain several representative sequences. We applied segment genotypes to determine reovirus genome constellations, and we propose implementation of an updated reovirus genome classification system that incorporates genotype information for each segment. For most sequenced reoviruses, segments other than S1, which encodes σ1, cluster into a small number of genotypes and a limited array of genome constellations that do not differ greatly over time or based on animal host. However, a small number of reoviruses, including prototype strain Jones, have constellations in which segment genotypes differ from those of most other sequenced reoviruses. For these reoviruses, there is little evidence of reassortment with the major genotype. Future basic research studies that focus on the most genetically divergent reoviruses may provide new insights into reovirus biology. Analysis of available partial sequences and additional complete reovirus genome sequencing may also reveal reassortment biases, host preferences, or infection outcomes that are based on reovirus genotype.
Collapse
Affiliation(s)
- Julia R Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy W Thoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristen M Ogden
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
He L, Hu X, Zhu M, Liang Z, Chen F, Zhu L, Kuang S, Cao G, Xue R, Gong C. Identification and characterization of vp7 gene in Bombyx mori cytoplasmic polyhedrosis virus. Gene 2017; 627:343-350. [PMID: 28668346 PMCID: PMC7173298 DOI: 10.1016/j.gene.2017.06.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/31/2017] [Accepted: 06/27/2017] [Indexed: 01/15/2023]
Abstract
The genome of Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) contains 10 double stranded RNA segments (S1-S10). The segment 7 (S7) encodes 50kDa protein which is considered as a structural protein. The expression pattern and function of p50 in the virus life cycle are still unclear. In this study, the viral structural protein 7 (VP7) polyclonal antibody was prepared with immunized mouse to explore the presence of small VP7 gene-encoded proteins in Bombyx mori cytoplasmic polyhedrosis virus. The expression pattern of vp7 gene was investigated by its overexpression in BmN cells. In addition to VP7, supplementary band was identified with western blotting technique. The virion, BmCPV infected cells and midguts were also examined using western blotting technique. 4, 2 and 5 bands were detected in the corresponding samples, respectively. The replication of BmCPV genome in the cultured cells and midgut of silkworm was decreased by reducing the expression level of vp7 gene using RNA interference. In immunoprecipitation experiments, using a polyclonal antiserum directed against the VP7, one additional shorter band in BmCPV infected midguts was detected, and then the band was analyzed with mass spectrum (MS), the MS results showed thatone candidate interacted protein (VP7 voltage-dependent anion-selective channel-like isoform, VDAC) was identified from silkworm. We concluded that the novel viral product was generated with a leaky scanning mechanism and the VDAC may be an interacted protein with VP7.
Collapse
Affiliation(s)
- Lei He
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Fei Chen
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Liyuan Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Sulan Kuang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
African Swine Fever Virus NP868R Capping Enzyme Promotes Reovirus Rescue during Reverse Genetics by Promoting Reovirus Protein Expression, Virion Assembly, and RNA Incorporation into Infectious Virions. J Virol 2017; 91:JVI.02416-16. [PMID: 28298603 DOI: 10.1128/jvi.02416-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/07/2017] [Indexed: 12/25/2022] Open
Abstract
Reoviruses, like many eukaryotic viruses, contain an inverted 7-methylguanosine (m7G) cap linked to the 5' nucleotide of mRNA. The traditional functions of capping are to promote mRNA stability, protein translation, and concealment from cellular proteins that recognize foreign RNA. To address the role of mRNA capping during reovirus replication, we assessed the benefits of adding the African swine fever virus NP868R capping enzyme during reovirus rescue. C3P3, a fusion protein containing T7 RNA polymerase and NP868R, was found to increase protein expression 5- to 10-fold compared to T7 RNA polymerase alone while enhancing reovirus rescue from the current reverse genetics system by 100-fold. Surprisingly, RNA stability was not increased by C3P3, suggesting a direct effect on protein translation. A time course analysis revealed that C3P3 increased protein synthesis within the first 2 days of a reverse genetics transfection. This analysis also revealed that C3P3 enhanced processing of outer capsid μ1 protein to μ1C, a previously described hallmark of reovirus assembly. Finally, to determine the rate of infectious-RNA incorporation into new virions, we developed a new recombinant reovirus S1 gene that expressed the fluorescent protein UnaG. Following transfection of cells with UnaG and infection with wild-type virus, passage of UnaG through progeny was significantly enhanced by C3P3. These data suggest that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation.IMPORTANCE Our findings expand our understanding of how viruses utilize capping, suggesting that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation, in addition to enhancing protein translation. Beyond providing mechanistic insight into reovirus replication, our findings also show that reovirus reverse genetics rescue is enhanced 100-fold by the NP868R capping enzyme. Since reovirus shows promise as a cancer therapy, efficient reovirus reverse genetics rescue will accelerate production of recombinant reoviruses as candidates to enhance therapeutic potency. NP868R-assisted reovirus rescue will also expedite production of recombinant reovirus for mechanistic insights into reovirus protein function and structure.
Collapse
|
4
|
Haatveit HM, Wessel Ø, Markussen T, Lund M, Thiede B, Nyman IB, Braaen S, Dahle MK, Rimstad E. Viral Protein Kinetics of Piscine Orthoreovirus Infection in Atlantic Salmon Blood Cells. Viruses 2017; 9:E49. [PMID: 28335455 PMCID: PMC5371804 DOI: 10.3390/v9030049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 01/12/2023] Open
Abstract
Piscine orthoreovirus (PRV) is ubiquitous in farmed Atlantic salmon (Salmo salar) and the cause of heart and skeletal muscle inflammation. Erythrocytes are important target cells for PRV. We have investigated the kinetics of PRV infection in salmon blood cells. The findings indicate that PRV causes an acute infection of blood cells lasting 1-2 weeks, before it subsides into persistence. A high production of viral proteins occurred initially in the acute phase which significantly correlated with antiviral gene transcription. Globular viral factories organized by the non-structural protein µNS were also observed initially, but were not evident at later stages. Interactions between µNS and the PRV structural proteins λ1, µ1, σ1 and σ3 were demonstrated. Different size variants of µNS and the outer capsid protein µ1 appeared at specific time points during infection. Maximal viral protein load was observed five weeks post cohabitant challenge and was undetectable from seven weeks post challenge. In contrast, viral RNA at a high level could be detected throughout the eight-week trial. A proteolytic cleavage fragment of the µ1 protein was the only viral protein detectable after seven weeks post challenge, indicating that this µ1 fragment may be involved in the mechanisms of persistent infection.
Collapse
Affiliation(s)
- Hanne Merethe Haatveit
- Department of Food Safety and Infectious Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Øystein Wessel
- Department of Food Safety and Infectious Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Turhan Markussen
- Department of Food Safety and Infectious Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Morten Lund
- Department of Immunology, Norwegian Veterinary Institute, 0454 Oslo, Norway.
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Ingvild Berg Nyman
- Department of Food Safety and Infectious Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Stine Braaen
- Department of Food Safety and Infectious Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Maria Krudtaa Dahle
- Department of Immunology, Norwegian Veterinary Institute, 0454 Oslo, Norway.
| | - Espen Rimstad
- Department of Food Safety and Infectious Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
5
|
Markussen T, Dahle MK, Tengs T, Løvoll M, Finstad ØW, Wiik-Nielsen CR, Grove S, Lauksund S, Robertsen B, Rimstad E. Sequence analysis of the genome of piscine orthoreovirus (PRV) associated with heart and skeletal muscle inflammation (HSMI) in Atlantic salmon (Salmo salar). PLoS One 2013; 8:e70075. [PMID: 23922911 PMCID: PMC3726481 DOI: 10.1371/journal.pone.0070075] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/16/2013] [Indexed: 12/20/2022] Open
Abstract
Piscine orthoreovirus (PRV) is associated with heart- and skeletal muscle inflammation (HSMI) of farmed Atlantic salmon (Salmo salar). We have performed detailed sequence analysis of the PRV genome with focus on putative encoded proteins, compared with prototype strains from mammalian (MRV T3D)- and avian orthoreoviruses (ARV-138), and aquareovirus (GCRV-873). Amino acid identities were low for most gene segments but detailed sequence analysis showed that many protein motifs or key amino acid residues known to be central to protein function are conserved for most PRV proteins. For M-class proteins this included a proline residue in μ2 which, for MRV, has been shown to play a key role in both the formation and structural organization of virus inclusion bodies, and affect interferon-β signaling and induction of myocarditis. Predicted structural similarities in the inner core-forming proteins λ1 and σ2 suggest a conserved core structure. In contrast, low amino acid identities in the predicted PRV surface proteins μ1, σ1 and σ3 suggested differences regarding cellular interactions between the reovirus genera. However, for σ1, amino acid residues central for MRV binding to sialic acids, and cleavage- and myristoylation sites in μ1 required for endosomal membrane penetration during infection are partially or wholly conserved in the homologous PRV proteins. In PRV σ3 the only conserved element found was a zinc finger motif. We provide evidence that the S1 segment encoding σ3 also encodes a 124 aa (p13) protein, which appears to be localized to intracellular Golgi-like structures. The S2 and L2 gene segments are also potentially polycistronic, predicted to encode a 71 aa- (p8) and a 98 aa (p11) protein, respectively. It is concluded that PRV has more properties in common with orthoreoviruses than with aquareoviruses.
Collapse
Affiliation(s)
- Turhan Markussen
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Maria K. Dahle
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Torstein Tengs
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Marie Løvoll
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Øystein W. Finstad
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
| | | | - Søren Grove
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Silje Lauksund
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Børre Robertsen
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
- * E-mail:
| |
Collapse
|
6
|
Broome virus, a new fusogenic Orthoreovirus species isolated from an Australian fruit bat. Virology 2010; 402:26-40. [PMID: 20350736 DOI: 10.1016/j.virol.2009.11.048] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/16/2009] [Accepted: 11/26/2009] [Indexed: 11/22/2022]
Abstract
This report describes the discovery and characterization of a new fusogenic orthoreovirus, Broome virus (BroV), isolated from a little red flying-fox (Pteropus scapulatus). The BroV genome consists of 10 dsRNA segments, each having a 3' terminal pentanucleotide sequence conserved amongst all members of the genus Orthoreovirus, and a unique 5' terminal pentanucleotide sequence. The smallest genome segment is bicistronic and encodes two small nonstructural proteins, one of which is a novel fusion associated small transmembrane (FAST) protein responsible for syncytium formation, but no cell attachment protein. The low amino acid sequence identity between BroV proteins and those of other orthoreoviruses (13-50%), combined with phylogenetic analyses of structural and nonstructural proteins provide evidence to support the classification of BroV in a new sixth species group within the genus Orthoreovirus.
Collapse
|
7
|
Middleton JK, Agosto MA, Severson TF, Yin J, Nibert ML. Thermostabilizing mutations in reovirus outer-capsid protein mu1 selected by heat inactivation of infectious subvirion particles. Virology 2007; 361:412-25. [PMID: 17208266 PMCID: PMC1913285 DOI: 10.1016/j.virol.2006.11.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 10/31/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The 76-kDa mu1 protein of nonfusogenic mammalian reovirus is a major component of the virion outer capsid, which contains 200 mu1 trimers arranged in an incomplete T=13 lattice. In virions, mu1 is largely covered by a second major outer-capsid protein, sigma3, which limits mu1 conformational mobility. In infectious subvirion particles, from which sigma3 has been removed, mu1 is broadly exposed on the surface and can be promoted to rearrange into a protease-sensitive and hydrophobic conformer, leading to membrane perforation or penetration. In this study, mutants that resisted loss of infectivity upon heat inactivation (heat-resistant mutants) were selected from infectious subvirion particles of reovirus strains Type 1 Lang and Type 3 Dearing. All of the mutants were found to have mutations in mu1, and the heat-resistance phenotype was mapped to mu1 by both recoating and reassortant genetics. Heat-resistant mutants were also resistant to rearrangement to the protease-sensitive conformer of mu1, suggesting that heat inactivation is associated with mu1 rearrangement, consistent with published results. Rate constants of heat inactivation were determined, and the dependence of inactivation rate on temperature was consistent with the Arrhenius relationship. The Gibbs free energy of activation was calculated with reference to transition-state theory and was found to be correlated with the degree of heat resistance in each of the analyzed mutants. The mutations are located in upper portions of the mu1 trimer, near intersubunit contacts either within or between trimers in the viral outer capsid. We propose that the mutants stabilize the outer capsid by interfering with unwinding of the mu1 trimer.
Collapse
Affiliation(s)
- Jason K Middleton
- Department of Chemical and Biological Engineering, College of Engineering, The Graduate School, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
8
|
Zhang Y, Guo D, Geng H, Liu M, Hu Q, Wang J, Tong G, Kong X, Liu N, Liu C. Characterization of M-class genome segments of muscovy duck reovirus S14. Virus Res 2007; 125:42-53. [PMID: 17218035 DOI: 10.1016/j.virusres.2006.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/07/2006] [Accepted: 12/08/2006] [Indexed: 11/26/2022]
Abstract
This report documents the first sequence analysis of the entire M1, M2, and M3 genome segments of the muscovy duck reovirus (DRV) S14. The complete sequence of each of the three M gene segments was determined. The M1 genome segment was 2283 nucleotides in length and was predicted to encode muA protein of 732 residues. The Escherichia coli expressed M1 transcripts generated a 108kDa protein, as expected for muA. A cleavage product of muA, muA1, could be detected by Western blotting with duck anti-reovirus and mouse anti-muA polyclonal serum. muA was distributed diffusely in the cytoplasma and nucleus of transfected Vero cells, which provides evidence that muA might be functional related to the mammalian reovirus (MRV) mu2. The M2 gene was 2155 nucleotides in length and was predicted to encode muB major outer capsid protein of 676 amino acids. The M3 genome segment was 1996 nucleotides in length and was predicted to encode a muNS protein of 635 amino acids. It was unexpectedly found that 5'-termini of the M1 and M2 genes ended with 5'-ACUUUU and 5'-UCUUUU, respectively, instead of 5'-GCUUUU, which is present on most mRNAs of other avian reoviruses (ARV). The UCAUC 3'-terminal sequences of the S14 M1, M2, and M3 genome segments are shared by DRV, ARV, and MRV. Alignment of the DRV muA-, muB-, and muNS-encoding genes with ARV revealed 72.9-73.9%, 67.1-69.6%, and 69.4-70.8% nucleotide identity, respectively. The amino acid sequence homology between DRV and ARV ranged from 85.3 to 86.2% (muA), 75.0 to 76.5% (muB), and 78.4 to 79.8% (muNS). Phylogenetic analyses of the M1, M2, M3, and S-class [Kuntz-Simon, G., Le Gall-Recule, G., de Boisseson, C., Jestin, V., 2002. Muscovy duck reovirus sigmaC protein is a typically encoded by the smallest genome segment. J. Gen. Virol. 83, 1189-1200; Zhang, Y., Liu, M., Hu, Q.L., Ouyang, S.D., Tong, G.Z., 2006a. Characterization of the sigmaC-encoding gene from muscovy duck reovirus. Virus Genes 36, 169-174; Zhang, Y., Liu, M., Ouyan, S.D., Hu, Q.L., Guo, D.C., Han, Z., 2006b. Detection and identification of avian, duck, and goose reoviruses by RT-PCR: goose and duck reoviruses aggregated the same specified genogroup in Orthoreovirus Genus II. Arch. Virol. 151, 1525-1538] genome segments suggests that DRV and ARV share a recent common ancestor and that the two lineages have subsequently undergone host dependent evolution.
Collapse
Affiliation(s)
- Yun Zhang
- Avian Infectious Disease Division of National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fecek RJ, Busch R, Lin H, Pal K, Cunningham CA, Cuff CF. Production of Alexa Fluor 488-labeled reovirus and characterization of target cell binding, competence, and immunogenicity of labeled virions. J Immunol Methods 2006; 314:30-7. [PMID: 16822520 DOI: 10.1016/j.jim.2006.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 05/10/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
Respiratory enteric orphan virus (reovirus) has been used to study many aspects of the biology and genetics of viruses, viral infection, pathogenesis, and the immune response to virus infection. This report describes the functional activity of virus labeled with Alexa Fluor 488, a stable fluorescent dye. Matrix assisted laser desorption-time of flight analysis indicated that Alexa Fluor 488 labeled the outer capsid proteins of reovirus. Labeled virus bound to murine L929 fibroblasts as determined by flow cytometry and fluorescence microscopy, and the specificity of binding were demonstrated by competitive inhibition with non-labeled virus. Labeled reovirus induced apoptosis and cytopathic effect in infected L929 cells. Mice infected with labeled virus mounted robust serum antibody and CD8(+) T-cell responses, indicating that labeled virus retained immunogenicity in vivo. These results indicate that Alexa Fluor 488-labeled virus provides a powerful new tool to analyze reovirus infection in vitro and in vivo.
Collapse
Affiliation(s)
- Ronald J Fecek
- Department of Microbiology, Immunology, and Cell Biology, Robert C. Byrd Health Sciences Center of West Virginia University, P.O. Box 9177, Morgantown, WV 26506-9177, USA
| | | | | | | | | | | |
Collapse
|
10
|
Noad L, Shou J, Coombs KM, Duncan R. Sequences of avian reovirus M1, M2 and M3 genes and predicted structure/function of the encoded mu proteins. Virus Res 2006; 116:45-57. [PMID: 16297481 PMCID: PMC5123877 DOI: 10.1016/j.virusres.2005.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 08/23/2005] [Accepted: 08/24/2005] [Indexed: 12/29/2022]
Abstract
We report the first sequence analysis of the entire complement of M-class genome segments of an avian reovirus (ARV). We analyzed the M1, M2 and M3 genome segment sequences, and sequences of the corresponding muA, muB and muNS proteins, of two virus strains, ARV138 and ARV176. The ARV M1 genes were 2,283 nucleotides in length and predicted to encode muA proteins of 732 residues. Alignment of the homologous mammalian reovirus (MRV) mu2 and ARV muA proteins revealed a relatively low overall amino acid identity ( approximately 30%), although several highly conserved regions were identified that may contribute to conserved structural and/or functional properties of this minor core protein (i.e. the MRV mu2 protein is an NTPase and a putative RNA-dependent RNA polymerase cofactor). The ARV M2 genes were 2158 nucleotides in length, encoding predicted muB major outer capsid proteins of 676 amino acids, more than 30 amino acids shorter than the homologous MRV mu1 proteins. In spite of the difference in size, the ARV/MRV muB/mu1 proteins were more conserved than any of the homologous proteins encoded by other M- or S-class genome segments, exhibiting percent amino acid identities of approximately 45%. The conserved regions included the residues involved in the maturation- and entry- specific proteolytic cleavages that occur in the MRV mu1 protein. Notably missing was a region recently implicated in MRV mu1 stabilization and in forming "hub and spokes" complexes in the MRV outer capsid. The ARV M3 genes were 1996 nucleotides in length and predicted to encode a muNS non-structural protein of 635 amino acids, significantly shorter than the homologous MRV muNS protein, which is attributed to several substantial deletions in the aligned ARV muNS proteins. Alignments of the ARV and MRV muNS proteins revealed a low overall amino acid identity ( approximately 25%), although several regions were relatively conserved.
Collapse
Affiliation(s)
- Lindsay Noad
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Man., Canada R3E 0W3
| | - Jingyun Shou
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4H7
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Man., Canada R3E 0W3
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4H7
| |
Collapse
|
11
|
Affiliation(s)
- Wolfgang Karl Bill Joklik
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
12
|
Su YP, Su BS, Shien JH, Liu HJ, Lee LH. The sequence and phylogenetic analysis of avian reovirus genome segments M1, M2, and M3 encoding the minor core protein muA, the major outer capsid protein muB, and the nonstructural protein muNS. J Virol Methods 2005; 133:146-57. [PMID: 16337282 DOI: 10.1016/j.jviromet.2005.10.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 10/25/2005] [Accepted: 10/27/2005] [Indexed: 11/17/2022]
Abstract
The sequences and phylogenetic analyses of the M-class genome segments of 12 avian reovirus strains are described. The S1133 M1 genome segment is 2283 base pairs long, encoding a protein muA consisted of 732 amino acids. Each M2 or M3 genome segment of 12 avian reovirus strains is 2158 or 1996 base pairs long, respectively, encoding a protein muB or muNS consisted of 676 and 635 amino acids, respectively. The S1133 genome segment has the 5' GCUUUU terminal motif, but each M2 and M3 genome segment displays the 5' GCUUUUU terminal motif which is common to other known avian reovirus genome segments. The UCAUC 3'-terminal sequences of the M-class genome segments are shared by both avian and mammalian reoviruses. Noncoding regions of both 5'- and 3'-termini of the S1133 M1 genome segment consist of 12 and 72 nucleotides, respectively, those of each M2 genome segment consist of 29 and 98 nucleotides, respectively, and those of each M3 genome segment are 24 and 64 nucleotides, respectively. Analysis of the average degree of the M-class gene and the deduced mu-class protein sequence identities indicated that the M2 genes and the muB proteins have the greatest level of sequence divergence. Computer searches revealed that the muA possesses a sequence motif (NH(2)-Leu-Ala-Leu-Asp-Pro-Pro-Phe-COOH) (residues 458-464) indicative of N-6 adenine-specific DNA methylase. Examination of the muB amino acid sequences indicated that the cleavage site of muB into muBN and muBC is between positions 42 and 43 near the N-terminus of the protein, and this site is conserved for each protein. During in vitro treatment of virions with trypsin to yield infectious subviral particles, both the N-terminal fragment delta and the C-terminal fragment phi were shown to be generated. The site of trypsin cleavage was identified in the deduced amino acid sequence of muB by determining the amino-terminal sequences of phi proteins: between arginine 582 and glycine 583. The predicted length of delta generated from muBC is very similar to that of delta generated from mammalian reovirus mu1C. Taken together, protein muB is structurally, and probably functionally, similar to its mammalian homolog, mu1. In addition, two regions near the C-terminal and with a propensity to form alpha-helical coiled-coil structures as previously indicated are observed for each protein muB. Phylogenetic analysis of the M-class genes revealed that the predicted phylograms delineated 3 M1, 5 M2, and 2 M3 lineages, no correlation with serotype or pathotype of the viruses. The results also showed that M2 lineages I-V consist of a mixture of viruses from the M1 and M3 genes of lineages I-III, reflecting frequent reassortment of these genes among virus strains.
Collapse
Affiliation(s)
- Yu Pin Su
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
13
|
Odegard AL, Chandran K, Liemann S, Harrison SC, Nibert ML. Disulfide bonding among micro 1 trimers in mammalian reovirus outer capsid: a late and reversible step in virion morphogenesis. J Virol 2003; 77:5389-400. [PMID: 12692241 PMCID: PMC153963 DOI: 10.1128/jvi.77.9.5389-5400.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined how a particular type of intermolecular disulfide (ds) bond is formed in the capsid of a cytoplasmically replicating nonenveloped animal virus despite the normally reducing environment inside cells. The micro 1 protein, a major component of the mammalian reovirus outer capsid, has been implicated in penetration of the cellular membrane barrier during cell entry. A recent crystal structure determination supports past evidence that the basal oligomer of micro 1 is a trimer and that 200 of these trimers surround the core in the fenestrated T=13 outer capsid of virions. We found in this study that the predominant forms of micro 1 seen in gels after the nonreducing disruption of virions are ds-linked dimers. Cys679, near the carboxyl terminus of micro 1, was shown to form this ds bond with the Cys679 residue from another micro 1 subunit. The crystal structure in combination with a cryomicroscopy-derived electron density map of virions indicates that the two subunits that contribute a Cys679 residue to each ds bond must be from adjacent micro 1 trimers in the outer capsid, explaining the trimer-dimer paradox. Successful in vitro assembly of the outer capsid by a nonbonding mutant of micro 1 (Cys679 substituted by serine) confirmed the role of Cys679 and suggested that the ds bonds are not required for assembly. A correlation between micro 1-associated ds bond formation and cell death in experiments in which virions were purified from cells at different times postinfection indicated that the ds bonds form late in infection, after virions are exposed to more oxidizing conditions than those in healthy cells. The infectivity measurements of the virions with differing levels of ds-bonded micro 1 showed that these bonds are not required for infection in culture. The ds bonds in purified virions were susceptible to reduction and reformation in situ, consistent with their initial formation late in morphogenesis and suggesting that they may undergo reduction during the entry of reovirus particles into new cells.
Collapse
Affiliation(s)
- Amy L Odegard
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
14
|
Liemann S, Chandran K, Baker TS, Nibert ML, Harrison SC. Structure of the reovirus membrane-penetration protein, Mu1, in a complex with is protector protein, Sigma3. Cell 2002; 108:283-95. [PMID: 11832217 PMCID: PMC4152834 DOI: 10.1016/s0092-8674(02)00612-8] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell entry by nonenveloped animal viruses requires membrane penetration without membrane fusion. The reovirus penetration agent is the outer-capsid protein, Mu1. The structure of Mu1, complexed with its "protector" protein, Sigma3, and the fit of this Mu1(3)Sigma3(3) heterohexameric complex into the cryoEM image of an intact virion, reveal molecular events essential for viral penetration. Autolytic cleavage divides Mu1 into myristoylated Mu1N and Mu1C. A long hydrophobic pocket can receive the myristoyl group. Dissociation of Mu1N, linked to a major conformational change of the entire Mu1 trimer, must precede myristoyl-group insertion into the cellular membrane. A myristoyl switch, coupling exposure of the fatty acid chain, autolytic cleavage of Mu1N, and long-range molecular rearrangement of Mu1C, thus appears to be part of the penetration mechanism.
Collapse
Affiliation(s)
- Susanne Liemann
- Howard Hughes Medical Institute Children’s Hospital Harvard Medical School 320 Longwood Avenue Boston, Massachusetts 02115
| | - Kartik Chandran
- Department of Microbiology and Molecular Genetics Harvard Medical School Boston, Massachusetts 02115
| | - Timothy S. Baker
- Department of Biological Sciences Purdue University West Lafayette, Indiana 47907
| | - Max L. Nibert
- Department of Microbiology and Molecular Genetics Harvard Medical School Boston, Massachusetts 02115
| | - Stephen C. Harrison
- Howard Hughes Medical Institute Children’s Hospital Harvard Medical School 320 Longwood Avenue Boston, Massachusetts 02115
- Correspondence:
| |
Collapse
|
15
|
Liu HJ, Huang PH. Sequence and phylogenetic analysis of the sigmaA-encoding gene of avian reovirus. J Virol Methods 2001; 98:99-107. [PMID: 11576636 DOI: 10.1016/s0166-0934(01)00328-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The full-length sigmaA-encoding gene nucleotide sequences (1251 bp) of ten avian reovirus (ARV) field-isolates and three vaccine strains were determined and analyzed to study the degree of genetic divergence and evolution. Strains were isolated over a 23-year period from different hosts, pathotypes, and geographic locations. A phylogenetic tree constructed from variation in the sigmaA nucleotide sequences among ARV isolates showed that Taiwanese isolates from different dates of isolation were grouped into two distant groups, indicating that they have evolved in nature. In paired identity analysis, there was over 97.3% nucleotide sequence identity in the sigmaA-encoding genes between group I Taiwanese isolates (T6, 750505, 919, and 918) and Japanese isolate OS161 as well as three US vaccine strains, suggesting that they might have descended from a common ancestor. However, the nucleotide sequences of these sigmaA-encoding genes varied extensively from those of group II Taiwanese isolates (601SI, R2/TW, 1017-1, 916, and 601G), displaying only 86% identity. These results revealed that the genetic diversity in the sigmaA-encoding gene of ARV correlated with the date of isolation and geographic locations.
Collapse
Affiliation(s)
- H J Liu
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan, ROC.
| | | |
Collapse
|
16
|
Breun LA, Broering TJ, McCutcheon AM, Harrison SJ, Luongo CL, Nibert ML. Mammalian reovirus L2 gene and lambda2 core spike protein sequences and whole-genome comparisons of reoviruses type 1 Lang, type 2 Jones, and type 3 Dearing. Virology 2001; 287:333-48. [PMID: 11531411 DOI: 10.1006/viro.2001.1052] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The reovirus L2 genome segment encodes the core spike protein lambda2, which mediates enzymatic reactions in 5' capping of the viral plus-strand transcripts. Complete nucleotide-sequence determinations were made for the L2 genome segments of eight mammalian reoviruses, including the prototype isolates of serotypes 1 and 2: Lang (T1L) and Jones (T2J), respectively. Each L2 segment was found to be 3912 or 3915 bases in length. Partial nucleotide-sequence determinations were also made for the 3916-base L2 segment of reovirus type 3 Dearing (T3D), the prototype isolate of serotype 3. The whole-genome sequence of reovirus T3D was reported previously. The T1L L2 analysis represents completion of the whole-genome sequence of that isolate as well. The T2J L2 analysis leaves only the sequence of the M1 segment yet to be reported from the genome of that isolate. The T2J M1 sequence made available from analysis in another lab was used for initiating whole-genome comparisons of reoviruses T1L, T2J, and T3D in this report. The nine L2 gene sequences and deduced lambda2 protein sequences were used to gain further insights into the biological variability, structure, and functions of lambda2 through comparisons of the sequences and reference to the crystal structure of core-bound lambda2. Phylogenetic comparisons suggest the presence of three evolutionary lines of divergent L2 alleles among the nine isolates. Localized regions of conserved amino acids in the lambda2 crystal structure include active-site clefts of the RNA capping enzyme domains, sites of interactions between lambda2 domains within the pentameric spike structure, and sites of interaction between lambda2 subunits and other proteins in viral particles.
Collapse
Affiliation(s)
- L A Breun
- Department of Biochemistry, The College of Agricultural and Life Sciences, Institute for Molecular Virology, The Graduate School, University of Wisconsin-Madison, Wisconsin, Madison 53706, USA
| | | | | | | | | | | |
Collapse
|
17
|
Hagiwara K, Matsumoto T. Nucleotide sequences of genome segments 6 and 7 of Bombyx mori cypovirus 1, encoding the viral structural proteins V4 and V5, respectively. J Gen Virol 2000; 81:1143-7. [PMID: 10725444 DOI: 10.1099/0022-1317-81-4-1143] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleotide sequence analyses of cDNAs derived from the double-stranded RNA genome segments 6 and 7 (S6 and S7) of Bombyx mori cypovirus 1 (BmCPV-1) have revealed that they consist of 1796 and 1501 nucleotides encoding putative proteins of 561 and 448 amino acids with molecular masses of 63604 and 49875 (p64 and p50), respectively. The amino acid sequence of p64, which has a high leucine residue content (10%), contains a leucine zipper motif. Antiserum raised against p64 specifically bound to a viral structural protein of ca. 68 kDa (V4), while antiserum against p50, which specifically bound to a protein of ca. 56 kDa in BmN4 cells infected with BmCPV-1, reacted with a cluster of four viral structural proteins ranging from ca. 34 to 40 kDa (V5). These observations indicate that p50 might be cleaved to V5 during the formation of virus particles.
Collapse
Affiliation(s)
- K Hagiwara
- Venture Laboratory, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | | |
Collapse
|
18
|
McCutcheon AM, Broering TJ, Nibert ML. Mammalian reovirus M3 gene sequences and conservation of coiled-coil motifs near the carboxyl terminus of the microNS protein. Virology 1999; 264:16-24. [PMID: 10544126 DOI: 10.1006/viro.1999.9990] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleotide sequences of the mammalian orthoreovirus (reovirus) type 1 Lang and type 2 Jones M3 gene segments were newly determined. The nucleotide sequence of the reovirus type 3 Dearing M3 segment also was determined to compare with a previously reported M3 sequence for that isolate. Comparisons showed Lang and Dearing M3 to be more closely related than either was to Jones M3, consistent with previous findings for other reovirus gene segments. The microNS protein sequences deduced from each M3 segment were shown to be related in a similar pattern as the respective nucleotide sequences and to contain several regions of greater or less than average variability among the three isolates. Identification of conserved methionine codons near the 5' ends of the Lang, Jones, and Dearing M3 plus strands lent support to the hypothesis that microNSC, a smaller protein also encoded by M3, arises by translation initiation from a downstream methionine codon within the same open reading frame as microNS. Other analyses of the deduced protein sequences indicated that regions within the carboxyl-terminal third of microNS and microNSC from each isolate have a propensity to form alpha-helical coiled coils, most likely coiled-coil dimers. The new sequences will augment further studies on microNS and microNSC structure and function.
Collapse
Affiliation(s)
- A M McCutcheon
- The College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
19
|
Harrison SJ, Farsetta DL, Kim J, Noble S, Broering TJ, Nibert ML. Mammalian reovirus L3 gene sequences and evidence for a distinct amino-terminal region of the lambda1 protein. Virology 1999; 258:54-64. [PMID: 10329567 DOI: 10.1006/viro.1999.9707] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To complement evidence for nucleoside triphosphate phosphohydrolase (NTPase), RNA helicase, RNA 5' triphosphate phosphohydrolase, and nucleic acid-binding activities by the core shell protein lambda1 of mammalian orthoreoviruses (reoviruses), we determined nucleotide sequences of the lambda1-encoding L3 gene segments from three isolates: type 1 Lang (T1L), type 2 Jones (T2J), and type 3 Dearing (T3D). The T1L and T3D L3 gene sequences and deduced lambda1 protein sequences shared high levels of identity (97.7% and 99.3%, respectively). The lambda1 sequences differed at only 9 of 1275 amino acids. Two single-nucleotide insertions relative to a previously published sequence for T3D L3 extended the lambda1 open reading frame to within 60 nucleotides of the plus-strand 3' end for T3D and the other isolates sequenced, in keeping with the short 3' nontranslated regions of the other nine gene segments. Seven of the nine amino acid differences between T1L and T3D lambda1 were located within the amino-terminal 500 residues of lambda1, a region with putative sequence similarities to NTPases and RNA helicases. The T2J L3 and lambda1 sequences were found to be more divergent, especially within the amino-terminal 180 residues of lambda1, preceding the putative CCHH zinc finger motif. The T2J L3 sequence, along with partial sequences for L3 genes from three other reovirus isolates, suggested that one or more of the polymorphisms at amino acids 71, 215, 500, 1011, and/or 1100 in lambda1 contribute to the L3-determined differences in ATPase activities by T1L and T3D cores. The findings contribute to our ongoing efforts to elucidate sequence-structure-function relationships for the lambda1 core protein.
Collapse
Affiliation(s)
- S J Harrison
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | | | | | | | | | | |
Collapse
|
20
|
Hazelton PR, Coombs KM. The reovirus mutant tsA279 L2 gene is associated with generation of a spikeless core particle: implications for capsid assembly. J Virol 1999; 73:2298-308. [PMID: 9971813 PMCID: PMC104475 DOI: 10.1128/jvi.73.3.2298-2308.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/1998] [Accepted: 11/23/1998] [Indexed: 11/20/2022] Open
Abstract
Previous studies which used intertypic reassortants of the wild-type reovirus serotype 1 Lang and the temperature-sensitive (ts) serotype 3 mutant clone tsA279 identified two ts lesions; one lesion, in the M2 gene segment, was associated with defective transmembrane transport of restrictively assembled virions (P. R. Hazelton and K. M. Coombs, Virology 207:46-58, 1995). In the present study we show that the second lesion, in the L2 gene segment, which encodes the lambda2 protein, is associated with the accumulation of a core-like particle defective for the lambda2 pentameric spike. Physicochemical, biochemical, and immunological studies showed that these structures were deficient for genomic double-stranded RNA, the core spike protein lambda2, and the minor core protein micro2. Core particles with the lambda2 spike structure accumulated after temperature shift-down from a restrictive to a permissive temperature in the presence of cycloheximide. These data suggest the spike-deficient, core-like particle is an assembly intermediate in reovirus morphogenesis. The existence of this naturally occurring primary core structure suggests that the core proteins lambda1, lambda3, and sigma2 interact to initiate the process of virion capsid assembly through a dodecahedral mechanism. The next step in the proposed capsid assembly model would be the association of the minor core protein mu2, either preceding or collateral to the condensation of the lambda2 pentameric spike at the apices of the primary core structure. The assembly pathway of the reovirus double capsid is further elaborated when these observations are combined with structures identified in other studies.
Collapse
Affiliation(s)
- P R Hazelton
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W3
| | | |
Collapse
|
21
|
Affiliation(s)
- R F Ramig
- Division of Molecular Virology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
22
|
Jacobs BL, Langland JO. Reovirus sigma 3 protein: dsRNA binding and inhibition of RNA-activated protein kinase. Curr Top Microbiol Immunol 1998; 233:185-96. [PMID: 9599927 DOI: 10.1007/978-3-642-72092-5_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- B L Jacobs
- Department of Microbiology, Arizona State University, Tempe 85287-2701, USA
| | | |
Collapse
|
23
|
Abstract
All eight reovirus structural proteins were resolved in a new tris, glycine, and urea (TGU) electrophoretic gel system. The specific identities of proteins were determined immunologically, biochemically, and genetically. Structural proteins of reovirus type 1 Lang had different mobilities in the TGU gel than did type 3 Dearing proteins. Intertypic reassortant viruses that contained various combinations of parental genes were used to identify each of the viral protein bands. Type 1 Lang virions were metabolically-labelled with either 3H-amino acids or 35S-methionine/cysteine and gradient purified. Aliquots of purified virions were treated to generate infectious subviral particles (ISVPs) and core particles. Radiolabelled virus, ISVP, and core proteins were resolved in the TGU gel and protein band intensities were used to determine copy numbers of each structural protein. These studies confirmed the copy numbers and locations of most reovirus proteins. However, important new findings include the discovery that virions contain approximately 120 copies of major core protein sigma 2 and 20 copies of the polymerase cofactor protein mu 2, and ISVP particles contain about 24 copies of mu 1 C that has not been processed to the delta peptide. These data are used to generate a new model of the arrangement of structural proteins with the reovirus particle.
Collapse
Affiliation(s)
- K M Coombs
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
24
|
Varela R, Martínez-Costas J, Mallo M, Benavente J. Intracellular posttranslational modifications of S1133 avian reovirus proteins. J Virol 1996; 70:2974-81. [PMID: 8627773 PMCID: PMC190156 DOI: 10.1128/jvi.70.5.2974-2981.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Avian reovirus S1133 specifies at least 10 primary translation products, eight of which are present in the viral particle and two of which are nonstructural proteins. In the work presented here, we studied the covalent modifications undergone by these translation products in the infected cell. The structural polypeptide mu2 was shown to be intracellularly modified by both myristoylation and proteolysis. The site-specific cleavage of mu2 yielded a large carboxy-terminal fragment and a myristoylated approximately 5,500-Mr peptide corresponding to the amino terminus. Both mu2 and its cleavage products were found to be structural components of the reovirion. Most avian reovirus proteins were found to be glycosylated and to have a blocking group at the amino terminus. In contrast to the mammalian reovirus system, none of the avian reovirus polypeptides was found to incorporate phosphorus during infection. Our results add to current understanding of the similarities and differences between avian and mammalian reoviruses.
Collapse
Affiliation(s)
- R Varela
- Departamento de Bioquímica y Biologia Molecular, Facultad de Farmacia, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
25
|
Joklik WK, Roner MR. Molecular recognition in the assembly of the segmented reovirus genome. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 53:249-81. [PMID: 8650305 DOI: 10.1016/s0079-6603(08)60147-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- W K Joklik
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
26
|
Hooper JW, Fields BN. Role of the mu 1 protein in reovirus stability and capacity to cause chromium release from host cells. J Virol 1996; 70:459-67. [PMID: 8523558 PMCID: PMC189834 DOI: 10.1128/jvi.70.1.459-467.1996] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The reovirus M2 gene is associated with the capacity of type 3 strain Abney (T3A) intermediate subviral particles (ISVPs) to permeabilize cell membranes as measured by chromium (51Cr) release (P. Lucia-Jandris, J. W. Hooper, and B. N. Fields, J. Virol. 67:5339-5345, 1993). In addition, reovirus mutants with lesions in the M2 gene can be selected by heating virus at 37 degrees C for 20 min in 33% ethanol (D. R. Wessner and B. N. Fields, J. Virol. 67:2442-2447, 1993). In this report we investigated the mechanism by which the reovirus M2 gene product (the mu 1 protein) influences the capacity of reovirus ISVPs to permeabilize membranes, using ethanol-selected T3A mutants. Each of three T3A ethanol-resistant mutants isolated (JH2, JH3, and JH4) exhibited a decreased capacity to cause 51Cr release relative to that of wild-type T3A. Sequence analysis of the M2 genes of wild-type T3A and the T3A mutants indicated that each mutant possesses a single amino acid substitution in a central region of the 708-amino-acid mu 1 protein: JH2 (residue 466, Tyr to Cys), JH3 (residue 459, Lys to Glu), and JH4 (residue 497 Pro to Ser). Assays performed with reovirus natural isolates, reassortants, and a set of previously characterized type 3 strain Dearing (T3D) ethanol-resistant mutants revealed a strong correlation between ethanol sensitivity and the capacity to cause 51Cr release. We found that ISVPs generated from the T3A and T3D mutants were stable when heated to 50 degrees C, whereas wild-type T3A ISVPs are inactivated under these conditions. Together, these data suggest that amino acid substitutions in a central region of the mu 1 protein affect the capacity of the ISVP to permeabilize L-cell membranes by altering the stability of the virus particle.
Collapse
Affiliation(s)
- J W Hooper
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
27
|
Roner MR, Lin PN, Nepluev I, Kong LJ, Joklik WK. Identification of signals required for the insertion of heterologous genome segments into the reovirus genome. Proc Natl Acad Sci U S A 1995; 92:12362-6. [PMID: 8618901 PMCID: PMC40357 DOI: 10.1073/pnas.92.26.12362] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In cells simultaneously infected with any two of the three reovirus serotypes ST1, ST2, and ST3, up to 15% of the yields are intertypic reassortants that contain all possible combinations of parental genome segments. We have now found that not all genome segments in reassortants are wild type. In reassortants that possess more ST1 than ST3 genome segments, all ST1 genome segments appear to be wild type, but the incoming ST3 genome segments possess mutations that make them more similar to the ST1 genome segments that they replace. In reassortants resulting from crosses of the more distantly related ST3 and ST2 viruses that possess a majority of ST3 genome segments, all incoming ST2 genome segments are wild type, but the ST3 S4 genome segment possesses two mutations, G74 to A and G624 to A, that function as acceptance signals. Recognition of these signals has far-reaching implications for the construction of reoviruses with novel properties and functions.
Collapse
Affiliation(s)
- M R Roner
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- W K Joklik
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
29
|
Kedl R, Schmechel S, Schiff L. Comparative sequence analysis of the reovirus S4 genes from 13 serotype 1 and serotype 3 field isolates. J Virol 1995; 69:552-9. [PMID: 7527088 PMCID: PMC188609 DOI: 10.1128/jvi.69.1.552-559.1995] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The reovirus sigma 3 protein is a major outer capsid protein that may function to regulate translation within infected cells. To facilitate the understanding of sigma 3 structure and functions and the evolution of mammalian reoviruses, we sequenced cDNA copies of the S4 genes from 10 serotype 3 and 3 serotype 1 reovirus field isolates and compared these sequences with sequences of prototypic strains of the three reovirus serotypes. We found that the sigma 3 proteins are highly conserved: the two longest conserved regions contain motifs proposed to function in binding zinc and double-stranded RNA. We used the 16 viral isolates to investigate the hypothesis that structural interactions between sigma 3 and the cell attachment protein, sigma 1, constrain their evolution and to identify a determinant within sigma 3 that is in close proximity to the sigma 1 hemagglutination site.
Collapse
Affiliation(s)
- R Kedl
- Department of Microbiology, University of Minnesota, Minneapolis 55455
| | | | | |
Collapse
|
30
|
Chapell JD, Goral MI, Rodgers SE, dePamphilis CW, Dermody TS. Sequence diversity within the reovirus S2 gene: reovirus genes reassort in nature, and their termini are predicted to form a panhandle motif. J Virol 1994; 68:750-6. [PMID: 8289378 PMCID: PMC236511 DOI: 10.1128/jvi.68.2.750-756.1994] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To better understand genetic diversity within mammalian reoviruses, we determined S2 nucleotide and deduced sigma 2 amino acid sequences of nine reovirus strains and compared these sequences with those of prototype strains of the three reovirus serotypes. The S2 gene and sigma 2 protein are highly conserved among the four type 1, one type 2, and seven type 3 strains studied. Phylogenetic analyses based on S2 nucleotide sequences of the 12 reovirus strains indicate that diversity within the S2 gene is independent of viral serotype. Additionally, we found marked topological differences between phylogenetic trees generated from S1 and S2 gene nucleotide sequences of the seven type 3 strains. These results demonstrate that reovirus S1 and S2 genes have distinct evolutionary histories, thus providing phylogenetic evidence for lateral transfer of reovirus genes in nature. When variability among the 12 sigma 2-encoding S2 nucleotide sequences was analyzed at synonymous positions, we found that approximately 60 nucleotides at the 5' terminus and 30 nucleotides at the 3' terminus were markedly conserved in comparison with other sigma 2-encoding regions of S2. Predictions of RNA secondary structures indicate that the more conserved S2 sequences participate in the formation of an extended region of duplex RNA interrupted by a pair of stem-loops. Among the 12 deduced sigma 2 amino acid sequences examined, substitutions were observed at only 11% of amino acid positions. This finding suggests that constraints on the structure or function of sigma 2, perhaps in part because of its location in the virion core, have limited sequence diversity within this protein.
Collapse
Affiliation(s)
- J D Chapell
- Department of Microbiology & Immunology, Vanderbilt Medical School, Nashville, Tennessee 37232-2581
| | | | | | | | | |
Collapse
|
31
|
Dougherty WG, Semler BL. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiol Rev 1993; 57:781-822. [PMID: 8302216 PMCID: PMC372939 DOI: 10.1128/mr.57.4.781-822.1993] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Many viruses express their genome, or part of their genome, initially as a polyprotein precursor that undergoes proteolytic processing. Molecular genetic analyses of viral gene expression have revealed that many of these processing events are mediated by virus-encoded proteinases. Biochemical activity studies and structural analyses of these viral enzymes reveal that they have remarkable similarities to cellular proteinases. However, the viral proteinases have evolved unique features that permit them to function in a cellular environment. In this article, the current status of plant and animal virus proteinases is described along with their role in the viral replication cycle. The reactions catalyzed by viral proteinases are not simple enzyme-substrate interactions; rather, the processing steps are highly regulated, are coordinated with other viral processes, and frequently involve the participation of other factors.
Collapse
Affiliation(s)
- W G Dougherty
- Department of Microbiology, Oregon State University, Corvallis 97331-3804
| | | |
Collapse
|
32
|
Dryden KA, Wang G, Yeager M, Nibert ML, Coombs KM, Furlong DB, Fields BN, Baker TS. Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: analysis of virions and subviral particles by cryoelectron microscopy and image reconstruction. J Cell Biol 1993; 122:1023-41. [PMID: 8394844 PMCID: PMC2119633 DOI: 10.1083/jcb.122.5.1023] [Citation(s) in RCA: 274] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Three structural forms of type 1 Lang reovirus (virions, intermediate subviral particles [ISVPs], and cores) have been examined by cryoelectron microscopy (cryoEM) and image reconstruction at 27 to 32-A resolution. Analysis of the three-dimensional maps and known biochemical composition allows determination of capsid protein location, globular shape, stoichiometry, quaternary organization, and interactions with adjacent capsid proteins. Comparisons of the virion, ISVP and core structures and examination of difference maps reveal dramatic changes in supra-molecular structure and protein conformation that are related to the early steps of reovirus infection. The intact virion (approximately 850-A diam) is designed for environmental stability in which the dsRNA genome is protected not only by tight sigma 3-mu 1, lambda 2-sigma 3, and lambda 2-mu 1 interactions in the outer capsid but also by a densely packed core shell formed primarily by lambda 1 and sigma 2. The segmented genome appears to be packed in a liquid crystalline fashion at radii < 240 A. Depending on viral growth conditions, virions undergo cleavage by enteric or endosomal/lysosomal proteases, to generate the activated ISVP (approximately 800-A diam). This transition involves the release of an outer capsid layer spanning radii from 360 to 427 A that is formed by 60 tetrameric and 60 hexameric clusters of ellipsoidal subunits of sigma 3. The vertex-associated cell attachment protein, sigma 1, also undergoes a striking change from a poorly visualized, more compact form, to an extended, flexible fiber. This conformational change may maximize interactions of sigma 1 with cell surface receptors. Transcription of viral mRNAs is mediated by the core particle (approximately 600-A diam), generated from the ISVP after penetration and uncoating. The transition from ISVP to core involves release of the 12 sigma 1 fibers and the remaining outer capsid layer formed by 200 trimers of rod-shaped mu 1 subunits that span radii from 306 to 395 A. In the virion and ISVP, flower-shaped pentamers of the lambda 2 protein are centered at the vertices. In the ISVP-to-core transition, domains of the lambda 2 subunits rotate and swing upward and outward to form a turret-like structure extending from radii 305 to 400 A, with a diameter of 184 A, and a central channel 84 A wide. This novel conformational change allows the potential diffusion of substrates for transcription and exit of newly synthesized mRNA segments.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
MESH Headings
- Animals
- Capsid/chemistry
- Capsid/genetics
- Capsid/ultrastructure
- Cells, Cultured
- Cold Temperature
- DNA, Viral/analysis
- DNA, Viral/genetics
- Fibroblasts/cytology
- Fibroblasts/microbiology
- Image Processing, Computer-Assisted
- Macromolecular Substances
- Mice
- Microscopy, Electron/methods
- Protein Conformation
- RNA, Double-Stranded/analysis
- RNA, Double-Stranded/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Viral/analysis
- RNA, Viral/genetics
- Reoviridae/chemistry
- Reoviridae/genetics
- Reoviridae/ultrastructure
- Reoviridae Infections/metabolism
- Reoviridae Infections/physiopathology
- Transcription, Genetic
- Viral Core Proteins/chemistry
- Viral Core Proteins/genetics
- Viral Core Proteins/ultrastructure
- Virion/chemistry
- Virion/genetics
- Virion/ultrastructure
Collapse
Affiliation(s)
- K A Dryden
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
To better understand the mechanism(s) by which viruses respond to chemical or physical treatments, we isolated a series of mutant strains of reovirus type 3 Dearing that exhibit increased ethanol resistance. Following exposure to 33% ethanol for 20 min, the parental strain exhibited a 5 log10 decrease in infectivity. The mutant strains, however, exhibited a 2 to 3 log10 decrease in titer following identical treatment. Through the use of reassortant viruses, we mapped this increased ethanol resistance mutation to the M2 gene segment, which encodes a major outer capsid protein, mu1C. Sequence analysis of mutant M2 genes revealed that six of seven unique mutants possessed single-point mutations in this gene. In addition, the change in six of seven mutants caused a predicted amino acid change in a 35-amino-acid region of the gene product between amino acids 425 and 459. The identification of ethanol resistance mutations within a discrete region of this outer capsid protein identifies that portion of the protein as important in reovirus stability. The presence of viral particles possessing altered stability also suggests that subpopulations of viruses may possess altered environmental stability, which, in turn, could affect viral transmission.
Collapse
Affiliation(s)
- D R Wessner
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
34
|
Nibert ML, Fields BN. A carboxy-terminal fragment of protein mu 1/mu 1C is present in infectious subvirion particles of mammalian reoviruses and is proposed to have a role in penetration. J Virol 1992; 66:6408-18. [PMID: 1328674 PMCID: PMC240133 DOI: 10.1128/jvi.66.11.6408-6418.1992] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Penetration of a cell membrane as an early event in infection of cells by mammalian reoviruses appears to require a particular type of viral particle, the infectious subvirion particle (ISVP), which is generated from an intact virion by proteolytic cleavage of the outer capsid proteins sigma 3 and mu 1/mu 1C. Characterizations of the structural components and properties of ISVPs are thus relevant to attempts to understand the mechanism of penetration by reoviruses. In this study, a novel, approximately 13-kDa carboxy-terminal fragment (given the name phi) was found to be generated from protein mu 1/mu 1C during in vitro treatments of virions with trypsin or chymotrypsin to yield ISVPs. With trypsin treatment, both the carboxy-terminal fragment phi and the amino-terminal fragment mu 1 delta/delta were shown to be generated and to remain attached to ISVPs in stoichiometric quantities. Sites of protease cleavage were identified in the deduced amino acid sequence of mu 1 by determining the amino-terminal sequences of phi proteins: trypsin cleaves between arginine 584 and isoleucine 585, and chymotrypsin cleaves between tyrosine 581 and glycine 582. Findings in this study indicate that sequences in the phi portion of mu 1/mu 1C may participate in the unique functions attributed to ISVPs. Notably, the delta-phi cleavage junction was predicted to be flanked by a pair of long amphipathic alpha-helices. These amphipathic alpha-helices, together with the myristoyl group at the extreme amino terminus of mu 1/mu 1N, are proposed to interact directly with the lipid bilayer of a cell membrane during penetration by mammalian reoviruses.
Collapse
Affiliation(s)
- M L Nibert
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
35
|
Tillotson L, Shatkin AJ. Reovirus polypeptide sigma 3 and N-terminal myristoylation of polypeptide mu 1 are required for site-specific cleavage to mu 1C in transfected cells. J Virol 1992; 66:2180-6. [PMID: 1548757 PMCID: PMC289010 DOI: 10.1128/jvi.66.4.2180-2186.1992] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
N-myristoylated viral polypeptide mu 1 was produced in COS cells transfected with a transient expression vector containing a DNA copy of the reovirus M2 gene. The mu 1 product was specifically cleaved to polypeptide mu 1C in cells that were cotransfected with the reovirus S4 gene and that expressed polypeptide sigma 3. Studies with site-specific mutants of the M2 gene demonstrated that conversion of mu 1 to mu 1C was dependent on myristoylation and the presence of the proteolytic cleavage sequence asparagine 42-proline 43 in mu 1, as well as on the presence of polypeptide sigma 3. The mu 1C product and polypeptide sigma 3 formed complexes that were immunoprecipitated by sigma 3-directed antibody, and a myristoylation-negative M2 double mutant, G2A-N42T, yielded mu 1 that did not undergo cleavage to mu 1C or bind sigma 3. However, the N42T single mutant did form immunoprecipitable complexes with sigma 3, indicating that binding can occur in the absence of cleavage. Polypeptide sigma 3 alternatively can bind double-stranded RNA and in COS cells stimulates translation of reporter chloramphenicol acetyltransferase mRNA translation, presumably by blocking double-stranded RNA-mediated activation of the eukaryotic initiation factor 2 alpha subunit kinase which inhibits the initiation of protein synthesis. Consistent with these observations and with the formation of mu 1C-sigma 3 complexes, coexpression of M2 with S4 DNA prevented the translational stimulatory effect of polypeptide sigma 3.
Collapse
Affiliation(s)
- L Tillotson
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854-5638
| | | |
Collapse
|
36
|
Seliger LS, Giantini M, Shatkin AJ. Translational effects and sequence comparisons of the three serotypes of the reovirus S4 gene. Virology 1992; 187:202-10. [PMID: 1736524 DOI: 10.1016/0042-6822(92)90308-c] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Reovirus S4 RNA codes for the dsRNA-binding polypeptide sigma 3, a major virion outer capsid component that also has translational effects in both infected and transfected mammalian cells. To compare the composition and properties of the three different serotypes of sigma 3, a DNA copy of the type 2 gene was cloned and sequenced. The total lengths (1196) and the sequences of leader (33 nucleotides) and trailer (66 nucleotides) regions are highly conserved among the three S4 serotypes. The type 1 and 3 S4 genes are highly related (77 mismatches). However, the type 2 gene contains many mismatches relative to the type 1 and 3 genes (260 and 270 positions, respectively). Most of the mismatches are third position changes, resulting in sigma 3 polypeptides that are 90% or more identical. Transient expression vectors, constructed by replacing the chloramphenicol acetyltransferase (CAT) gene in pRSVCAT with S4 DNA, were used to test the effects of polypeptide sigma 3 on CAT expression in cotransfected COS cells. Transfection with the correctly oriented DNAs resulted in synthesis of the corresponding sigma 3 polypeptides which enhanced CAT expression. The type 2 and type 3 S4 genes were considerably more stimulatory than type 1 when compared to CAT DNA alone. However, with all three serotypes the CAT activity was significantly higher in cells cotransfected with S4 DNA in the correct orientation as compared to the reverse arrangement.
Collapse
Affiliation(s)
- L S Seliger
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854-5638
| | | | | |
Collapse
|
37
|
Virgin HW, Mann MA, Fields BN, Tyler KL. Monoclonal antibodies to reovirus reveal structure/function relationships between capsid proteins and genetics of susceptibility to antibody action. J Virol 1991; 65:6772-81. [PMID: 1719233 PMCID: PMC250764 DOI: 10.1128/jvi.65.12.6772-6781.1991] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Thirteen newly isolated monoclonal antibodies (MAbs) were used to study relationships between reovirus outer capsid proteins sigma 3, mu 1c, and lambda 2 (core spike) and the cell attachment protein sigma 1. We focused on sigma 1-associated properties of serotype specificity and hemagglutination (HA). Competition between MAbs revealed two surface epitopes on mu 1c that were highly conserved between reovirus serotype 1 Lang (T1L) and serotype 3 Dearing (T3D). There were several differences between T1L and T3D sigma 3 epitope maps. Studies using T1L x T3D reassortants showed that primary sequence differences between T1L and T3D sigma 3 proteins accounted for differences in sigma 3 epitope maps. Four of 12 non-sigma 1 MAbs showed a serotype-associated pattern of binding to 25 reovirus field isolates. Thus, for reovirus field isolates, different sigma 1 proteins are associated with preferred epitopes on other outer capsid proteins. Further evidence for a close structural and functional interrelationship between sigma 3/mu 1c and sigma 1 included (i) inhibition by sigma 3 and mu 1c MAbs of sigma 1-mediated HA, (ii) enhancement of sigma 1-mediated HA by proteolytic cleavage of sigma 3 and mu 1c, and (iii) genetic studies demonstrating that sigma 1 controlled the capacity of sigma 3 MAbs to inhibit HA. These data suggest that (i) epitopes on sigma 3 and mu 1c lie in close proximity to sigma 1 and that MAbs to these epitopes can modulate sigma 1-mediated functions, (ii) these spatial relationships have functional significance, since removal of sigma 3 and/or cleavage of mu 1c to delta can enhance sigma 1 function, (iii) in nature, the sigma 1 protein places selective constraints on the epitope structure of the other capsid proteins, and (iv) viral susceptibility to antibody action can be determined by genes other than that encoding an antibody's epitope.
Collapse
Affiliation(s)
- H W Virgin
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
38
|
Dermody TS, Schiff LA, Nibert ML, Coombs KM, Fields BN. The S2 gene nucleotide sequences of prototype strains of the three reovirus serotypes: characterization of reovirus core protein sigma 2. J Virol 1991; 65:5721-31. [PMID: 1920614 PMCID: PMC250232 DOI: 10.1128/jvi.65.11.5721-5731.1991] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The S2 gene nucleotide sequences of prototype strains of the three reovirus serotypes were determined to gain insight into the structure and function of the S2 translation product, virion core protein sigma 2. The S2 sequences of the type 1 Lang, type 2 Jones, and type 3 Dearing strains are 1,331 nucleotides in length and contain a single large open reading frame that could encode a protein of 418 amino acids, corresponding to sigma 2. The deduced sigma 2 amino acid sequences of these strains are very conserved, being identical at 94% of the sequence positions. Predictions of sigma 2 secondary structure and hydrophobicity suggest that the protein has a two-domain structure. A larger domain is suggested to be formed from the amino-terminal three-fourths of sigma 2 sequence, which is separated from a smaller carboxy-terminal domain by a turn-rich hinge region. The carboxy-terminal domain includes sequences that are more hydrophilic than those in the rest of the protein and contains sequences which are predicted to form an alpha-helix. A region of striking similarity was found between amino acids 354 and 374 of sigma 2 and amino acids 1008 and 1031 of the beta subunit of the Escherichia coli DNA-dependent RNA polymerase. We suggest that the regions with similar sequence in sigma 2 and the beta subunit form amphipathic alpha-helices which may play a related role in the function of each protein. We have also performed experiments to further characterize the double-stranded RNA-binding activity of sigma 2 and found that the capacity to bind double-stranded RNA is a property of the sigma 2 protein of prototype strains and of the S2 mutant tsC447.
Collapse
Affiliation(s)
- T S Dermody
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
39
|
Abstract
The structural protein mu 1 of mammalian reoviruses was noted to have a potential N-myristoylation sequence at the amino terminus of its deduced amino acid sequence. Virions labeled with [3H]myristic acid were used to demonstrate that mu 1 is modified by an amide-linked myristoyl group. A myristoylated peptide having a relative molecular weight (Mr) of approximately 4,000 was also shown to be a structural component of virions and was concluded to represent the 4.2-kDa amino-terminal fragment of mu 1 which is generated by the same proteolytic cleavage that yields the carboxy-terminal fragment and major outer capsid protein mu 1C. The myristoylated 4,000-Mr peptide was found to be present in reovirus intermediate subviral particles but to be absent from cores, indicating that it is a component of the outer capsid. A distinct large myristoylated fragment of the intact mu 1 protein was also identified in intermediate subviral particles, but no myristoylated mu-region proteins were identified in cores, consistent with the location of mu 1 in the outer capsid. Similarities between amino-terminal regions of the reovirus mu 1 protein and the poliovirus capsid polyprotein were noted. By analogy with other viruses that contain N-myristoylated structural proteins (particularly picornaviruses), we suggest that the myristoyl group attached to mu 1 and its amino-terminal fragments has an essential role in the assembly and structure of the reovirus outer capsid and in the process of reovirus entry into cells.
Collapse
|
40
|
Abstract
The S1 gene nucleotide sequences of 10 type 3 (T3) reovirus strains were determined and compared with the T3 prototype Dearing strain in order to study sequence diversity in strains of a single reovirus serotype and to learn more about structure-function relationships of the two S1 translation products, sigma 1 and sigma 1s. Analysis of phylogenetic trees constructed from variation in the sigma 1-encoding S1 nucleotide sequences indicated that there is no pattern of S1 gene relatedness in these strains based on host species, geographic site, or date of isolation. This suggests that reovirus strains are transmitted rapidly between host species and that T3 strains with markedly different S1 sequences circulate simultaneously. Comparison of the deduced sigma 1 amino acid sequences of the 11 T3 strains was notable for the identification of conserved and variable regions of sequence that correlate with the proposed domain organization of sigma 1 (M.L. Nibert, T.S. Dermody, and B. N. Fields, J. Virol. 64:2976-2989, 1990). Repeat patterns of apolar residues thought to be important for sigma 1 structure were conserved in all strains examined. The deduced sigma 1s amino acid sequences of the strains were more heterogeneous than the sigma 1 sequences; however, a cluster of basic residues near the amino terminus of sigma 1s was conserved. This analysis has allowed us to investigate molecular epidemiology of T3 reovirus strains and to identify conserved and variable sequence motifs in the S1 translation products, sigma 1 or sigma 1s.
Collapse
|
41
|
Affiliation(s)
- D L Nuss
- Department of Molecular Oncology and Virology, Roche Research Center, Nutley, New Jersey 07110
| | | |
Collapse
|
42
|
Diamond ME, Dowhanick JJ, Nemeroff ME, Pietras DF, Tu CL, Bruenn JA. Overlapping genes in a yeast double-stranded RNA virus. J Virol 1989; 63:3983-90. [PMID: 2668562 PMCID: PMC250995 DOI: 10.1128/jvi.63.9.3983-3990.1989] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Saccharomyces cerevisiae viruses have a large viral double-stranded RNA which encodes the major viral capsid polypeptide. We have previously shown that this RNA (L1) also encodes a putative viral RNA-dependent RNA polymerase (D. F. Pietras, M. E. Diamond, and J. A. Bruenn, Nucleic Acids Res., 16:6226, 1988). The organization and expression of the viral genome is similar to that of the gag-pol region of the retroviruses. The complete sequence of L1 demonstrates two large open reading frames on the plus strand which overlap by 129 bases. The first is the gene for the capsid polypeptide, and the second is the gene for the putative RNA polymerase. One of the products of in vitro translation of the denatured viral double-stranded RNA is a polypeptide of the size expected of a capsid-polymerase fusion protein, resulting from a -1 frameshift within the overlapping region. A polypeptide of the size expected for a capsid-polymerase fusion product was found in virions, and it was recognized in Western blots (immunoblots) by antibodies to a synthetic peptide derived from the predicted polymerase sequence.
Collapse
Affiliation(s)
- M E Diamond
- Department of Biological Sciences, State University of New York, Buffalo 14260
| | | | | | | | | | | |
Collapse
|
43
|
Anzola JV, Dall DJ, Xu ZK, Nuss DL. Complete nucleotide sequence of wound tumor virus genomic segments encoding nonstructural polypeptides. Virology 1989; 171:222-8. [PMID: 2525838 DOI: 10.1016/0042-6822(89)90529-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sequence analysis of the genomic segments which encode the five wound tumor virus nonstructural polypeptides has been completed. The complete nucleotide sequence of segments S4 (2565 bp), S6 (1700 bp), S9 (1182 bp), and S10 (1172 bp) are presented in this report while the sequence of segment S12 (851 bp) has been described previously (T. Asamizu, D. Summers, M. B. Motika, J. V. Anzola, and D. L. Nuss, 1985, Virology 144, 398-409). Comparison of the only published sequence for another member of the genus Phytoreovirus, that of rice dwarf virus segment S10, with the combined available wound tumor virus sequence data revealed similarity with WTV segment S10: 54.9 and 30.6% at the nucleotide and amino acid level, respectively. Although wound tumor virus and rice dwarf virus differ in plant host range, tissue specificity, vector range, and disease symptom expression, the level of sequence similarity shared by the two segments suggests a common origin for these viruses. The potential use of a phytoreovirus sequence database for predicting functions of viral encoded gene products is considered.
Collapse
Affiliation(s)
- J V Anzola
- Department of Cell and Developmental Biology, Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110
| | | | | | | |
Collapse
|
44
|
Wiener JR, McLaughlin T, Joklik WK. The sequences of the S2 genome segments of reovirus serotype 3 and of the dsRNA-negative mutant ts447. Virology 1989; 170:340-1. [PMID: 2718385 DOI: 10.1016/0042-6822(89)90392-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The most temperature-sensitive dsRNA-negative mutant of reovirus serotype 3 is ts447; the amount of dsRNA formed in cells infected with it at 39 degrees is less than 0.1% of that formed in cells with wt virus at 37 degrees. The genome segment in which this mutation is located is S2. We compare here the sequence of the S2 genome segment of wt reovirus serotype 3 with that of mutant ts447. The two sequences differ in three locations, at two of which there are C to U transitions, while at the third there is an A to G transition. All cause amino acid changes (Ala to Val, Ala to Val, and Asn to Asp, respectively). One mutation (at nucleotide position 581, which causes an Ala to Val change) causes the length of an alpha-helix to be significantly reduced and may be that which is responsible for the ts phenotype.
Collapse
Affiliation(s)
- J R Wiener
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | |
Collapse
|
45
|
Wiener JR, Bartlett JA, Joklik WK. The sequences of reovirus serotype 3 genome segments M1 and M3 encoding the minor protein mu 2 and the major nonstructural protein mu NS, respectively. Virology 1989; 169:293-304. [PMID: 2523177 DOI: 10.1016/0042-6822(89)90154-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The sequences of the M1 and M3 genome segments of reovirus serotype 3 strain Dearing, which encode protein mu 2, a minor capsid, component, and protein mu NS, one of the two nonstructural proteins, are reported. They are 2304 and 2235 base pairs long, respectively, and proteins mu 2 and mu NS comprise 736 and 719 amino acids, respectively. This completes the sequencing of the reovirus serotype 3 genome: it comprises 23,549 basepairs. Neither protein mu 2 nor protein mu NS possesses any sequence similarity to any protein sequence in gene banks, nor any of the commonly recognized motifs indicative of specialized function. Protein mu 2 has a higher alpha-helix content (36%) than other capsid proteins; for it, the ratio of amino acids in alpha-helix/beta-sheet configuration is 1.2, whereas that of typical reovirus capsid proteins ranges from 0.5 to 0.9. Thus it is not a typical capsid protein. Protein mu NS has a very high alpha-helix content (about 50%; alpha-helix/beta-sheet ratio 2.5), which is very similar to that of the other nonstructural reovirus protein, protein sigma NS. The C-terminal regions of mu NS and various myosins exhibit periodic sequence similarity elements indicative of helical structure. Protein mu NS exists in two forms in infected cells: protein mu NS and a protein, mu NSC, which lacks a region of about 5 kDa at its N-terminus. Pulse-chase analysis in vivo suggests that protein mu NSC is not a cleavage product of protein mu NS; further, protein mu NSC is formed along with protein mu NS in in vitro protein synthesizing systems, whereas protein mu 1C, the cleavage product of protein mu 1, is not. It is likely, therefore, that protein mu NSC is a primary translation product, formed either by ribosomes reading through the first initiation codon of m1 messenger RNA at position 14 and initiating at codon 42, or by de novo internal initiation at this codon.
Collapse
Affiliation(s)
- J R Wiener
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | |
Collapse
|
46
|
Wiener JR, Joklik WK. The sequences of the reovirus serotype 1, 2, and 3 L1 genome segments and analysis of the mode of divergence of the reovirus serotypes. Virology 1989; 169:194-203. [PMID: 2922925 DOI: 10.1016/0042-6822(89)90055-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report the sequence of the L1 genome segment of reovirus serotype 3 strain Dearing, which encodes the minor core component protein lambda 3. It is 3854 bp long, with a long open reading frame starting at position 19 that is 1267 codons long. Protein lambda 3 is not detectably related to any other protein, nor does it appear to possess motifs indicative of recognized specialized functions. We have also sequenced the L1 genome segments of reovirus serotypes 1 and 2. The serotype 1 and 3 L1 genome segments are extremely closely related; there are only 154 mismatches (4.1%), 80% of which are in third base codon positions, so that these two lambda 3 proteins are 98.3% related (only 22 mismatches out of 1267). The serotype 2 L1 genome segment is only 75% related to the serotype 1 and 3 genome segments, and the serotype 2 lambda 3 protein is 92% related to the serotype 1 and 3 lambda 3 proteins. We have also analyzed the divergence patterns by which the various reovirus genome segments evolved into the three serotype forms. It appears that serotype 2 separated from the serotype 1/3 precursor long before serotypes 1 and 3 themselves diverged. In all cases the third base codon positions in the various genome segments have diverged about 80% toward randomness. The first and second base codon positions have diverged much less and to varying degree, depending, presumably, on each protein's ability to accept changes without significant loss of function. For the separation into the serotype 1 and 3 forms, the extent of divergence of the various genome varies over a very wide range. The S1 genome segments have again diverged most extensively, the extent of divergence in the first, second, and third base codon positions being about 50, 35 and 75%, respectively. For seven other genome segments that we examined the extent of third base codon position divergence is 56, 53, 48, 29, 22, 13, and 6%, whereas first and second base codon position divergence ranges from no more than 6 to 2 and 3 to less than 1%, respectively. The most likely explanation of these patterns is that the separation of the various genome segments into the present-day serotype 1 and 3 associated forms occurred at different times during evolution, from progenitors that were genome segment reassortants with survival rates as high as or higher than those of homologous genome segment sets.
Collapse
Affiliation(s)
- J R Wiener
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
47
|
Bartlett JA, Joklik WK. The sequence of the reovirus serotype 3 L3 genome segment which encodes the major core protein lambda 1. Virology 1988; 167:31-7. [PMID: 3267236 DOI: 10.1016/0042-6822(88)90051-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present the sequence of reovirus serotype 3 (strain Dearing) genome segment L3 which encodes protein lambda 1, one of the two major components of the core shell. The genome segment is 3896 nucleotides long, with 5'- and 3'-noncoding regions of 13 and 181 nucleotides, respectively. Protein lambda 1 is 1233 amino acids long. It is a slightly acidic protein, with a predicted alpha-helix and beta-sheet content of 23.6 and 28.3%, respectively. Its rather low predicted alpha-helix contact is consistent with its being a structural protein. The 123 amino acid long region at its amino terminus is very hydrophilic and contains three alpha-helical regions, one being 26 amino acids long. Protein lambda 1 contains two functional motifs. The first is a nucleotide binding site -TKGKSSG- starting at residue 8, the other is a "zinc finger" motif centered around amino acid residue 194. This suggests that protein lambda 1 functions during the transcription of either dsRNA into plus strands or of plus strands into minus strands, or during both. It displays no significant sequence similarity to any protein sequence in the GenBank data base.
Collapse
Affiliation(s)
- J A Bartlett
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|