1
|
Sun YH, Xie LH, Zhuo X, Chen Q, Ghoneim D, Zhang B, Jagne J, Yang C, Li XZ. Domestic chickens activate a piRNA defense against avian leukosis virus. eLife 2017; 6. [PMID: 28384097 PMCID: PMC5383398 DOI: 10.7554/elife.24695] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/04/2017] [Indexed: 12/12/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) protect the germ line by targeting transposable elements (TEs) through the base-pair complementarity. We do not know how piRNAs co-evolve with TEs in chickens. Here we reported that all active TEs in the chicken germ line are targeted by piRNAs, and as TEs lose their activity, the corresponding piRNAs erode away. We observed de novo piRNA birth as host responds to a recent retroviral invasion. Avian leukosis virus (ALV) has endogenized prior to chicken domestication, remains infectious, and threatens poultry industry. Domestic fowl produce piRNAs targeting ALV from one ALV provirus that was known to render its host ALV resistant. This proviral locus does not produce piRNAs in undomesticated wild chickens. Our findings uncover rapid piRNA evolution reflecting contemporary TE activity, identify a new piRNA acquisition modality by activating a pre-existing genomic locus, and extend piRNA defense roles to include the period when endogenous retroviruses are still infectious. DOI:http://dx.doi.org/10.7554/eLife.24695.001 Viruses called retroviruses can infect animal cells and merge their genetic information with those of the animal causing damage to the animal’s genetic blueprints. Once retroviruses are integrated into a cell they can sometimes get passed down through the generations over the centuries. Almost half of the human genetic code, for example, is made from ancient retroviruses and other foreign sequences. Over time many of these ancient viruses lost the ability to infect other cells and became trapped within cells but they can still jump out and damage the animal’s genetic code under certain circumstances. These trapped foreign sequences are called transposable elements. Animal cells produce molecules called piRNAs to shut down transposable elements. Most piRNAs are produced from genetic information that originally came from integrated retroviruses and that has been hijacked to defend the cell, a similar strategy as Crisper system in bacteria. Domestic chickens produce piRNAs against a virus called avian leukosis virus (or ALV for short) – which commonly infects domestic fowl. The virus also infected the wild ancestors of chickens, known as red jungle fowl, but these birds do not produce piRNAs. This provides an ideal setting to study the evolution of piRNAs in an animal that is not too distantly related to humans (chickens and humans both have backbones, and are therefore both warm-blooded vertebrates). Sun et al. examined cells from the testicles of domestic chickens and red jungle fowl as an example of the role of piRNAs in protecting genetic information in vertebrates. The investigation revealed that piRNAs against all previously trapped viruses in the chicken’s genetic code are produced in chickens to stop them from causing more damage. Sun et al. also observed the creation of piRNAs in chickens in response to ALV that had not yet become trapped in the chicken’s genetic code. Importantly, the piRNAs could control these retroviruses while they were still infectious. The experiments also revealed that piRNAs against ALV are produced from a single copy of ALV that is found in both domestic and wild chickens. The results showed that cells can produce new piRNAs using these pre-existing viral copies within their own genetics. This illustrates that production of piRNA from existing genetic material can be activated in response to certain cues. Further work will seek to discover how existing genetic information becomes a source of piRNAs. In the United States, 8 billion domestic chickens are consumed each year, and a better understanding of how these birds defend themselves against viral infections could increase the productivity of the poultry industry around the world. Moreover, because other viruses trapped in the chicken’s genetic code are related to similar viruses in humans, future discoveries made in this area could help to guide research that will benefit human health as well. DOI:http://dx.doi.org/10.7554/eLife.24695.002
Collapse
Affiliation(s)
- Yu Huining Sun
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, Department of Urology, University of Rochester Medical Center, Rochester, United States
| | - Li Huitong Xie
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, Department of Urology, University of Rochester Medical Center, Rochester, United States
| | - Xiaoyu Zhuo
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, United States
| | - Qiang Chen
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, Department of Urology, University of Rochester Medical Center, Rochester, United States
| | - Dalia Ghoneim
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, Department of Urology, University of Rochester Medical Center, Rochester, United States
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, United States
| | - Jarra Jagne
- Animal Health Diagnostic Center, Cornell University College of Veterinary Medicine, Ithaca, United States
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Canada
| | - Xin Zhiguo Li
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, Department of Urology, University of Rochester Medical Center, Rochester, United States
| |
Collapse
|
2
|
Rutherford K, Meehan CJ, Langille MGI, Tyack SG, McKay JC, McLean NL, Benkel K, Beiko RG, Benkel B. Discovery of an expanded set of avian leukosis subgroup E proviruses in chickens using Vermillion, a novel sequence capture and analysis pipeline [corrected]. Poult Sci 2016; 95:2250-8. [PMID: 27354549 DOI: 10.3382/ps/pew194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/08/2016] [Indexed: 01/26/2023] Open
Abstract
Transposable elements (TEs), such as endogenous retroviruses (ERVs), are common in the genomes of vertebrates. ERVs result from retroviral infections of germ-line cells, and once integrated into host DNA they become part of the host's heritable genetic material. ERVs have been ascribed positive effects on host physiology such as the generation of novel, adaptive genetic variation and resistance to infection, as well as negative effects as agents of tumorigenesis and disease. The avian leukosis virus subgroup E family (ALVE) of endogenous viruses of chickens has been used as a model system for studying the effects of ERVs on host physiology, and approximately 30 distinct ALVE proviruses have been described in the Gallus gallus genome. In this report we describe the development of a software tool, which we call Vermillion, and the use of this tool in combination with targeted next-generation sequencing (NGS) to increase the number of known proviruses belonging to the ALVE family of ERVs in the chicken genome by 4-fold, including expanding the number of known ALVE elements on chromosome 1 (Gga1) from the current 9 to a total of 40. Although we focused on the discovery of ALVE elements in chickens, with appropriate selection of target sequences Vermillion can be used to develop profiles of other families of ERVs and TEs in chickens as well as in species other than the chicken.
Collapse
Affiliation(s)
- K Rutherford
- Dalhousie University, Faculty of Computer Science, 6050 University Avenue, Halifax, NS, Canada, B3H 4R2
| | - C J Meehan
- Dalhousie University, Faculty of Computer Science, 6050 University Avenue, Halifax, NS, Canada, B3H 4R2 Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp 2000, Belgium
| | - M G I Langille
- Dalhousie University, Faculty of Computer Science, 6050 University Avenue, Halifax, NS, Canada, B3H 4R2 Dalhousie University, Faculty of Medicine, Department of Pharmacology, 5850 College St, Halifax, NS, Canada, B3H 4R2
| | - S G Tyack
- EW GROUP, 1 Hogenboegen, Visbek, Germany
| | - J C McKay
- EW GROUP, 1 Hogenboegen, Visbek, Germany
| | - N L McLean
- Dalhousie University, Faculty of Agriculture, Department of Plant and Animal Sciences, Box 550, Truro, NS, B2N 5E3
| | - K Benkel
- Dalhousie University, Faculty of Agriculture, Department of Plant and Animal Sciences, Box 550, Truro, NS, B2N 5E3
| | - R G Beiko
- Dalhousie University, Faculty of Computer Science, 6050 University Avenue, Halifax, NS, Canada, B3H 4R2
| | - B Benkel
- Dalhousie University, Faculty of Agriculture, Department of Plant and Animal Sciences, Box 550, Truro, NS, B2N 5E3
| |
Collapse
|
3
|
Sacco MA, Nair VK. Prototype endogenous avian retroviruses of the genus Gallus. J Gen Virol 2014; 95:2060-2070. [PMID: 24903328 DOI: 10.1099/vir.0.066852-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ancient endogenous retroviruses (ERVs), designated endogenous avian retrovirus (EAVs), are present in all Gallus spp. including the chicken, and resemble the modern avian sarcoma and leukosis viruses (ASLVs). The EAVs comprise several distinct retroviruses, including EAV-0, EAV-E51 and EAV-HP, as well as a putative member previously named the avian retrotransposon of chickens (ART-CH). Thus far, only the EAV-HP elements have been well characterized. Here, we determined sequences of representative EAV-0 and EAV-E51 proviruses by cloning and data mining of the 2011 assembly of the Gallus gallus genome. Although the EAV-0 elements are primarily deleted in the env region, we identified two complete EAV-0 env genes within the G. gallus genome and prototype elements sharing identity with an EAV-E51-related clone previously designated EAV-E33. Prototype EAV-0, EAV-E51 and EAV-E33 gag, pol and env gene sequences used for phylogenetic analysis of deduced proteins showed that the EAVs formed three distinct clades, with EAV-0 sharing the last common ancestor with the ASLVs. The EAV-E51 clade showed the greatest level of divergence compared with other EAVs or ASLVs, suggesting that these ERVs represented exogenous retroviruses that evolved and integrated into the germline over a long period of time. Moreover, the degree of divergence between the chicken and red jungle fowl EAV-E51 sequences suggested that they were more ancient than the other EAVs and may have diverged through mutations that accumulated post-integration. Finally, we showed that the ART-CH elements were chimeric defective ERVs comprising portions of EAV-E51 and EAV-HP rather than authentic retrotransposons.
Collapse
Affiliation(s)
- Melanie Ann Sacco
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92834-6850, USA
| | - Venugopal K Nair
- Pirbright Institute, Compton Laboratory, Newbury, Berkshire RG20 7NN, UK
| |
Collapse
|
4
|
Hunt H, Fadly A, Silva R, Zhang H. Survey of endogenous virus and TVB* receptor status of commercial chicken stocks supplying specific-pathogen-free eggs. Avian Dis 2008; 52:433-40. [PMID: 18939631 DOI: 10.1637/8183-112907-reg.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Endogenous avian leukosis virus (ALVE) and the ALVE receptor (TVB*S1) status of six commercial chicken lines supplying specific-pathogen-free eggs were analyzed. All commercial chicken lines are certified free of the avian leukosis virus (ALV) by screening for expression of the p27 protein using the standard enzyme-linked immunosorbent assay. The commercial chicken lines A, E, and F contained replication competent ALVE inserts. Line A was fixed for ALVE21, and lines E and F were segregating for ALVE10. In addition, ALVE1 was detected in all the chicken lines. Chicken lines B, D, and F were essentially fixed for the TVB*S1 allele that confers susceptibility to ALVE, whereas lines A, C, B, and E were resistant, containing either the TVB*S3 or TVB*R alleles. The results show that lines selected to be ALV p27 negative give rise to two different genotypes. One genotype lacks the TVB*S1 receptor for ALVE. Chicken lines with the TVB*S1 negative genotype can retain replication competent endogenous virus inserts such as ALVE2, 10, or 21 and still display the p27 negative phenotype. These replication competent ALVE viruses are phenotypically p27 negative in the absence of the TVB*S1 receptor because their chromosomal integration sites restrict transcription and subsequent production of the p27 protein and virus particles to levels below the detection limit. If the TVB*S1 receptor is present, the limited production of ALVE virus particles reinfects and integrates into more productive chromosomal locations in the cell. Increased production of infective virus particles and detectable levels of p27 follow this reinfection and integration into more active regions of the cells genome. The other genotype observed in the commercial lines retains the ALVE receptor (TVB*S1) but either lacks replication competent inserts or expresses the envelope encoded protein from defective inserts such as ALVE3 or ALVE6. In this phenotype, the env-coded glycoprotein encoded by the defective inserts binds to the TVB*S1 receptor and blocks the reinfection of the replication competent ALVE virus. This receptor interference stops reinfection and subsequent production of detectable virus particles and the p27 protein. Mixtures of different p27 negative phenotypes can result in the p27 positive phenotype and ALVE virus production. For example, mixtures of ALVE receptor positive (TVB*S1) but ALVE negative (p27 negative and envelope negative) chick embryo fibroblasts (CEFs) with fibroblasts that are receptor negative but ALVE positive could generate cells expressing high levels of p27 and ALVE virus. In this situation, the undetectable levels of ALVE virus from the receptor negative CEFs would infect and integrate into the receptor positive CEFs and produce detectable levels of ALVE virus. The implications of these findings for vaccine manufacturers and regulatory agencies are discussed.
Collapse
Affiliation(s)
- Henry Hunt
- United States Department of Agriculture, Agriculture Research Service, Avian Disease and Oncology Laboratory, 3606 East Mount Hope Road, East Lansing, MI 48823, USA.
| | | | | | | |
Collapse
|
5
|
Deryusheva S, Krasikova A, Kulikova T, Gaginskaya E. Tandem 41-bp repeats in chicken and Japanese quail genomes: FISH mapping and transcription analysis on lampbrush chromosomes. Chromosoma 2007; 116:519-30. [PMID: 17619894 DOI: 10.1007/s00412-007-0117-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 06/09/2007] [Accepted: 06/10/2007] [Indexed: 10/23/2022]
Abstract
The chromosomal distribution of 41-bp repeats, known as CNM and PO41 repeats in the chicken genome and BglII repeats in the Japanese quail, was analyzed precisely using giant lampbrush chromosomes (LBC) from chicken, Japanese quail, and turkey growing oocytes. The PO41 repeat is conserved in all galliform species, whereas the other repeats are species specific. In chicken and quail, the centromere and subtelomere regions share homologous satellite sequences. RNA polymerase II transcribes the 41-bp repeats in both centromere and subtelomere regions. Ongoing transcription of these repeats was demonstrated by incorporation of BrUTP injected into oocytes at the lampbrush stage. RNA complementary to both strands of CNM and PO41 repeats is present on chicken LBC loops, whereas strand-specific G-rich transcripts are characteristic of BglII repeats in the Japanese quail. The RNA from 41-bp repeats does not undergo cotranscriptional U snRNP-dependent splicing. At the same time, the ribonucleoprotein matrix of transcription units with C-rich RNA of CNM and PO41 repeats was enriched with hnRNP protein K. Potential promoters for satellite transcription are discussed.
Collapse
Affiliation(s)
- Svetlana Deryusheva
- Biological Research Institute, Saint-Petersburg State University, Oranienbaumskoie sch. 2, Stary Peterhof, Saint-Petersburg 198504, Russia
| | | | | | | |
Collapse
|
6
|
Johnson JA, Hussain A, Heneine W. Expression of a recombinant gag protein from endogenous avian virus and its use in screening for antibody reactivity in recipients of chick-derived vaccines. Vaccine 2003; 21:3738-45. [PMID: 12922106 DOI: 10.1016/s0264-410x(03)00391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Virions incorporating endogenous avian virus (EAV) RNA have been identified in chick-derived biological products, including the vaccines used to protect against measles, mumps, and yellow fever. The presence of EAV in these vaccines raises safety concerns regarding transmission to vaccine recipients. Development of a serologic assay to detect antibodies to EAV required the discovery of a diagnostic EAV antigen and reactive antiserum. For this purpose, we have identified and expressed an EAV capsid sequence that was found to have a 66.9% amino acid identity to avian myeloblastosis virus (AMV) p27 capsid. An AMV capsid antiserum that cross-reacted to the EAV protein in both Western blot (WB) and ELISA-based testing was selected as a positive control reagent. Using our assay, we evaluated sera from 200 measles-mumps-rubella (MMRII) and 43 yellow fever (YF(FIOCRUZ)) vaccine recipients and found none of the samples were reactive to EAV capsid. The results support a lack of EAV infection in the vaccine recipients.
Collapse
Affiliation(s)
- Jeffrey A Johnson
- HIV and Retrovirology Branch, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | |
Collapse
|
7
|
Abstract
The retroviral capacity for integration into the host genome can give rise to endogenous retroviruses (ERVs): retroviral sequences that are transmitted vertically as part of the host germ line, within which they may continue to replicate and evolve. ERVs represent both a unique archive of ancient viral sequence information and a dynamic component of host genomes. As such they hold great potential as informative markers for studies of both virus evolution and host genome evolution. Numerous novel ERVs have been described in recent years, particularly as genome sequencing projects have advanced. This review discusses the evolution of ERV lineages, considering the processes by which ERV distribution and diversity is generated. The diversity of ERVs isolated so far is summarised in terms of both their distribution across host taxa, and their relationships to recognised retroviral genera. Finally the relevance of ERVs to studies of genome evolution, host disease and viral ecology is considered, and recent findings discussed.
Collapse
Affiliation(s)
- Robert Gifford
- Department of Biological Sciences, Imperial College, Silwood Park, Buckhurst Road, Ascot Berkshire, SL5 7PY, UK
| | | |
Collapse
|
8
|
Shahabuddin M, Sears JF, Khan AS. No evidence of infectious retroviruses in measles virus vaccines produced in chicken embryo cell cultures. J Clin Microbiol 2001; 39:675-84. [PMID: 11158127 PMCID: PMC87796 DOI: 10.1128/jcm.39.2.675-684.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2000] [Accepted: 10/30/2000] [Indexed: 12/22/2022] Open
Abstract
All vaccines that are prepared in chicken embryo fibroblasts (CEFs) contain a low level of particle-associated reverse transcriptase (RT) activity, which is produced from the avian cell substrate. The RNAs present in the particles have sequence homology to viral DNAs belonging to the ancient endogenous avian virus (EAV) family or to the avian sarcoma-leukosis virus (ALV)-related subgroup E endogenous virus loci. Although no replication-competent retrovirus has been associated with the RT activity produced from CEFs, there have been some theoretical safety concerns regarding potential consequences of integration of EAV and ALV sequences in human DNA, which may result from nonproductive infection with replication-defective particles or infection with EAV and ALV pseudotypes bearing measles virus envelopes. To address these possibilities, we have analyzed EAV and ALV particles in a measles virus vaccine equivalent (MVVE) preparation, obtained from a U.S. manufacturer, for integration and for replication in human peripheral blood mononuclear cells (PBMCs). The results show the absence of EAV and ALV integrants in DNA prepared from MVVE-inoculated human cells by direct DNA PCR and Alu PCR assays and no propagation of retrovirus in 18-day cultures of MVVE-inoculated human PBMCs by a highly sensitive PCR-based RT assay. These results provide further confidence regarding the safety of chicken RT activity in live viral vaccines and support the continued use of chick-cell-derived vaccines in humans.
Collapse
Affiliation(s)
- M Shahabuddin
- Laboratory of Retrovirus Research, Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
9
|
Dimcheff DE, Krishnan M, Mindell DP. Evolution and characterization of tetraonine endogenous retrovirus: a new virus related to avian sarcoma and leukosis viruses. J Virol 2001; 75:2002-9. [PMID: 11160701 PMCID: PMC115148 DOI: 10.1128/jvi.75.4.2002-2009.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a previous study, we found avian sarcoma and leukosis virus (ASLV) gag genes in 19 species of birds in the order Galliformes including all grouse and ptarmigan (Tetraoninae) surveyed. Our data suggested that retroviruses had been transmitted horizontally among some host species. To further investigate these elements, we sequenced a replication-defective retrovirus, here named tetraonine endogenous retrovirus (TERV), from Bonasa umbellus (ruffed grouse). This is the first report of a complete, replication-defective ASLV provirus sequence from any bird other than the domestic chicken. We found a replication-defective proviral sequence consisting of putative Gag and Env proteins flanked by long terminal repeats. Reverse transcription-PCR analysis showed that retroviral gag sequences closely related to TERV are transcribed, supporting the hypothesis that TERV is an active endogenous retrovirus. Phylogenetic analyses suggest that TERV may have arisen via recombination between different retroviral lineages infecting birds. Southern blotting using gag probes showed that TERV occurs in tetraonines but not in chickens or ducks, suggesting that integration occurred after the earliest phasianid divergences but prior to the radiation of tetraonine birds.
Collapse
Affiliation(s)
- D E Dimcheff
- Department of Biology, University of Michigan, Ann Arbor, Michigan 48109-1079, USA.
| | | | | |
Collapse
|
10
|
Sacco MA, Flannery DM, Howes K, Venugopal K. Avian endogenous retrovirus EAV-HP shares regions of identity with avian leukosis virus subgroup J and the avian retrotransposon ART-CH. J Virol 2000; 74:1296-306. [PMID: 10627540 PMCID: PMC111464 DOI: 10.1128/jvi.74.3.1296-1306.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The existence of novel endogenous retrovirus elements in the chicken genome, designated EAV-HP, with close sequence identity to the env gene of avian leukosis virus (ALV) subgroup J has been reported (L. M. Smith, A. A. Toye, K. Howes, N. Bumstead, L. N. Payne, and K. Venugopal, J. Gen. Virol. 80:261-268, 1999). To resolve the genome structure of these retroviral elements, we have determined the complete sequence of two proviral clones of EAV-HP from a line N chicken genomic DNA yeast artificial chromosome library and from a meat-type chicken line 21 lambda library. The EAV-HP sequences from the two lines were 98% identical and had a typical provirus structure. The two EAV-HP clones showed identical large deletions spanning part of the gag, the entire pol, and part of the env genes. The env region of the EAV-HP clones was 97% identical to the env sequence of HPRS-103, the prototype subgroup J ALV. The 5' region of EAV-HP comprising the R and U5 regions of the long terminal repeat (LTR), the untranslated leader, and the 5' end of the putative gag region were 97% identical to the avian retrotransposon sequence, ART-CH. The remaining gag sequence shared less than 60% identity with other ALV sequences. The U3 region of the LTR was distinct from those of other retroviruses but contained some of the conserved motifs required for functioning as a promoter. To examine the ability of this endogenous retroviral LTR to function as a transcriptional promoter, the EAV-HP and HPRS-103 LTR U3 regions were compared in a luciferase reporter gene assay. The low luciferase activity detected with the EAV-HP LTR U3 constructs, at levels close to those observed for a control vector lacking the promoter or enhancer elements, suggested that these elements function as a weak promoter, possibly accounting for their low expression levels in chicken embryos.
Collapse
Affiliation(s)
- M A Sacco
- Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, United Kingdom
| | | | | | | |
Collapse
|
11
|
Tsang SX, Switzer WM, Shanmugam V, Johnson JA, Goldsmith C, Wright A, Fadly A, Thea D, Jaffe H, Folks TM, Heneine W. Evidence of avian leukosis virus subgroup E and endogenous avian virus in measles and mumps vaccines derived from chicken cells: investigation of transmission to vaccine recipients. J Virol 1999; 73:5843-51. [PMID: 10364336 PMCID: PMC112645 DOI: 10.1128/jvi.73.7.5843-5851.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/1998] [Accepted: 04/13/1999] [Indexed: 11/20/2022] Open
Abstract
Reverse transcriptase (RT) activity has been detected recently in all chicken cell-derived measles and mumps vaccines. A study of a vaccine manufactured in Europe indicated that the RT is associated with particles containing endogenous avian retrovirus (EAV-0) RNA and originates from the chicken embryonic fibroblasts (CEF) used as a substrate for propagation of the vaccine. We investigated the origin of RT in measles and mumps vaccines from a U.S. manufacturer and confirm the presence of RT and EAV RNA. Additionally, we provide new evidence for the presence of avian leukosis virus (ALV) in both CEF supernatants and vaccines. ALV pol sequences were first identified in particle-associated RNA by amplification with degenerate retroviral pol primers. ALV RNA sequences from both the gag and env regions were also detected. Analysis of hypervariable region 2 of env revealed a subgroup E sequence, an endogenous-type ALV. Both CEF- and vaccine-derived RT activity could be blocked by antibodies to ALV RT. Release of ALV-like virus particles from uninoculated CEF was also documented by electron microscopy. Nonetheless, infectivity studies on susceptible 15B1 chicken cells gave no evidence of infectious ALV, which is consistent with the phenotypes of the ev loci identified in the CEF. PCR analysis of ALV and EAV proviral sequences in peripheral blood mononuclear cells from 33 children after measles and mumps vaccination yielded negative results. Our data indicate that the sources of RT activity in all RT-positive measles and mumps vaccines may not be similar and depend on the particular endogenous retroviral loci present in the chicken cell substrate used. The present data do not support transmission of either ALV or EAV to recipients of the U.S.-made vaccine and provide reassurance for current immunization policies.
Collapse
Affiliation(s)
- S X Tsang
- HIV and Retrovirology Branch, Division of AIDS, STD, and TB Laboratory Research, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ruis BL, Benson SJ, Conklin KF. Genome structure and expression of the ev/J family of avian endogenous viruses. J Virol 1999; 73:5345-55. [PMID: 10364281 PMCID: PMC112590 DOI: 10.1128/jvi.73.7.5345-5355.1999] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently reported the identification of sequences in the chicken genome that show over 95% identity to the novel envelope gene of the subgroup J avian leukosis virus (S. J. Benson, B. L. Ruis, A. M. Fadly, and K. F. Conklin, J. Virol. 72:10157-10164, 1998). Based on the fact that the endogenous subgroup J-related env genes were associated with long terminal repeats (LTRs), we concluded that these LTR-env sequences defined a new family of avian endogenous viruses that we designated the ev/J family. In this report, we have further characterized the content and expression of the ev/J proviruses. The data obtained indicate that there are between 6 and 11 copies of ev/J proviruses in all chicken cells examined and that these proviruses fall into six classes. Of the 18 proviruses examined, all share a high degree of sequence identity and all contain an internal deletion that removes all of the pol gene and various amounts of gag and env gene sequences. Sequencing of the gag genes, LTRs, and untranslated regions of several ev/J proviruses revealed a high level of identity between isolates, indicating that they have not undergone significant sequence variation since their introduction into the avian germ line. Although the ev/J gag gene showed a relatively weak relationship (46% identity and 61% similarity at the amino acid level) to that of the avian leukosis-sarcoma virus family, it retains several sequences of demonstrated importance for virus assembly, budding, and/or infectivity. Finally, evidence was obtained that at least some members of the ev/J family are expressed and, if translated, could encode Gag- and Env-related polypeptides.
Collapse
Affiliation(s)
- B L Ruis
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
13
|
Benson SJ, Ruis BL, Garbers AL, Fadly AM, Conklin KF. Independent isolates of the emerging subgroup J avian leukosis virus derive from a common ancestor. J Virol 1998; 72:10301-4. [PMID: 9811780 PMCID: PMC110618 DOI: 10.1128/jvi.72.12.10301-10304.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new subgroup of avian leukosis virus (ALV) that includes a unique env gene, designated J, was identified recently in England. Sequence analysis of prototype English isolate HPRS-103 revealed several other unique genetic characteristics of this strain and provided information that it arose by recombination between exogenous and endogenous virus sequences. In the past several years, ALV J type viruses (ALV-J) have been isolated from broiler breeder flocks in the United States. We were interested in determining the relationship between the U.S. and English isolates of ALV-J. Based on sequence data from two independently derived U.S. field isolates, we conclude that the U.S. and English isolates of ALV-J derive from a common ancestor and are not the result of independent recombination events.
Collapse
Affiliation(s)
- S J Benson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
14
|
Benson SJ, Ruis BL, Fadly AM, Conklin KF. The unique envelope gene of the subgroup J avian leukosis virus derives from ev/J proviruses, a novel family of avian endogenous viruses. J Virol 1998; 72:10157-64. [PMID: 9811756 PMCID: PMC110557 DOI: 10.1128/jvi.72.12.10157-10164.1998] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/1998] [Accepted: 09/11/1998] [Indexed: 11/20/2022] Open
Abstract
A new subgroup of avian leukosis virus (ALV), designated subgroup J, was identified recently. Viruses of this subgroup do not cross-interfere with viruses of the avian A, B, C, D, and E subgroups, are not neutralized by antisera raised against the other virus subgroups, and have a broader host range than the A to E subgroups. Sequence comparisons reveal that while the subgroup J envelope gene includes some regions that are related to those found in env genes of the A to E subgroups, the majority of the subgroup J gene is composed of sequences either that are more similar to those of a member (E51) of the ancient endogenous avian virus (EAV) family of proviruses or that appear unique to subgroup J viruses. These data led to the suggestion that the ALV-J env gene might have arisen by multiple recombination events between one or more endogenous and exogenous viruses. We initiated studies to investigate the origin of the subgroup J envelope gene and in particular to determine the identity of endogenous sequences that may have contributed to its generation. Here we report the identification of a novel family of avian endogenous viruses that include env coding sequences that are over 95% identical to both the gp85 and gp37 coding regions of subgroup J viruses. We call these viruses the ev/J family. We also report the isolation of ev/J-encoded cDNAs, indicating that at least some members of this family are expressed. These data support the hypothesis that the subgroup J envelope gene was acquired by recombination with expressed endogenous sequences and are consistent with acquisition of this gene by only one recombination event.
Collapse
Affiliation(s)
- S J Benson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
15
|
Weissmahr RN, Schüpbach J, Böni J. Reverse transcriptase activity in chicken embryo fibroblast culture supernatants is associated with particles containing endogenous avian retrovirus EAV-0 RNA. J Virol 1997; 71:3005-12. [PMID: 9060660 PMCID: PMC191429 DOI: 10.1128/jvi.71.4.3005-3012.1997] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have recently shown that live attenuated virus vaccines produced on chicken-derived cells contain low levels of particle-associated reverse transcriptase (RT). In both virus and corresponding control harvests produced on chicken embryo fibroblasts, these activities were present at significantly higher concentrations than in the vaccines. In order to identify the putative retrovirus sequence responsible for this activity, a novel method for the selective PCR amplification of particle-associated retrovirus RNA that uses DNA primers complementary to the primer binding sites of the known exogenous retroviruses in combination with an anchor primer was applied. A product of the endogenous avian retrovirus family EAV-0, termed EAV-0(B1), was reproducibly generated with a tRNA(Trp)-derived primer from the RT peak fraction of a sucrose density gradient run with a harvest of a live attenuated measles vaccine. In contrast, no products were detected with primers derived from tRNA(Pro), tRNA(Lys)1,2 or tRNA(Lys)3. In the same fraction, genomic RNA of EAV-0(B1) was demonstrated by long PCR. Analysis of several sucrose density gradients from different harvests of various manufacturers demonstrated accumulation of, and colocalization with, RT activity for the EAV-0(B1) RNA but not for a chicken cellular mRNA. Synthesis of cDNA from EAV-0(B1) RNA was shown by endogenous RT reaction. Furthermore, complexes of naturally primed EAV-0(B1) RNA with RT were demonstrated. Taken together, these data strongly suggest that EAV-0 is able to produce virus-like particles with an active RT.
Collapse
Affiliation(s)
- R N Weissmahr
- Swiss National Center for Retroviruses, University of Zurich
| | | | | |
Collapse
|
16
|
Whitcomb JM, Ortiz-Conde BA, Hughes SH. Replication of avian leukosis viruses with mutations at the primer binding site: use of alternative tRNAs as primers. J Virol 1995; 69:6228-38. [PMID: 7545245 PMCID: PMC189520 DOI: 10.1128/jvi.69.10.6228-6238.1995] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have tested whether avian leukosis viruses (ALVs) can use tRNAs other than tRNATrp to initiate reverse transcription. The primer binding site (PBS) of a wild-type ALV provirus, which is complementary to the 3' end of tRNA(Trp), was replaced with sequences homologous to the 3' ends of six different chicken tRNAs (tRN(APro), tRNA(Lys), tRNA(Met), tRNA(Ile), tRNA(Phe), and tRNA(Ser)). Transfection of these proviruses into chicken embryo fibroblasts resulted in the production of infectious viruses, all of which apparently used the tRNA specified by the mutated PBS to replicate. However, growth of these viruses resulted in reversion to the wild-type (tRNA(Trp)) PBS. Some of the viruses revert quite quickly, while others are more stable. The relative stability of a given PBS correlated with the concentration of the corresponding tRNA in the virion. We determined the percentage of viral RNA that had a tRNA bound to the PBS and found that the occupancy rate is lower in the mutants than in the wild-type virus. We conclude that many different tRNAs can be used as primers to initiate reverse transcription in ALV. However, ALVs that use tRNA(Trp) have a growth advantage over ALVs that use other tRNAs.
Collapse
Affiliation(s)
- J M Whitcomb
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | | | |
Collapse
|
17
|
Aarts HJ, Leenstra FR. Association of endogenous avian viral and endogenous viral genes with feed conversion and six-week body weight in broilers. Poult Sci 1995; 74:1022-8. [PMID: 7543996 DOI: 10.3382/ps.0741022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The consistency of the effect of selection on the frequencies of endogenous avian viral (eav) and endogenous viral (ev) specific restriction fragment length polymorphism (RFLP) bands was studied in two broiler lines selected from a single base population and in an F2 population derived from a reciprocal cross of both lines. One broiler line (FC line) was selected for low feed conversion ratio and the other line (GL line) was selected for high 6-wk body weight. In the F2 population, the band frequencies were determined in groups representing separate tails of the distribution of two production traits, namely, low feed conversion ratio between 29 and 42 d of age and body weight at 42 d of age. The F2 population consisted of 288 females belonging to 24 full-sib families. To rule out family effects, the tails for these production traits were composed by either the best or by the worst female performer for each trait in each full-sib family. In total, 29 HindIII-eav, 34 MspI-eav, and 21 BamHI-ev bands could be distinguished by RFLP analysis. This report describes the influence of selection on 11 potentially interesting bands. Two bands, the 9.5-kb HindIII-eav and the 15-kb MspI-eav band, which were found both in higher frequencies in the parental FC line, were also found in higher (P < or = .05) frequencies in the F2 tail with a favorable feed conversion ratio. A third band, the 6.5-kb HindIII-eav band, present in lower frequencies in the parental GL line, was also present in lower (P < or = .05) frequencies in the F2 tail of birds with heavy body weight.
Collapse
Affiliation(s)
- H J Aarts
- DLO-Institute for Animal Science and Health, Beekbergen, The Netherlands
| | | |
Collapse
|
18
|
Bai J, Payne LN, Skinner MA. HPRS-103 (exogenous avian leukosis virus, subgroup J) has an env gene related to those of endogenous elements EAV-0 and E51 and an E element found previously only in sarcoma viruses. J Virol 1995; 69:779-84. [PMID: 7815543 PMCID: PMC188642 DOI: 10.1128/jvi.69.2.779-784.1995] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The avian leukosis and sarcoma virus (ALSV) group comprises eight subgroups based on envelope properties. HPRS-103, an exogenous retrovirus recently isolated from meat-type chicken lines, is similar to the viruses of these subgroups in group antigen but differs from them in envelope properties and has been assigned to a new subgroup, J. HPRS-103 has a wide host range in birds, and unlike other nontransforming ALSVs which cause late-onset B-cell lymphomas, HPRS-103 causes late-onset myelocytomas. Analysis of the sequence of an infectious clone of the complete proviral genome indicates that HPRS-103 is a multiple recombinant of at least five ALSV sequences and one EAV (endogenous avian retroviral) sequence. The HPRS-103 env is most closely related to the env gene of the defective EAV-E51 but divergent from those of other ALSV subgroups. Probing of restriction digests of line 0 chicken genomic DNA has identified a novel group of endogenous sequences (EAV-HP) homologous to that of the HPRS-103 env gene but different from sequences homologous to EAV and E51. Unlike other replication-competent nontransforming ALSVs, HPRS-103 has an E element in its 3' noncoding region, as found in many transforming ALSVs. A deletion found in the HPRS-103 U3 EFII enhancer factor-binding site is also found in all replication-defective transforming ALSVs (including MC29, which causes rapid-onset myelocytomas).
Collapse
Affiliation(s)
- J Bai
- Division of Molecular Biology, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | | | | |
Collapse
|
19
|
Abstract
The complete sequence of ART-CH, a recently found chicken retrotransposon (A. V. Gudkov, E. A. Komarova, M. A. Nikiforov, and T. E. Zaitsevskaya, J. Virol. 66:1726-1736, 1992), was characterized. ART-CH has the structure of a 3,300-bp-long provirus, including two 388-bp long terminal repeats (LTRs) (U3, 245 bp; R region, 17 bp; and U5, 126 bp), a tRNA(Trp)-binding site, and a polypurine tract, similar to avian leukosis viruses. At least some of the approximately 50 genomic copies of ART-CH are transcribed into polyadenylated RNA, which is initiated and terminated at the expected sites within the LTRs. In contrast to the regulatory sequences involved in proviral expression and replication, the internal regions of ART-CH seem to be completely defective. Several short regions of homology with avian leukosis virus genes, most of which encode gag-related sequences, were found among different reading frames of ART-CH, which are not organized like regular retroviral genes. Both sequence analysis and restriction fragment length polymorphism analysis revealed a high degree of sequence (97% homology) and structural similarity among members of the ART-CH family, indicating their common origin and recent penetration into chicken DNA. ART-CH sequences were detected in mouse cells infected with Rous sarcoma virus produced by an ART-CH-expressing Rous sarcoma. These data are consistent with the hypothesis that ART-CH belongs to a class of defective retrotransposons whose replication strategy requires the use of helper viruses. They might originate from an avian leukosis virus-related retrovirus which completely lost its coding capacities as a result of multiple mutations and deletions. These features apparently group ART-CH with the VL30 retrotransposons of rodents.
Collapse
Affiliation(s)
- M A Nikiforov
- Institute of Carcinogenesis, Cancer Research Center, Moscow, Russian Federation
| | | |
Collapse
|
20
|
Benkel BF, Gavora JS. A novel molecular fingerprint probe based on the endogenous avian retroviral element (EAV) of chickens. Anim Genet 1993; 24:409-13. [PMID: 8273914 DOI: 10.1111/j.1365-2052.1993.tb00353.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have developed a novel molecular probe that is useful for DNA fingerprint analysis in chickens. The probe is based on the middle-repetitive, chicken endogenous retroviral (EAV) element. It consists of 1503 bp of the 3' portion of the EAV element, extending from the down-stream end of the envelope gene to the beginning of the downstream long terminal repeat (LTR). Unlike other probes that are currently in use for fingerprint analysis with chicken DNA, the EAV-based probe works well at normal levels of stringency, and with standard hybridization buffers. Digestion of chicken genomic DNA with a variety of restriction enzymes routinely yields up to 30 resolvable bands per bird in the 500 bp to 20 kbp range. In order to test the efficacy of the EAV-based fingerprint probe, we have used it to estimate the degree of inbreeding in the inbred WG strain of White Leghorns. We find that the estimates derived with the EAV probe are very similar to those reported previously for the WG strain. These results suggest that molecular probes based on endogenous retroviruses and other middle-repetitive DNA elements should be useful for fingerprint analysis in chickens, and in vertebrates in general.
Collapse
Affiliation(s)
- B F Benkel
- Centre for Food and Animal Research, Agriculture Canada, Ottawa, Ontario
| | | |
Collapse
|
21
|
Boyce-Jacino MT, O'Donoghue K, Faras AJ. Multiple complex families of endogenous retroviruses are highly conserved in the genus Gallus. J Virol 1992; 66:4919-29. [PMID: 1321278 PMCID: PMC241335 DOI: 10.1128/jvi.66.8.4919-4929.1992] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have analyzed the genome of the domestic chicken for the presence of genetic sequences related to the envelope protein-encoding genes of avian sarcoma/leukosis retroviruses to determine the organization, structure, potential functionality, and distribution of such sequences. We have previously identified in the genus Gallus an extensive group of endogenous avian retroviruses termed EAV-0. Southern blot and sequence analysis presented here of EAV-0 elements revealed that the majority of the EAV-0 elements in the domestic chicken genome have large deletions in their env genes. Screening of a line 0 chicken genomic DNA library for potential full-length env gene-containing endogenous elements yielded three provirus clones of a previously unrecognized group of endogenous retroviruses. These three clones, E13, E33, and E51, are more closely related to each other (80% or more sequence identity) than to other avian retroviruses (70% or less sequence identity). The E13 element has a large deletion in env, but the E51 element has full-length and highly divergent SU- and TM-coding domains. Complete sequence analysis of the E51 env gene region revealed a defective SU-coding domain and an intact TM-coding domain. Sequence analysis of the E51, E33, and E13 3' termini revealed highly distinctive long terminal repeats of approximately 360 bp which appear to be the products, in part, of long terminal repeat domain shuffling. Hybridization analysis with E51 and E33 env gene probes indicated that they are members of an extensive group of elements present in all Gallus species, and at least one element, E51, could be shown by polymerase chain reaction amplification and direct sequencing to have integrated prior to Gallus speciation.
Collapse
Affiliation(s)
- M T Boyce-Jacino
- Institute of Human Genetics, University of Minnesota, Minneapolis 55455
| | | | | |
Collapse
|
22
|
Abstract
A 3' region of a previously unknown retroviruslike element named ART-CH (avian retrotransposon from chicken genome) was obtained in the course of polymerase chain reaction-mediated cloning of avian leukosis virus long terminal repeats (LTRs) from DNAs of infected chicken cells. About 50 copies of ART-CH are present in the genome of chickens of different breeds. ART-CH is not found in DNA of quails, ducks, turkeys, or several other birds tested. The ART-CH element is about 3 kb in size, including 388 bp LTRs. The major class of ART-CH-specific RNA, also 3 kb in size, is detected in various organs of chickens. An ART-CH polypurine tract, a tRNA(Trp)-binding site, regions around the TATA box and polyadenylation signal, and the beginning of the putative gag gene strongly resemble the corresponding regions of avian leukosis viruses and EAV, the two described classes of chicken retroviruses. An open reading frame capable of encoding a polypeptide with a putative transmembrane domain is located upstream of the right ART-CH LTR. This sequence, as well as the U3 and U5 regions of the ART-CH LTR, has no obvious similarities with the corresponding parts of other known vertebrate retroviruses and retrotransposons. A short sequence upstream of the right LTR of ART-CH is very similar to sequences which flank the 3' ends of the oncogenes v-src, v-myc, v-fps, and v-crk in four different recombinant avian retroviruses and which are absent from the genomes of other studied avian retroviruses. Thus, ART-CH is a new endogenous chicken provirus that may participate in the formation of recombinant oncogenic retroviruses.
Collapse
Affiliation(s)
- A V Gudkov
- Laboratory of Molecular Genetics, Cancer Research Center, Moscow, Russia
| | | | | | | |
Collapse
|
23
|
Ronfort C, Afanassieff M, Chebloune Y, Dambrine G, Nigon VM, Verdier G. Identification and structure analysis of endogenous proviral sequences in a Brown Leghorn chicken strain. Poult Sci 1991; 70:2161-75. [PMID: 1659694 DOI: 10.3382/ps.0702161] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In a Brown Leghorn chicken strain, four endogenous proviral loci have been identified. The DNA mapping data show strong homology between their structures and that of the Rous-associated virus O (RAV-O) genome. Two of them seem similar to ev3 and ev6 loci previously described in White Leghorn chickens; the two others are unknown in White Leghorns. Using DNA amplification methods, envelope genes of these endogenous viral structures have been partially sequenced. The results demonstrate that subgroup-specific sequences of the endogenous loci were largely homologous with those of RAV-O.
Collapse
Affiliation(s)
- C Ronfort
- Laboratoire de Biologie Cellulaire, Centre National de Recherche Scientifique, Institut National de la Recherche Agronomique LA810, Université Claude Bernard, Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
24
|
Levin I, Smith EJ. Molecular analysis of endogenous virus ev21-slow feathering complex of chickens. 1. Cloning of proviral-cell junction fragment and unoccupied integration site. Poult Sci 1990; 69:2017-26. [PMID: 1982353 DOI: 10.3382/ps.0692017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sex-linked slow-feathering gene, K, is genetically associated with the presence of an avian endogenous retrovirus ev21 in White Leghorns (WL). An EcoRI fragment corresponding to the endogenous virus ev21-cell junction fragment and a fragment homologous to the proviral unoccupied site (US) were cloned, respectively, from genomic DNA libraries of two WL chickens: an ev21-only female and an ev-negative male. A 1.7-kilobase pairs (kbp) fragment cleaved from the cloned proviral US by the HaeIII restriction endonuclease was the most informative probe to molecularly characterize the occupied and unoccupied integration sites of ev21 locus. Restriction fragment length polymorphism analysis of slow-feathering (SF) and rapid-feathering (RF) chickens from various commercial breeds, using the US HaeIII 1.7-kbp probe, indicated that the complete genetic association between ev21 and SF phenotype is common among other lines of SF chickens and was not restricted to WL. It was also shown that there was at least one additional DNA region highly homologous to DNA sequences flanking the EV21 integration site in the chicken genome. In SF birds of either sex this additional repeat was distinguishable from the site occupied by ev21 (OR) and represents an unoccupied repeat (UR). Analysis of DNA from RF revertant females showed novel patterns of reversion. In Type I RF revertants, RF is associated with the complete excision of proviral ev21 DNA sequences. In Type II revertants, the UR homologous to the cell sequences flanking ev21 integration site is excised, but proviral ev21 sequences remain intact. A hypothesis to explain these types of reversion is suggested. It postulates a close association between OR and UR on the Z chromosome.
Collapse
Affiliation(s)
- I Levin
- USDA, Agricultural Research Service, East Lansing, Michigan 48823
| | | |
Collapse
|
25
|
Abstract
A new family of related endogenous proviruses, existing at 50 to 100 copies per haploid genome and distinguishable by remarkably short long terminal repeats, has been described for domestic chickens (Gallus gallus subsp domesticus). In this communication, by using Southern blot analysis and probes derived from both internal viral sequences and locus-specific, cellular flanking sequences, we studied the genetic distribution of this family of moderately repetitive avian endogenous retroviruses within the genomes of four Gallus species. Eight inbred lines of domestic chickens, the evolutionary progenitor to the domestic chicken (red jungle fowl), and two more distantly related species (grey and green jungle fowl) were studied. All Gallus species harbored this class of elements, although the different lines of domestic chickens and different species of jungle fowl bore distinguishable complements of the proviral loci. Jungle fowl appeared to have fewer copies than domestic chickens. For three randomly isolated proviral loci, domestic chickens (G. gallus subsp. domesticus) and red jungle fowl (G. gallus subsp. gallus) showed only a proviral state, whereas the most primitive and divergent of the jungle fowl, the green jungle fowl (G. varius), consistently demonstrated only preintegration states or disparate alleles. The presence of this family in all Gallus species and of related sequences in other genera suggests that a primordial founding integration event occurred prior to the evolutionary separation of Gallus species and possibly related genera. Additionally, at least one proviral locus has been acquired subsequent to speciation, indicating that this family was actively infectious after the primary founding event. This conserved, repetitive proviral family appears to represent the vestigial remnant of an avian retrovirus class related to and evolutionarily more ancient than the Rous-associated virus-0 family of avian endogenous retroviruses.
Collapse
|
26
|
Unusual features of integrated cDNAs generated by infection with genome-free retroviruses. Mol Cell Biol 1990. [PMID: 2325641 DOI: 10.1128/mcb.10.5.1891] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We previously demonstrated that when nonretroviral RNAs are encapsidated in retroviral particles they can be reverse transcribed into cDNAs, which are then integrated into the cellular genome. This transfer of genetic information via retroviral infection has been designated retrofection. Further analyses of three genes transferred in this manner (retrogenes) revealed that each was present in a single copy at a different site in the recipient quail cell genome and included a transcriptional promoter encoded by the encapsidated neo RNA. A unique feature of the retrogenes was a common 16-nucleotide sequence at or near a recombination border, which was not present in either recombination partner. The existence of this sequence suggests a common mechanism of retrogene formation and/or integration mediated by retrofection.
Collapse
|
27
|
Levine KL, Steiner B, Johnson K, Aronoff R, Quinton TJ, Linial ML. Unusual features of integrated cDNAs generated by infection with genome-free retroviruses. Mol Cell Biol 1990; 10:1891-900. [PMID: 2325641 PMCID: PMC360534 DOI: 10.1128/mcb.10.5.1891-1900.1990] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We previously demonstrated that when nonretroviral RNAs are encapsidated in retroviral particles they can be reverse transcribed into cDNAs, which are then integrated into the cellular genome. This transfer of genetic information via retroviral infection has been designated retrofection. Further analyses of three genes transferred in this manner (retrogenes) revealed that each was present in a single copy at a different site in the recipient quail cell genome and included a transcriptional promoter encoded by the encapsidated neo RNA. A unique feature of the retrogenes was a common 16-nucleotide sequence at or near a recombination border, which was not present in either recombination partner. The existence of this sequence suggests a common mechanism of retrogene formation and/or integration mediated by retrofection.
Collapse
Affiliation(s)
- K L Levine
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | | | | | | | |
Collapse
|