1
|
Nonprimate models of HIV-1 infection and pathogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:399-422. [PMID: 18086419 DOI: 10.1016/s1054-3589(07)56013-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Muldoon-Jacobs KL, Dinman JD. Specific effects of ribosome-tethered molecular chaperones on programmed -1 ribosomal frameshifting. EUKARYOTIC CELL 2006; 5:762-70. [PMID: 16607023 PMCID: PMC1459665 DOI: 10.1128/ec.5.4.762-770.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ribosome-associated molecular chaperone complexes RAC (Ssz1p/Zuo1p) and Ssb1p/Ssb2p expose a link between protein folding and translation. Disruption of the conserved nascent peptide-associated complex results in cell growth and translation fidelity defects. To better understand the consequences of deletion of either RAC or Ssb1p/2p, experiments relating to cell growth and programmed ribosomal frameshifting (PRF) were assayed. Genetic analyses revealed that deletion of Ssb1p/Ssb2p or of Ssz1p/Zuo1p resulted in specific inhibition of -1 PRF and defects in Killer virus maintenance, while no effects were observed on +1 PRF. These factors may provide a new set of targets to exploit against viruses that use -1 PRF. Quantitative measurements of growth profiles of isogenic wild-type and mutant cells showed that translational inhibitors exacerbate underlying growth defects in these mutants. Previous studies have identified -1 PRF signals in yeast chromosomal genes and have demonstrated an inverse relationship between -1 PRF efficiency and mRNA stability. Analysis of published DNA microarray experiments reveals conditions under which Ssb1, Ssb2, Ssz1, and Zuo1 transcript levels are regulated independently of those of genes encoding ribosomal proteins. Thus, the findings presented here suggest that these trans-acting factors could be used by cells to posttranscriptionally regulate gene expression through -1 PRF.
Collapse
Affiliation(s)
- Kristi L Muldoon-Jacobs
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
3
|
Battisti PL, Daher A, Bannwarth S, Voortman J, Peden KWC, Hiscott J, Mouland AJ, Benarous R, Gatignol A. Additive activity between the trans-activation response RNA-binding protein, TRBP2, and cyclin T1 on HIV type 1 expression and viral production in murine cells. AIDS Res Hum Retroviruses 2003; 19:767-78. [PMID: 14585207 DOI: 10.1089/088922203769232566] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tat-mediated trans-activation of the HIV-1 long terminal repeat (LTR) occurs through the phosphorylation of the carboxy-terminal domain of the RNA polymerase II. The kinase complex, pTEFb, composed of cyclin T1 (CycT1) and CDK9, mediates this process. The trans-activation response (TAR) RNA-binding protein 2 (TRBP2) increases HIV-1 LTR expression through TAR and protein kinase R (PKR) binding, but not through interactions with the Tat-CycT1-CDK9 complex. TRBP2 and the Tat-CycT1-CDK9 complex have overlapping binding sites on TAR RNA. TRBP2 and CycT1 increased Tat trans-activation in NIH 3T3 cells with additive effects. Upon transfection of HIV-1 pLAI, pNL4-3, pMAL, and pAD molecular clones, reverse transcriptase (RT) activity and p24 concentration were decreased 200- to 900-fold in NIH 3T3 cells compared with HeLa cells in both cells and supernatants. In murine cells, cotransfection of the HIV clones with CycT1 or TRBP2 increased modestly the expression of RT activity in cell extracts. The analysis of Gag expression in murine cells transfected with CycT1 compared with human cells showed a 20-fold decrease in expression and a strong processing defect. The expression of both CycT1 and TRBP2 had a more than additive activity on RT function in cell extracts and on viral particle production in supernatant of murine cells. These results suggest an activity of CycT1 and TRBP2 at different steps in HIV-1 expression and indicate the requirement for another posttranscriptional factor in murine cells for full HIV replication.
Collapse
Affiliation(s)
- Pier-Luigi Battisti
- Molecular Oncology Group, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Koito A, Shigekane H, Matsushita S. Ability of small animal cells to support the postintegration phase of human immunodeficiency virus type-1 replication. Virology 2003; 305:181-91. [PMID: 12504551 DOI: 10.1006/viro.2002.1755] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We examine the potential for a broad range of small animal cells, including rodent, mink, and avian cells, from multiple tissues to support postintegration steps of HIV-1 replication. These cells were engineered so as to support a stable expression of human cyclin T1 and were further transduced with HIV-1 gag and pol genes. Viral gene expression was activated by the presence of human cyclin T1, but, with the exception of mink cells, was not at the level seen in human cells. Furthermore, there were considerable defects in p24 CA release, in particular in the case of rodent cells. Fractionation of Gag proteins by sucrose floatation revealed that the Gag in human cells trafficked to membrane fractions and was processed to p24 CA and p17 MA efficiently. Confocal imaging demonstrated that Gag was localized in a punctate pattern at the plasma membrane as well as intracellular membrane trans-Golgi cisternae in these cells. In contrast, the majority of Gag in rodent cells was largely present in cytosolic complexes and remained unprocessed. Labeling with [9,10(n)-(3)H]myristic acid showed a similar degree of N-myristoylated Pr55(gag) in rodent and human cells, indicating that while N-myristoylation of Gag was essential for membrane binding, it was not sufficient to confer membrane targeting specificity. Remarkably, despite the reduced level of intracellular Gag processing, mink Mv.1.Lu cells did not appear to differ significantly from human cells in support of virion assembly and release. Analysis of reciprocal heterokaryons suggested that the cellular factor(s) required for efficient assembly and release of infectious virions is lacking in murine cells but appears to be functionally present in mink as well as human cells. Our findings confirm and extend previous reports of multiple blocks to HIV replication in nonhuman cells that are most profound in murine cells. They also raise the possibility that other small animals, such as mink, could serve as novel model systems for studying HIV-1 infection and disease.
Collapse
Affiliation(s)
- Atsushi Koito
- Division of Clinical Retrovirology and Infectious Diseases, Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan.
| | | | | |
Collapse
|
5
|
Reed M, Mariani R, Sheppard L, Pekrun K, Landau NR, Soong NW. Chimeric human immunodeficiency virus type 1 containing murine leukemia virus matrix assembles in murine cells. J Virol 2002; 76:436-43. [PMID: 11739711 PMCID: PMC135687 DOI: 10.1128/jvi.76.1.436-443.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine cells do not support efficient assembly and release of human immunodeficiency virus type 1 (HIV-1) virions. HIV-1-infected mouse cells that express transfected human cyclin T1 synthesize abundant Gag precursor polyprotein, but inefficiently assemble and release virions. This assembly defect may result from a failure of the Gag polyprotein precursor to target to the cell membrane. Plasma membrane targeting of the precursor is mediated by the amino-terminal region of polyprotein. To compensate for the assembly block, we substituted the murine leukemia virus matrix coding sequences into an infectious HIV-1 clone. Transfection of murine fibroblasts expressing cyclin T1 with the chimeric proviruses resulted in viruses that were efficiently assembled and released. Chimeric viruses, in which the cytoplasmic tail of the transmembrane subunit, gp41, was truncated to prevent potential interference between the envelope glycoprotein and the heterologous matrix, could infect human and murine cells. They failed to further replicate in the murine cells, but replicated with delayed kinetics in human MT-4 cells. These findings may be useful for establishing a murine model for HIV-1 replication.
Collapse
|
6
|
Mariani R, Rutter G, Harris ME, Hope TJ, Kräusslich HG, Landau NR. A block to human immunodeficiency virus type 1 assembly in murine cells. J Virol 2000; 74:3859-70. [PMID: 10729160 PMCID: PMC111894 DOI: 10.1128/jvi.74.8.3859-3870.2000] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) does not replicate in murine cells. We investigated the basis of this block by infecting a murine NIH 3T3 reporter cell line that stably expressed human CD4, CCR5, and cyclin T1 and contained a transactivatable HIV-1 long terminal repeat (LTR)-green fluorescent protein (GFP) cassette. Although the virus entered efficiently, formed provirus, and was expressed at a level close to that in a highly permissive human cell line, the murine cells did not support M-tropic HIV-1 replication. To determine why the virus failed to replicate, the efficiency of each postentry step in the virus replication cycle was analyzed using vesicular stomatitis virus G pseudotypes. The murine cells supported reverse transcription and integration at levels comparable to those in the human osteosarcoma-derived cell line GHOST.R5, and human cyclin T1 restored provirus expression, consistent with earlier findings of others. The infected murine cells contained nearly as much virion protein as did the human cells but released less than 1/500 the amount of p24(gag) into the culture medium. A small amount of p24(gag) was released and was in the form of fully infectious virus. Electron microscopy suggested that aberrantly assembled virion protein had accumulated in cytoplasmic vesicular structures. Virions assembling at the cell membrane were observed but were rare. The entry of M-tropic JR.FL-pseudotyped reporter virus was moderately reduced in the murine cells, suggesting a minor reduction in coreceptor function. A small reduction in the abundance of full-length viral mRNA transcripts was also noted; however, the major block was at virion assembly. This could have been due to a failure of Gag to target to the cell membrane. This block must be overcome before a murine model for HIV-1 replication can be developed.
Collapse
Affiliation(s)
- R Mariani
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Lewis TL, Matsui SM. Astrovirus ribosomal frameshifting in an infection-transfection transient expression system. J Virol 1996; 70:2869-75. [PMID: 8627761 PMCID: PMC190144 DOI: 10.1128/jvi.70.5.2869-2875.1996] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Different regions of the human astrovirus frameshift signal were cloned into the rhesus rotavirus VP4 gene and evaluated in an infection-transfection transient expression cell culture system. BHK-21 cells, infected with a vaccinia virus that expresses T7 RNA polymerase (vTF7-3), were transfected with the various astrovirus-VP4 constructs. All constructs were driven by a T7 promoter and contained an internal ribosome entry site. Frameshifted and nonframeshifted protein products were immunoprecipitated with VP4 amino- and carboxy-terminal-specific monoclonal antibodies, and their ratios were determined by PhosphorImager analysis. The efficiency of frameshifting was 25 to 28%, significantly greater than the 5 to 7% efficiency reported previously in a cell-free translation system. Coupling of transcription and translation in a cell-free system yielded frameshifting efficiencies threefold greater than that of the uncoupled in vitro system. The presence of the shifty heptamer was an absolute requirement for frameshifting in both cell-free and intact-cell systems, while deletion of the potential downstream pseudoknot region did not affect the efficiency of frameshifting.
Collapse
Affiliation(s)
- T L Lewis
- Program in Cancer Biology, Stanford University School of Medicine, California 94305-5487, USA
| | | |
Collapse
|
9
|
Dru A, Ludosky MA, Cartaud J, Beaud G. Cell line-dependent release of HIV-like gag particles after infection of mammalian cells with recombinant vaccinia viruses. AIDS Res Hum Retroviruses 1994; 10:383-90. [PMID: 7520722 DOI: 10.1089/aid.1994.10.383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We investigated the production of Gag particles by Vero, CV-1, or 1D cells infected with different vaccinia virus recombinants expressing HIV gag or gag-pol genes. Immunoblots of (centrifuged) culture media from 1D cells infected with vMM5, a vaccinia virus recombinant expressing the HIV-2 gag-pol genes, revealed the presence of abundant particles that contained (mostly processed) Gag antigens. In contrast, Gag particles were found only in low amounts in the culture medium from Vero cells infected with the same HIV gag-pol vaccinia virus recombinant; the Gag precursor remained associated with the infected Vero cells and was efficiently processed. This low excretion of Gag particles after infection of Vero cells with vMM5 was also demonstrated by assays of reverse transcriptase activity in the pellet of centrifuged culture medium. Cell fractionation showed that Gag proteins were predominantly found in the membrane fraction from both 1D and Vero cells. Electron microscopy observations of 1D or of Vero cells infected with vMM5 vaccinia virus recombinant revealed in both cases the presence of particles budding at the plasma membrane. However, the shape of the budding particles was different in the two cell lines, with immature forms present in the membrane from the infected Vero cells. An inefficient excretion of Gag particles was also observed after infection of Vero cells with different vaccinia virus recombinants expressing either an uncleaved HIV-2 Gag protein or the HIV-1 gag-pol genes, as judged both by immunoblot and reverse transcriptase activity assays.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Dru
- Institut Jacques Monod, Paris, France
| | | | | | | |
Collapse
|
10
|
Parkin NT, Chamorro M, Varmus HE. Human immunodeficiency virus type 1 gag-pol frameshifting is dependent on downstream mRNA secondary structure: demonstration by expression in vivo. J Virol 1992; 66:5147-51. [PMID: 1321294 PMCID: PMC241392 DOI: 10.1128/jvi.66.8.5147-5151.1992] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag-Pol fusion polyprotein is produced via ribosomal frameshifting. Previous studies in vitro and in Saccharomyces cerevisiae have argued against a significant role for RNA secondary structure 3' of the shift site, in contrast with other systems, in which such structure has been shown to be required. Here we show, by expressing the HIV-1 gag-pol domain in cultured vertebrate cells, that a stem-loop structure 3' of the HIV-1 shift site is indeed important for wild-type levels of frameshifting in vivo.
Collapse
Affiliation(s)
- N T Parkin
- Department of Microbiology and Immunology, University of California, San Francisco 94143-0502
| | | | | |
Collapse
|
11
|
Voss G, Kirchhoff F, Nick S, Moosmayer D, Gelderblom H, Hunsmann G. Morphogenesis of recombinant HIV-2 gag core particles. Virus Res 1992; 24:197-210. [PMID: 1529643 DOI: 10.1016/0168-1702(92)90007-v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gag-pol coding region of the HIV-2BEN genome was expressed in CV-1 cells infected with four recombinant vaccinia viruses (VV). These recombinant VV encoded either the whole gag-pol region or the gag gene including the protease-coding region of the pol gene or the gag gene truncated at its 3'-end or only the pol gene. The HIV-2BEN gag precursor p55, its mature cleavage products p24 and p17 as well as the pol reverse transcriptase (RT) p66 were detected in VV-infected CV-1 cells. The p55 and two intermediate cleavage products p40 and p35 were myristilated. Comparison to lysates of permanently HIV-2BEN-infected Molt 4 clone 8 cells revealed that several additional gag and pol proteins were present in the VV-infected CV-1 cells. Deletion of the gag and pol overlapping region coding for the viral protease prevented cleavage of the recombinant gag precursor. Electron microscopy of VV-infected CV-1 cells revealed budding structures and immature as well as mature retroviral particles formed by the recombinant gag proteins. Striking differences in the ability to form complete particles were observed between the different recombinant VV. Expression of the truncated gag gene led to the formation of budding structures, but completely budded circular particles were not detectable. Such particles were produced by expression of the whole gag gene and the protease. Mature virions with an internal core structure were only detected in VVgagpol-infected cells. From these findings we conclude that the 3'-end of the gag gene coding for the p16 protein is essential for the formation of complete HIV-2 particles and that the pol proteins support the assembly of the viral core.
Collapse
MESH Headings
- Base Sequence
- DNA, Recombinant/biosynthesis
- DNA, Recombinant/genetics
- Gene Products, gag/biosynthesis
- Gene Products, gag/genetics
- Gene Products, gag/ultrastructure
- Gene Products, pol/biosynthesis
- Gene Products, pol/genetics
- Gene Products, pol/ultrastructure
- Genes, gag/physiology
- Genes, pol/physiology
- HIV Protease/chemistry
- HIV Protease/genetics
- HIV Protease/physiology
- HIV-2/chemistry
- HIV-2/genetics
- HIV-2/ultrastructure
- Molecular Sequence Data
- Protein Precursors/biosynthesis
- Protein Precursors/genetics
- Protein Precursors/physiology
- Protein Processing, Post-Translational
Collapse
Affiliation(s)
- G Voss
- Deutsches Primatenzentrum, Abteilung Virologie und Immunologie, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Brault V, Miller WA. Translational frameshifting mediated by a viral sequence in plant cells. Proc Natl Acad Sci U S A 1992; 89:2262-6. [PMID: 1549592 PMCID: PMC48637 DOI: 10.1073/pnas.89.6.2262] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It has been proposed that the polymerase gene of barley yellow dwarf virus and related viruses is expressed by a ribosomal frameshift event during translation. The 5' end of this gene overlaps with the 3' end of an upstream gene that is in a different reading frame. The region of overlap is similar to sequences in retro- and coronaviruses that are known to express their polymerase genes by frameshifting. This overlap region includes a "shifty" heptanucleotide, followed by a highly structured region that may contain a pseudoknot. Sequences of 115 or 144 base pairs that span this region from barley yellow dwarf virus (PAV serotype) genomic RNA were introduced into a plasmid, so that a reporter gene could be expressed in plant cells only if a minus one (-1) frameshift event occurred. Frameshifting was detected at a rate of approximately 1%. This frameshifting was abolished when the stop codon at the 3' end of the upstream open reading frame was deleted. A sequence expected to form a strong stem-loop immediately upstream of the frameshift site was unnecessary for frameshifting, and initiation at AUG codons within the stem-loop appeared to be inhibited. Like viruses that infect hosts in other kingdoms, plant viruses also can induce frameshifting in translation of their genes.
Collapse
Affiliation(s)
- V Brault
- Plant Pathology Department, Iowa State University, Ames 50011
| | | |
Collapse
|