1
|
Novy K, Kilcher S, Omasits U, Bleck CKE, Beerli C, Vowinckel J, Martin CK, Syedbasha M, Maiolica A, White I, Mercer J, Wollscheid B. Proteotype profiling unmasks a viral signalling network essential for poxvirus assembly and transcriptional competence. Nat Microbiol 2018; 3:588-599. [DOI: 10.1038/s41564-018-0142-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/07/2018] [Indexed: 11/09/2022]
|
2
|
Ranji A, Boris-Lawrie K. RNA helicases: emerging roles in viral replication and the host innate response. RNA Biol 2010; 7:775-87. [PMID: 21173576 DOI: 10.4161/rna.7.6.14249] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA helicases serve multiple roles at the virus-host interface. In some situations, RNA helicases are essential host factors to promote viral replication; however, in other cases they serve as a cellular sensor to trigger the antiviral state in response to viral infection. All family members share the conserved ATP-dependent catalytic core linked to different substrate recognition and protein-protein interaction domains. These flanking domains can be shuffled between different helicases to achieve functional diversity. This review summarizes recent studies, which have revealed two types of activity by RNA helicases. First, RNA helicases are catalysts of progressive RNA-protein rearrangements that begin at gene transcription and culminate in mRNA translation. Second, RNA helicases can act as a scaffold for alternative protein-protein interactions that can defeat the antiviral state. The mounting fundamental understanding of RNA helicases is being used to develop selective and efficacious drugs against human and animal pathogens. The analysis of RNA helicases in virus model systems continues to provide insights into virology, cell biology and immunology, and has provided fresh perspective to continue unraveling the complexity of virus-host interactions.
Collapse
Affiliation(s)
- Arnaz Ranji
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
3
|
Kato SEM, Strahl AL, Moussatche N, Condit RC. Temperature-sensitive mutants in the vaccinia virus 4b virion structural protein assemble malformed, transcriptionally inactive intracellular mature virions. Virology 2005; 330:127-46. [PMID: 15527840 DOI: 10.1016/j.virol.2004.08.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 07/30/2004] [Accepted: 08/20/2004] [Indexed: 11/23/2022]
Abstract
Two noncomplementing vaccinia virus temperature-sensitive mutants, Cts8 and Cts26, were mapped to the A3L gene, which encodes the major virion structural protein, 4b. The two ts mutants display normal patterns of gene expression, DNA replication, telomere resolution, and protein processing during infection. Morphogenesis during mutant infections is normal through formation of immature virions with nucleoids (IVN) but appears to be defective in the transition from IVN to intracellular mature virus (IMV). In mutant infections, aberrant particles that have the appearance of malformed IMV accumulate. The mutant particles are wrapped in Golgi-derived membranes and exported from cells. Purified mutant particles are indistinguishable from wt particles in protein and DNA composition; however, they are defective in a permeabilized-virion-directed transcription reaction despite containing significant (Cts8) or even normal (Cts26) levels of specific transcription enzymes. These results indicate that the 4b protein is required for proper metamorphosis of IMV from IVN and that proper organization of the IMV structure is required to produce a transcriptionally active virion particle.
Collapse
Affiliation(s)
- Sayuri E M Kato
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
4
|
Zachertowska A, Brewer D, Evans DH. MALDI-TOF mass spectroscopy detects the capsid structural instabilities created by deleting the myxoma virus cupro-zinc SOD1 homolog M131R. J Virol Methods 2005; 122:63-72. [PMID: 15488622 DOI: 10.1016/j.jviromet.2004.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 08/04/2004] [Accepted: 08/16/2004] [Indexed: 11/17/2022]
Abstract
The myxoma virus M131R gene encodes a catalytically inactive homolog of cellular Cu-Zn superoxide dismutase (SOD1) and this 17,786 Da protein is a major virion component. We have used matrix-assisted laser desorption ionization time-of-flight mass spectroscopy (MALDI-TOF MS) to study the effect(s) of deleting the gene on virion composition and structure. This approach confirmed that the M131R gene product is an abundant virion component. This conclusion was based upon the ready detection of a 1805.3 Da peptide released from the N-terminus of the myxoma SOD1 protein by mild trypsin treatment, as well as the detection of a 17,790 Da protein in HPLC fractionated virus extracts, which subsequently yielded M131R-encoded tryptic peptides. Neither peptide nor protein was detected in particles bearing a genome encoding an M131RDelta deletion mutation. Curiously, more proteins and tryptic peptides were detected when M131RDelta mutant virions were subjected to MALDI-TOF MS analysis compared with wild-type virus particles. This suggested that particles assembled in the absence of myxoma SOD protein are structurally unstable. Plaque analysis confirmed this conjecture by showing that SOD-deficient MYX particles are unusually heat labile and trypsin sensitive. Mutant Shope fibroma virus exhibited the same phenotype. Thus a previously unappreciated feature of MALDI-TOF MS is that the method can sometimes detect alterations in virion stability.
Collapse
Affiliation(s)
- Alicja Zachertowska
- Department of Molecular Biology and Genetics, The University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
5
|
Lackner CA, D'Costa SM, Buck C, Condit RC. Complementation analysis of the dales collection of vaccinia virus temperature-sensitive mutants. Virology 2003; 305:240-59. [PMID: 12573570 DOI: 10.1006/viro.2002.1745] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A collection of randomly generated temperature-sensitive (ts) vaccinia virus (strain IHD-W) mutants were reported by S. Dales et al., (1978, Virology, 84, 403-428) in 1978 and characterized by electron microscopy. We have performed further genetic analysis on the Dales collection of mutants to make the mutants more useful to the scientific community. We obtained the entire Dales collection, 97 mutants, from the American Type Culture Center (ATCC). All 97 mutants were grown and reassessed for temperature sensitivity. Of these, 16 mutants were either very leaky or showed unacceptably high reversion indices even after plaque purification and therefore were not used for further analysis. The remaining 81 ts mutants were used to perform a complete complementation analysis with each other and the existing Condit collection of ts vaccinia virus (strain WR) mutants. Twenty-two of these 81 Dales mutants were dropped during complementation analysis due to erratic or weak behavior in the complementation test. Of the 59 mutants that were fit for further investigation, 30 fall into 13 of Condit's existing complementation groups, 5 comprise 3 previously identified complementation groups independent of the Condit collection, and 24 comprise 18 new complementation groups. The 59 mutants which were successfully characterized by complementation will be accessioned by and made available to the scientific community through the ATCC.
Collapse
Affiliation(s)
- Cari A Lackner
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville 32610, USA
| | | | | | | |
Collapse
|
6
|
Lackner CA, Condit RC. Vaccinia virus gene A18R DNA helicase is a transcript release factor. J Biol Chem 2000; 275:1485-94. [PMID: 10625702 DOI: 10.1074/jbc.275.2.1485] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prior phenotypic analysis of a vaccinia virus gene A18R mutant, Cts23, showed the synthesis of longer than wild type (Wt) length viral transcripts during the intermediate stage of infection, indicating that the A18R protein may act as a negative transcription elongation factor. The purpose of the work described here was to determine a biochemical activity for the A18R protein. Pulse-labeled transcription complexes established from intermediate virus promoters on bead-bound DNA templates were assayed for transcript release during an elongation step that contained nucleotides and various proteins. Pulse-labeled transcription complexes elongated in the presence of only nucleotides were unable to release nascent RNA. The addition of Wt extract during the elongation phase resulted in release of the nascent transcript, indicating that additional factors present in the Wt extract are capable of inducing transcript release. Extract from Cts23 or mock-infected cells was unable to induce release. The lack of release upon addition of Cts23 extract suggests that A18R is involved in release of nascent RNA. By itself, purified polyhistidine-tagged A18R protein (His-A18R) was unable to induce release; however, release did occur in the presence of purified His-A18R protein plus extract from either Cts23 or mock-infected cells. These data taken together indicate that A18R is necessary but not sufficient for release of nascent transcripts. We have also demonstrated that the combination of A18R protein and mock extract induces transcript release in an ATP-dependent manner, consistent with the fact that the A18R protein is an ATP-dependent helicase. Further analysis revealed that the release activity is not restricted to a vaccinia intermediate promoter but is observed using pulse-labeled transcription complexes initiated from all three viral gene class promoters. Therefore, we conclude that A18R and an as yet unidentified cellular factor(s) are required for the in vitro release of nascent RNA from a vaccinia virus transcription elongation complex.
Collapse
Affiliation(s)
- C A Lackner
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610-0266, USA
| | | |
Collapse
|
7
|
Abstract
RNA helicases represent a large family of proteins that have been detected in almost all biological systems where RNA plays a central role. They are ubiquitously distributed over a wide range of organisms and are involved in nuclear and mitochondrial splicing processes, RNA editing, rRNA processing, translation initiation, nuclear mRNA export, and mRNA degradation. RNA helicases are described as essential factors in cell development and differentiation, and some of them play a role in transcription and replication of viral single-stranded RNA genomes. Comparisons of the conserved sequences reveal a close relationship between them and suggest that these proteins might be derived from a common ancestor. Biochemical studies have revealed a strong dependence of the unwinding activity on ATP hydrolysis. Although RNA helicase activity has only been demonstrated for a few examples yet, it is generally believed that all members of the largest subgroups, the DEAD and DEAH box proteins, exhibit this activity.
Collapse
Affiliation(s)
- A Lüking
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | | | | |
Collapse
|
8
|
Gross CH, Shuman S. The nucleoside triphosphatase and helicase activities of vaccinia virus NPH-II are essential for virus replication. J Virol 1998; 72:4729-36. [PMID: 9573237 PMCID: PMC110003 DOI: 10.1128/jvi.72.6.4729-4736.1998] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vaccinia virus NPH-II is the prototypal RNA helicase of the DExH box protein family, which is defined by six shared sequence motifs. The contributions of conserved amino acids in motifs I (TGVGKTSQ), Ia (PRI), II (DExHE), and III (TAT) to enzyme activity were assessed by alanine scanning. NPH-II-Ala proteins were expressed in baculovirus-infected Sf9 cells, purified, and characterized with respect to their RNA helicase, nucleic acid-dependent ATPase, and RNA binding functions. Alanine substitutions at Lys-191 and Thr-192 (motif I), Arg-229 (motif Ia), and Glu-300 (motif II) caused severe defects in RNA unwinding that correlated with reduced rates of ATP hydrolysis. In contrast, alanine mutations at His-299 (motif II) and at Thr-326 and Thr-328 (motif III) elicited defects in RNA unwinding but spared the ATPase. None of the mutations analyzed affected the binding of NPH-II to RNA. These findings, together with previous mutational studies, indicate that NPH-II motifs I, Ia, II, and VI (QRxGRxGRxxxG) are essential for nucleoside triphosphate (NTP) hydrolysis, whereas motif III and the His moiety of the DExH-box serve to couple the NTPase and helicase activities. Wild-type and mutant NPH-II-Ala genes were tested for the ability to rescue temperature-sensitive nph2-ts viruses. NPH-II mutations that inactivated the phosphohydrolase in vitro were lethal in vivo, as judged by the failure to recover rescued viruses containing the Ala substitution. The NTPase activity was necessary, but not sufficient, to sustain virus replication, insofar as mutants for which NTPase was uncoupled from unwinding (H299A, T326A, and T328A) were also lethal. We conclude that the phosphohydrolase and helicase activities of NPH-II are essential for virus replication.
Collapse
Affiliation(s)
- C H Gross
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
9
|
Gross CH, Shuman S. Vaccinia virions lacking the RNA helicase nucleoside triphosphate phosphohydrolase II are defective in early transcription. J Virol 1996; 70:8549-57. [PMID: 8970979 PMCID: PMC190947 DOI: 10.1128/jvi.70.12.8549-8557.1996] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Temperature-sensitive mutations (ts10, ts18, and ts39) of the vaccinia virus RNA helicase nucleoside triphosphate phosphohydrolase II (NPH-II) result in the production of noninfectious progeny virions at the restrictive temperature. The noninfectious mutant particles contain the wild-type complement of virion core and envelope polypeptides, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The results of Western blot (immunoblot) analysis indicate that these particles lack NPH-II, whereas other enzymatic components of the virus core are present. These components include the following: DNA-dependent RNA polymerase subunits rpo147, rpo132, rpo94, rpo35, rpo30, rpo22, and rpo18; early transcription initiation factor subunits A8 and D6; mRNA capping enzyme subunits D1 and D12; RNA cap 2'-O-methyltransferase; A18 DNA helicase; DNA-dependent ATPase NPH-I; and DNA topoisomerase. Although RNA polymerase is encapsidated by the mutant viruses, mRNA synthesis in vitro by permeabilized mutant virions is only 5 to 20% that of the wild-type virus, as judged by nucleoside monophosphate incorporation into acid-insoluble material. Moreover, the transcripts synthesized by the mutant particles are longer than normal and remain virion associated. Transcription initiation by mutant virions occurs accurately at an endogenous genomic promoter, albeit at reduced levels (1 to 7%) compared with that of wild-type virions. In contrast, extracts of the mutant virions catalyze the wild-type level of transcription from an exogenous template containing an early promoter. We conclude that NPH-II is required for early mRNA synthesis uniquely in the context of the virus particle. Possible roles in transcription termination and RNA transport are discussed.
Collapse
Affiliation(s)
- C H Gross
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
10
|
Bayliss CD, Smith GL. Vaccinia virion protein I8R has both DNA and RNA helicase activities: implications for vaccinia virus transcription. J Virol 1996; 70:794-800. [PMID: 8551617 PMCID: PMC189881 DOI: 10.1128/jvi.70.2.794-800.1996] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A nucleic acid-dependent ATPase was purified from vaccinia virions and shown to have both DNA:DNA and RNA:RNA helicase activities. This is only the third helicase to be identified that can unwind both DNA and RNA duplexes. The DNA helicase activity copurified with nucleoside triphosphate phosphohydrolase II (NPHII), an RNA helicase encoded by gene I8R (S. Shuman, Proc. Natl. Acad. Sci. USA 89:10935-10939, 1992). Immunodepletion with two antisera to NPHII and analysis of recombinant NPHII protein (C. H. Gross and S. Shuman, J. Virol. 69:4727-4736, 1995) confirmed that the DNA helicase activity was encoded by the I8R gene. The I8R DNA helicase unwound DNA in a 3'-to-5' direction only, unwound duplexes of 35 bp but not 45 bp, and could be stimulated to unwind longer duplexes by the Escherichia coli single-stranded DNA-binding protein. DNA helicase activity was not stimulated by salt and was sensitive to 100 mM NaCl or KCl. The I8R protein has amino acid similarity to human RNA helicase A and to nuclear DNA helicase II, a bovine DNA and RNA helicase. On the basis of the phenotype of I8R temperature-sensitive mutants, it was suggested that the I8R protein is not required for DNA replication but might aid in the extrusion of early mRNA from the virus core. The DNA helicase activity of the I8R protein allows another interpretation of the mutant phenotype, namely, that the I8R DNA helicase activity is required for initiation of early transcription from within vaccinia virions.
Collapse
Affiliation(s)
- C D Bayliss
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | | |
Collapse
|
11
|
Abstract
When synthesis of the 25-kDa vaccinia virus core protein VP8 is repressed, mature virus particles of normal appearance are produced to approximately 80% of wild-type levels but these particles are over 100-fold less infectious than wild-type particles (D. Wilcock and G. L. Smith, Virology 202:294-304, 1994). Here we show that virions which lack VP8 can bind to and enter cells but the levels of steady-state RNA are greatly reduced in comparison with those for wild-type infections. In vitro assays using permeabilized virions demonstrated that VP8-deficient virions had drastically reduced rates of transcription (RNA synthesis was decreased by 80 to 96%) and that the extrusion of RNA transcripts from these virions was also decreased. Low concentrations of sodium deoxycholate extracted proteins more efficiently from VP8-deficient virions than from wild-type virions. The increased fragility of VP8-deficient virions and their slower RNA extrusion rates suggest that VP8 may be required for the correct formation of the core. Virions which lack VP8 were shown to contain a full complement of transcription enzymes, and soluble extracts from these virions were active in transcription assays using either single-stranded M13 DNA or exogenous plasmid template containing a vaccinia virus early promoter. Thus, the defect in transcription is due not to a lack of specific transcriptional enzymes within virions but rather to the inability of these enzymes to efficiently transcribe the DNA genome packaged within VP8-deficient virions. These results suggest that VP8 is required for the correct packaging of the viral DNA genome and/or for the efficient transcription of packaged virion DNA, which has a higher degree of structural complexity than plasmid templates. Possible roles for VP8 in these processes are discussed.
Collapse
Affiliation(s)
- D Wilcock
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | | |
Collapse
|
12
|
Traktman P, Caligiuri A, Jesty SA, Liu K, Sankar U. Temperature-sensitive mutants with lesions in the vaccinia virus F10 kinase undergo arrest at the earliest stage of virion morphogenesis. J Virol 1995; 69:6581-7. [PMID: 7666563 PMCID: PMC189564 DOI: 10.1128/jvi.69.10.6581-6587.1995] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Vaccinia virus encodes two protein kinases; the B1 kinase is expressed early and appears to play a role during DNA replication, whereas the F10 kinase is expressed late and is encapsidated in virions. Here we report that the F10 kinase gene is the locus affected in a complementation group of temperature-sensitive mutants composed of ts15, ts28, ts54, and ts61. Although these mutants have a biochemically normal phenotype at the nonpermissive temperature, directing the full program of viral gene expression, they fail to form mature virions. Electron microscopic analysis indicates that morphogenesis undergoes arrest at a very early stage, prior to the formation of membrane crescents or immature virions. An essential role for the F10 protein kinase in orchestrating the onset of virion assembly is implied.
Collapse
Affiliation(s)
- P Traktman
- Department of Cell Biology, Cornell University Medical College, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
13
|
Wang S, Shuman S. Vaccinia virus morphogenesis is blocked by temperature-sensitive mutations in the F10 gene, which encodes protein kinase 2. J Virol 1995; 69:6376-88. [PMID: 7666539 PMCID: PMC189537 DOI: 10.1128/jvi.69.10.6376-6388.1995] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Four previously isolated temperature-sensitive (ts) mutants of vaccinia virus WR (ts28, ts54, ts61, and ts15) composing a single complementation group have been mapped by marker rescue to the F10 open reading frame located within the genomic HindIII F DNA fragment. Sequencing of the F10 gene from wild-type and mutant viruses revealed single-amino-acid substitutions in the F10 polypeptide responsible for thermolabile growth. Although the ts mutants displayed normal patterns of viral protein synthesis, electron microscopy revealed a profound morphogenetic defect at the nonpermissive temperature (40 degrees C). Virion assembly was arrested at an early stage, with scant formation of membrane crescents and no progression to normal spherical immature particles. The F10 gene encodes a 52-kDa serine/threonine protein kinase (S. Lin and S. S. Broyles, Proc. Natl. Acad. Sci. USA 91:7653-7657, 1994). We expressed a His-tagged version of the wild-type, ts54, and ts61 F10 polypeptides in bacteria and purified these proteins by sequential nickel affinity and phosphocellulose chromatography steps. The wild-type F10 protein kinase activity was characterized in detail by using casein as a phosphate acceptor. Whereas the wild-type and ts61 kinases displayed similar thermal inactivation profiles, the ts54 kinase was thermosensitive in vitro. These findings suggest that protein phosphorylation plays an essential role at an early stage of virion assembly.
Collapse
Affiliation(s)
- S Wang
- Program in Molecular Biology, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
14
|
Abstract
Comparison of the genomic organization of variola and vaccinia viruses has been carried out. Molecular factors of virulence of these viruses is the focus of this review. Possible roles of the genes of soluble cytokine receptors, complement control proteins, factors of virus replication, and dissemination in vivo for variola virus pathogenesis are discussed. The existence of "buffer" genes in the vaccinia virus genome is proposed.
Collapse
Affiliation(s)
- S N Shchelkunov
- Institute of Molecular Biology, State Research Center of Virology and Biotechnology, Vector, Koltsovo, Russia
| |
Collapse
|
15
|
Yáñez RJ, Rodríguez JM, Boursnell M, Rodríguez JF, Viñuela E. Two putative African swine fever virus helicases similar to yeast 'DEAH' pre-mRNA processing proteins and vaccinia virus ATPases D11L and D6R. Gene 1993; 134:161-74. [PMID: 8262374 DOI: 10.1016/0378-1119(93)90090-p] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two open reading frames (ORFs) of African swine fever virus (ASFV) encoding putative helicases have been sequenced. The two genes, termed D1133L and B962L, are located in the central region of the viral genome, but are separated by about 40 kb of DNA. Both genes are expressed late during ASFV infection of Vero cells, after replication of viral DNA has begun. Contiguous to D1133L, three other ORFs (D129L, D79L and D339L), encoding putative proteins of unknown function, have been sequenced. Proteins D1133L and B962L contain the amino acid motifs that characterize helicases of superfamily II. D1133L is most similar to a group of putative helicases which includes two proteins of vaccinia virus (D11L and D6R) involved in transcription of the viral genome, their homologues in other poxviruses, the protein encoded by ORF 4 of the yeast plasmids, pGKL2 and pSKL, and the previously identified ASFV protein, Q706L. B962L resembles a group of RNA-helicase-like proteins which includes three proteins of Saccharomyces cerevisiae involved in pre-mRNA splicing (PRP2, PRP16 and PRP22), Drosophila melanogaster KURZ and MLE, and vaccinia virus 18R.
Collapse
Affiliation(s)
- R J Yáñez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | | | | | | | | |
Collapse
|
16
|
Shchelkunov SN, Blinov VM, Resenchuk SM, Totmenin AV, Sandakhchiev LS. Analysis of the nucleotide sequence of a 43 kbp segment of the genome of variola virus India-1967 strain. Virus Res 1993; 30:239-58. [PMID: 8109158 DOI: 10.1016/0168-1702(93)90093-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sequencing and computer analysis of the nucleotide sequence of the variola virus strain India-1967 (VAR) genome segment (43069 bp) from the region of HindIII C, E, R, Q, K, H DNA fragments has been carried out. Forty-three potential open reading frames (ORFs) have been identified, and the polypeptides encoded by them have been compared with the analogous proteins of vaccinia virus strain Copenhagen (COP). ORF E7R of VAR is much shorter than the COP analog. The other polypeptides coded by the potential ORFs of VAR are highly conserved in comparison with COP. Possible functions of the predicted viral polypeptides are discussed.
Collapse
Affiliation(s)
- S N Shchelkunov
- Institute of Molecular Biology, NPO Vector, Koltsovo, Novosibirsk Region, Russia
| | | | | | | | | |
Collapse
|
17
|
Abstract
The three major vaccinia virus (VV) virion proteins (4a, 4b, and 25K) are proteolytically matured from larger precursors (P4a, P4b, and P25K) during virus assembly. Within the precursors, Ala-Gly-X motifs have been noted at the putative processing sites, with cleavage apparently taking place between the Gly and X residues. To identify the sequence and/or structural parameters which are required to define an efficient cleavage site, a trans-processing assay system has been developed by tagging the carboxy terminus of the P25K polypeptide (precursor of 25K) with an octapeptide FLAG epitope, which can be specifically recognized by a monoclonal antibody. By using transient expression assays with cells coinfected with VV, the proteolytic processing of the chimeric gene product (P25K:FLAG) was monitored by immunoblotting procedures. The relationship between the P25K:FLAG precursor and the 25K:FLAG cleavage product was established by pulse-chase experiments. The in vivo cleavage of P25K:FLAG was inhibited by the drug rifampin, implying that the reaction was utilizing the same pathway as authentic VV core proteins. Moreover, the 25K:FLAG protein was found in association with mature virions in accord with the notion that cleavage occurs concomitantly with virion assembly. Site-directed mutagenesis of the Ala-Gly-Ala motif at residues 31 to 33 of the P25K:FLAG precursor to Ile-Asp-Ile blocked production of the 25K:FLAG product. The efficiency of 25K:FLAG production (33.71%) is, however, approximately only half of the production of 25K (63.98%) within VV-infected cells transfected with pL4R:FLAG. One explanation for the lower efficiency of 25K:FLAG production was suggested by the observation in the immunofluorescent-staining experiment that 25K:FLAG-related proteins were not specifically localized to the virus assembly factories (virosomes) within VV-infected cells, although virosome localization was prominent for P25K-related polypeptides. Since VV core protein proteolytic processing is believed to take place during virion maturation, only the P25K:FLAG which was assembled into immature virions could undergo proteolytic maturation. Furthermore during these experiments, a potential cleavage intermediate (25K') of P25K was identified. Amino acid residues 17 to 19 (Ala-Gly-Ser) of the P25K precursor were implicated as the intermediate cleavage site, since no 25K':FLAG product was produced from a mutant precursor in which the sequence was altered to Ile-Asp-Ile. Taken together, these results provide biochemical and genetic evidence to support the hypothesis that the Ala-Gly-X cleavage motif plays a critical role in VV virion protein proteolytic maturation.
Collapse
Affiliation(s)
- P Lee
- Department of Microbiology, Oregon State University, Corvallis 97331-3804
| | | |
Collapse
|
18
|
Kane EM, Shuman S. Vaccinia virus morphogenesis is blocked by a temperature-sensitive mutation in the I7 gene that encodes a virion component. J Virol 1993; 67:2689-98. [PMID: 8386272 PMCID: PMC237591 DOI: 10.1128/jvi.67.5.2689-2698.1993] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The ts16 mutation of vaccinia virus WR (R. C. Condit, A. Motyczka, and G. Spizz, Virology 128:429-443, 1983) has been mapped by marker rescue to the I7L open reading frame located within the genomic HindIII I DNA fragment. The I7 gene encodes a 423-amino-acid polypeptide. Thermolabile growth was attributed to an amino acid substitution, Pro-344-->Leu, in the predicted I7 protein. A normal temporal pattern of viral protein synthesis was elicited in cells infected with ts16 at the nonpermissive temperature (40 degrees C). Electron microscopy revealed a defect in virion assembly at 40 degrees C. Morphogenesis was arrested at a stage subsequent to formation of spherical immature particles. Western immunoblot analysis with antiserum directed against the I7 polypeptide demonstrated an immunoreactive 47-kDa polypeptide accumulating during the late phase of synchronous vaccinia virus infection. Immunoblotting of extracts of wild-type virions showed that the I7 protein is encapsidated within the virus core. The I7 polypeptide displays amino acid sequence similarity to the type II DNA topoisomerase of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- E M Kane
- Program in Molecular Biology, Sloan-Kettering Institute, New York, New York 10021
| | | |
Collapse
|
19
|
Shuman S. Vaccinia virus RNA helicase: an essential enzyme related to the DE-H family of RNA-dependent NTPases. Proc Natl Acad Sci U S A 1992; 89:10935-9. [PMID: 1332061 PMCID: PMC50457 DOI: 10.1073/pnas.89.22.10935] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Three distinct nucleic acid-dependent ATPases are packaged within infectious vaccinia virus particles; one of these enzymes (nucleoside triphosphate phosphohydrolase II or NPH-II) is activated by single-stranded RNA. Purified NPH-II is now shown to be an NTP-dependent RNA helicase. RNA unwinding requires a divalent cation and any one of the eight common ribo- or deoxyribonucleoside triphosphates. The enzyme acts catalytically to displace an estimated 10-fold molar excess of duplex RNA under in vitro reaction conditions. NPH-II binds to single-stranded RNA. Turnover of the bound enzyme is stimulated by and coupled to hydrolysis of NTP. Photocrosslinking of radiolabeled RNA to NPH-II results in label transfer to a single 73-kDa polypeptide. The sedimentation properties of the helicase are consistent with NPH-II being a monomer of this protein. Immunoblotting experiments identify NPH-II as the product of the vaccinia virus I8 gene. The I8-encoded protein displays extensive sequence similarity to members of the DE-H family of RNA-dependent NTPases. Mutations in the NPH-II gene [Fathi, Z. & Condit, R.C. (1991) Virology 181, 258-272] define the vaccinia helicase as essential for virus replication in vivo. Encapsidation of NPH-II in the virus particle suggests a role for the enzyme in synthesis of early messenger RNAs by the virion-associated transcription machinery.
Collapse
Affiliation(s)
- S Shuman
- Program in Molecular Biology, Sloan-Kettering Institute, New York, NY 10021
| |
Collapse
|
20
|
Kane EM, Shuman S. Temperature-sensitive mutations in the vaccinia virus H4 gene encoding a component of the virion RNA polymerase. J Virol 1992; 66:5752-62. [PMID: 1527841 PMCID: PMC241450 DOI: 10.1128/jvi.66.10.5752-5762.1992] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Four previously isolated temperature-sensitive (ts) mutants of vaccinia virus WR (ts1, ts31, ts55, and ts58) comprising a single complementation group (R. C. Condit, A. Motyczka, and G. Spizz, Virology 128:429-443, 1983) have been mapped by marker rescue to the H4L open reading frame located within the genomic HindIII-H DNA fragment. The H4 gene is predicted to encode a 93.6-kDa polypeptide expressed at late times during infection. Nucleotide sequence alterations responsible for thermolabile growth lead to amino acid substitutions in the H4 gene product. All four ts alleles display "normal" patterns of early and late viral protein synthesis at the nonpermissive temperature (40 degrees C). Mature virion particles, microscopically indistinguishable from wild-type virions, are produced in the cytoplasm of cells infected with ts1 at 40 degrees C. Western immunoblot analysis localizes the H4 protein to the virion core. After solubilization from cores, the H4 protein is associated during purification with transcriptionally active vaccinia virus DNA-dependent RNA polymerase.
Collapse
Affiliation(s)
- E M Kane
- Program in Molecular Biology, Sloan-Kettering Institute, New York, New York 10021
| | | |
Collapse
|
21
|
Binns MM, Boursnell ME, Skinner MA. Gene translocations in poxviruses: the fowlpox virus thymidine kinase gene is flanked by 15 bp direct repeats and occupies the locus which in vaccinia virus is occupied by the ribonucleotide reductase large subunit gene. Virus Res 1992; 24:161-72. [PMID: 1326827 DOI: 10.1016/0168-1702(92)90004-s] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
By sequencing a fragment of 7351 bp the fowlpox virus thymidine kinase gene has been found to map to a position within the equivalent of the vaccinia HindIII I fragment. The deduced gene arrangement in fowlpox virus is I3, X, TK, I5, I6, I7, I8, G1, indicating that the homologue of the vaccinia I4 gene has been replaced by two genes X and TK. The non-essential TK gene has therefore replaced another non-essential gene, I4 (the ribonucleotide reductase large subunit) in this region. The X/TK insertion in fowlpox virus is precisely flanked by direct repeats of 15 bp suggesting that the translocation event may have involved transposition. The % identities between the fowlpox virus and vaccinia virus proteins ranged between 58.5% and 31.3%.
Collapse
Affiliation(s)
- M M Binns
- Institute for Animal Health, Houghton Laboratory, Huntingdon, UK
| | | | | |
Collapse
|
22
|
Luo Y, Shuman S. Antitermination of vaccinia virus early transcription: possible role of RNA secondary structure. Virology 1991; 185:432-6. [PMID: 1926785 DOI: 10.1016/0042-6822(91)90793-b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transcription of vaccinia early genes by the viral RNA polymerase terminates downstream of a signal sequence TTTTTNT in the nontemplate DNA strand. Signal recognition occurs at the level of the sequence UUUUUNU in nascent RNA and depends on a virus-encoded termination factor (VTF). The presence of TTTTTNT elements within protein encoding regions of some early genes requires that these 5' proximal signals be ignored in order to achieve early expression of the full-sized proteins. In the case of the A18R gene, which contains a proximal terminator that is not utilized in vivo (Pacha et al., J. Virol. 64, 3853-3863 (1990)), the TTTTTNT sequence can be folded into a potential hairpin structure such that UUUUUNU would be part of a duplex stem in the nascent RNA. We find that the A18R putative hairpin is unable to promote factor-dependent termination in a purified in vitro transcription system. Sequence manipulations that abrogate the potential to form an RNA hairpin restore the activity of the TTTTTNT motif. The in vitro studies suggest that antitermination at the proximal site of the A18R gene may be mediated by secondary structure in the nascent RNA, and that early termination involves recognition by VTF and/or RNA polymerase of the UUUUUNU sequence in single-stranded form.
Collapse
Affiliation(s)
- Y Luo
- Program in Molecular Biology, Sloan-Kettering Institute, New York, New York 10021
| | | |
Collapse
|
23
|
Dyster LM, Niles EG. Genetic and biochemical characterization of vaccinia virus genes D2L and D3R which encode virion structural proteins. Virology 1991; 182:455-67. [PMID: 2024484 DOI: 10.1016/0042-6822(91)90586-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polyclonal antisera raised against fusion proteins containing portions of the vaccinia virus D2L and D3R proteins were prepared. Immunoprecipitation of pulse-labeled infected cell extracts and Western blot analysis demonstrated that genes D2L and D3R encode 16.9- and 27-kDa proteins, respectively. Both are synthesized late during infection and there is no evidence for proteolytic processing of either protein. Western blots of purified virus and subvirion fractions showed that D2L and D3R are virion components, residing in a detergent-insoluble fraction, containing viral core structural proteins. Trypsin sensitivity experiments suggest that each is found in an equivalent position within the virus core. Pulse-chase analysis showed that both proteins exhibit biphasic stability in which an unstable nascent component is replaced by a stable form. This observation suggests that the stable component results from the insertion of D2L and D3R into an immature core structure. The DNA sequence of four ts mutants previously mapped to genes D2L and D3R is reported. Analysis of the ability of each mutant to synthesize and process viral proteins showed that protein synthetic patterns were indistinguishable from wild type, however, three of the four mutants were defective in the processing of the major virion structural precursor, p4a. Unlike the biphasic stability observed in wild-type infected cells, D2L and D3R were totally degraded in cells infected at 40 degrees with any of the four ts mutants. Stability of the D2L and D3R proteins, in cells treated with rifampicin, is unaffected which demonstrates that a block in morphogenesis is not directly responsible for the observed instability of the mutant proteins.
Collapse
Affiliation(s)
- L M Dyster
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo 14214
| | | |
Collapse
|
24
|
Fathi Z, Condit RC. Genetic and molecular biological characterization of a vaccinia virus temperature-sensitive complementation group affecting a virion component. Virology 1991; 181:258-72. [PMID: 1994576 DOI: 10.1016/0042-6822(91)90491-s] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The gene affected by five previously isolated temperature-sensitive (ts) mutants (ts 10, ts 18, ts 38, ts 39, ts 44) of vaccinia virus strain WR constituting a single "normal" complementation group has been characterized. Marker rescue and DNA sequence analysis show that the five members of the complementation group map in an open reading frame, ORF 18R, which spans the HindIII I-G junction and has the capacity to encode a 77.6-kDa protein. The nucleotide sequence change responsible for temperature sensitivity in each of the five mutants was determined. Two of the mutants, ts 38 and ts 44, have the identical nucleotide change and may therefore be sisters. Northern blot analysis demonstrates that ORF 18R is transcribed at both early and late times during infection. Two distinct early transcripts have been observed which are 5' coterminal and which contain a 518 nucleotide 5' untranslated region. The long early transcript spans the entire 18R gene while the 3' end of the shorter early transcript maps to an early transcription termination signal contained within the 18R coding sequence. The 5' ends of the late transcripts have been mapped to a family of AUG proximal sites using both S1 nuclease and primer extension analysis. Primer extension analysis also identifies additional late 5' ends which map between nucleotides -500 and -1000 relative to the ORF 18R AUG.
Collapse
Affiliation(s)
- Z Fathi
- Department of Biochemistry, State University of New York, Buffalo 14214
| | | |
Collapse
|