1
|
Bandoo RA, Kraberger S, Varsani A. Two Novel Geminiviruses Identified in Bees ( Apis mellifera and Nomia sp.). Viruses 2024; 16:602. [PMID: 38675943 PMCID: PMC11053556 DOI: 10.3390/v16040602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Members of the Geminviridae family are circular single-stranded DNA plant-infecting viruses, some of which impact global food production. Geminiviruses are vectored by sap-feeding insects such as leafhoppers, treehoppers, aphids, and whiteflies. Additionally, geminivirus sequences have also been identified in other insects such as dragonflies, mosquitoes, and stingless bees. As part of a viral metagenomics study on honeybees and solitary bees (Nomia sp.), two geminivirus genomes were identified. These represent a novel citlodavirus (from honeybees collected from Westmoreland, Jamaica) and a mastrevirus-like genome (from a solitary bee collected from Tempe, Arizona, USA). The novel honeybee-derived citlodavirus genome shares ~61 to 69% genome-wide nucleotide pairwise identity with other citlodavirus genome sequences and is most closely related to the passion fruit chlorotic mottle virus identified in Brazil. Whereas the novel solitary bee-derived mastrevirus-like genome shares ~55 to 61% genome-wide nucleotide identity with other mastreviruses and is most closely related to tobacco yellow dwarf virus identified in Australia, based on pairwise identity scores of the full genome, replication-associated protein, and capsid protein sequences. Previously, two geminiviruses in the Begomovirus genus were identified in samples of stingless bee (Trigona spp.) samples. Here, we identify viruses that represent two new species of geminiviruses from a honeybee and a solitary bee, which continues to demonstrate that plant pollinators can be utilized for the identification of plant-infecting DNA viruses in ecosystems.
Collapse
Affiliation(s)
- Rohan Antonio Bandoo
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA
| | - Arvind Varsani
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| |
Collapse
|
2
|
Bonnamy M, Blanc S, Michalakis Y. Replication mechanisms of circular ssDNA plant viruses and their potential implication in viral gene expression regulation. mBio 2023; 14:e0169223. [PMID: 37695133 PMCID: PMC10653810 DOI: 10.1128/mbio.01692-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
The replication of members of the two circular single-stranded DNA (ssDNA) virus families Geminiviridae and Nanoviridae, the only ssDNA viruses infecting plants, is believed to be processed by rolling-circle replication (RCR) and recombination-dependent replication (RDR) mechanisms. RCR is a ubiquitous replication mode for circular ssDNA viruses and involves a virus-encoded Replication-associated protein (Rep) which fulfills multiple functions in the replication mechanism. Two key genomic elements have been identified for RCR in Geminiviridae and Nanoviridae: (i) short iterative sequences called iterons which determine the specific recognition of the viral DNA by the Rep and (ii) a sequence enabling the formation of a stem-loop structure which contains a conserved motif and constitutes the origin of replication. In addition, studies in Geminiviridae provided evidence for a second replication mode, RDR, which has also been documented in some double-stranded DNA viruses. Here, we provide a synthesis of the current understanding of the two presumed replication modes of Geminiviridae and Nanoviridae, and we identify knowledge gaps and discuss the possibility that these replication mechanisms could regulate viral gene expression through modulation of gene copy number.
Collapse
Affiliation(s)
- Mélia Bonnamy
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- MIVEGEC, CNRS, IRD, Univ Montpellier, Montpellier, France
| | - Stéphane Blanc
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | |
Collapse
|
3
|
Pfrieme AK, Will T, Pillen K, Stahl A. The Past, Present, and Future of Wheat Dwarf Virus Management-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:3633. [PMID: 37896096 PMCID: PMC10609771 DOI: 10.3390/plants12203633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Wheat dwarf disease (WDD) is an important disease of monocotyledonous species, including economically important cereals. The causative pathogen, wheat dwarf virus (WDV), is persistently transmitted mainly by the leafhopper Psammotettix alienus and can lead to high yield losses. Due to climate change, the periods of vector activity increased, and the vectors have spread to new habitats, leading to an increased importance of WDV in large parts of Europe. In the light of integrated pest management, cultivation practices and the use of resistant/tolerant host plants are currently the only effective methods to control WDV. However, knowledge of the pathosystem and epidemiology of WDD is limited, and the few known sources of genetic tolerance indicate that further research is needed. Considering the economic importance of WDD and its likely increasing relevance in the coming decades, this study provides a comprehensive compilation of knowledge on the most important aspects with information on the causal virus, its vector, symptoms, host range, and control strategies. In addition, the current status of genetic and breeding efforts to control and manage this disease in wheat will be discussed, as this is crucial to effectively manage the disease under changing environmental conditions and minimize impending yield losses.
Collapse
Affiliation(s)
- Anne-Kathrin Pfrieme
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany; (T.W.); (A.S.)
| | - Torsten Will
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany; (T.W.); (A.S.)
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Science, Plant Breeding, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany;
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany; (T.W.); (A.S.)
| |
Collapse
|
4
|
Kil EJ, Byun HS, Hwang H, Lee KY, Choi HS, Kim CS, Lee S. Tomato Yellow Leaf Curl Virus Infection in a Monocotyledonous Weed (Eleusine indica). THE PLANT PATHOLOGY JOURNAL 2021; 37:641-651. [PMID: 34897255 PMCID: PMC8666239 DOI: 10.5423/ppj.ft.11.2021.0162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 05/26/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is one of the most important plant viruses belonging to the genus Begomovirus of the family Geminiviridae. To identify natural weed hosts that could act as reservoirs of TYLCV, 100 samples were collected at a TYLCV-affected tomato farm in Iksan from 2013 to 2014. The sample weeds were identified as belonging to 40 species from 18 families. TYLCV was detected in 57 samples belonging to 28 species through polymerase chain reaction using root samples including five species (Eleusine indica, Digitaria ciliaris, Echinochloa crus-galli, Panicum dichotomiflorum, and Setaria faberi) from the family Poaceae. Whitefly Bemisia tabaci-mediated TYLCV transmission from TYLCV-infected E. indica plants to healthy tomatoes was confirmed, and inoculated tomatoes showed typical symptoms, such as leaf curling and yellowing. In addition, TYLCV was detected in leaf and root samples of E. indica plants inoculated by both whitefly-mediated transmission using TYLCV-viruliferous whitefly and agro-inoculation using a TYLCV infectious clone. The majority of mastreviruses infect monocotyledonous plants, but there have also been reports of mastreviruses that can infect dicotyledonous plants, such as the chickpea chlorotic dwarf virus. No exception was reported among begomoviruses known as infecting dicots only. This is the first report of TYLCV as a member of the genus Begomovirus infecting monocotyledonous plants.
Collapse
Affiliation(s)
- Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong 36729,
Korea
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419,
Korea
| | - Hee-Seong Byun
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419,
Korea
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365,
Korea
| | - Hyunsik Hwang
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419,
Korea
- Jungbu Regional Office, Animal and Plant Quarantine Agency, Incheon 22133,
Korea
| | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566,
Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365,
Korea
| | - Chang-Seok Kim
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342,
Korea
| | - Sukchan Lee
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419,
Korea
| |
Collapse
|
5
|
Mastrevirus Rep and RepA Proteins Suppress de novo Transcriptional Gene Silencing. Int J Mol Sci 2021; 22:ijms222111462. [PMID: 34768892 PMCID: PMC8584122 DOI: 10.3390/ijms222111462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023] Open
Abstract
Transcriptional gene silencing (TGS) in plants is a defense mechanism against DNA virus infection. The genomes of viruses in the Geminiviridae family encode several TGS suppressors. In this study, we induced de novo TGS against the transgenic GFP gene encoding green fluorescent protein by expressing a hairpin-shaped self-complementary RNA corresponding to the enhancer region of the 35S promoter (hpE35S). In addition, we examined the TGS suppression activity of proteins encoded in the genome of Tobacco yellow dwarf virus (TYDV, genus Mastrevirus). The results show that the replication-associated protein (Rep) and RepA encoded by TYDV have TGS suppressor activity and lead to decreased accumulation of 24-nt siRNAs. These results suggest that Rep and RepA can block the steps before the loading of siRNAs into Argonaute (AGO) proteins. This is the first report of TGS suppressors in the genus Mastrevirus.
Collapse
|
6
|
Acha G, Vergara R, Muñoz M, Mora R, Aguirre C, Muñoz M, Kalazich J, Prieto H. A Traceable DNA-Replicon Derived Vector to Speed Up Gene Editing in Potato: Interrupting Genes Related to Undesirable Postharvest Tuber Traits as an Example. PLANTS (BASEL, SWITZERLAND) 2021; 10:1882. [PMID: 34579415 PMCID: PMC8468489 DOI: 10.3390/plants10091882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022]
Abstract
In potato (Solanum tuberosum L.), protoplast techniques are limited to a few genotypes; thus, the use of regular regeneration procedures of multicellular explants causes us to face complexities associated to CRISPR/Cas9 gene editing efficiency and final identification of individuals. Geminivirus-based replicons contained in T-DNAs could provide an improvement to these procedures considering their cargo capability. We built a Bean yellow dwarf virus-derived replicon vector, pGEF-U, that expresses all the editing reagents under a multi-guide RNA condition, and the Green Fluorescent Protein (GFP) marker gene. Agrobacterium-mediated gene transfer experiments were carried out on 'Yagana-INIA', a relevant local variety with no previous regeneration protocol. Assays showed that pGEF-U had GFP transient expression for up to 10 days post-infiltration when leaf explants were used. A dedicated potato genome analysis tool allowed for the design of guide RNA pairs to induce double cuts of genes associated to enzymatic browning (StPPO1 and 2) and to cold-induced sweetening (StvacINV1 and StBAM1). Monitoring GFP at 7 days post-infiltration, explants led to vector validation as well as to selection for regeneration (34.3% of starting explants). Plant sets were evaluated for the targeted deletion, showing individuals edited for StPPO1 and StBAM1 genes (1 and 4 lines, respectively), although with a transgenic condition. While no targeted deletion was seen in StvacINV1 and StPPO2 plant sets, stable GFP-expressing calli were chosen for analysis; we observed different repair alternatives, ranging from the expected loss of large gene fragments to those showing punctual insertions/deletions at both cut sites or incomplete repairs along the target region. Results validate pGEF-U for gene editing coupled to regular regeneration protocols, and both targeted deletion and single site editings encourage further characterization of the set of plants already generated.
Collapse
Affiliation(s)
- Giovana Acha
- Programa de Doctorado en Biotecnología, Universidad de Santiago, Santiago 9170020, Chile;
| | - Ricardo Vergara
- Laboratorio de Biotecnología, Instituto de Investigaciones Agropecuarias-La Platina, Santiago 8831314, Chile; (M.M.); (R.M.); (C.A.)
| | - Marisol Muñoz
- Laboratorio de Biotecnología, Instituto de Investigaciones Agropecuarias-La Platina, Santiago 8831314, Chile; (M.M.); (R.M.); (C.A.)
| | - Roxana Mora
- Laboratorio de Biotecnología, Instituto de Investigaciones Agropecuarias-La Platina, Santiago 8831314, Chile; (M.M.); (R.M.); (C.A.)
| | - Carlos Aguirre
- Laboratorio de Biotecnología, Instituto de Investigaciones Agropecuarias-La Platina, Santiago 8831314, Chile; (M.M.); (R.M.); (C.A.)
| | - Manuel Muñoz
- Instituto de Investigaciones Agropecuarias-Remehue, Osorno 5290000, Chile;
| | - Julio Kalazich
- Carrera de Agronomía, Campus Osorno, Universidad de Los Lagos, Osorno 5290000, Chile;
| | - Humberto Prieto
- Laboratorio de Biotecnología, Instituto de Investigaciones Agropecuarias-La Platina, Santiago 8831314, Chile; (M.M.); (R.M.); (C.A.)
| |
Collapse
|
7
|
Qiu Y, Zhang S, Yu H, Xuan Z, Yang L, Zhan B, Murilo Zerbini F, Cao M. Identification and Characterization of Two Novel Geminiviruses Associated with Paper Mulberry ( Broussonetia papyrifera) Leaf Curl Disease. PLANT DISEASE 2020; 104:3010-3018. [PMID: 32881645 DOI: 10.1094/pdis-12-19-2597-re] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Paper mulberry (Broussonetia papyrifera) is a perennial woody plant used as source material for Cai Lun paper making, in traditional Chinese medicine, and as livestock feed. To identify the presence of viruses in paper mulberry plants affected by a disease with leaf curl symptoms, high-throughput sequencing of total RNA was performed. Analysis of transcriptome libraries allowed the reconstruction of two geminivirus-like genomes. Rolling-circle amplification and PCR with back-to-back primers confirmed the presence of two geminiviruses with monopartite genomes in these plants, with the names paper mulberry leaf curl virus 1 and 2 (PMLCV-1 and PMLCV-2) proposed. The genomes of PMLCV-1 (3,056 nt) and PMLCV-2 (3,757 to 3,763 nt) encode six proteins, with the V4 protein of PMLCV-1 and the V3 proteins of both viruses having low similarities to any known protein in databases. Alternative splicing of an intron, akin to that of mastre-, becurto-, capula-, and grabloviruses, was identified by small RNA (sRNA)-seq and RNA-seq reads mapping to PMLCV-1 and PMLCV-2 antisense transcripts. Phylogenetic analyses and pairwise comparisons showed that PMLCV-1 and PMLCV-2 are most closely related to, but distinct from, two unassigned geminiviruses, citrus chlorotic dwarf associated virus and mulberry mosaic dwarf associated virus, suggesting that they are two new members of the family Geminiviridae. Field investigation confirmed the close association of the two viruses with leaf curl symptoms in paper mulberry plants and that coinfection can aggravate the symptoms.
Collapse
Affiliation(s)
- Yuanjian Qiu
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Song Zhang
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Haodong Yu
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhiyou Xuan
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Liu Yang
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Binhui Zhan
- State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, Academy of Agricultural Sciences, Beijing 100193, China
| | - F Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Kato M, Harding R, Dale J, Dugdale B. Localization of Tobacco Yellow Dwarf Virus Replication Using the In Plant Activation (INPACT) Expression Platform. Viruses 2020; 12:E688. [PMID: 32604765 PMCID: PMC7354463 DOI: 10.3390/v12060688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/03/2022] Open
Abstract
Geminiviruses and their diseases are a considerable economic threat to a vast number of crops worldwide. Investigating how and where these viruses replicate and accumulate in their hosts may lead to novel molecular resistance strategies. In this study, we used the Rep-inducible In Plant Activation (INPACT) expression platform, based on the genome of tobacco yellow dwarf virus (TYDV), to determine where this model mastrevirus replicates in its host tobacco. By developing an infectious clone of TYDV and optimizing its delivery by agroinfiltration, we first established an efficient artificial infection process. When delivered into transgenic tobacco plants containing a TYDV-based INPACT cassette encoding the β-glucuronidase (GUS) reporter, we showed the virus activates GUS expression. Histology revealed that reporter gene expression was limited to phloem-associated cell types suggesting TYDV replication has a restricted tissue tropism.
Collapse
Affiliation(s)
| | | | | | - Benjamin Dugdale
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland 4000, Australia; (M.K.); (R.H.); (J.D.)
| |
Collapse
|
9
|
Kanakala S, Kuria P. Chickpea chlorotic dwarf virus: An Emerging Monopartite Dicot Infecting Mastrevirus. Viruses 2018; 11:E5. [PMID: 30577666 PMCID: PMC6357115 DOI: 10.3390/v11010005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 12/25/2022] Open
Abstract
Chickpea stunt disease (CSD), caused by Chickpea chlorotic dwarf virus (CpCDV) is a threat to chickpea production leading to yield losses of 75⁻95%. Chickpea chlorotic dwarf virus is a monopartite, single-stranded circular DNA virus in the genus Mastrevirus and family Geminiviridae. It is transmitted by Orosius albicinctus in a circulative (persistent) and nonpropagative manner. Symptoms of CSD include very small leaves, intense discoloration (yellowing (kabuli type) and reddening (desi type)), and bushy stunted appearance of the plant. Presently, CpCDVs occurs in Africa, Asia, Australia, and the Middle East, causing extensive losses on economically important crops in in the families Fabaceae, Asteraceae, Amaranthaceae, Brassicaceae, Cucurbitaceae, Caricaceae, Chenopodiaceae, Leguminosae, Malvaceae, Pedaliaceae, and Solanaceae. High frequency of recombinations has played a significant role in the wide host range, diversification, and rapid evolution of CpCDVs. This review highlights the extensive research on the CpCDV genome diversity, host range, plant⁻virus⁻insect interactions, and RNA interference-based resistance of CpCDV, providing new insights into the host adaptation and virus evolution.
Collapse
Affiliation(s)
- Surapathrudu Kanakala
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50010, USA.
| | - Paul Kuria
- Kenya Agricultural and Livestock Research Organization, Nairobi 00200, Kenya.
| |
Collapse
|
10
|
Splicing features in the expression of the complementary-sense genes of Beet curly top Iran virus. Virus Genes 2016; 53:323-327. [PMID: 28004232 DOI: 10.1007/s11262-016-1422-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
Abstract
Beet curly top Iran virus (BCTIV) is a distinct geminivirus which has been reported from sugar-beet-growing farms in Iran. In this study, the role of the splicing in expression of complementary-sense genes of BCTIV was studied. Total RNA was extracted from BCTIV-infected tissue, and the predicted intron position of complementary-sense mRNA transcripts was amplified by RT-PCR followed by cloning of the amplicons. Sequence confirmed that both spliced and unspliced mRNAs are synthesized by the same transcription unit. Sequence comparison showed that a 155-nt segment (intron) corresponding to nucleotides 1890-2044 of the viral genome has been removed from the latter transcript and therefore fusion of the C1:C2 genes resulted creation of a continuous reading frame for potential production of intact replication initiator protein (Rep). BCTIV intron comprises of most consensus splicing signals required for splicing in eukaryotes and several plant viruses including mastre- and capulaviruses.
Collapse
|
11
|
Ma Y, Navarro B, Zhang Z, Lu M, Zhou X, Chi S, Di Serio F, Li S. Identification and molecular characterization of a novel monopartite geminivirus associated with mulberry mosaic dwarf disease. J Gen Virol 2015; 96:2421-2434. [PMID: 25953916 DOI: 10.1099/vir.0.000175] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
High-throughput sequencing of small RNAs allowed the identification of a novel DNA virus in a Chinese mulberry tree affected by a disease showing mosaic and dwarfing symptoms. Rolling-circle amplification and PCR with specific primers, followed by sequencing of eleven independent full-length clones, showed that this virus has a monopartite circular DNA genome (∼ 2.95 kb) containing ORFs in both polarity strands, as reported previously for geminiviruses. A field survey showed the close association of the virus with diseased mulberries, so we tentatively named the virus mulberry mosaic dwarf-associated virus (MMDaV). The MMDaV genome codes for five and two putative proteins in the virion-sense and in the complementary-sense strands, respectively. Although three MMDaV virion-sense putative proteins did not share sequence homology with any protein in the databases, functional domains [coiled-coil and transmembrane (TM) domains] were identified in two of them. In addition, the protein containing a TM domain was encoded by an ORF located in a similar genomic position in MMDaV and in several other geminiviruses. As reported for members of the genera Mastrevirus and Becurtovirus, MMDaV replication-associated proteins are expressed through the alternative splicing of an intron, which was shown to be functional in vivo. A similar intron was found in the genome of citrus chlorotic dwarf-associated virus (CCDaV), a divergent geminivirus found recently in citrus. On the basis of pairwise comparisons and phylogenetic analyses, CCDaV and MMDaV appear to be closely related to each other, thus supporting their inclusion in a putative novel genus in the family Geminiviridae.
Collapse
Affiliation(s)
- Yuxin Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante CNR, UO Bari, Via Amendola, 70126 Bari, Italy
| | - Zhixiang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Meiguang Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Shengqi Chi
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Changcheng Road No. 700, Chengyang District, Qingdao 266000, PR China
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante CNR, UO Bari, Via Amendola, 70126 Bari, Italy
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| |
Collapse
|
12
|
Identification of an Australian-like dicot-infecting mastrevirus in Pakistan. Arch Virol 2014; 160:825-30. [DOI: 10.1007/s00705-014-2299-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
|
13
|
Kraberger S, Kumari SG, Hamed AA, Gronenborn B, Thomas JE, Sharman M, Harkins GW, Muhire BM, Martin DP, Varsani A. Molecular diversity of Chickpea chlorotic dwarf virus in Sudan: high rates of intra-species recombination - a driving force in the emergence of new strains. INFECTION GENETICS AND EVOLUTION 2014; 29:203-15. [PMID: 25444941 DOI: 10.1016/j.meegid.2014.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/17/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
Abstract
In Sudan Chickpea chlorotic dwarf virus (CpCDV, genus Mastrevirus, family Geminiviridae) is an important pathogen of pulses that are grown both for local consumption, and for export. Although a few studies have characterised CpCDV genomes from countries in the Middle East, Africa and the Indian subcontinent, little is known about CpCDV diversity in any of the major chickpea production areas in these regions. Here we analyse the diversity of 146 CpCDV isolates characterised from pulses collected across the chickpea growing regions of Sudan. Although we find that seven of the twelve known CpCDV strains are present within the country, strain CpCDV-H alone accounted for ∼73% of the infections analysed. Additionally we identified four new strains (CpCDV-M, -N, -O and -P) and show that recombination has played a significant role in the diversification of CpCDV, at least in this region. Accounting for observed recombination events, we use the large amounts of data generated here to compare patterns of natural selection within protein coding regions of CpCDV and other dicot-infecting mastrevirus species.
Collapse
Affiliation(s)
- Simona Kraberger
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand
| | - Safaa G Kumari
- Virology Laboratory, International Centre for Agricultural Research in the Dry Areas (ICARDA), Tunis, Tunisia.
| | - Abdelmagid A Hamed
- Plant Pathology Research Program, Agricultural Research Corporation, P.O. Box 126, Wadmedani, Sudan
| | - Bruno Gronenborn
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| | - John E Thomas
- Centre for Plant Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, GPO Box 267, Brisbane, QLD 4001, Australia
| | - Murray Sharman
- Department of Agriculture, Fisheries and Forestry, Ecoscience Precinct, GPO Box 267, Brisbane, QLD 4001, Australia
| | - Gordon W Harkins
- South African National Bioinformatics Institute, SA Medical Research Unit for Bioinformatics Capacity Development, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Brejnev M Muhire
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Darren P Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Arvind Varsani
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand; Electron Microscope Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, 7700, South Africa; Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
14
|
Dugdale B, Mortimer CL, Kato M, James TA, Harding RM, Dale JL. Design and construction of an in-plant activation cassette for transgene expression and recombinant protein production in plants. Nat Protoc 2014; 9:1010-27. [PMID: 24705598 DOI: 10.1038/nprot.2014.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Virus-based transgene expression systems have become particularly valuable for recombinant protein production in plants. The dual-module in-plant activation (INPACT) expression platform consists of a uniquely designed split-gene cassette incorporating the cis replication elements of Tobacco yellow dwarf geminivirus (TYDV) and an ethanol-inducible activation cassette encoding the TYDV Rep and RepA replication-associated proteins. The INPACT system is essentially tailored for recombinant protein production in stably transformed plants and provides both inducible and high-level transient transgene expression with the potential to be adapted to diverse crop species. The construction of a novel split-gene cassette, the inducible nature of the system and the ability to amplify transgene expression via rolling-circle replication differentiates this system from other DNA- and RNA-based virus vector systems used for stable or transient recombinant protein production in plants. Here we provide a detailed protocol describing the design and construction of a split-gene INPACT cassette, and we highlight factors that may influence optimal activation and amplification of gene expression in transgenic plants. By using Nicotiana tabacum, the protocol takes 6-9 months to complete, and recombinant proteins expressed using INPACT can accumulate to up to 10% of the leaf total soluble protein.
Collapse
Affiliation(s)
- Benjamin Dugdale
- 1] Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia. [2]
| | - Cara L Mortimer
- 1] Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia. [2]
| | - Maiko Kato
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tess A James
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Robert M Harding
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
| | - James L Dale
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Hull R. Replication of Plant Viruses. PLANT VIROLOGY 2014. [PMCID: PMC7184227 DOI: 10.1016/b978-0-12-384871-0.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses co-infecting cells. Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses coinfecting cells.
Collapse
|
16
|
Kraberger S, Harkins GW, Kumari SG, Thomas JE, Schwinghamer MW, Sharman M, Collings DA, Briddon RW, Martin DP, Varsani A. Evidence that dicot-infecting mastreviruses are particularly prone to inter-species recombination and have likely been circulating in Australia for longer than in Africa and the Middle East. Virology 2013; 444:282-91. [PMID: 23886492 DOI: 10.1016/j.virol.2013.06.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/08/2013] [Accepted: 06/24/2013] [Indexed: 11/25/2022]
Abstract
Viruses of the genus Mastrevirus (family Geminiviridae) are transmitted by leafhoppers and infect either mono- or dicotyledonous plants. Here we have determined the full length sequences of 49 dicot-infecting mastrevirus isolates sampled in Australia, Eritrea, India, Iran, Pakistan, Syria, Turkey and Yemen. Comprehensive analysis of all available dicot-infecting mastrevirus sequences showed the diversity of these viruses in Australia to be greater than in the rest of their known range, consistent with earlier studies, and that, in contrast with the situation in monocot-infecting mastreviruses, detected inter-species recombination events outnumbered intra-species recombination events. Consistent with Australia having the greatest diversity of known dicot-infecting mastreviruses phylogeographic analyses indicating the most plausible scheme for the spread of these viruses to their present locations, suggest that most recent common ancestor of these viruses is likely nearer Australia than it is to the other regions investigated.
Collapse
Affiliation(s)
- Simona Kraberger
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae). Arch Virol 2013; 158:1411-24. [DOI: 10.1007/s00705-012-1601-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/01/2012] [Indexed: 10/27/2022]
|
18
|
Rey MEC, Ndunguru J, Berrie LC, Paximadis M, Berry S, Cossa N, Nuaila VN, Mabasa KG, Abraham N, Rybicki EP, Martin D, Pietersen G, Esterhuizen LL. Diversity of dicotyledenous-infecting geminiviruses and their associated DNA molecules in southern Africa, including the South-west Indian ocean islands. Viruses 2012; 4:1753-91. [PMID: 23170182 PMCID: PMC3499829 DOI: 10.3390/v4091753] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 11/16/2022] Open
Abstract
The family Geminiviridae comprises a group of plant-infecting circular ssDNA viruses that severely constrain agricultural production throughout the temperate regions of the world, and are a particularly serious threat to food security in sub-Saharan Africa. While geminiviruses exhibit considerable diversity in terms of their nucleotide sequences, genome structures, host ranges and insect vectors, the best characterised and economically most important of these viruses are those in the genus Begomovirus. Whereas begomoviruses are generally considered to be either monopartite (one ssDNA component) or bipartite (two circular ssDNA components called DNA-A and DNA-B), many apparently monopartite begomoviruses are associated with additional subviral ssDNA satellite components, called alpha- (DNA-αs) or betasatellites (DNA-βs). Additionally, subgenomic molecules, also known as defective interfering (DIs) DNAs that are usually derived from the parent helper virus through deletions of parts of its genome, are also associated with bipartite and monopartite begomoviruses. The past three decades have witnessed the emergence and diversification of various new begomoviral species and associated DI DNAs, in southern Africa, East Africa, and proximal Indian Ocean islands, which today threaten important vegetable and commercial crops such as, tobacco, cassava, tomato, sweet potato, and beans. This review aims to describe what is known about these viruses and their impacts on sustainable production in this sensitive region of the world.
Collapse
Affiliation(s)
- Marie E. C. Rey
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa;
| | - Joseph Ndunguru
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Salaam, Tanzania;
| | - Leigh C. Berrie
- National Institute for Communicable Diseases, Private Bag X4, Sandringham, Johannesburg, 2131, South Africa
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa;
| | - Maria Paximadis
- National Institute for Communicable Diseases, Private Bag X4, Sandringham, Johannesburg, 2131, South Africa
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa;
| | - Shaun Berry
- South African Sugarcane Research Institute, 170 Flanders Drive, Private Bag X02, Mount Edgecombe, 4300, South Africa
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa;
| | - Nurbibi Cossa
- The Institute of Agricultural Research of Mozambique, Av. Das FPLM, No. 269 C.P. 3658, Maputo, Mozambique;
| | - Valter N. Nuaila
- Biotechnology Center, Eduardo Mondlane University, Praca 25 de Junho. Caixa, Potal 257, Maputo, Mozambique
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa;
| | - Ken G. Mabasa
- Crop Protection and Diagnostic Center, ARC-Roodeplaat-VOPI, Private Bag X134, Pretoria, 0001, South Africa
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa;
| | - Natasha Abraham
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa;
| | - Edward P. Rybicki
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa; (E.P.R.); (D.M.)
| | - Darren Martin
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa; (E.P.R.); (D.M.)
| | - Gerhard Pietersen
- ARC-Plant Protection Research Institute and University of Pretoria, Private Bag X134, Pretoria, 0001, South Africa;
| | | |
Collapse
|
19
|
Hadfield J, Thomas JE, Schwinghamer MW, Kraberger S, Stainton D, Dayaram A, Parry JN, Pande D, Martin DP, Varsani A. Molecular characterisation of dicot-infecting mastreviruses from Australia. Virus Res 2012; 166:13-22. [PMID: 22406325 DOI: 10.1016/j.virusres.2012.02.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 11/24/2022]
Abstract
Monocotyledonous and dicotyledonous plant infecting mastreviruses threaten various agricultural systems throughout Africa, Eurasia and Australasia. In Australia three distinct mastrevirus species are known to infect dicotyledonous hosts such as chickpea, bean and tobacco. Amongst 34 new "dicot-infecting" mastrevirus full genome sequences obtained from these hosts we discovered one new species, four new strains, and various variants of previously described mastrevirus species. Besides providing additional support for the hypothesis that evolutionary processes operating during dicot-infecting mastrevirus evolution (such as patterns of pervasive homologous and non-homologous recombination, and strong purifying selection acting on all genes) have mostly mirrored those found in their monocot-infecting counterparts, we find that the Australian dicot-infecting viruses display patterns of phylogeographic clustering reminiscent of those displayed by monocot infecting mastrevirus species such as Panicum streak virus and Maize streak virus.
Collapse
Affiliation(s)
- James Hadfield
- School of Biological Sciences, University of Canterbury, Ilam, Christchurch 8140, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nahid N, Amin I, Briddon RW, Mansoor S. RNA interference-based resistance against a legume mastrevirus. Virol J 2011; 8:499. [PMID: 22047503 PMCID: PMC3214926 DOI: 10.1186/1743-422x-8-499] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 11/02/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) is a homology-dependant gene silencing mechanism and has been widely used to engineer resistance in plants against RNA viruses. However, its usefulness in delivering resistance against plant DNA viruses belonging to family Geminiviridae is still being debated. Although the RNAi approach has been shown, using a transient assay, to be useful in countering monocotyledonous plant-infecting geminiviruses of the genus Mastrevirus, it has yet to be investigated as a means of delivering resistance to dicot-infecting mastreviruses. Chickpea chlorotic dwarf Pakistan virus (CpCDPKV) is a legume-infecting mastrevirus that affects chickpea and other leguminous crops in Pakistan. RESULTS Here a hairpin (hp)RNAi construct containing sequences encompassing part of replication-associated protein gene, intergenic region and part of the movement protein gene of CpCDPKV under the control of the Cauliflower mosaic virus 35S promoter has been produced and stably transformed into Nicotiana benthamiana. Plants harboring the hairpin construct were challenged with CpCDPKV. All non-transgenic N. benthamiana plants developed symptoms of CpCDPKV infection within two weeks post-inoculation. In contrast, none of the inoculated transgenic plants showed symptoms of infection and no viral DNA could be detected by Southern hybridization. A real-time quantitative PCR analysis identified very low-level accumulation of viral DNA in the inoculated transgenic plants. CONCLUSIONS The results presented show that the RNAi-based resistance strategy is useful in protecting plants from a dicot-infecting mastrevirus. The very low levels of virus detected in plant tissue of transgenic plants distal to the inoculation site suggest that virus movement and/or viral replication was impaired leading to plants that showed no discernible signs of virus infection.
Collapse
Affiliation(s)
- Nazia Nahid
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P O Box 577, Jhang Road, Faisalabad, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P O Box 577, Jhang Road, Faisalabad, Pakistan
| | - Rob W Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P O Box 577, Jhang Road, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P O Box 577, Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
21
|
Geering ADW, Thomas JE, Holton T, Hadfield J, Varsani A. Paspalum striate mosaic virus: an Australian mastrevirus from Paspalum dilatatum. Arch Virol 2011; 157:193-7. [DOI: 10.1007/s00705-011-1129-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 09/18/2011] [Indexed: 10/16/2022]
|
22
|
Martin DP, Briddon RW, Varsani A. Recombination patterns in dicot-infecting mastreviruses mirror those found in monocot-infecting mastreviruses. Arch Virol 2011; 156:1463-9. [PMID: 21484422 DOI: 10.1007/s00705-011-0994-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 03/28/2011] [Indexed: 11/28/2022]
Abstract
Recombination has profoundly shaped the evolution of viruses in the family Geminiviridae and has been studied extensively in the two best characterised geminivirus lineages: the dicotyledonous plant infecting begomoviruses and the monocotyledonous plant infecting mastreviruses. Here, we demonstrate that the sizes and distributions of recombination events detectable within the members of a third major geminivirus lineage--the dicotyledonous plant infecting mastreviruses--are very similar to those of the monocot-infecting mastreviruses. This suggests that, despite host range differences, very similar biochemical, ecological and evolutionary factors must underlie recombination patterns in the dicot- and monocot-infecting mastreviruses.
Collapse
Affiliation(s)
- Darren P Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | | | | |
Collapse
|
23
|
Analysis of the sequence of a dicot-infecting mastrevirus (family Geminiviridae) originating from Syria. Virus Genes 2011; 42:422-8. [DOI: 10.1007/s11262-011-0586-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/04/2011] [Indexed: 11/25/2022]
|
24
|
Thomas JE, Parry JN, Schwinghamer MW, Dann EK. Two novel mastreviruses from chickpea (Cicer arietinum) in Australia. Arch Virol 2010; 155:1777-88. [PMID: 20734091 DOI: 10.1007/s00705-010-0763-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 07/17/2010] [Indexed: 11/25/2022]
Abstract
Two novel mastreviruses (genus Mastrevirus; family Geminiviridae), with proposed names chickpea chlorosis virus (CpCV) and chickpea redleaf virus, are described from chickpea (Cicer arietinum) from eastern Australia. The viruses have genomes of 2,582 and 2,605 nucleotides, respectively, and share similar features and organisation with typical dicot-infecting mastreviruses. Two distinct strains of CpCV were suggested by phylogenetic analysis. Additionally, a partial mastrevirus Rep sequence from turnip weed (Rapistrum rugosum) indicated the presence of a distinct strain of Tobacco yellow dwarf virus (TYDV). In phylogenetic analyses, isolates of Bean yellow dwarf virus, Chickpea chlorotic dwarf Pakistan virus and Chickpea chlorotic dwarf Sudan virus from southern and northern Africa and south-central and western Asia clustered separately from these three viruses from Australia. An Australian, eastern Asian, or south-eastern Asian origin for the novel mastreviruses and TYDV is discussed.
Collapse
Affiliation(s)
- J E Thomas
- Department of Employment, Brisbane, Australia.
| | | | | | | |
Collapse
|
25
|
A novel species of mastrevirus (family Geminiviridae) isolated from Digitaria didactyla grass from Australia. Arch Virol 2010; 155:1529-34. [DOI: 10.1007/s00705-010-0759-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 07/12/2010] [Indexed: 11/26/2022]
|
26
|
Yu X, Li B, Fu Y, Jiang D, Ghabrial SA, Li G, Peng Y, Xie J, Cheng J, Huang J, Yi X. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc Natl Acad Sci U S A 2010; 107:8387-8392. [PMID: 20404139 PMCID: PMC2889581 DOI: 10.1073/pnas.0913535107] [Citation(s) in RCA: 407] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycoviruses are viruses that infect fungi and have the potential to control fungal diseases of crops when associated with hypovirulence. Typically, mycoviruses have double-stranded (ds) or single-stranded (ss) RNA genomes. No mycoviruses with DNA genomes have previously been reported. Here, we describe a hypovirulence-associated circular ssDNA mycovirus from the plant pathogenic fungus Sclerotinia sclerotiorum. The genome of this ssDNA virus, named Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), is 2166 nt, coding for a replication initiation protein (Rep) and a coat protein (CP). Although phylogenetic analysis of Rep showed that SsHADV-1 is related to geminiviruses, it is notably distinct from geminiviruses both in genome organization and particle morphology. Polyethylene glycol-mediated transfection of fungal protoplasts was successful with either purified SsHADV-1 particles or viral DNA isolated directly from infected mycelium. The discovery of an ssDNA mycovirus enhances the potential of exploring fungal viruses as valuable tools for molecular manipulation of fungi and for plant disease control and expands our knowledge of global virus ecology and evolution.
Collapse
Affiliation(s)
- Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yanping Fu
- Provincial Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Said A. Ghabrial
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546-0312; and
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Youliang Peng
- State Key Laboratories for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Jiatao Xie
- Provincial Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Jiasen Cheng
- Provincial Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Junbin Huang
- Provincial Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xianhong Yi
- Provincial Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| |
Collapse
|
27
|
Nahid N, Amin I, Mansoor S, Rybicki EP, van der Walt E, Briddon RW. Two dicot-infecting mastreviruses (family Geminiviridae) occur in Pakistan. Arch Virol 2008; 153:1441-51. [PMID: 18566736 DOI: 10.1007/s00705-008-0133-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/30/2008] [Indexed: 10/21/2022]
Abstract
Most mastreviruses (family Geminiviridae) infect monocotyledonous hosts and are transmitted by leafhopper vectors. Only two mastrevirus species, Tobacco yellow dwarf virus from Australia and Bean yellow dwarf virus (BeYDV) from South Africa, have been identified whose members infect dicotyledonous plants. We have identified two distinct mastreviruses in chickpea stunt disease (CSD)-affected chickpea originating from Pakistan. The first is an isolate of BeYDV, previously only known to occur in South Africa. The second is a member of a new species with the BeYDV isolates as its closest relatives. A PCR-based diagnostic test was developed to differentiate these two virus species. Our results show that BeYDV plays no role in the etiology of CSD in Pakistan, while the second virus occurs widely in chickpea across Pakistan. A genomic clone of the new virus was infectious to chickpea (Cicer arietinum L.) and induced symptoms typical of CSD. We propose the use of the name Chickpea chlorotic dwarf Pakistan virus for the new species. The significance of these findings with respect to our understanding of the evolution, origin and geographic spread of dicot-infecting mastreviruses is discussed.
Collapse
Affiliation(s)
- N Nahid
- Plant Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
To characterize a virus at the molecular and biological levels, it is necessary to produce an infectious clone. For most of the Geminiviridae, cloning of the genome is relatively easy because of their small genomes and the presence of the virus double-stranded (replicative) DNA form in infected plants. Indeed, the presence of conserved sequences between species in the genera Begomovirus, Curtovirus, and Topocuvirus allows the PCR amplification of most genomes using degenerate "universal" primers. Unlike the other genera, no universal primers are reported that are suitable for all mastreviruses and alternative, more time-consuming methods must be used. This chapter describes a method that has proven successful for the preparation and testing of infectious clones for a wide range of mastreviruses. It has been designed to ensure its applicability for laboratories throughout the world. Methods are presented for the isolation of total plant DNA and the purification of the replicative (cccDNA) form of the virus using a commercially available plasmid purification kit. Restriction enzyme digestion of the purified DNA using a restriction enzyme with a unique site in the viral genome allows the cloning of a full-length copy of the genome into a high copy number vector, thereby providing a template for sequence analysis and further cloning. The only efficient method for confirming infectivity of mastrevirus clones is using agroinoculation (also termed agroinfection). This requires the production of a multimeric copy of the genome in a T-DNA binary vector, transformation of specific Agrobacterium strains with the binary vector clone, and inoculation of specific regions of seedlings, or seeds, of the appropriate host species. These specific requirements are described and discussed.
Collapse
|
29
|
Halley-Stott RP, Tanzer F, Martin DP, Rybicki EP. The complete nucleotide sequence of a mild strain of Bean yellow dwarf virus. Arch Virol 2007; 152:1237-40. [PMID: 17347772 DOI: 10.1007/s00705-006-0933-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
Affiliation(s)
- R P Halley-Stott
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | | | | | | |
Collapse
|
30
|
Köklü G, Ramsell JNE, Kvarnheden A. The complete genome sequence for a Turkish isolate of Wheat dwarf virus (WDV) from barley confirms the presence of two distinct WDV strains. Virus Genes 2006; 34:359-66. [PMID: 16927119 DOI: 10.1007/s11262-006-0029-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 07/11/2006] [Indexed: 11/29/2022]
Abstract
The complete genome for a barley isolate of Wheat dwarf virus (WDV) from Tekirdağ, Turkey, WDV-Bar[TR], was isolated and sequenced. The genome was found to be 2739 nucleotides long, which is shorter than wheat-infecting WDV isolates, and with a genome organization typical for mastreviruses. The complete genome of WDV-Bar[TR] showed 83-84% nucleotide identity to wheat isolates of WDV, with the non-coding regions SIR and LIR least conserved (72-74% identity). The deduced amino acid sequences for Rep and RepA were most conserved (92-93%), while CP and MP were less conserved (87% and 79-80%, respectively). The identity to other mastrevirus species was significantly lower. In phylogenetic analyses, the WDV isolates formed a distinct clade, well separated from the other mastreviruses with the wheat isolates grouping closely together. Phylogenetic analyses of WDV-Bar[TR], the partial sequence for another Turkish barley isolate (WDV-Bar[TR2]) and published WDV sequences further supported the division of WDV into two distinct strains. The barley strain could also be divided into three subtypes based on relationships and geographic origin. This study shows the first complete published sequence for a barley isolate of WDV.
Collapse
Affiliation(s)
- Gassan Köklü
- Department of Plant Protection, Trakya University, Tekirdağ Faculty of Agriculture, 59030 Tekirdağ, Turkey.
| | | | | |
Collapse
|
31
|
Markham PG, Bedford ID, Liu S, Pinner MS. The transmission of geminiviruses byBemisia tabaci. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780420209] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Hefferon KL, Fan Y. Expression of a vaccine protein in a plant cell line using a geminivirus-based replicon system. Vaccine 2004; 23:404-10. [PMID: 15530687 DOI: 10.1016/j.vaccine.2004.04.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 04/09/2004] [Accepted: 04/13/2004] [Indexed: 11/30/2022]
Abstract
Edible vaccines have been generated from both transgenic plants as well as from plant viral vectors. Here, we have taken the best attributions of both systems and designed a minimalized version of the bean yellow dwarf geminivirus (BeYDV)-based replicon consisting of the cis-acting elements required for BeYDV replication as a means to express foreign genes in a plant cell line. Replication can be switched on at high levels upon expression of the BeYDV Rep protein, and gene expression enhanced enormously. Construction of an expression cassette encoding a synthetic vaccine gene and analysis of expression levels of a vaccine protein in a plant cell line system are described.
Collapse
Affiliation(s)
- Kathleen L Hefferon
- Cornell Research Foundation, Cornell University, 20 Thornwood Dr., Ithaca, NY 14850, USA.
| | | |
Collapse
|
33
|
Hefferon KL, Dugdale B. Independent expression of Rep and RepA and their roles in regulating bean yellow dwarf virus replication. J Gen Virol 2003; 84:3465-3472. [PMID: 14645928 DOI: 10.1099/vir.0.19494-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bean yellow dwarf virus (BeYDV) is a mastrevirus specific for dicotyledenous hosts. It contains four ORFs encoding a movement protein, a coat protein, and two Rep gene products, Rep and RepA, which are encoded by two overlapping ORFs. In this study, the roles of Rep and RepA in regulating replication of the BeYDV-based replicon were investigated by uncoupling them and placing Rep and RepA each under constitutive promoter control. Constitutive expression of both Rep and RepA supported replication and enhanced gene expression. When a reporter plasmid containing the Rep gene in the context of its native promoter was supplemented with additional Rep protein, replication was enhanced but the increase in gene expression was found to be more modest. Furthermore, expression of constitutively expressed RepA alone was found to reduce replication of this reporter construct as well as delay BeYDV replication in general. The effect of a RepA mutant with an altered retinoblastoma-related-protein binding motif on the efficiency of BeYDV replication was also examined. This mutant was found to severely diminish replication efficiency. Finally, the relationship of BeYDV coat protein to virus replication and reporter gene expression was investigated. Addition of coat protein increased accumulation of single-stranded DNA and had a detrimental effect on reporter gene expression.
Collapse
Affiliation(s)
- Kathleen L Hefferon
- Cornell Research Foundation, Cornell University, 20 Thornwood Drive, Ithaca, NY 14850, USA
| | - Ben Dugdale
- Queensland Agricultural Biotechnology Institute, DPI Queensland, 80 Ann Street, Brisbane, Queensland 4001, Australia
| |
Collapse
|
34
|
Porta C, Lomonossoff GP. Viruses as vectors for the expression of foreign sequences in plants. Biotechnol Genet Eng Rev 2003; 19:245-91. [PMID: 12520880 DOI: 10.1080/02648725.2002.10648031] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Claudine Porta
- Horticulture Research International Wellesbourne, Warwick CV35 9EF, UK.
| | | |
Collapse
|
35
|
Mor TS, Moon YS, Palmer KE, Mason HS. Geminivirus vectors for high-level expression of foreign proteins in plant cells. Biotechnol Bioeng 2003; 81:430-7. [PMID: 12491528 DOI: 10.1002/bit.10483] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bean yellow dwarf virus (BeYDV) is a monopartite geminivirus that can infect dicotyledonous plants. We have developed a high-level expression system that utilizes elements of the replication machinery of this single-stranded DNA virus. The replication initiator protein (Rep) mediates release and replication of a replicon from a DNA construct ("LSL vector") that contains an expression cassette for a gene of interest flanked by cis-acting elements of the virus. We used tobacco NT1 cells and biolistic delivery of plasmid DNA for evaluation of replication and expression of reporter genes contained within an LSL vector. By codelivery of a GUS reporter-LSL vector and a Rep-supplying vector, we obtained up to 40-fold increase in expression levels compared to delivery of the reporter-LSL vectors alone. High-copy replication of the LSL vector was correlated with enhanced expression of GUS. Rep expression using a whole BeYDV clone, a cauliflower mosaic virus 35S promoter driving either genomic rep or an intron-deleted rep gene, or 35S-rep contained in the LSL vector all achieved efficient replication and enhancement of GUS expression. We anticipate that this system can be adapted for use in transgenic plants or plant cell cultures with appropriately regulated expression of Rep, with the potential to greatly increase yield of recombinant proteins.
Collapse
Affiliation(s)
- Tsafrir S Mor
- Boyce Thompson Institute for Plant Research Inc., Cornell University, Tower Road, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
36
|
Wanitchakorn R, Hafner GJ, Harding RM, Dale JL. Functional analysis of proteins encoded by banana bunchy top virus DNA-4 to -6. J Gen Virol 2000; 81:299-306. [PMID: 10640570 DOI: 10.1099/0022-1317-81-1-299] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Green fluorescent protein (GFP)-tagging was used to determine the intracellular localization pattern of the proteins encoded by banana bunchy top virus (BBTV) DNA-3, -4 and -6. The protein encoded by BBTV DNA-4, which possesses a hydrophobic N terminus, was found to localize exclusively to the cell periphery while the proteins encoded by BBTV DNA-3 and -6 were found in both the nucleus and the cytoplasm. Co-expression of the DNA-4 protein and the proteins encoded by BBTV DNA-3 and -6 revealed that the DNA-4 protein was able to re-locate the DNA-6 protein, but not the DNA-3 protein, to the cell periphery. The 29 amino acid N-terminal hydrophobic region of the DNA-4 gene product appeared to be essential for specific localization of this protein since deletion of this region abolished its ability to localize to the cell periphery. These results indicate that BBTV may utilize a system analogous to that of the begomoviruses with the BBTV DNA-6 protein acting as a nuclear shuttle protein (NSP) while the DNA-4 protein transports the NSP-DNA complexes to the cell periphery for intercellular transport. The protein encoded by BBTV DNA-5 was found to contain an LXCXE motif and yeast two-hybrid analysis revealed that the DNA-5 protein has retinoblastoma (Rb)-binding activity. This activity was dependent on an intact LXCXE motif since specific mutations to either the C or E residue completely abolished Rb-binding activity. These results indicate that the gene product of BBTV DNA-5 is an Rb-binding-like protein and may play an important role in host-cell cycle manipulation.
Collapse
Affiliation(s)
- R Wanitchakorn
- Centre for Molecular Biotechnology, School of Life Sciences, Queensland University of Technology, George Street, Brisbane 4001, Australia
| | | | | | | |
Collapse
|
37
|
Liu L, Saunders K, Thomas CL, Davies JW, Stanley J. Bean yellow dwarf virus RepA, but not rep, binds to maize retinoblastoma protein, and the virus tolerates mutations in the consensus binding motif. Virology 1999; 256:270-9. [PMID: 10191192 DOI: 10.1006/viro.1999.9616] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has previously been reported that complementary-sense gene products of wheat dwarf virus (WDV), a geminivirus of the genus Mastrevirus that infects monocotyledonous plants, bind to human and maize retinoblastoma (Rb) protein. Rb proteins control cell-cycle progression by sequestering transcription factors required for entry into S-phase, suggesting that the virus modifies the cellular environment to produce conditions suitable for viral DNA replication. Using a yeast two-hybrid assay, we have investigated whether the complementary-sense gene products of bean yellow dwarf virus, a mastrevirus that is adapted to dicotyledonous plants, also bind maize Rb protein. We demonstrate that whereas RepA binds to Rb protein, Rep does not, suggesting that RepA alone regulates host gene expression and progression of cells to S-phase. RepA mutants containing L --> I, C --> S, C --> G, and E --> Q mutations within the consensus Rb protein binding motif LXCXE retained the ability to bind to Rb, but with reduced efficiency. Most notably, the E --> Q mutation reduced binding by approximately 95%. Nonetheless, all LXCXE mutants were able to replicate in tobacco protoplasts and to systemically infect Nicotiana benthamiana and bean, in which they produced wild-type symptoms.
Collapse
Affiliation(s)
- L Liu
- Department of Virus Research, John Innes Centre, Norwich Research Park, Colney, NR4 7UH, United Kingdom
| | | | | | | | | |
Collapse
|
38
|
Atkinson RG, Gleave LRFBAP, Janssen BJ, Morris BAM. Post-transcriptional silencing of chalcone synthase in petunia using a geminivirus-based episomal vector. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:593-604. [PMID: 29368805 DOI: 10.1046/j.1365-313x.1998.00211.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A vector that produces DNA replicons (multicopy plant episomes) was constructed using elements of the geminivirus tobacco yellow dwarf virus (TYDV). All plant cells contain an integrated chromosomal T-DNA copy of the TYDV elements that provides a template for the production of episomes in the cell nucleus. Transgenic Petunia hybrida plants containing a CaMV 35S promoter-driven chalcone synthase A (ChsA) gene cloned into the episomal vector produced flowers with a white-spotted phenotype at high frequency. The spots were found at random locations in the petals and occurred in corresponding positions in both the upper and lower epidermis, indicating that the spots were non-clonal. The spotted phenotype was somatically stable and was inherited through meiosis. In white-spotted flower tissue, steady-state ChsA mRNA levels were downregulated but rates of RNA transcription were unaffected, suggesting that the phenotype resulted from post-transcriptional gene silencing of the endogenous and episomal ChsA genes. Increases in both the frequency and extent of gene silencing in flowers correlated with increases in episome copy number in mature flowers, flower buds and young and fully expanded leaves. Relatively small increases in episome copy number (less than threefold) appeared sufficient to trigger the gene-silenced phenotype.
Collapse
Affiliation(s)
- Ross G Atkinson
- Gene Transfer and Expression Group, Horticulture and Food Research Institute of New Zealand, Private Bag 92169, Auckland, New Zealand
| | - Lara R F Bieleski Andrew P Gleave
- Gene Transfer and Expression Group, Horticulture and Food Research Institute of New Zealand, Private Bag 92169, Auckland, New Zealand
| | - Bart-Jan Janssen
- Gene Transfer and Expression Group, Horticulture and Food Research Institute of New Zealand, Private Bag 92169, Auckland, New Zealand
| | - Bret A M Morris
- Gene Transfer and Expression Group, Horticulture and Food Research Institute of New Zealand, Private Bag 92169, Auckland, New Zealand
| |
Collapse
|
39
|
Idris AM, Brown JK. Sinaloa Tomato Leaf Curl Geminivirus: Biological and Molecular Evidence for a New Subgroup III Virus. PHYTOPATHOLOGY 1998; 88:648-657. [PMID: 18944936 DOI: 10.1094/phyto.1998.88.7.648] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT The biological and molecular properties of Sinaloa tomato leaf curl virus (STLCV) were investigated in line with the hypothesis that STLCV is a previously uncharacterized, whitefly-transmitted geminivirus from North America. STLCV causes yellow leaf curl symptoms in tomato and yellow-green foliar mottle in pepper. Five species belonging to two plant families were STLCV experimental hosts. STLCV had a persistent relationship with its whitefly vector, Bemisia tabaci. Polymerase chain reaction fragments of STLCV common region (CR) sequences of the A or B genomic components and the viral coat protein gene (AV1) were molecularly cloned and sequenced. The STLCV A- and B-component CR sequences (174 nucleotides each) shared 97.9% identity and contained identical cis elements putatively involved in transcriptional regulation and an origin of replication (the AC cleavage site within the loop of the hairpin structure and two direct repeat sequences thought to constitute the Rep binding motif), which collectively are diagnostic for subgroup III geminiviruses. The STLCV CR sequence shared 23.1 to 77.6% identity with CR sequences of representative geminiviridae, indicating the STLCV CR sequence is unique. Molecular phylogenetic analysis of CR or AV1 sequences of STLCV and the respective sequences of 31 familial members supported the placement of STLCV as a unique bipartite, subgroup III virus most closely related to other viruses from the Western Hemisphere. STLCV is provisionally described as a new species within the genus Begomovirus, family Geminiviridae.
Collapse
|
40
|
Affiliation(s)
- K E Palmer
- Department of Microbiology, University of Cape Town, Western Cape, South Africa
| | | |
Collapse
|
41
|
Abstract
Gene-by-gene phylogenetic analyses of all of the viruses for which sequences are known, as well as analysis of the coding capacities, clearly demonstrated that there are two major groups of viruses in the taxonomic family Geminiviridae. These are of the Subgroup I type, with one genomic component, which mainly infect monocots and are leafhopper-transmitted; and of the Subgroup III type, with one or two genomic components, which infect dicots and are whitefly-transmitted. The existence of "New World" and "Old World" clusters of Subgroup III viruses was confirmed, as well as the possession by the latter of an AV1 ORF not present in New World viruses. A third minor generic group is defined by viruses of the Subgroup II type, which have a single genomic component, infect dicots, and are leafhopper-transmitted. The latter group appear to be the result of an ancient recombination event between a Subgroup III-like and a Subgroup I-like virus. The question of whether one- and two-component Subgroup III viruses should be in the same taxon appears hard to resolve: the only distinguishing feature of the one-component Subgroup III viruses is that they apparently have no second component, as gene-for-gene comparisons of the "A" components of the viruses with other Subgroup III viruses place them within a larger Old World group of viruses, most of which are two component. The possibility exists that these viruses may either have independently lost their B components, or possess a B component that has simply not yet been found. Possible nomenclatural changes to accommodate viruses with the same name which are not closely related to one another, and possible evolutionary scenarios to account for the observed familial, generic and specific diversity of geminiviruses, are discussed.
Collapse
Affiliation(s)
- E P Rybicki
- Department of Microbiology, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
42
|
Hughes FL, Rybicki EP, Kirby R. Complete nucleotide sequence of sugarcane streak Monogeminivirus. Arch Virol 1993; 132:171-82. [PMID: 8352656 DOI: 10.1007/bf01309851] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The complete nucleotide sequence of the genome of the Monogeminivirus sugarcane streak virus (SSV) was determined from cloned replicative form DNA. The genome is contained in one DNA circle of 2,758 nucleotides, and has four open reading frames with the potential to encode proteins of MW > 10 kDa: two in the viral (+) sense and two in the complementary (-) sense. Each open reading frame has a counterpart among the open reading frames reported for other Monogeminiviruses. A potential binding site for a DNA replication primer and potential transcriptional control sequences were identified on the (+) strand, and a possible intron on the (-) strand. Phylogenetic analysis of coat protein and replication-associated protein sequences of SSV and other grass-infecting geminiviruses indicate that SSV, although distinct from any other virus, is part of an "African streak virus subgroup" of Monogeminiviruses.
Collapse
Affiliation(s)
- F L Hughes
- Department of Microbiology, University of Cape Town, Rondebosch, South Africa
| | | | | |
Collapse
|
43
|
Abstract
Geminiviruses are being used as convenient autonomously replicating vectors for foreign gene amplification in plants. Using tissue culture techniques, they have been adapted for the analysis of the regulation of gene expression in a wide range of hosts, including both mono- and dicotyledonous species. In monocotyledonous plants that are particularly recalcitrant to transformation, geminivirus symptom-induction has been used as a sensitive marker for DNA uptake.
Collapse
Affiliation(s)
- J Stanley
- Department of Virus Research, John Innes Institute, Norwich, UK
| |
Collapse
|