1
|
Soto Linan V, Rioux V, Peralta M, Dupré N, Hébert M, Lévesque M. Early detection of Parkinson's disease: Retinal functional impairments as potential biomarkers. Neurobiol Dis 2025; 208:106872. [PMID: 40090470 DOI: 10.1016/j.nbd.2025.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/09/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025] Open
Abstract
BACKGROUND Parkinson's disease is typically diagnosed after substantial neurodegeneration despite early non-motor symptoms manifesting decades earlier. These changes offer a promising avenue for diagnostic exploration, especially within the eye, which has been proposed as a "window to the brain." OBJECTIVE The aim was to identify biomarkers by validating the use of electroretinography, a non-invasive technique, to detect early retinal function anomalies reflecting central dysfunction. METHODS Homozygous M83 transgenic mice (n = 10 males, 11 females), overexpressing human A53T α-synuclein, underwent behavioral tests and electroretinography measurements. Histological evaluation was performed at four months to analyze synucleinopathies and neurodegeneration. Electroretinography was also conducted with idiopathic PD patients (mean age 63.35 ± 7.73; disease duration 4.15 ± 2.06; H&Y score 2.07 ± 0.59; n = 12 males, 8 females) and healthy age-matched controls (mean age 61.65 ± 8.39; n = 9 males, 11 females). RESULTS Rodent electroretinography revealed reduced photopic b-wave, PhNR b-wave, and PhNR-wave amplitudes at two and four months, particularly in females, indicating bipolar and retinal ganglion cell impairment. Based on retinal histological assessment, these changes might arise from α-synuclein pathology occurring in outer retinal layers. Likewise, the scotopic b-wave and PhNR waveform were similarly impaired in female participants with Parkinson's disease. The scotopic oscillatory potentials isolated further identified an attenuated amacrine cell output in females. CONCLUSIONS Findings from both mice and human cohorts indicate that retinal functional impairments can be detected early in the progression of Parkinson's disease, particularly among females. These tools show promise in facilitating early diagnosis, disease monitoring, therapeutic intervention, and ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Victoria Soto Linan
- Department of Psychiatry and Neurosciences, Université Laval, 1050 Av. de la Médecine, Québec G1V 0A6, Québec, Canada; Integrative Neuroscience and Experimental Therapies Axis, CERVO Brain Research Center, 2301 Av. D'Estimauville, Québec G1E 1T2, Québec, Canada.
| | - Véronique Rioux
- Integrative Neuroscience and Experimental Therapies Axis, CERVO Brain Research Center, 2301 Av. D'Estimauville, Québec G1E 1T2, Québec, Canada.
| | - Modesto Peralta
- Integrative Neuroscience and Experimental Therapies Axis, CERVO Brain Research Center, 2301 Av. D'Estimauville, Québec G1E 1T2, Québec, Canada.
| | - Nicolas Dupré
- Neuroscience Axis, CHU de Québec-Université Laval, 2705 Bd Laurier, Québec G1V 4G2, Québec, Canada; Department of Medicine, Faculty of Medicine, Université Laval, 1050 Av. de la Médecine, Québec G1V 0A6, Québec, Canada.
| | - Marc Hébert
- Department of Ophthalmology and Otorhinolaryngology, Université Laval, 1050 Av. de la Médecine, Québec G1V 0A6, Québec, Canada; Clinical and Cognitive Neuroscience Axis, CERVO Brain Research Center, 2301 Av. D'Estimauville, Québec G1E 1T2, Québec, Canada.
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Université Laval, 1050 Av. de la Médecine, Québec G1V 0A6, Québec, Canada; Integrative Neuroscience and Experimental Therapies Axis, CERVO Brain Research Center, 2301 Av. D'Estimauville, Québec G1E 1T2, Québec, Canada.
| |
Collapse
|
2
|
Casciano F, Zauli E, Celeghini C, Caruso L, Gonelli A, Zauli G, Pignatelli A. Retinal Alterations Predict Early Prodromal Signs of Neurodegenerative Disease. Int J Mol Sci 2024; 25:1689. [PMID: 38338966 PMCID: PMC10855697 DOI: 10.3390/ijms25031689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Neurodegenerative diseases are an increasingly common group of diseases that occur late in life with a significant impact on personal, family, and economic life. Among these, Alzheimer's disease (AD) and Parkinson's disease (PD) are the major disorders that lead to mild to severe cognitive and physical impairment and dementia. Interestingly, those diseases may show onset of prodromal symptoms early after middle age. Commonly, the evaluation of these neurodegenerative diseases is based on the detection of biomarkers, where functional and structural magnetic resonance imaging (MRI) have shown a central role in revealing early or prodromal phases, although it can be expensive, time-consuming, and not always available. The aforementioned diseases have a common impact on the visual system due to the pathophysiological mechanisms shared between the eye and the brain. In Parkinson's disease, α-synuclein deposition in the retinal cells, as well as in dopaminergic neurons of the substantia nigra, alters the visual cortex and retinal function, resulting in modifications to the visual field. Similarly, the visual cortex is modified by the neurofibrillary tangles and neuritic amyloid β plaques typically seen in the Alzheimer's disease brain, and this may reflect the accumulation of these biomarkers in the retina during the early stages of the disease, as seen in postmortem retinas of AD patients. In this light, the ophthalmic evaluation of retinal neurodegeneration could become a cost-effective method for the early diagnosis of those diseases, overcoming the limitations of functional and structural imaging of the deep brain. This analysis is commonly used in ophthalmic practice, and interest in it has risen in recent years. This review will discuss the relationship between Alzheimer's disease and Parkinson's disease with retinal degeneration, highlighting how retinal analysis may represent a noninvasive and straightforward method for the early diagnosis of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Claudio Celeghini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environment and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Arianna Gonelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Angela Pignatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy
| |
Collapse
|
3
|
Suh A, Ong J, Kamran SA, Waisberg E, Paladugu P, Zaman N, Sarker P, Tavakkoli A, Lee AG. Retina Oculomics in Neurodegenerative Disease. Ann Biomed Eng 2023; 51:2708-2721. [PMID: 37855949 DOI: 10.1007/s10439-023-03365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023]
Abstract
Ophthalmic biomarkers have long played a critical role in diagnosing and managing ocular diseases. Oculomics has emerged as a field that utilizes ocular imaging biomarkers to provide insights into systemic diseases. Advances in diagnostic and imaging technologies including electroretinography, optical coherence tomography (OCT), confocal scanning laser ophthalmoscopy, fluorescence lifetime imaging ophthalmoscopy, and OCT angiography have revolutionized the ability to understand systemic diseases and even detect them earlier than clinical manifestations for earlier intervention. With the advent of increasingly large ophthalmic imaging datasets, machine learning models can be integrated into these ocular imaging biomarkers to provide further insights and prognostic predictions of neurodegenerative disease. In this manuscript, we review the use of ophthalmic imaging to provide insights into neurodegenerative diseases including Alzheimer Disease, Parkinson Disease, Amyotrophic Lateral Sclerosis, and Huntington Disease. We discuss recent advances in ophthalmic technology including eye-tracking technology and integration of artificial intelligence techniques to further provide insights into these neurodegenerative diseases. Ultimately, oculomics opens the opportunity to detect and monitor systemic diseases at a higher acuity. Thus, earlier detection of systemic diseases may allow for timely intervention for improving the quality of life in patients with neurodegenerative disease.
Collapse
Affiliation(s)
- Alex Suh
- Tulane University School of Medicine, New Orleans, LA, USA.
| | - Joshua Ong
- Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sharif Amit Kamran
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Ethan Waisberg
- University College Dublin School of Medicine, Belfield, Dublin, Ireland
| | - Phani Paladugu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nasif Zaman
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Prithul Sarker
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Alireza Tavakkoli
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, 6560 Fannin St #450, Houston, TX, 77030, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M College of Medicine, Bryan, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
4
|
Polat OA, Gultekin M, Sener H, Ozer F, Arda H. Retinal dysfunction in Parkinson's disease-results of the extended protocol for photopic negative response (PHNR) full-field electroretinogram (ERG). Doc Ophthalmol 2023; 147:89-98. [PMID: 37515709 DOI: 10.1007/s10633-023-09945-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/06/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND We investigated whether the photopic negative response (PhNR) in the electroretinogram (ERG) was affected in Parkinson's disease (PD) patients and whether it was associated with retinal changes on optical coherence tomography (OCT). METHODS Thirty-two patients with PD and 31 age and sex-matched healthy controls from a single tertiary centre were included in the study. Hoehn and Yahr scale scores and the presence of REM sleep behaviour were recorded. PhNR, a-wave and b-wave responses in photopic ERG (red on blue background) and retinal layer thicknesses in OCT were obtained. RESULTS The mean age was 61 ± 10.4 in the PD group (female/male: 18/14) and 60.9 ± 7 in the control group (female/male: 18/13). The amplitudes of the PhNR, a- and b-waves in the ERG were significantly decreased in the PD group, but the implicit times were not significantly different. BCVA was significantly correlated with Hoehn and Yahr scores (p < 0.001, r = - 0.596). There was a significant correlation between BCVA and a-wave amplitude (p = 0.047, r = - 0.251). On OCT analysis, the thickness of the nasal INL was increased, and the temporal and inferior OPL and temporal peripapillary RNFL were decreased in the PD group compared to healthy controls (p = 0.032, p = 0.002, p = 0.016 and p = 0.012, respectively). CONCLUSION This study demonstrated reduced a-wave, b-wave and PhNR-wave amplitudes on ERG measurements in PD patients. These findings suggest that the whole ERG response, not just the PhNR, is attenuated in patient with PD, suggesting a possible involvement of the visual system in the disease.
Collapse
Affiliation(s)
- Osman Ahmet Polat
- Department of Ophthalmology, Erciyes University Medical Faculty, Kayseri, Turkey.
| | - Murat Gultekin
- Department of Neurology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Hidayet Sener
- Department of Ophthalmology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Furkan Ozer
- Department of Ophthalmology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Hatice Arda
- Department of Ophthalmology, Erciyes University Medical Faculty, Kayseri, Turkey
| |
Collapse
|
5
|
Elanwar R, Al Masry H, Ibrahim A, Hussein M, Ibrahim S, Masoud MM. Retinal functional and structural changes in patients with Parkinson's disease. BMC Neurol 2023; 23:330. [PMID: 37723424 PMCID: PMC10506234 DOI: 10.1186/s12883-023-03373-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Visual dysfunction have been well reported as one of the non-motor symptoms in Parkinson's disease (PD). The aim of this study was to evaluate the functional and structural changes in the retina in patients with PD, and to correlate these changes with disease duration and motor dysfunction. METHODS For this case-control study, we recruited patients fulfilling the diagnostic criteria for idiopathic PD according to British Brain Bank criteria, aged between 50 and 80 years. Age- and sex-matched healthy controls aged between 50 and 80 years were also recruited. Motor function for PD patients was assessed using Modified Hoehn and Yahr staging scale (H & Y staging) and Unified Parkinson's Disease Rating Scale (UPDRS). Optical Coherence Tomography (OCT) and full field electroretinogram (ff-ERG) were done to all participants. RESULTS Data from 50 patients and 50 healthy controls were included in the analysis. Patients with idiopathic Parkinson's had significantly reduced peripapillary retinal nerve fiber layer (RNFL) thickness and macular ganglion cell complex (GCC) thickness compared to healthy controls (P-value < 0.05 in all parameters). They also had significantly delayed latency and reduced amplitude in both dark-adapted rods and the light-adapted cone for both a & b waves compared to healthy controls (P-value < 0.001 in all parameters). There were statistically significant negative correlations between disease duration, and left superior, right inferior and right & left average RNFL thickness [(r) coef. = -0.327, -0.301, -0.275, and -0.285 respectively]. UPDRS total score was negatively correlated with the amplitude of light-adapted of both RT and LT a & b wave and with dark-adapted RT b-wave latency [(r) coef. = -0.311, -0.395, -0.362, -0.419, and -0.342]. CONCLUSION The retinal structure and function were significantly affected in patients with PD in comparison to healthy controls. There was a significant impact of disease duration on retinal thickness, and there was a significant negative correlation between the degree of motor dysfunction in patients with PD and retinal function.
Collapse
Affiliation(s)
- Rehab Elanwar
- Neuro Diagnostic Research Center, Beni-Suef University, Beni-Suef, Egypt
| | - Hatem Al Masry
- Department of Neurology, Beni-Suef University, Salah Salem Street, Beni-Suef, Egypt
| | - Amna Ibrahim
- Department of Neurology, Beni-Suef University, Salah Salem Street, Beni-Suef, Egypt
| | - Mona Hussein
- Department of Neurology, Beni-Suef University, Salah Salem Street, Beni-Suef, Egypt.
| | - Sahar Ibrahim
- Department of Ophthalmology, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mohammed M Masoud
- Department of Neurology, Beni-Suef University, Salah Salem Street, Beni-Suef, Egypt
| |
Collapse
|
6
|
Constable PA, Lim JKH, Thompson DA. Retinal electrophysiology in central nervous system disorders. A review of human and mouse studies. Front Neurosci 2023; 17:1215097. [PMID: 37600004 PMCID: PMC10433210 DOI: 10.3389/fnins.2023.1215097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
The retina and brain share similar neurochemistry and neurodevelopmental origins, with the retina, often viewed as a "window to the brain." With retinal measures of structure and function becoming easier to obtain in clinical populations there is a growing interest in using retinal findings as potential biomarkers for disorders affecting the central nervous system. Functional retinal biomarkers, such as the electroretinogram, show promise in neurological disorders, despite having limitations imposed by the existence of overlapping genetic markers, clinical traits or the effects of medications that may reduce their specificity in some conditions. This narrative review summarizes the principal functional retinal findings in central nervous system disorders and related mouse models and provides a background to the main excitatory and inhibitory retinal neurotransmitters that have been implicated to explain the visual electrophysiological findings. These changes in retinal neurochemistry may contribute to our understanding of these conditions based on the findings of retinal electrophysiological tests such as the flash, pattern, multifocal electroretinograms, and electro-oculogram. It is likely that future applications of signal analysis and machine learning algorithms will offer new insights into the pathophysiology, classification, and progression of these clinical disorders including autism, attention deficit/hyperactivity disorder, bipolar disorder, schizophrenia, depression, Parkinson's, and Alzheimer's disease. New clinical applications of visual electrophysiology to this field may lead to earlier, more accurate diagnoses and better targeted therapeutic interventions benefiting individual patients and clinicians managing these individuals and their families.
Collapse
Affiliation(s)
- Paul A. Constable
- College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, SA, Australia
| | - Jeremiah K. H. Lim
- Discipline of Optometry, School of Allied Health, University of Western Australia, Perth, WA, Australia
| | - Dorothy A. Thompson
- The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Trust, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
7
|
Alves JN, Westner BU, Højlund A, Weil RS, Dalal SS. Structural and functional changes in the retina in Parkinson's disease. J Neurol Neurosurg Psychiatry 2023; 94:448-456. [PMID: 36806480 PMCID: PMC7614544 DOI: 10.1136/jnnp-2022-329342] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/05/2023] [Indexed: 02/19/2023]
Abstract
Parkinson's disease is caused by degeneration of dopaminergic neurons, originating in the substantia nigra pars compacta and characterised by bradykinesia, rest tremor and rigidity. In addition, visual disorders and retinal abnormalities are often present and can be identified by decreased visual acuity, abnormal spatial contrast sensitivity or even difficulty in complex visual task completion. Because of their early onset in patients with de novo Parkinson's disease, the anatomical retinal changes and electrophysiological modification could be valuable markers even at early stages of the disease. However, due to the concomitant occurrence of normal ageing, the relevance and specificity of these predictive values can be difficult to interpret. This review examines retinal dysfunction arising in Parkinson's disease. We highlight the electrophysiological delays and decreased amplitude in the electroretinography recorded in patients and animal models. We relate this to coexisting anatomical changes such as retinal nerve fibre layer and macular thinning, measured using optical coherence tomography, and show that functional measures are more consistent overall than optical coherence-measured structural changes. We review the underlying chemical changes seen with loss of retinal dopaminergic neurons and the effect of levodopa treatment on the retina in Parkinson's disease. Finally, we consider whether retinal abnormalities in Parkinson's disease could have a role as potential markers of poorer outcomes and help stratify patients at early stages of the disease. We emphasise that retinal measures can be valuable, accessible and cost-effective methods in the early evaluation of Parkinson's disease pathogenesis with potential for patient stratification.
Collapse
Affiliation(s)
- Jordan N Alves
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Britta U Westner
- Radboud University, Donders Institute for Brain, Cognition and Behaviours, Nijmegen, The Netherlands
| | - Andreas Højlund
- Department of Linguistics, Cognitive Science & Semiotics, Aarhus University, Aarhus, Denmark
| | - Rimona Sharon Weil
- Dementia Research Centre, University College London, London, UK.,Movement Disorders Consortium, University College London, London, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Sarang S Dalal
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Dias SB, de Lemos L, Sousa L, Bitoque DB, Silva GA, Seabra MC, Tenreiro S. Age-Related Changes of the Synucleins Profile in the Mouse Retina. Biomolecules 2023; 13:biom13010180. [PMID: 36671565 PMCID: PMC9855780 DOI: 10.3390/biom13010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Alpha-synuclein (aSyn) plays a central role in Parkinson's disease (PD) and has been extensively studied in the brain. This protein is part of the synuclein family, which is also composed of beta-synuclein (bSyn) and gamma-synuclein (gSyn). In addition to its neurotoxic role, synucleins have important functions in the nervous system, modulating synaptic transmission. Synucleins are expressed in the retina, but they have been poorly characterized. However, there is evidence that they are important for visual function and that they can play a role in retinal degeneration. This study aimed to profile synucleins in the retina of naturally aged mice and to correlate their patterns with specific retinal cells. With aging, we observed a decrease in the thickness of specific retinal layers, accompanied by an increase in glial reactivity. Moreover, the aSyn levels decreased, whereas bSyn increased with aging. The colocalization of both proteins was decreased in the inner plexiform layer (IPL) of the aged retina. gSyn presented an age-related decrease at the inner nuclear layer but was not significantly changed in the ganglion cell layer. The synaptic marker synaptophysin was shown to be preferentially colocalized with aSyn in the IPL with aging. At the same time, aSyn was found to exist at the presynaptic endings of bipolar cells and was affected by aging. Overall, this study suggests that physiological aging can be responsible for changes in the retinal tissue, implicating functional alterations that could affect synuclein family function.
Collapse
Affiliation(s)
- Sarah Batista Dias
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Luísa de Lemos
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Luís Sousa
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Diogo B. Bitoque
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Gabriela Araújo Silva
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Miguel C. Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
9
|
Structural and functional retinal alterations in patients with paranoid schizophrenia. Transl Psychiatry 2022; 12:402. [PMID: 36151078 PMCID: PMC9508100 DOI: 10.1038/s41398-022-02167-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
Ophthalmological methods have increasingly raised the interest of neuropsychiatric specialists. While the integrity of the retinal cell functions can be evaluated with the electroretinogram (ERG), optical coherence tomography (OCT) allows a structural investigation of retinal layer thicknesses. Previous studies indicate possible functional and structural retinal alterations in patients with schizophrenia. Twenty-five patients with paranoid schizophrenia and 25 healthy controls (HC) matched for age, sex, and smoking status participated in this study. Both, ERG and OCT were applied to obtain further insights into functional and structural retinal alterations. A significantly reduced a-wave amplitude and thickness of the corresponding para- and perifoveal outer nuclear layer (ONL) was detected in patients with paranoid schizophrenia with a positive correlation between both measurement parameters. Amplitude and peak time of the photopic negative response (PhNR) and thickness of the parafoveal ganglion cell layer (GCL) were decreased in patients with schizophrenia compared to HC. Our results show both structural and functional retinal differences between patients with paranoid schizophrenia and HC. We therefore recommend the comprehensive assessment of the visual system of patients with schizophrenia, especially to further investigate the effect of antipsychotic medication, the duration of illness, or other factors such as inflammatory or neurodegenerative processes. Moreover, longitudinal studies are required to investigate whether the functional alterations precede the structural changes.
Collapse
|
10
|
Lee IO, Skuse DH, Constable PA, Marmolejo-Ramos F, Olsen LR, Thompson DA. The electroretinogram b-wave amplitude: a differential physiological measure for Attention Deficit Hyperactivity Disorder and Autism Spectrum Disorder. J Neurodev Disord 2022; 14:30. [PMID: 35524181 PMCID: PMC9077889 DOI: 10.1186/s11689-022-09440-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
Background Attention Deficit Hyperactivity Disorder (ADHD) is the most prevalent childhood neurodevelopmental disorder. It shares some genetic risk with Autism Spectrum Disorder (ASD), and the conditions often occur together. Both are potentially associated with abnormal glutamate and GABA neurotransmission, which can be modelled by measuring the synaptic activity in the retina with an electroretinogram (ERG). Reduction of retinal responses in ASD has been reported, but little is known about retinal activity in ADHD. In this study, we compared the light-adapted ERGs of individuals with ADHD, ASD and controls to investigate whether retinal responses differ between these neurodevelopmental conditions. Methods Full field light-adapted ERGs were recorded from 15 ADHD, 57 ASD (without ADHD) and 59 control participants, aged from 5.4 to 27.3 years old. A Troland protocol was used with a random series of nine flash strengths from −0.367 to 1.204 log photopic cd.s.m−2. The time-to-peak and amplitude of the a- and b-waves and the parameters of the Photopic Negative Response (PhNR) were compared amongst the three groups of participants, using generalised estimating equations. Results Statistically significant elevations of the ERG b-wave amplitudes, PhNR responses and faster timings of the b-wave time-to-peak were found in those with ADHD compared with both the control and ASD groups. The greatest elevation in the b-wave amplitudes associated with ADHD were observed at 1.204 log phot cd.s.m−2 flash strength (p < .0001), at which the b-wave amplitude in ASD was significantly lower than that in the controls. Using this measure, ADHD could be distinguished from ASD with an area under the curve of 0.88. Conclusions The ERG b-wave amplitude appears to be a distinctive differential feature for both ADHD and ASD, which produced a reversed pattern of b-wave responses. These findings imply imbalances between glutamate and GABA neurotransmission which primarily regulate the b-wave formation. Abnormalities in the b-wave amplitude could provisionally serve as a biomarker for both neurodevelopmental conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-022-09440-2.
Collapse
Affiliation(s)
- Irene O Lee
- Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - David H Skuse
- Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paul A Constable
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Fernando Marmolejo-Ramos
- Centre for Change and Complexity in Learning, University of South Australia, Adelaide, Australia
| | - Ludvig R Olsen
- Department of Molecular Medicine (MOMA), Aarhus University, Aarhus, Denmark
| | - Dorothy A Thompson
- The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Sight and Sound Centre, Great Ormond Street Hospital for Children NHS Trust, London, UK.,UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
11
|
Huang HM, Kuo HK, Chiang WY, Wu PC, Poon LYC. Combination Therapy with Intravitreal Triamcinolone Acetonide and Oral Levodopa for the Treatment of Nonarteritic Anterior Ischemic Optic Neuropathy: A Pilot Study. J Ocul Pharmacol Ther 2022; 38:167-175. [PMID: 35049379 DOI: 10.1089/jop.2021.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Purpose: To determine the clinical effectiveness of combination therapy with intravitreal injection of triamcinolone acetonide (IVITA) and oral levodopa in eyes affected by nonarteritic anterior ischemic optic neuropathy (NAION). Methods: Longitudinal study involving 45 eyes of 45 patients with NAION who were evaluated within 14 days of NAION onset. The treatment group received an IVITA 4 mg/0.1 mL followed by 25 mg carbidopa/100 mg levodopa (Sinemet 25-100) 3 times daily for 12 weeks and the control group was untreated. Best-corrected visual acuity (BCVA) converted to logarithmic minimum angle of resolution (logMAR), visual field (VF) grades based on automated or Goldman perimetry, and mean retinal nerve fiber layer (RNFL) thickness measured on optical coherence tomography were assessed at the initial visit, 1, 3, and 6 months after NAION attack. Results: At the first visit and 6 months after NAION onset, the mean logMAR BCVA in the treatment group was significantly better than the control group (P < 0.05). BCVA was not significantly different between onset and the 6-month visit for both the control and the treatment group; however, the change in BCVA after 6 months was significantly greater in the treatment group compared with the control group (P = 0.007). Concomitant systemic disease, the changes in VF grades, and RNFL thickness from initial to 6 months after NAION onset were not significantly different between 2 groups. Conclusions: Combination therapy with IVITA and oral levodopa/carbidopa appears to be effective in the treatment of recent-onset NAION.
Collapse
Affiliation(s)
- Hsiu-Mei Huang
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan (R.O.C.)
| | - Hsi-Kung Kuo
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan (R.O.C.)
| | - Wei-Yu Chiang
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan (R.O.C.)
| | - Pei-Chang Wu
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan (R.O.C.)
| | - Linda Yi-Chieh Poon
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan (R.O.C.)
| |
Collapse
|
12
|
Veys L, Devroye J, Lefevere E, Cools L, Vandenabeele M, De Groef L. Characterizing the Retinal Phenotype of the Thy1-h[A30P]α-syn Mouse Model of Parkinson's Disease. Front Neurosci 2021; 15:726476. [PMID: 34557068 PMCID: PMC8452874 DOI: 10.3389/fnins.2021.726476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
Despite decades of research, disease-modifying treatments of Parkinson’s disease (PD), the second most common neurodegenerative disease worldwide, remain out of reach. One of the reasons for this treatment gap is the incomplete understanding of how misfolded alpha-synuclein (α-syn) contributes to PD pathology. The retina, as an integral part of the central nervous system, recapitulates the PD disease processes that are typically seen in the brain, and retinal manifestations have emerged as prodromal symptoms of the disease. The timeline of PD manifestations in the visual system, however, is not fully elucidated and the underlying mechanisms are obscure. This highlights the need for new studies investigating retinal pathology, in order to propel its use as PD biomarker, and to develop validated research models to investigate PD pathogenesis. The present study pioneers in characterizing the retina of the Thy1-h[A30P]α-syn PD transgenic mouse model. We demonstrate widespread α-syn accumulation in the inner retina of these mice, of which a proportion is phosphorylated yet not aggregated. This α-syn expression coincides with inner retinal atrophy due to postsynaptic degeneration. We also reveal abnormal retinal electrophysiological responses. Absence of selective loss of melanopsin retinal ganglion cells or dopaminergic amacrine cells and inflammation indicates that the retinal manifestations in these transgenic mice diverge from their brain phenotype, and questions the specific cellular or molecular alterations that underlie retinal pathology in this PD mouse model. Nevertheless, the observed α-syn accumulation, synapse loss and functional deficits suggest that the Thy1-h[A30P]α-syn retina mimics some of the features of prodromal PD, and thus may provide a window to monitor and study the preclinical/prodromal stages of PD, PD-associated retinal disease processes, as well as aid in retinal biomarker discovery and validation.
Collapse
Affiliation(s)
- Lien Veys
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Joyce Devroye
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Evy Lefevere
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Lien Cools
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Marjan Vandenabeele
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Lies De Groef
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
13
|
Past, present and future role of retinal imaging in neurodegenerative disease. Prog Retin Eye Res 2021; 83:100938. [PMID: 33460813 PMCID: PMC8280255 DOI: 10.1016/j.preteyeres.2020.100938] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Retinal imaging technology is rapidly advancing and can provide ever-increasing amounts of information about the structure, function and molecular composition of retinal tissue in humans in vivo. Most importantly, this information can be obtained rapidly, non-invasively and in many cases using Food and Drug Administration-approved devices that are commercially available. Technologies such as optical coherence tomography have dramatically changed our understanding of retinal disease and in many cases have significantly improved their clinical management. Since the retina is an extension of the brain and shares a common embryological origin with the central nervous system, there has also been intense interest in leveraging the expanding armamentarium of retinal imaging technology to understand, diagnose and monitor neurological diseases. This is particularly appealing because of the high spatial resolution, relatively low-cost and wide availability of retinal imaging modalities such as fundus photography or OCT compared to brain imaging modalities such as magnetic resonance imaging or positron emission tomography. The purpose of this article is to review and synthesize current research about retinal imaging in neurodegenerative disease by providing examples from the literature and elaborating on limitations, challenges and future directions. We begin by providing a general background of the most relevant retinal imaging modalities to ensure that the reader has a foundation on which to understand the clinical studies that are subsequently discussed. We then review the application and results of retinal imaging methodologies to several prevalent neurodegenerative diseases where extensive work has been done including sporadic late onset Alzheimer's Disease, Parkinson's Disease and Huntington's Disease. We also discuss Autosomal Dominant Alzheimer's Disease and cerebrovascular small vessel disease, where the application of retinal imaging holds promise but data is currently scarce. Although cerebrovascular disease is not generally considered a neurodegenerative process, it is both a confounder and contributor to neurodegenerative disease processes that requires more attention. Finally, we discuss ongoing efforts to overcome the limitations in the field and unmet clinical and scientific needs.
Collapse
|
14
|
Reduced macular thickness and macular vessel density in early-treated adult patients with PKU. Mol Genet Metab Rep 2021; 27:100767. [PMID: 34026550 PMCID: PMC8121983 DOI: 10.1016/j.ymgmr.2021.100767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose Macular structure is poorly evaluated in early-treated phenylketonuria (ETPKU). To evaluate potential changes, we aimed to examine retinas of PKU patients using optical coherence tomography (OCT) with additional OCT angiography (OCTA) and compare the results to healthy controls. Methods A total of 100 adults were recruited in this monocentric, case-control study: 50 patients with ETPKU (mean age: 30.66 ± 8.00 years) and 50 healthy controls (mean age: 30.45 ± 7.18 years). Macular thickness, vessel density and flow area of the right eye was assessed with spectral domain OCT angiography SD-OCT(A). Macular microstructural data between the ETPKU and control group was compared. In the ETPKU group, the relationship between visual functional parameters (best corrected visual acuity [VA], spherical equivalent [SE], contrast sensitivity [CS] and near stereoacuity) and microstructural alterations was examined. The dependency of OCT(A) values on serum phenylalanine (Phe) level was analysed. Results There was significant average parafoveal and perifoveal total retinal layer thinning in ETPKU patients compared to healthy controls (p < 0.016 and p < 0.001, respectively), while the foveal region remained unchanged in the ETPKU group. Whole macular and parafoveal superficial capillary plexus density was significantly decreased in ETPKU compared to controls (p < 0.001). There were no significant differences in the foveal avascular zone, nonflow area, macular superficial and deep capillary plexus between the groups. The temporal parafoveal inner retinal layer thickness was found to negatively correlate with individual Phe levels (r = -0.35, p = 0.042). There was no difference in vascular density and retinal thickness in the subgroup analysis of patients with good therapy adherence compared to patients on a relaxed diet. Conclusions Durable elevation in Phe levels are only partially associated with macular retinal structural changes. However, therapy adherence might not influence these ophthalmological complications.
Collapse
Key Words
- Dopamine
- Macular retinal vessel density
- Macular thickness
- Optical Coherence Tomography Angiography, (OCTA)
- Optical Coherence Tomography, (OCT)
- Optical coherence tomography angiography
- Parkinson's disease, (PD)
- Phenylalanine level
- Phenylalanine, (Phe)
- Phenylketonuria
- Tyrosine, (Tyr)
- aminoacid supplements, (AAS)
- axial length, (AL)
- contrast sensitivity, (CS)
- deep capillary plexus, (DCP)
- diopters, (D)
- dopamine, (DA)
- early treated phenylketonuria, (ETPKU)
- external limiting membrane/inner segment of photoreceptors/outer segment of photoreceptors, (ELM/IS/OS)
- ganglion cell complex, (GCC)
- ganglion cell layer, (GCL)
- inner limiting membrane, (ILM)
- inner nuclear layer, (INL)
- inner plexiform layer, (IPL)
- inner retinal layer, (IRL)
- intraocular pressure, (IOP)
- outer nuclear layer, (ONL)
- outer plexiform layer, (OPL)
- outer retinal layer, (ORL)
- phenylalanine hydroxylase gene, (PAH)
- phenylketonuria, (PKU)
- retinal nerve fiber layer, (RNFL)
- retinal pigment epithelium, (RPE)
- signal strength index, (SSI)
- sine-wave contrast test, (SWCT)
- spectral domain, (SD)
- spherical equivalent, (SE)
- split-spectrum amplitude-decorrelation angiography, (SSADA)
- superficial capillary plexus, (SCP)
- tetrahydrobiopterin, (BH4)
- total retinal layer thickness, (TRLT)
- vessel density, (VD)
- visual acuity, (VA)
- visual evoked potential, (VEP)
Collapse
|
15
|
Amorim-de-Sousa A, Schilling T, Fernandes P, Seshadri Y, Bahmani H, González-Méijome JM. Blue light blind-spot stimulation upregulates b-wave and pattern ERG activity in myopes. Sci Rep 2021; 11:9273. [PMID: 33927248 PMCID: PMC8085027 DOI: 10.1038/s41598-021-88459-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/05/2021] [Indexed: 01/03/2023] Open
Abstract
Upregulation of retinal dopaminergic activity may be a target treatment for myopia progression. This study aimed to explore the viability of inducing changes in retinal electrical activity with short-wavelength light targeting melanopsin-expressing retinal ganglion cells (ipRGCs) passing through the optic nerve head. Fifteen healthy non-myopic or myopic young adults were recruited and underwent stimulation with blue light using a virtual reality headset device. Amplitudes and implicit times from photopic 3.0 b-wave and pattern electroretinogram (PERG) were measured at baseline and 10 and 20 min after stimulation. Relative changes were compared between non-myopes and myopes. The ERG b-wave amplitude was significantly larger 20 min after blind-spot stimulation compared to baseline (p < 0.001) and 10 min (p < 0.001) post-stimulation. PERG amplitude P50-N95 also showed a significant main effect for ‘Time after stimulation’ (p < 0.050). Implicit times showed no differences following blind-spot stimulation. PERG and b-wave changes after blind-spot stimulation were stronger in myopes than non-myopes. It is possible to induce significant changes in retinal electrical activity by stimulating ipRGCs axons at the optic nerve head with blue light. The results suggest that the changes in retinal electrical activity are located at the inner plexiform layer and are likely to involve the dopaminergic system.
Collapse
Affiliation(s)
- Ana Amorim-de-Sousa
- Clinical & Experimental Optometry Research Lab (CEORLab), Center of Physics (Optometry), School of Sciences, University of Minho, Gualtar, 4710-057, Braga, Portugal
| | | | - Paulo Fernandes
- Clinical & Experimental Optometry Research Lab (CEORLab), Center of Physics (Optometry), School of Sciences, University of Minho, Gualtar, 4710-057, Braga, Portugal
| | | | - Hamed Bahmani
- Dopavision GmbH, Berlin, Germany.,Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, Tübingen, Germany
| | - José Manuel González-Méijome
- Clinical & Experimental Optometry Research Lab (CEORLab), Center of Physics (Optometry), School of Sciences, University of Minho, Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
16
|
Dartois M, Haudiquet N, Albuisson E, Angioi-Duprez K, Schwan R, Laprévote V, Schwitzer T. Retinal dysfunctions in regular tobacco users: The retina as a window to the reward circuit in addictive disorders. J Psychiatr Res 2021; 136:351-357. [PMID: 33636691 DOI: 10.1016/j.jpsychires.2021.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/20/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
The nicotine contained in tobacco is a neuromodulator which affects neurotransmission within the brain. The retina is an easy way to study central synaptic transmission dysfunctions in neuropsychiatric disorders. The purpose of this study is to assess the impact of regular tobacco use on retinal function using pattern (PERG), flash (fERG) and multifocal (mfERG) electroretinogram (ERG). We recorded PERG, fERG and mfERG for 24 regular tobacco users and 30 healthy non-smoking subjects. The protocol was compliant with International Society for Clinical Electrophysiology of Vision standards. The amplitudes and peak times (PT) of P50, N95 waves (PERG), a-, b- and oscillatory potentials (fERG), and N1, P1, N2 (mfERG) were evaluated. Compared to non-smokers, the results (Mann-Whitney U test, Bonferroni correction) for tobacco users suggested a significant increase of ~ 1 ms in the PT of light-adapted 3.0 fERG b-wave (p = 0.002). Using mfERG, we observed the following increases in tobacco users: in ring 3 for P1 PT of ~1,5 ms and in ring 5 for P1 PT of ~ 1 ms and for N2 PT of ~ 1 ms (p = 0.002, p = 0.002 and p = 0.006). It is our hypothesis that these results reflect the consequences of regular tobacco use on retinal synaptic transmission, and more specifically on dopaminergic and cholinergic transmission. We deduce that the retina may provide a crucial site of investigation for neurotransmission modulation of the reward circuit in regular tobacco users.
Collapse
Affiliation(s)
- Mathilde Dartois
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France.
| | - Nicolas Haudiquet
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France.
| | - Eliane Albuisson
- CHRU-Nancy, DRCI, Département MPI, Unité de Méthodologie, Data management et Statistique UMDS, F-54000, Nancy, France; Université de Lorraine, Faculté de Médecine, InSciDenS, F-54000, Nancy, France; Université de Lorraine, CNRS, IECL, F-54000, Nancy, France; Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France.
| | - Karine Angioi-Duprez
- Service d'Ophtalmologie, CHRU Nancy, Nancy, France; Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France.
| | - Raymund Schwan
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France.
| | - Vincent Laprévote
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France.
| | - Thomas Schwitzer
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
17
|
Netser R, Demmin DL, Dobkin R, Goldstein A, Roché M, Netser Zernik A, Silverstein SM. Flash Electroretinography Parameters and Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 11:251-259. [PMID: 33074189 DOI: 10.3233/jpd-191830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is known to affect retinal structure and activity. As such, retinal evaluations may be used to develop objective and possibly early PD diagnostic tools. OBJECTIVE The aim of this study was to investigate the effects of Parkinson's disease (PD) manifestation and treatment on retinal activity. METHODS Data were collected on 21 participants diagnosed with PD, including the number of medications taken, clinical scales and flash electroretinography (fERG) measurements, under light-adapted and dark-adapted conditions. The fERG parameters measured included a-wave and b-wave amplitude and implicit time (i.e., latency). First, we investigated correlations between symptom measure scores and the fERG parameters. Next, we divided participants into two groups based on their antiparkinsonian medication load and analyzed differences between these groups' fERG parameters. RESULTS fERG parameters were strongly correlated with a number of clinical variables, including motor and non-motor symptoms and age at PD onset. Photoreceptor cell implicit time was longer among participants taking one or less antiparkinsonian medication as compared to those taking two or more. However, overall there was not strong evidence of a relationship between the number of antiparkinsonian medications taken and the fERG parameters. CONCLUSION Findings suggest that fERG may be a useful, non-intrusive measure of retinal, and, perhaps overall CNS function, in PD. However, additional studies in larger samples are needed to clarify this association.
Collapse
Affiliation(s)
- Roni Netser
- Shalvata Mental Health Center, Hod Hasharon, Israel
| | - Docia L Demmin
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - Roseanne Dobkin
- Department of Psychiatry, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Ariel Goldstein
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Matthew Roché
- Rutgers University - University Behavioral Health Care, Piscataway, NJ, USA
| | | | - Steven M Silverstein
- Department of Psychiatry, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA.,Rutgers University - University Behavioral Health Care, Piscataway, NJ, USA.,Department of Ophthalmology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA.,Departments of Psychiatry, Neuroscience, and Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
18
|
Indrieri A, Pizzarelli R, Franco B, De Leonibus E. Dopamine, Alpha-Synuclein, and Mitochondrial Dysfunctions in Parkinsonian Eyes. Front Neurosci 2020; 14:567129. [PMID: 33192254 PMCID: PMC7604532 DOI: 10.3389/fnins.2020.567129] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by motor dysfunctions including bradykinesia, tremor at rest and motor instability. These symptoms are associated with the progressive degeneration of dopaminergic neurons originating in the substantia nigra pars compacta and projecting to the corpus striatum, and by accumulation of cytoplasmic inclusions mainly consisting of aggregated alpha-synuclein, called Lewy bodies. PD is a complex, multifactorial disorder and its pathogenesis involves multiple pathways and mechanisms such as α-synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal transport, and neuroinflammation. Motor symptoms manifest when there is already an extensive dopamine denervation. There is therefore an urgent need for early biomarkers to apply disease-modifying therapeutic strategies. Visual defects and retinal abnormalities, including decreased visual acuity, abnormal spatial contrast sensitivity, color vision defects, or deficits in more complex visual tasks are present in the majority of PD patients. They are being considered for early diagnosis together with retinal imaging techniques are being considered as non-invasive biomarkers for PD. Dopaminergic cells can be found in the retina in a subpopulation of amacrine cells; however, the molecular mechanisms leading to visual deficits observed in PD patients are still largely unknown. This review provides a comprehensive analysis of the retinal abnormalities observed in PD patients and animal models and of the molecular mechanisms underlying neurodegeneration in parkinsonian eyes. We will review the role of α-synuclein aggregates in the retina pathology and/or in the onset of visual symptoms in PD suggesting that α-synuclein aggregates are harmful for the retina as well as for the brain. Moreover, we will summarize experimental evidence suggesting that the optic nerve pathology observed in PD resembles that seen in mitochondrial optic neuropathies highlighting the possible involvement of mitochondrial abnormalities in the development of PD visual defects. We finally propose that the eye may be considered as a complementary experimental model to identify possible novel disease’ pathways or to test novel therapeutic approaches for PD.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Institute for Genetic and Biomedical Research, National Research Council, Milan, Italy
| | - Rocco Pizzarelli
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Institute of Biochemistry and Cellular Biology, National Research Council, Rome, Italy
| |
Collapse
|
19
|
Pinkhardt EH, Ding Y, Slotnick S, Kassubek J, Ludolph AC, Glazman S, Selesnick I, Bodis-Wollner I. The intrinsically restructured fovea is correlated with contrast sensitivity loss in Parkinson's disease. J Neural Transm (Vienna) 2020; 127:1275-1283. [PMID: 32676747 DOI: 10.1007/s00702-020-02224-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Foveal structure that is specified by the thickness, depth and the overall shape of the fovea is a promising tool to qualify and quantify retinal pathology in Parkinson's disease. To determine the model variable that is best suited for discriminating Parkinson's disease eyes from those of healthy controls and to assess correlations between impaired contrast sensitivity and foveal shape we characterized the fovea in 48 Parkinson's disease patients and 45 control subjects by optical coherence tomography (OCT). The model quantifies structural changes in the fovea of Parkinson's disease patients that are correlated with a decline in contrast sensitivity. Retinal foveal remodeling may serve as a parameter for vision deficits in Parkinson's disease. Whether foveal remodeling reflects dopaminergic driven pathology or rather both dopaminergic and non-dopaminergic pathology has to be investigated in longitudinal studies.
Collapse
Affiliation(s)
- Elmar H Pinkhardt
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Yin Ding
- Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Brooklyn, NY, 11203, USA
| | | | - Jan Kassubek
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Sofya Glazman
- Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | - Ivan Selesnick
- Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Brooklyn, NY, 11203, USA
| | - Ivan Bodis-Wollner
- Downstate Medical Center, State University of New York, Brooklyn, NY, USA. .,SUNY Eye Institute, State University of New York, New York, NY, USA.
| |
Collapse
|
20
|
Silverstein SM, Demmin DL, Schallek JB, Fradkin SI. Measures of Retinal Structure and Function as Biomarkers in Neurology and Psychiatry. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
21
|
Alkabie S, Lange A, Manogaran P, Stoessl AJ, Costello F, Barton JJS. Optical coherence tomography of patients with Parkinson's disease and progressive supranuclear palsy. Clin Neurol Neurosurg 2019; 189:105635. [PMID: 31855622 DOI: 10.1016/j.clineuro.2019.105635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/23/2019] [Accepted: 12/07/2019] [Indexed: 01/28/2023]
Abstract
OBJECTIVES To determine if Parkinson's disease (PD) and progressive supranuclear palsy (PSP) differed on retinal measurements using optical coherence tomography (OCT). PATIENTS AND METHODS In a prospective, controlled, cross-sectional cohort study, we recruited patients with PD or PSP for more than three years, as well as control subjects. We measured peripapillary retinal nerve fiber layer (RNFL) thickness and macular volume using spectral-domain OCT. The association between these OCT measures and the disease characteristics of duration and disability were examined using a linear mixed effect model. RESULTS We analyzed eyes from n = 12 PD patients, n = 11 PSP patients, and n = 12 control subjects. RNFL thickness was reduced in eyes from patients with PSP, but there were no differences in macular volume between groups. RNFL thickness and macular volume were not significantly different between eyes from patients with PD and controls. Worse disability was associated with reduced macular volumes. CONCLUSION PSP but not PD is associated with thinning of the peripapillary RNFL when symptoms have been present for more than three years.
Collapse
Affiliation(s)
- Samir Alkabie
- Division of Neurology, University of British Columbia, Vancouver, BC, Canada; Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY, USA; Department of Neurology, Kings County Hospital, Brooklyn, NY, USA.
| | - Alex Lange
- Neuro-ophthalmology, Department of Ophthalmology, University of British Columbia, Vancouver, BC, Canada; Vista Klinik, Vista Diagnostics and Laser Vista, Binningen, Switzerland
| | - Praveena Manogaran
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - A Jon Stoessl
- Division of Neurology, University of British Columbia, Vancouver, BC, Canada
| | - Fiona Costello
- Neuro-ophthalmology, Department of Clinical Neurosciences and Surgery, University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Jason J S Barton
- Neuro-ophthalmology, Department of Ophthalmology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Systematic Evaluation of Levodopa Effect on Visual Improvement in Amblyopia: A Meta-analysis. Clin Neuropharmacol 2019; 43:20-25. [PMID: 31738189 DOI: 10.1097/wnf.0000000000000372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE This study aims to evaluate the effectiveness of levodopa as a therapeutic drug in the treatment of children and adults with amblyopia. METHODS We performed a systematic review and meta-analysis with randomized controlled trials of levodopa and placebo in the treatment of amblyopia. All data were identified and extracted from the PubMed, EMBASE, Cochrane libraries, and the Chinese knowledge resource integration database. RESULTS After screening the literature and evaluating the quality, 11 studies met the criteria from 308 studies. The mean difference of LogMAR visual acuity between levodopa and the placebo group was -0.1031 (95% confidence interval, -0.11 to -0.09; P < 0.0001). The improvement of visual acuities of the subgroup of younger patients with amblyopia was significantly higher than that of the placebo group (P < 0.0001). Increasing the dosage of levodopa and prolonging the treatment can significantly improve the curative effect. CONCLUSIONS Levodopa is effective in the treatment of amblyopia by prolonging the treatment, especially for young patients.
Collapse
|
23
|
Veys L, Vandenabeele M, Ortuño-Lizarán I, Baekelandt V, Cuenca N, Moons L, De Groef L. Retinal α-synuclein deposits in Parkinson's disease patients and animal models. Acta Neuropathol 2019; 137:379-395. [PMID: 30721408 DOI: 10.1007/s00401-018-01956-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/22/2018] [Accepted: 12/22/2018] [Indexed: 12/21/2022]
Abstract
Despite decades of research, accurate diagnosis of Parkinson's disease remains a challenge, and disease-modifying treatments are still lacking. Research into the early (presymptomatic) stages of Parkinson's disease and the discovery of novel biomarkers is of utmost importance to reduce this burden and to come to a more accurate diagnosis at the very onset of the disease. Many have speculated that non-motor symptoms could provide a breakthrough in the quest for early biomarkers of Parkinson's disease, including the visual disturbances and retinal abnormalities that are seen in the majority of Parkinson's disease patients. An expanding number of clinical studies have investigated the use of in vivo assessments of retinal structure, electrophysiological function, and vision-driven tasks as novel means for identifying patients at risk that need further neurological examination and for longitudinal follow-up of disease progression in Parkinson's disease patients. Often, the results of these studies have been interpreted in relation to α-synuclein deposits and dopamine deficiency in the retina, mirroring the defining pathological features of Parkinson's disease in the brain. To better understand the visual defects seen in Parkinson's disease patients and to propel the use of retinal changes as biomarkers for Parkinson's disease, however, more conclusive neuropathological evidence for the presence of retinal α-synuclein aggregates, and its relation to the cerebral α-synuclein burden, is urgently needed. This review provides a comprehensive and critical overview of the research conducted to unveil α-synuclein aggregates in the retina of Parkinson's disease patients and animal models, and thereby aims to aid the ongoing discussion about the potential use of the retinal changes and/or visual symptoms as biomarkers for Parkinson's disease.
Collapse
|
24
|
Anders LM, Heinrich SP, Lagrèze WA, Joachimsen L. Little effect of 0.01% atropine eye drops as used in myopia prevention on the pattern electroretinogram. Doc Ophthalmol 2019; 138:85-95. [PMID: 30680489 DOI: 10.1007/s10633-019-09671-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/15/2019] [Indexed: 11/30/2022]
Abstract
PURPOSE Daily administration of 0.01% atropine eye drops is a promising approach for myopia control. The mechanism of action is believed to involve the dopaminergic system of the retina, triggering an increased release of dopamine. Previous studies in psychiatric condition such as major depression suggest that pattern electroretinogram (PERG) amplitudes are modulated by changes in retinal dopamine. It is thus plausible that atropine eye drops could have an effect on PERG amplitudes. The present study was designed to test this, assessing the difference in amplitude between contrast levels and the ratio of amplitudes between check sizes as primary endpoints. METHODS We included 14 participants with no more than ± 2 diopters of ametropia and visual acuity of at least 1.0. One eye was chosen randomly in each participant for atropine application (14 days, one drop of 0.01% atropine solution once daily before bedtime). We recorded two sets of steady-state PERG recordings: one with different contrasts (25% and 98%) and one with different check sizes (0.8° and 17°). Near-point distance, near visual acuity, and pupil diameter were measured additionally. RESULTS The recordings to different contrasts did not show atropine-related changes of PERG amplitude. A small increase by 6% of the amplitude difference between contrast levels with atropine application was not significant (p = 0.08). Raw amplitudes in the check size condition increased with atropine by 17% (p < 0.01) and 10% (p < 0.03) for small and large checks, respectively, without a significant concomitant effect on the amplitude ratio. Pupil size was significantly affected (median increase 0.5 mm, p < 0.002). However, neither of the experimental conditions was associated with a significant correlation between pupil size and PERG effects. CONCLUSION The effects on PERG primary endpoints after the 14-day period of atropine administration were small, especially compared to effect sizes in major depression, and statistically insignificant. Effects on raw amplitude were inconsistent. The present results suggest that retinal processing as reflected by PERG does not sizably change following a treatment regimen with atropine that is typical for myopia control.
Collapse
Affiliation(s)
- Lisa-Marie Anders
- Eye Center, Medical Center, University of Freiburg, Killianstr. 5, 79106, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Sven P Heinrich
- Eye Center, Medical Center, University of Freiburg, Killianstr. 5, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolf A Lagrèze
- Eye Center, Medical Center, University of Freiburg, Killianstr. 5, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Joachimsen
- Eye Center, Medical Center, University of Freiburg, Killianstr. 5, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Guo L, Normando EM, Shah PA, De Groef L, Cordeiro MF. Oculo-visual abnormalities in Parkinson's disease: Possible value as biomarkers. Mov Disord 2018; 33:1390-1406. [DOI: 10.1002/mds.27454] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Li Guo
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
| | - Eduardo M. Normando
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
- Western Eye Hospital, Imperial College Healthcare National Health Service Trust; London UK
- Imperial College Ophthalmology Research Group, Department of Surgery and Cancer, Imperial College London; London UK
| | - Parth Arvind Shah
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
| | - Lies De Groef
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
- Neural Circuit Development and Regeneration Research Group, Department of Biology; University of Leuven; Leuven Belgium
| | - M. Francesca Cordeiro
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
- Western Eye Hospital, Imperial College Healthcare National Health Service Trust; London UK
- Imperial College Ophthalmology Research Group, Department of Surgery and Cancer, Imperial College London; London UK
| |
Collapse
|
26
|
Pardue MT, Allen RS. Neuroprotective strategies for retinal disease. Prog Retin Eye Res 2018; 65:50-76. [PMID: 29481975 PMCID: PMC6081194 DOI: 10.1016/j.preteyeres.2018.02.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
Abstract
Diseases that affect the eye, including photoreceptor degeneration, diabetic retinopathy, and glaucoma, affect 11.8 million people in the US, resulting in vision loss and blindness. Loss of sight affects patient quality of life and puts an economic burden both on individuals and the greater healthcare system. Despite the urgent need for treatments, few effective options currently exist in the clinic. Here, we review research on promising neuroprotective strategies that promote neuronal survival with the potential to protect against vision loss and retinal cell death. Due to the large number of neuroprotective strategies, we restricted our review to approaches that we had direct experience with in the laboratory. We focus on drugs that target survival pathways, including bile acids like UDCA and TUDCA, steroid hormones like progesterone, therapies that target retinal dopamine, and neurotrophic factors. In addition, we review rehabilitative methods that increase endogenous repair mechanisms, including exercise and electrical stimulation therapies. For each approach, we provide background on the neuroprotective strategy, including history of use in other diseases; describe potential mechanisms of action; review the body of research performed in the retina thus far, both in animals and in humans; and discuss considerations when translating each treatment to the clinic and to the retina, including which therapies show the most promise for each retinal disease. Despite the high incidence of retinal diseases and the complexity of mechanisms involved, several promising neuroprotective treatments provide hope to prevent blindness. We discuss attractive candidates here with the goal of furthering retinal research in critical areas to rapidly translate neuroprotective strategies into the clinic.
Collapse
Affiliation(s)
- Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332, USA.
| | - Rachael S Allen
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA
| |
Collapse
|
27
|
Constable PA, Ngo D, Quinn S, Thompson DA. A meta-analysis of clinical electro-oculography values. Doc Ophthalmol 2017; 135:219-232. [PMID: 29019002 DOI: 10.1007/s10633-017-9616-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/05/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND The aim of the meta-analysis was to derive a range of mean normal clinical electrooculogram (EOG) values from a systematic review of published EOG studies that followed the guidelines of the ISCEV standard for clinical electro-oculography. METHODS A systematic literature review was performed using four relevant databases limited to peer-reviewed articles in English between 1967 and February 2017. Studies reporting clinical EOG or FO normal values were included when the report used a standard 30° horizontal saccade, a retinal luminance of between 100 and 250 cd m-2, and had > 10 subjects in their normative values. The search identified 1145 articles after duplicates were removed with subsequent screening of the abstracts excluding a further 1098, resulting in 47 full-text articles that were then assessed by the author (PC) with a final nine articles meeting the inclusion criteria. An overall effect estimate using inverse variance-weighted meta-analysis was performed to estimate the mean values for the light peak/dark trough ratio (LP:DT ratio) (dilated and undilated), the time to the LP, the amplitude of the LP, dark trough (DT) and the fast oscillation (FO) peak-to-trough ratio from the included studies. RESULTS The mean dilated LP:DT ratio was 2.35 (95% CI 2.28-2.42); undilated LP:DT ratio was 2.37 (95% CI 2.28-2.45); LP amplitude was 835 (95% CI 631-1039) µV and the mean time to the LP being 8.2 (95% CI 7.7-8.7) min. The mean DT amplitude was 358 (95% CI 292-424) µV, and the mean FO peak-to-trough ratio was 1.13 (95% CI 1.11-1.16). The results of the LP/DT ratio are drawn from studies with a mean ± standard deviation (SD) age of 34.08 ± 12.93 years for dilated and 33.65 ± 12.28 years for undilated LP/DT ratios. CONCLUSIONS The meta-analysis of EOG studies has generated a reference range of normal mean values for clinicians to refer to when using the ISCEV clinical EOG. It provides a potential method to generate similar data sets from published normal values in related visual electrophysiology tests.
Collapse
Affiliation(s)
- Paul A Constable
- College of Nursing and Health Sciences, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
| | - David Ngo
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Stephen Quinn
- Department of Statistics, Data Science and Epidemiology, Swinburne University of Technology, Melbourne, Australia
| | - Dorothy A Thompson
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children, London, UK
- UCL Great Ormond Street Institute for Child Health, London, UK
| |
Collapse
|
28
|
The role of the retina in visual hallucinations: A review of the literature and implications for psychosis. Neuropsychologia 2017; 99:128-138. [DOI: 10.1016/j.neuropsychologia.2017.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022]
|
29
|
Nguyen CTO, Hui F, Charng J, Velaedan S, van Koeverden AK, Lim JKH, He Z, Wong VHY, Vingrys AJ, Bui BV, Ivarsson M. Retinal biomarkers provide "insight" into cortical pharmacology and disease. Pharmacol Ther 2017; 175:151-177. [PMID: 28174096 DOI: 10.1016/j.pharmthera.2017.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The retina is an easily accessible out-pouching of the central nervous system (CNS) and thus lends itself to being a biomarker of the brain. More specifically, the presence of neuronal, vascular and blood-neural barrier parallels in the eye and brain coupled with fast and inexpensive methods to quantify retinal changes make ocular biomarkers an attractive option. This includes its utility as a biomarker for a number of cerebrovascular diseases as well as a drug pharmacology and safety biomarker for the CNS. It is a rapidly emerging field, with some areas well established, such as stroke risk and multiple sclerosis, whereas others are still in development (Alzheimer's, Parkinson's, psychological disease and cortical diabetic dysfunction). The current applications and future potential of retinal biomarkers, including potential ways to improve their sensitivity and specificity are discussed. This review summarises the existing literature and provides a perspective on the strength of current retinal biomarkers and their future potential.
Collapse
Affiliation(s)
- Christine T O Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia.
| | - Flora Hui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Jason Charng
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Shajan Velaedan
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Anna K van Koeverden
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Jeremiah K H Lim
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Zheng He
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Algis J Vingrys
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Magnus Ivarsson
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| |
Collapse
|
30
|
Irving EL, Chriqui E, Law C, Kergoat MJ, Leclerc BS, Panisset M, Postuma R, Kergoat H. Prevalence of Convergence Insufficiency in Parkinson's Disease. Mov Disord Clin Pract 2016; 4:424-429. [PMID: 30363406 DOI: 10.1002/mdc3.12453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 11/10/2022] Open
Abstract
Background We recently reported that convergence insufficiency (CI)-type visual symptomatology was more prevalent in participants with Parkinson's disease (PD), compared to controls. The objective of this work was to determine the prevalence of a confirmed clinical diagnosis of CI in PD, compared to controls. Methods Participants with (n = 80) and without (n = 80) PD were recruited and received an eye exam. Published criteria were used to arrive at a clinical diagnosis of CI. The Convergence Insufficiency Symptom Survey (CISS-15) questionnaire was administered to each participant, with a score of ≥21 being considered positive for CI symptomatology. Student t test, chi-square, or nonparametric tests at the 0.05 level were used for statistical significance. Results A total of 43.8% of participants with versus 16.3% without PD had a clinical diagnosis of CI (P ≤ 0.001). A total of 53.8% of participants with versus 18.8% without PD had scores on the CISS-15 of ≥21 (P ≤ 0.001). Conclusions These results indicate that individuals with PD have a higher prevalence of CI and CI symptomatology than controls. These data provide evidence supporting the notion that treatment for symptomatic CI should be investigated in individuals with PD.
Collapse
Affiliation(s)
- Elizabeth L Irving
- School of Optometry and Vision Science University of Waterloo Waterloo ON Canada
| | - Estefania Chriqui
- School of Optometry University of Montréal Montréal QC Canada.,Research Center Montréal University Institute of Geriatrics Montréal QC Canada
| | - Caroline Law
- School of Optometry University of Montréal Montréal QC Canada.,Research Center Montréal University Institute of Geriatrics Montréal QC Canada
| | - Marie-Jeanne Kergoat
- Research Center Montréal University Institute of Geriatrics Montréal QC Canada.,Faculty of Medicine University of Montréal Montréal QC Canada
| | - Bernard-Simon Leclerc
- Research Center Montréal University Institute of Geriatrics Montréal QC Canada.,Department of Social and Preventive Medicine School of Public Health University of Montréal Montréal QC Canada.,"InterActions" Research Center Integrated University Health and Social Services Center North of the Island of Montréal Montréal QC Canada
| | - Michel Panisset
- Department of Neurology Research Center - CHUM Montréal QC Canada
| | - Ronald Postuma
- Department of Neurology Montréal General Hospital (MGH) McGill University
| | - Hélène Kergoat
- School of Optometry University of Montréal Montréal QC Canada.,Research Center Montréal University Institute of Geriatrics Montréal QC Canada
| |
Collapse
|
31
|
Abstract
Ocular clocks, first identified in the retina, are also found in the retinal pigment epithelium (RPE), cornea, and ciliary body. The retina is a complex tissue of many cell types and considerable effort has gone into determining which cell types exhibit clock properties. Current data suggest that photoreceptors as well as inner retinal neurons exhibit clock properties with photoreceptors dominating in nonmammalian vertebrates and inner retinal neurons dominating in mice. However, these differences may in part reflect the choice of circadian output, and it is likely that clock properties are widely dispersed among many retinal cell types. The phase of the retinal clock can be set directly by light. In nonmammalian vertebrates, direct light sensitivity is commonplace among body clocks, but in mice only the retina and cornea retain direct light-dependent phase regulation. This distinguishes the retina and possibly other ocular clocks from peripheral oscillators whose phase depends on the pace-making properties of the hypothalamic central brain clock, the suprachiasmatic nuclei (SCN). However, in mice, retinal circadian oscillations dampen quickly in isolation due to weak coupling of its individual cell-autonomous oscillators, and there is no evidence that retinal clocks are directly controlled through input from other oscillators. Retinal circadian regulation in both mammals and nonmammalian vertebrates uses melatonin and dopamine as dark- and light-adaptive neuromodulators, respectively, and light can regulate circadian phase indirectly through dopamine signaling. The melatonin/dopamine system appears to have evolved among nonmammalian vertebrates and retained with modification in mammals. Circadian clocks in the eye are critical for optimum visual function where they play a role fine tuning visual sensitivity, and their disruption can affect diseases such as glaucoma or retinal degeneration syndromes.
Collapse
Affiliation(s)
- Joseph C Besharse
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| |
Collapse
|
32
|
Moschos MM, Moustafa GA, Gonidakis F, Papageorgiou C. Retinal and choroidal alterations in patients with anorexia nervosa without vision loss. Int J Eat Disord 2016; 49:386-90. [PMID: 26424617 DOI: 10.1002/eat.22471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Evaluate the alterations of retinal anatomy and function, as well as choroidal thickness changes, in patients with anorexia nervosa (AN). METHOD 13 female AN patients (26 eyes) and 20 female controls (40 eyes) were included. Assessment of the retinal and choroidal anatomy was performed by optical-coherence-tomography, while multifocal-electroretinogram was used for measurements of the electrical activity of the macula. Statistical analysis was performed using t-test. RESULTS Central macular thickness was found to be thinner in AN (140.04 ± 14.45, 150.85 ± 16.03, p = 0.007), likewise the ganglion cell complex and outer retinal layer (ORL) at most areas. ORL superiorly was thicker in AN (169.12 ± 2.55, 163.00 ± 8.70, p < 0.001), while retinal nerve fiber layer was not different between the two groups, except the inferior region (121.08 ± 18.52, 137.60 ± 7.30, p < 0.001). Choroidal thickness was evenly diminished in the anorectic group (p = 0.001-0.027). Multifocal-electroretinogram showed lower P1-retinal response density amplitude of ring 1 in AN (159.04 ± 60.83, 292.43 ± 11.59, p < 0.001), but no significant difference concerning the P1-response density amplitude of ring 2 (79.04 ± 21.89, 82.63 ± 9.10, p = 0.36). DISCUSSION In AN patients, even without vision loss, significant changes occur in retinal and choroidal thickness, as well as in the electrical activity of the macula. However, this is a pilot study in a small sample that needs replication.
Collapse
Affiliation(s)
- Marilita M Moschos
- Electrophysiology Laboratory, 1st Department of Ophthalmology, University of Athens, Greece
| | | | | | | |
Collapse
|
33
|
Miri S, Glazman S, Mylin L, Bodis-Wollner I. A combination of retinal morphology and visual electrophysiology testing increases diagnostic yield in Parkinson's disease. Parkinsonism Relat Disord 2015; 22 Suppl 1:S134-7. [PMID: 26414119 DOI: 10.1016/j.parkreldis.2015.09.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Impaired vision and remodeled foveal pit have been demonstrated in Parkinson's disease (PD) patients using different techniques. METHODS Ten PD (20 eyes) and eight healthy controls (HC) subjects (16 eyes) were enrolled. Subjects were evaluated for N70 and P100 latencies using two-channel VEP with pattern reversal and on/off pattern; Contrast sensitivity (CS) using Pelli-Robson chart; macular thickness measured using Zeiss-HD optical coherence tomography (OCT). RESULTS PD patients had a significantly delayed N70 (reversal pattern) and P100 (on/off pattern), lower CS score, and decreased retinal thickness at temporal 1.5-2.5 mm from the foveola. N70 latency was negatively correlated with CS (R = -0.419, P = 0.01) and average GCL-IPL thickness (R = -0.529, P = 0.001). CS was positively correlated with parafoveal thickness (R = 0.490, P = 0.002). A combination of parafoveal thickness and CS score yielded an AUC of 0.784 for PD discrimination which increased to 0.844 when combined with N70 and P100 measures. CONCLUSION A combination of pattern reversal VEP latency, CS score, and inner retinal foveal thickness measures has a high diagnostic yield for PD.
Collapse
Affiliation(s)
- Shahnaz Miri
- Department of Neurology, SUNY Downstate Medical Center, 450 Clarkson Ave, MSC 1213, Brooklyn, NY 11203, USA
| | - Sofya Glazman
- Department of Neurology, SUNY Downstate Medical Center, 450 Clarkson Ave, MSC 1213, Brooklyn, NY 11203, USA
| | - Leland Mylin
- Department of Neurology, SUNY Downstate Medical Center, 450 Clarkson Ave, MSC 1213, Brooklyn, NY 11203, USA
| | - Ivan Bodis-Wollner
- Department of Neurology, SUNY Downstate Medical Center, 450 Clarkson Ave, MSC 1213, Brooklyn, NY 11203, USA; Department of Ophthalmology, SUNY Downstate Medical Center, 450 Clarkson Ave, MSC 1213, Brooklyn, NY 11203, USA.
| |
Collapse
|
34
|
Retinal dysfunction of contrast processing in major depression also apparent in cortical activity. Eur Arch Psychiatry Clin Neurosci 2015; 265:343-50. [PMID: 25567477 DOI: 10.1007/s00406-014-0573-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/26/2014] [Indexed: 12/19/2022]
Abstract
Depressive disorder is often associated with the subjective experience of altered visual perception. Recent research has produced growing evidence for involvement of the visual system in the pathophysiology of depressive disorder. Using the pattern electroretinogram (PERG), we found reduced retinal contrast response in patients with major depression. Based on this observation, the question arises whether this change has a cortical correlate. To evaluate this, we analyzed the visual evoked potential (VEP) of the occipital cortex in 40 patients with depressive disorder and 28 healthy controls. As visual stimuli, checkerboard stimuli of 0.51° check size, 12.5 reversals per second and a contrast of 3-80% was used. In addition to the PERG, we recorded the VEP with an Oz versus FPz derivation. The amplitude versus contrast transfer function was compared across the two groups and correlated with the severity of depression, as measured by the Hamilton Depression Rating Scale and the Beck Depression Inventory. Patients with major depression displayed significantly reduced VEP amplitudes at all contrast levels compared to control subjects (p = 0.029). The VEP amplitude correlated with psychometric measures for severity of depression. The degree of depression reduced the contrast transfer function in the VEP to a lesser extent than in the PERG: While the PERG is reduced to ≈50%, the VEP is reduced to 75%. Our results suggest that depression affects the cortical response in major depression, but less so than the retinal responses. Modified contrast adaptation in the lateral geniculate nucleus or cortex possibly moderates the increased losses in the retina.
Collapse
|
35
|
Nowacka B, Lubiński W, Honczarenko K, Potemkowski A, Safranow K. Bioelectrical function and structural assessment of the retina in patients with early stages of Parkinson's disease (PD). Doc Ophthalmol 2015; 131:95-104. [PMID: 25972299 PMCID: PMC4567588 DOI: 10.1007/s10633-015-9503-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/07/2015] [Indexed: 11/09/2022]
Abstract
Purpose
To determine bioelectrical function and structural changes of the retina in patients with early stages of Parkinson’s disease (PD). Materials and methods Thirty-eight eyes of 20 patients with early idiopathic PD and 38 eyes of 20 healthy age- and sex-matched controls were ophthalmologically examined, including assessment of distance best-corrected visual acuity (DBCVA), slit lamp examination of the anterior and posterior segment of the eye, evaluation of the eye structures: paramacular retinal thickness (RT) and retinal nerve fiber layer (RNFL) thickness with the aid of OCT, and the bioelectrical function by full-field electroretinogram (ERG). Additionally, PD patients were interviewed as to the presence of dopamine-dependent visual functions abnormalities. Results In patients with early PD, statistically significant changes in comparison with the control group were observed in ERG. They contained a reduction in mean amplitudes of the scotopic a-wave (rod–cone response), the scotopic oscillatory potentials (OPs)—OP2 and OP3, the photopic b-wave, and a reduction in the overall index (OP1 + OP2 + OP3) and a prolongation of mean peak times of the scotopic OP1, OP2, OP3, OP4 (p < 0.05). A questionnaire concerning abnormalities of dopamine-dependent visual functions revealed that PD patients with abnormal peak times of OP1, OP2, and OP3 reported non-specific visual disturbances more frequently in comparison with PD patients with normal peak times of OPs. Other analyzed parameters of ERG, DBCVA, RT, and RNFL did not significantly differ between patients with PD and the control group. Conclusion In patients with early PD, bioelectrical dysfunction of the retina was observed in the ERG test, probably as a result of dopamine deficiency in the retina. The results of our study indicate that ERG may also be a useful tool for understanding the reason for non-specific visual disturbances occurring in PD patients.
Collapse
Affiliation(s)
- Barbara Nowacka
- Department of Ophthalmology, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111, Szczecin, Poland.
| | - Wojciech Lubiński
- Department of Ophthalmology, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111, Szczecin, Poland
| | | | | | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
36
|
Chorostecki J, Seraji-Bozorgzad N, Shah A, Bao F, Bao G, George E, Gorden V, Caon C, Frohman E, Bhatti MT, Khan O. Characterization of retinal architecture in Parkinson's disease. J Neurol Sci 2015; 355:44-8. [PMID: 26071887 DOI: 10.1016/j.jns.2015.05.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/31/2015] [Accepted: 05/06/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder associated with dopaminergic cell loss and α-synuclein aggregation in Lewy bodies, which has been demonstrated in the retina. METHODS We performed a spectral-domain optical coherence tomography (OCT) study in patients with PD and healthy controls to measure the peripapillary retinal nerve fiber layer thickness and macular volume. Intra-retinal segmentation was performed to measure the volume of the retinal nerve fiber (RNFL), ganglion cell (GCL), inner plexiform (IPL), inner nuclear (INL), outer plexiform (OPL), and outer nuclear (ONL) layers. Analysis was carried out blinded to the clinical status of study participants. RESULTS 101 PD and 46 healthy control eyes were included in the study. In PD patients, peripapillary retinal nerve fiber layer was not significantly thinner (96.95 μm vs 94.42 μm, p=0.08) but macular volume was (8.58 mm3 vs 8.33 mm3, p=0.0002). Intra-retinal segmentation showed that PD subjects have reduced GCL, IPL, INL and ONL volumes. In contrast, the OPL volume was significantly increased (0.81 mm3 vs 0.78 mm3 p=0.0214). CONCLUSIONS Thickening of the OPL is a novel finding which may correspond to the localization of α-synuclein in the OPL of PD patients. We hypothesize that the enlargement of the OPL may represent a potential biomarker of α-synuclein aggregation in PD. This may have significant clinical implications.
Collapse
Affiliation(s)
| | | | - Aashka Shah
- Sastry Foundation Advanced Imaging Laboratory, Detroit, United States
| | - Fen Bao
- Sastry Foundation Advanced Imaging Laboratory, Detroit, United States
| | - Ginny Bao
- Sastry Foundation Advanced Imaging Laboratory, Detroit, United States
| | - Edwin George
- Movement Disorders Center, Department of Neurology, Wayne State University School of Medicine, Detroit, United States
| | - Veronica Gorden
- Movement Disorders Center, Department of Neurology, Wayne State University School of Medicine, Detroit, United States
| | - Christina Caon
- Sastry Foundation Advanced Imaging Laboratory, Detroit, United States
| | - Elliot Frohman
- Department of Neurology, University of Texas Southwestern, Dallas, United States
| | - M Tariq Bhatti
- Department of Ophthalmology, Duke Eye Center and Duke University Medical Center, Durham, United States; Department of Neurology, Duke Eye Center and Duke University Medical Center, Durham, United States
| | - Omar Khan
- Sastry Foundation Advanced Imaging Laboratory, Detroit, United States.
| |
Collapse
|
37
|
Kassubek J, Danek A, Del Tredici-Braak K, Greenlee MW, Pinkhardt EH. [The eye as a window to the pathophysiology in Parkinson's syndromes]. DER NERVENARZT 2014; 84:909-17. [PMID: 23760595 DOI: 10.1007/s00115-013-3754-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although dysfunction of the visual system and dysfunctional eye movements during sporadic Parkinson's disease have been reported for more than 40 years, they have never been the focus of early and/or differential diagnosis. To date Parkinson's disease-related α-synuclein aggregates, i.e., Lewy pathology, are not known to develop either in the retina or in other components of the visual system. In a clinical context it is currently possible to test the involvement of the respective functional systems by means of optical coherence tomography and video oculography. Moreover, non-motor-related abnormalities are detectable both during psychophysical testing of visuospatial function as well as in the form of measurable deficits of color perception. These deficits of the visual and oculomotor systems could prove to be suitable candidates for diagnosing sporadic Parkinson's disease in its early phase in a non-invasive manner. This article is intended to provide an overview of the fundamental pathophysiological principles and clinical aspects of visual system involvement in sporadic Parkinson's disease together with currently available differential diagnostic options.
Collapse
Affiliation(s)
- J Kassubek
- Klinik für Neurologie, Universitätsklinikum Ulm, Oberer Eselsberg 45, 89081, Ulm, Deutschland.
| | | | | | | | | |
Collapse
|
38
|
Ding Y, Spund B, Glazman S, Shrier EM, Miri S, Selesnick I, Bodis-Wollner I. Application of an OCT data-based mathematical model of the foveal pit in Parkinson disease. J Neural Transm (Vienna) 2014; 121:1367-76. [PMID: 24748549 DOI: 10.1007/s00702-014-1214-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/03/2014] [Indexed: 12/17/2022]
Abstract
Spectral-domain Optical coherence tomography (OCT) has shown remarkable utility in the study of retinal disease and has helped to characterize the fovea in Parkinson disease (PD) patients. We developed a detailed mathematical model based on raw OCT data to allow differentiation of foveae of PD patients from healthy controls. Of the various models we tested, a difference of a Gaussian and a polynomial was found to have "the best fit". Decision was based on mathematical evaluation of the fit of the model to the data of 45 control eyes versus 50 PD eyes. We compared the model parameters in the two groups using receiver-operating characteristics (ROC). A single parameter discriminated 70 % of PD eyes from controls, while using seven of the eight parameters of the model allowed 76 % to be discriminated. The future clinical utility of mathematical modeling in study of diffuse neurodegenerative conditions that also affect the fovea is discussed.
Collapse
Affiliation(s)
- Yin Ding
- Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Brooklyn, NY, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Correlation of inner retinal thickness evaluated by spectral-domain optical coherence tomography and contrast sensitivity in Parkinson disease. J Neuroophthalmol 2014; 33:137-42. [PMID: 23612240 DOI: 10.1097/wno.0b013e31828c4e1a] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND To compare inner retinal layer (IRL) thickness measured by spectral-domain optical coherence tomography (SD-OCT) and contrast sensitivity (CS) in patients with Parkinson disease (PD) and in healthy control (HC) subjects. METHODS Consecutive patients with and without PD were prospectively analyzed using SD-OCT and Pelli-Robson CS testing. SD-OCT IRL (ganglion-cell complex) thickness, consisting of the nerve fiber layer, ganglion cell layer, and inner plexiform layer, was segmented using an RTVue Model-RT100 with an EMM5 scan parameter covering a 5.0 × 5.0 mm cube centered on the fovea. Thickness voxel measurements at 0.25-mm intervals at sequential radial distances from the foveola were acquired horizontally and vertically. SD-OCT thickness raw data files were imported and analyzed within MATLAB (version 7.10.0). A database of CS scores and IRL thickness values by foveal location was constructed and statistically evaluated using JMP 10 (SAS Institute, Inc, Cary, NC). RESULTS The results were compared between 28 eyes of 14 patients with PD and 28 eyes of 14 HC subjects. Controlling for age, mean CS scores of monocular right and randomized eyes were statistically lower in PD eyes (P < 0.05). IRL was significantly thinner in PD eyes than in HC eyes at several distances from the foveola (P < 0.05). The most numerous and significant thickness differences by diagnosis were located in the superior quadrant at a distance of 1.00-1.75 mm from the foveal center (17 μm; P < 0.01, maximum significant thickness difference and P value). Correlation was demonstrated between monocular CS and IRL thickness by diagnosis at multiple foveal locations for HC eyes as follows: nasal quadrant, 0.75-1.00 mm (P < 0.02); temporal quadrant, 0.50-1.00 mm (P < 0.05); superior quadrant, 1.00 mm (P < 0.05); and inferior quadrant, 1.00 mm (P < 0.03). No significant correlation was found between monocular CS and IRL thickness within PD subjects (P > 0.05 for each foveal location measured). CONCLUSION CS and foveal IRL thickness are decreased in patients with PD. CS and IRL thickness correlated in HC subjects; however, no such correlation was demonstrated in PD. The functional deficit of dopaminergic interneurons, including amacrine cells, may outstrip the anatomic structural changes in the inner retina of PD patients. Inner retinal atrophic changes may underlie the pathogenesis of CS deficit and IRL thinning in PD.
Collapse
|
41
|
McMahon DG, Iuvone PM, Tosini G. Circadian organization of the mammalian retina: from gene regulation to physiology and diseases. Prog Retin Eye Res 2013; 39:58-76. [PMID: 24333669 DOI: 10.1016/j.preteyeres.2013.12.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/27/2013] [Accepted: 12/01/2013] [Indexed: 01/27/2023]
Abstract
The retinal circadian system represents a unique structure. It contains a complete circadian system and thus the retina represents an ideal model to study fundamental questions of how neural circadian systems are organized and what signaling pathways are used to maintain synchrony of the different structures in the system. In addition, several studies have shown that multiple sites within the retina are capable of generating circadian oscillations. The strength of circadian clock gene expression and the emphasis of rhythmic expression are divergent across vertebrate retinas, with photoreceptors as the primary locus of rhythm generation in amphibians, while in mammals clock activity is most robust in the inner nuclear layer. Melatonin and dopamine serve as signaling molecules to entrain circadian rhythms in the retina and also in other ocular structures. Recent studies have also suggested GABA as an important component of the system that regulates retinal circadian rhythms. These transmitter-driven influences on clock molecules apparently reinforce the autonomous transcription-translation cycling of clock genes. The molecular organization of the retinal clock is similar to what has been reported for the SCN although inter-neural communication among retinal neurons that form the circadian network is apparently weaker than those present in the SCN, and it is more sensitive to genetic disruption than the central brain clock. The melatonin-dopamine system is the signaling pathway that allows the retinal circadian clock to reconfigure retinal circuits to enhance light-adapted cone-mediated visual function during the day and dark-adapted rod-mediated visual signaling at night. Additionally, the retinal circadian clock also controls circadian rhythms in disk shedding and phagocytosis, and possibly intraocular pressure. Emerging experimental data also indicate that circadian clock is also implicated in the pathogenesis of eye disease and compelling experimental data indicate that dysfunction of the retinal circadian system negatively impacts the retina and possibly the cornea and the lens.
Collapse
Affiliation(s)
- Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, 30310 GA, USA.
| |
Collapse
|
42
|
Foveal vision is impaired in Parkinson's disease. Parkinsonism Relat Disord 2013; 19:1-14. [DOI: 10.1016/j.parkreldis.2012.07.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 07/16/2012] [Accepted: 07/21/2012] [Indexed: 11/23/2022]
|
43
|
Remodeling of the fovea in Parkinson disease. J Neural Transm (Vienna) 2012; 120:745-53. [DOI: 10.1007/s00702-012-0909-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/19/2012] [Indexed: 01/24/2023]
|
44
|
Interocular asymmetry of foveal thickness in Parkinson disease. J Ophthalmol 2012; 2012:728457. [PMID: 22900149 PMCID: PMC3415246 DOI: 10.1155/2012/728457] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 06/03/2012] [Accepted: 06/03/2012] [Indexed: 01/19/2023] Open
Abstract
Purpose. To quantify interocular asymmetry (IA) of foveal thickness in Parkinson disease (PD) versus that of controls. Design. Prospective case-control series. Methods. In vivo assessment of foveal thickness of 46 eyes of 23 PD patients and 36 eyes of 18 control subjects was studied using spectral domain optical coherence tomography (SD-OCT). Inner versus outer layer retinal segmentation and macular volumes were quantified using the manufacturer's software, while foveal thickness was measured using the raw data from each eye in a grid covering a 6 by 6 mm area centered on the foveola in 0.25 mm steps. Thickness data were entered into MATLAB software. Results. Macular volumes differed significantly at the largest (Zone 3) diameter centered on the foveola (ETDRS protocol). By segmenting inner from outer layers, we found that the IA in PD is mostly due to changes on the slope of the foveal pit at the radial distances of 0.5 and 0.75 mm (1.5 mm and 1 mm diameter). Conclusions. About half of the PD patients had IA of the slope of the foveal pit. IA is a potentially useful marker of PD and is expected to be comparable across different SD-OCT equipment. Data of larger groups may be developed in future multicenter studies.
Collapse
|
45
|
Abstract
Background/Objective Parkinson's disease (PD) and the atypical parkinsonian syndromes multiple system atrophy (MSA), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) are movement disorders associated with degeneration of the central nervous system. Degeneration of the retina has not been systematically compared in these diseases. Methods This cross-sectional study used spectral-domain optical coherence tomography with manual segmentation to measure the peripapillar nerve fiber layer, the macular thickness, and the thickness of all retinal layers in foveal scans of 40 patients with PD, 19 with MSA, 10 with CBS, 15 with PSP, and 35 age- and sex-matched controls. Results The mean paramacular thickness and volume were reduced in PSP while the mean RNFL did not differ significantly between groups. In PSP patients, the complex of retinal ganglion cell- and inner plexiform layer and the outer nuclear layer was reduced. In PD, the inner nuclear layer was thicker than in controls, MSA and PSP. Using the ratio between the outer nuclear layer and the outer plexiform layer with a cut-off at 3.1 and the additional constraint that the inner nuclear layer be under 46 µm, we were able to differentiate PSP from PD in our patient sample with a sensitivity of 96% and a specificity of 70%. Conclusion Different parkinsonian syndromes are associated with distinct changes in retinal morphology. These findings may serve to facilitate the differential diagnosis of parkinsonian syndromes and give insight into the degenerative processes of patients with atypical parkinsonian syndromes.
Collapse
|
46
|
Esteve-Rudd J, Fernández-Sánchez L, Lax P, De Juan E, Martín-Nieto J, Cuenca N. Rotenone induces degeneration of photoreceptors and impairs the dopaminergic system in the rat retina. Neurobiol Dis 2011; 44:102-15. [DOI: 10.1016/j.nbd.2011.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/24/2011] [Accepted: 06/16/2011] [Indexed: 12/21/2022] Open
|
47
|
Kamagata K, Motoi Y, Hori M, Suzuki M, Nakanishi A, Shimoji K, Kyougoku S, Kuwatsuru R, Sasai K, Abe O, Mizuno Y, Aoki S, Hattori N. Posterior hypoperfusion in Parkinson's disease with and without dementia measured with arterial spin labeling MRI. J Magn Reson Imaging 2011; 33:803-7. [PMID: 21448943 DOI: 10.1002/jmri.22515] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To determine whether quantitative arterial spin labeling (ASL) can be used to evaluate regional cerebral blood flow in Parkinson's disease with dementia (PDD) and without dementia (PD). MATERIALS AND METHODS Thirty-five PD patients, 11 PDD patients, and 35 normal controls were scanned by using a quantitative ASL method with a 3 Tesla MRI unit. Regional cerebral blood flow was compared in the posterior cortex using region-of-interest analysis. RESULTS PD and PDD patients showed lower regional cerebral blood flow in the posterior cortex than normal controls (P = 0.002 and P = 0.001, respectively, analysis of variance with a Bonferroni post hoc test). CONCLUSION This is the first study to detect hypoperfusion in the posterior cortex in PD and PDD patients using ASL perfusion MRI. Because ASL perfusion MRI is completely noninvasive and can, therefore, safely be used for repeated assessments, this method can be used to monitor treatment effects or disease progression in PD.
Collapse
Affiliation(s)
- Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. Eur J Ophthalmol 2011; 21:24-9. [PMID: 20602324 DOI: 10.5301/ejo.2010.1318] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2010] [Indexed: 11/20/2022]
Abstract
PURPOSE To investigate the anatomic and electrophysiologic changes of the macula and the optic nerve in patients with Parkinson disease (PD) without visual impairment. METHODS Thirty-two eyes of 16 patients with PD (group A) without visual impairment were tested. Visual acuity was 20/20 or better and visual fields as well as color vision testing results were normal. Also, no retinal lesions were assessed. Patients in group B (40 eyes of 20 patients) were age- and sex-matched control subjects. All study participants underwent a comprehensive ophthalmic examination, multifocal electroretinogram (mfERG) recording, and optical coherence tomography (OCT) scan. Thickness of retinal nerve fiber layer (RNFL) along a 3.4-mm-diameter circle centered on the optic nerve head was evaluated using third-generation OCT. RESULTS The mean P1-response density amplitude of ring 1 of mfERG was 136.69 nV/deg2 in patients with PD and 294 nV/deg2 in control subjects and the difference was highly significant. On the contrary, these values in ring 2 and 3 did not differ statistically between controls and patients with PD. The mean inferior and temporal RNFL thickness was significantly lower in patients with PD than in control subjects (p<0.0001 and p=0.0045, respectively). CONCLUSIONS In patients with PD with normal vision, we found a decrease in the electrical activity of the fovea as well as in the thickness of the RNFL. Multifocal electroretinogram and OCT scan objectively detect early subclinical PD-associated visual functional impairment.
Collapse
|
49
|
Retinopathy in Parkinson disease. J Neural Transm (Vienna) 2009; 116:1493-501. [DOI: 10.1007/s00702-009-0292-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Accepted: 08/02/2009] [Indexed: 10/20/2022]
|
50
|
Cholinergic deficiency in Alzheimer's and Parkinson's disease: evaluation with pupillometry. Int J Psychophysiol 2009; 73:143-9. [PMID: 19414041 DOI: 10.1016/j.ijpsycho.2009.01.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/04/2008] [Accepted: 01/12/2009] [Indexed: 11/22/2022]
Abstract
The aim of the study was to evaluate the cholinergic deficiency in Alzheimer's (AD) and Parkinson's disease (PD). For this purpose, pupil size changes and mobility were assessed using a fast-video pupillometer (263 frames/s). Twenty-three (23) patients with probable AD and twenty-two (22) patients with PD (eleven with cognitive impairment and eleven without) entered the study. A full record of the pupil's reaction to light was registered. From this data ten (10) parameters were measured and reported. Comparison of those parameters in both group of subjects followed. Patients with probable AD had abnormal pupillary function compared to healthy ageing. All the Pupil Light Reflex (PLR) variables significantly differed between the two groups (p<0.005) except the Baseline Pupil Diameter after 2-min dark adaptation (D1) and the Minimum Pupil Diameter (D2). Maximum Constriction Acceleration (ACmax) was the best predictor in classifying a subject as normal or as an AD with a perfect classification ability (AUC=1, p<0.001). ACmax and Maximum Constriction Velocity (VCmax) were significantly lower in PD patients without and with coexisting cognitive impairment compared to normal subjects (p<0.001). Patients with cognitive impairment had significantly lower levels of ACmax, VCmax and amplitude (AMP=D1-D2) than patients with no cognitive deficits. ACmax and secondarily VCmax were the best predictors in classifying a subject as normal or as a PD patient with or without cognitive impairment. Cognitive and memory impairment, which reflects a cholinergic deficit, may be a crucial pathogenetic factor for the decrease in the aforementioned pupillometric parameters. VCmax and ACmax can be considered as the most sensitive indicators of this cholinergic deficiency.
Collapse
|