1
|
Zhou Z, Zhang Y, Wu Q, Hou X, Zhang B. Yeast Synthesis and Herbicidal Activity Evaluation of Aspterric Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25755-25766. [PMID: 39511739 DOI: 10.1021/acs.jafc.4c08468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Aspterric acid (AA) is a novel natural product herbicide that targets dihydroxyacid dehydratase in plants. In this study, we introduced two distinct AA biosynthesis-related gene clusters into Saccharomyces cerevisiae and screened the core biosynthetic enzyme, sesquiterpene cyclase, from various fungi. The combination of sesquiterpene cyclase from Aspergillus taichungensis IBT 19404 and two cytochrome P450s from Penicillium brasilianum resulted in the optimal AA synthesis efficiency in yeast, with the highest titer of 33.21 mg/L achieved by optimizing fermentation conditions in shake flasks. Moreover, the herbicidal effects of AA on weed germination and growth were evaluated. Notably, AA strongly inhibited the germination of Amaranthus tricolor, Portulaca oleracea, Bidens pilosa, Lolium perenne, and Leptochloa chinensis. Furthermore, AA could also inhibit the shoot and root growth of weeds with a superior inhibitory effect on roots relative to shoots. Our work not only provides a sustainable method for the biosynthesis of AA in yeast but also paves the way for the application of AA as a preemergence herbicide.
Collapse
Affiliation(s)
- Zhenzhen Zhou
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu P. R. China
| | - Yuting Zhang
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu P. R. China
| | - Qi Wu
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu P. R. China
| | - Xiaodong Hou
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu P. R. China
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu P. R. China
| |
Collapse
|
2
|
Wu Y, Feng S, Sun Z, Hu Y, Jia X, Zeng B. An outlook to sophisticated technologies and novel developments for metabolic regulation in the Saccharomyces cerevisiae expression system. Front Bioeng Biotechnol 2023; 11:1249841. [PMID: 37869712 PMCID: PMC10586203 DOI: 10.3389/fbioe.2023.1249841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023] Open
Abstract
Saccharomyces cerevisiae is one of the most extensively used biosynthetic systems for the production of diverse bioproducts, especially biotherapeutics and recombinant proteins. Because the expression and insertion of foreign genes are always impaired by the endogenous factors of Saccharomyces cerevisiae and nonproductive procedures, various technologies have been developed to enhance the strength and efficiency of transcription and facilitate gene editing procedures. Thus, the limitations that block heterologous protein secretion have been overcome. Highly efficient promoters responsible for the initiation of transcription and the accurate regulation of expression have been developed that can be precisely regulated with synthetic promoters and double promoter expression systems. Appropriate codon optimization and harmonization for adaption to the genomic codon abundance of S. cerevisiae are expected to further improve the transcription and translation efficiency. Efficient and accurate translocation can be achieved by fusing a specifically designed signal peptide to an upstream foreign gene to facilitate the secretion of newly synthesized proteins. In addition to the widely applied promoter engineering technology and the clear mechanism of the endoplasmic reticulum secretory pathway, the innovative genome editing technique CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated system) and its derivative tools allow for more precise and efficient gene disruption, site-directed mutation, and foreign gene insertion. This review focuses on sophisticated engineering techniques and emerging genetic technologies developed for the accurate metabolic regulation of the S. cerevisiae expression system.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Haslem L, Brown M, Zhang XA, Hays JM, Hays FA. Overproduction of Membrane-Associated, and Integrated, Proteins Using Saccharomyces cerevisiae. Methods Mol Biol 2022; 2507:111-141. [PMID: 35773580 PMCID: PMC9531322 DOI: 10.1007/978-1-0716-2368-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Structural and functional eukaryotic membrane protein research continues to grow at an increasing rate, placing greater significance on leveraging productive protein expression pipelines to feed downstream studies. Bacterial expression systems (e.g., E. coli) are often the preferred system due to their simple growth conditions, relative simplicity in experimental workflow, low overall cost per liter of cell growth, and ease of genetic manipulation. However, overproduction success of eukaryotic membrane proteins in bacterial systems is hindered by the limited native processing ability of bacterial systems for important protein folding interactions (e.g., disulfide bonds), post-translational modifications (e.g., glycosylation), and inherent disadvantages in protein trafficking and folding machinery compared to other expression systems.In contrast, Saccharomyces cerevisiae expression systems combine positive benefits of simpler bacterial systems with those of more complex eukaryotic systems (e.g., mammalian cells). Benefits include inexpensive growth, robust DNA repair and recombination machinery, amenability to high density growths in bioreactors, efficient transformation, and robust post-translational modification machinery. These characteristics make S. cerevisiae a viable first-alternative when bacterial overproduction is insufficient. Thus, this chapter provides a framework, using methods that have proven successful in prior efforts, for overproducing membrane anchored or membrane integrated proteins in S. cerevisiae. The framework is designed to improve yields for all levels of overexpression expertise, providing optimization insights for the variety of processes involved in heterologous protein expression.
Collapse
Affiliation(s)
- Landon Haslem
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Marina Brown
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xin A Zhang
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jennifer M Hays
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Franklin A Hays
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Cunha JT, Soares PO, Baptista SL, Costa CE, Domingues L. Engineered Saccharomyces cerevisiae for lignocellulosic valorization: a review and perspectives on bioethanol production. Bioengineered 2020; 11:883-903. [PMID: 32799606 PMCID: PMC8291843 DOI: 10.1080/21655979.2020.1801178] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The biorefinery concept, consisting in using renewable biomass with economical and energy goals, appeared in response to the ongoing exhaustion of fossil reserves. Bioethanol is the most prominent biofuel and has been considered one of the top chemicals to be obtained from biomass. Saccharomyces cerevisiae, the preferred microorganism for ethanol production, has been the target of extensive genetic modifications to improve the production of this alcohol from renewable biomasses. Additionally, S. cerevisiae strains from harsh industrial environments have been exploited due to their robust traits and improved fermentative capacity. Nevertheless, there is still not an optimized strain capable of turning second generation bioprocesses economically viable. Considering this, and aiming to facilitate and guide the future development of effective S. cerevisiae strains, this work reviews genetic engineering strategies envisioning improvements in 2nd generation bioethanol production, with special focus in process-related traits, xylose consumption, and consolidated bioprocessing. Altogether, the genetic toolbox described proves S. cerevisiae to be a key microorganism for the establishment of a bioeconomy, not only for the production of lignocellulosic bioethanol, but also having potential as a cell factory platform for overall valorization of renewable biomasses.
Collapse
Affiliation(s)
- Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar , Braga, Portugal
| | - Pedro O Soares
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar , Braga, Portugal
| | - Sara L Baptista
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar , Braga, Portugal
| | - Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar , Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar , Braga, Portugal
| |
Collapse
|
5
|
Moreno-García J, Martín-García FJ, Ogawa M, García-Martínez T, Moreno J, Mauricio JC, Bisson LF. FLO1, FLO5 and FLO11 Flocculation Gene Expression Impacts Saccharomyces cerevisiae Attachment to Penicillium chrysogenum in a Co-immobilization Technique. Front Microbiol 2018; 9:2586. [PMID: 30429833 PMCID: PMC6220091 DOI: 10.3389/fmicb.2018.02586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/10/2018] [Indexed: 11/14/2022] Open
Abstract
A reoccurring flaw of most yeast immobilization systems that limits the potential of the technique is leakage of the cells from the matrix. Leakage may be due to weakly adherent cells, deterioration of the matrix, or to new growth and loss of non-adherent daughter cells. Yeast biocapsules are a spontaneous, cost effective system of immobilization whereby Saccharomyces cerevisiae cells are attached to the hyphae of Penicillium chrysogenum, creating hollow spheres that allow recovery and reutilization. This attachment is based on naturally occurring adherent properties of the yeast cell surface. We hypothesized that proteins associated with flocculation might play a role in adherence to fungal hyphae. To test this hypothesis, yeast strains with overexpressed and deleted flocculation genes (FLO1, FLO5, and FLO11) were evaluated for biocapsule formation to observe the impact of gene expression on biocapsule diameter, number, volume, dry mass, and percent immobilized versus non-immobilized cells. Overexpression of all three genes enhanced immobilization and resulted in larger diameter biocapsules. In particular, overexpression of FLO11 resulted in a five fold increase of absorbed cells versus the wild type isogenic strain. In addition, deletion of FLO1 and FLO11 significantly decreased the number of immobilized yeast cells compared to the wild type BY4742. These results confirm the role of natural adherent properties of yeast cells in attachment to fungal hyphae and offer the potential to create strongly adherent cells that will produce adherent progeny thereby reducing the potential for cell leakage from the matrix.
Collapse
Affiliation(s)
- Jaime Moreno-García
- Department of Microbiology, University of Córdoba, Córdoba, Spain
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Minami Ogawa
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | | | - Juan Moreno
- Department of Agricultural Chemistry, University of Córdoba, Córdoba, Spain
| | - Juan C. Mauricio
- Department of Microbiology, University of Córdoba, Córdoba, Spain
| | - Linda F. Bisson
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Wang P, Zhang L, Huang C, Huang P, Zhang J. Distinct Prognostic Values of Alcohol Dehydrogenase Family Members for Non-Small Cell Lung Cancer. Med Sci Monit 2018; 24:3578-3590. [PMID: 29808834 PMCID: PMC6003262 DOI: 10.12659/msm.910026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related death worldwide. The relationships of alcohol dehydrogenase (ADH) enzymes, encoded by the genes ADH1 (1A), ADH1B (ADH2), ADH1C (ADH3), ADH4, ADH5, ADH6, and ADH7, with NSCLC have not been studied. The aim of this study was to explore the associations between NSCLC prognosis and the expression patterns of ADH family members. MATERIAL AND METHODS The online resource Metabolic gEne RApid Visualizer was used to assess the expression patterns of ADH family members in normal and primary lung tumor tissues. The GeneMANIA plugin of Cytoscape software and STRING website were used to evaluate the relationships of the 7 ADH family members at the gene and protein levels. Gene ontology enrichment analysis and KEGG pathway analysis were performed using DAVID. The online website Kaplan-Meier Plotter was used to construct survival curves between NSCLC and ADH isoforms. RESULTS The prognosis of patients with high expression levels of the ADH1B, ADH1C, ADH4, and ADH5 genes was better than those with low expression in adenocarcinoma and all (containing adenocarcinoma and squamous cell cancer) histological types (all P<0.05). Low expression of ADH7 was associated with a better prognosis in patients with both the adenocarcinoma and squamous cell cancer histological types (P=9e-05). Moreover, expression of ADH family members was associated with smoking status, clinical stage, and chemotherapy status. CONCLUSIONS ADH1B, ADH1C, ADH4, ADH5, and ADH7 appear to be useful biomarkers for the prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Peng Wang
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Linbo Zhang
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Chunxia Huang
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ping Huang
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Jianquan Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
7
|
Ottoz DSM, Rudolf F. Constitutive and Regulated Promoters in Yeast: How to Design and Make Use of Promoters in S. cerevisiae. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Diana S. M. Ottoz
- ETH Zurich; Department of Biosystems Science and Engineering; Mattenstrasse 26 4058 Basel Switzerland
- Yale University; Department of Molecular Biophysics and Biochemistry; 333 Cedar street SHM C-111 New Haven CT 06520 USA
| | - Fabian Rudolf
- ETH Zurich; Department of Biosystems Science and Engineering; Mattenstrasse 26 4058 Basel Switzerland
| |
Collapse
|
8
|
Production of Recombinant Trichoderma reesei Cellobiohydrolase II in a New Expression System Based on Wickerhamomyces anomalus. Enzyme Res 2017; 2017:6980565. [PMID: 28951785 PMCID: PMC5603120 DOI: 10.1155/2017/6980565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/19/2017] [Accepted: 08/02/2017] [Indexed: 11/28/2022] Open
Abstract
Cellulase is a family of at least three groups of enzymes that participate in the sequential hydrolysis of cellulose. Recombinant expression of cellulases might allow reducing their production times and increasing the low proteins concentrations obtained with filamentous fungi. In this study, we describe the production of Trichoderma reesei cellobiohydrolase II (CBHII) in a native strain of Wickerhamomyces anomalus. Recombinant CBHII was expressed in W. anomalus 54-A reaching enzyme activity values of up to 14.5 U L−1. The enzyme extract showed optimum pH and temperature of 5.0–6.0 and 40°C, respectively. Enzyme kinetic parameters (KM of 2.73 mM and Vmax of 23.1 µM min−1) were between the ranges of values reported for other CBHII enzymes. Finally, the results showed that an enzymatic extract of W. anomalus 54-A carrying the recombinant T. reesei CBHII allows production of reducing sugars similar to that of a crude extract from cellulolytic fungi. These results show the first report on the use of W. anomalus as a host to produce recombinant proteins. In addition, recombinant T. reesei CBHII enzyme could potentially be used in the degradation of lignocellulosic residues to produce bioethanol, based on its pH and temperature activity profile.
Collapse
|
9
|
Boswell-Casteel RC, Johnson JM, Stroud RM, Hays FA. Integral Membrane Protein Expression in Saccharomyces cerevisiae. Methods Mol Biol 2016; 1432:163-86. [PMID: 27485336 PMCID: PMC6166409 DOI: 10.1007/978-1-4939-3637-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Eukaryotic integral membrane proteins are challenging targets for crystallography or functional characterization in a purified state. Since expression is often a limiting factor when studying this difficult class of biological macromolecules, the intent of this chapter is to focus on the expression of eukaryotic integral membrane proteins (IMPs) using the model organism Saccharomyces cerevisiae. S. cerevisiae is a prime candidate for the expression of eukaryotic IMPs because it offers the convenience of using episomal expression plasmids, selection of positive transformants, posttranslational modifications, and it can properly fold and target IMPs. Here we present a generalized protocol and insights based on our collective knowledge as an aid to overcoming the challenges faced when expressing eukaryotic IMPs in S. cerevisiae.
Collapse
Affiliation(s)
- Rebba C Boswell-Casteel
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jennifer M Johnson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Franklin A Hays
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
10
|
Snf1-Dependent Transcription Confers Glucose-Induced Decay upon the mRNA Product. Mol Cell Biol 2015; 36:628-44. [PMID: 26667037 DOI: 10.1128/mcb.00436-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, the switch from respiratory metabolism to fermentation causes rapid decay of transcripts encoding proteins uniquely required for aerobic metabolism. Snf1, the yeast ortholog of AMP-activated protein kinase, has been implicated in this process because inhibiting Snf1 mimics the addition of glucose. In this study, we show that the SNF1-dependent ADH2 promoter, or just the major transcription factor binding site, is sufficient to confer glucose-induced mRNA decay upon heterologous transcripts. SNF1-independent expression from the ADH2 promoter prevented glucose-induced mRNA decay without altering the start site of transcription. SNF1-dependent transcripts are enriched for the binding motif of the RNA binding protein Vts1, an important mediator of mRNA decay and mRNA repression whose expression is correlated with decreased abundance of SNF1-dependent transcripts during the yeast metabolic cycle. However, deletion of VTS1 did not slow the rate of glucose-induced mRNA decay. ADH2 mRNA rapidly dissociated from polysomes after glucose repletion, and sequences bound by RNA binding proteins were enriched in the transcripts from repressed cells. Inhibiting the protein kinase A pathway did not affect glucose-induced decay of ADH2 mRNA. Our results suggest that Snf1 may influence mRNA stability by altering the recruitment activity of the transcription factor Adr1.
Collapse
|
11
|
Pratter SM, Eixelsberger T, Nidetzky B. Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form. BIORESOURCE TECHNOLOGY 2015; 198:732-738. [PMID: 26452180 DOI: 10.1016/j.biortech.2015.09.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
A novel Saccharomyces cerevisiae whole-cell biocatalyst for xylitol production based on Candida tenuis xylose reductase (CtXR) is presented. Six recombinant strains expressing wild-type CtXR or an NADH-specific mutant were constructed and evaluated regarding effects of expression mode, promoter strength, biocatalyst concentration and medium composition. Intracellular XR activities ranged from 0.09 U mgProt(-1) to 1.05 U mgProt(-1) but did not correlate with the strains' xylitol productivities, indicating that other factors limited xylose conversion in the high-activity strains. The CtXR mutant decreased the biocatalyst's performance, suggesting use of the NADPH-preferring wild-type enzyme when (semi-)aerobic conditions are applied. In a bioreactor process, the best-performing strain converted 40 g L(-1) xylose with an initial productivity of 1.16 g L(-1)h(-1) and a xylitol yield of 100%. The obtained results underline the potential of CtXR wild-type for xylose reduction and point out parameters to improve "green" xylitol production.
Collapse
Affiliation(s)
- S M Pratter
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - T Eixelsberger
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - B Nidetzky
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria.
| |
Collapse
|
12
|
Kim S, Lee K, Bae SJ, Hahn JS. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2015; 99:2705-14. [DOI: 10.1007/s00253-014-6303-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/04/2014] [Accepted: 12/07/2014] [Indexed: 10/24/2022]
|
13
|
Bahieldin A, Gadalla NO, Al-Garni SM, Almehdar H, Noor S, Hassan SM, Shokry AM, Sabir JSM, Murata N. Efficient production of lycopene in Saccharomyces cerevisiae by expression of synthetic crt genes from a plasmid harboring the ADH2 promoter. Plasmid 2014; 72:18-28. [PMID: 24680933 DOI: 10.1016/j.plasmid.2014.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/23/2014] [Accepted: 03/10/2014] [Indexed: 01/04/2023]
Abstract
Lycopene is an effective antioxidant proposed as a possible treatment for some cancers and other degenerative human conditions. This study aims at generation of a yeast strain (Saccharomyces cerevisiae) of efficient productivity of lycopene by overexpressing synthetic genes derived from crtE, crtB and crtI genes of Erwinia uredovora. These synthetic genes were constructed in accordance with the preferred codon usage in S. cerevisiae but with no changes in amino acid sequences of the gene products. S. cerevisiae cells were transformed with these synthetic crt genes, whose expression was regulated by the ADH2 promoter, which is de-repressed upon glucose depletion. The RT-PCR and Western blotting analyses indicated that the synthetic crt genes were efficiently transcribed and translated in crt-transformed S. cerevisiae cells. The highest level of lycopene in one of the transformed lines was 3.3mglycopene/g dry cell weight, which is higher than the previously reported levels of lycopene in other microorganisms transformed with the three genes. These results suggest the excellence of using the synthetic crt genes and the ADH2 promoter in generation of recombinant S. cerevisiae that produces a high level of lycopene. The level of ergosterol was reversely correlated to that of lycopene in crt-transformed S. cerevisiae cells, suggesting that two pathways for lycopene and ergosterol syntheses compete for the use of farnesyl diphosphate.
Collapse
Affiliation(s)
- Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
| | - Nour O Gadalla
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Saleh M Al-Garni
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Hussein Almehdar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Samah Noor
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Sabah M Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ahmed M Shokry
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Norio Murata
- National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
14
|
Lo TM, Teo WS, Ling H, Chen B, Kang A, Chang MW. Microbial engineering strategies to improve cell viability for biochemical production. Biotechnol Adv 2013; 31:903-14. [PMID: 23403071 DOI: 10.1016/j.biotechadv.2013.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 11/16/2022]
Abstract
Efficient production of biochemicals using engineered microbes as whole-cell biocatalysts requires robust cell viability. Robust viability leads to high productivity and improved bioprocesses by allowing repeated cell recycling. However, cell viability is negatively affected by a plethora of stresses, namely chemical toxicity and metabolic imbalances, primarily resulting from bio-synthesis pathways. Chemical toxicity is caused by substrates, intermediates, products, and/or by-products, and these compounds often interfere with important metabolic processes and damage cellular infrastructures such as cell membrane, leading to poor cell viability. Further, stresses on engineered cells are accentuated by metabolic imbalances, which are generated by heavy metabolic resource consumption due to enzyme overexpression, redistribution of metabolic fluxes, and impaired intracellular redox state by co-factor imbalance. To address these challenges, herein, we discuss a range of key microbial engineering strategies, substantiated by recent advances, to improve cell viability for commercially sustainable production of biochemicals from renewable resources.
Collapse
Affiliation(s)
- Tat-Ming Lo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | | | | | | | | | | |
Collapse
|
15
|
Shen MWY, Fang F, Sandmeyer S, Da Silva NA. Development and characterization of a vector set with regulated promoters for systematic metabolic engineering inSaccharomyces cerevisiae. Yeast 2012; 29:495-503. [DOI: 10.1002/yea.2930] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/25/2012] [Indexed: 11/09/2022] Open
Affiliation(s)
- Michael W. Y. Shen
- Department of Chemical Engineering and Materials Science; University of California, Irvine; CA; 92697; USA
| | | | - Suzanne Sandmeyer
- Department of Biological Chemistry, School of Medicine; University of California, Irvine; CA; 92697; USA
| | - Nancy A. Da Silva
- Department of Chemical Engineering and Materials Science; University of California, Irvine; CA; 92697; USA
| |
Collapse
|
16
|
Production of recombinant proteins by yeast cells. Biotechnol Adv 2012; 30:1108-18. [DOI: 10.1016/j.biotechadv.2011.09.011] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/12/2011] [Accepted: 09/17/2011] [Indexed: 01/14/2023]
|
17
|
Shen MWY, Shah D, Chen W, Da Silva N. Enhanced arsenate uptake in Saccharomyces cerevisiae overexpressing the Pho84 phosphate transporter. Biotechnol Prog 2012; 28:654-61. [PMID: 22628173 DOI: 10.1002/btpr.1531] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 02/12/2012] [Indexed: 11/06/2022]
Abstract
Arsenate is a major toxic constituent in arsenic-contaminated water supplies. Saccharomyces cerevisiae was engineered as a potential biosorbent for enhanced arsenate accumulation. The phosphate transporter, Pho84p, known to import arsenate, was overexpressed using a 2μ-based vector carrying PHO84 under the control of the late-phase ADH2 promoter. Arsenate uptake was then evaluated using a resting cell system. In buffer solutions containing high arsenate concentrations (12,000 and 30,000 ppb), the engineered strains internalized up to 750 μg of arsenate per gram of cells, a 50% improvement over control strains. Increasing the cell mass 2.5-fold yielded a proportional increase in the volumetric arsenate uptake, while maintaining the same level of specific uptake. At high levels of arsenate, loss from the intact cells to the medium was observed with time; knockouts of two known arsenic extrusion genes, ACR3 and FPS1, did not prevent this loss. At trace level concentrations (120 ppb), rapid and total arsenate removal was observed. The presence of 50 μM phosphate reduced uptake by approximately 15% in buffer containing 80 μM (6,000 ppb) arsenate. At trace levels of arsenate (70 ppb), the phosphate reduced the initial rate of uptake, but not the total amount removed. PHO84 mRNA levels were nearly 30 times higher in the engineered strains relative to the control strains. Uptake may no longer be a limiting factor in the engineered system and further increases should be possible by upregulating the downstream reduction and sequestration pathways.
Collapse
Affiliation(s)
- Michael W Y Shen
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA
| | | | | | | |
Collapse
|
18
|
Da Silva NA, Srikrishnan S. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res 2012; 12:197-214. [PMID: 22129153 DOI: 10.1111/j.1567-1364.2011.00769.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 11/26/2022] Open
Abstract
Metabolic pathway engineering in the yeast Saccharomyces cerevisiae leads to improved production of a wide range of compounds, ranging from ethanol (from biomass) to natural products such as sesquiterpenes. The introduction of multienzyme pathways requires precise control over the level and timing of expression of the associated genes. Gene number and promoter strength/regulation are two critical control points, and multiple studies have focused on modulating these in yeast. This MiniReview focuses on methods for introducing genes and controlling their copy number and on the many promoters (both constitutive and inducible) that have been successfully employed. The advantages and disadvantages of the methods will be presented, and applications to pathway engineering will be highlighted.
Collapse
Affiliation(s)
- Nancy A Da Silva
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA.
| | | |
Collapse
|
19
|
Purification of transmembrane proteins from Saccharomyces cerevisiae for X-ray crystallography. Protein Expr Purif 2010; 71:207-23. [PMID: 20045057 DOI: 10.1016/j.pep.2009.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 12/23/2009] [Accepted: 12/26/2009] [Indexed: 01/15/2023]
Abstract
To enhance the quantity and quality of eukaryotic transmembrane proteins (TMPs) available for structure determination by X-ray crystallography, we have optimized protocols for purification of TMPs expressed in the yeast Saccharomyces cerevisiae. We focused on a set of the highest-expressing endogenous yeast TMPs for which there are established biochemical assays. Genes encoding the target TMPs are transferred via ligation-independent cloning to a series of vectors that allow expression of reading frames fused to C-terminal His10 and ZZ (IgG-binding) domains that are separated from the reading frame by a cleavage site for rhinovirus 3C protease. Several TMP targets expressed from these vectors have been purified via affinity chromatography and gel filtration chromatography at levels and purities sufficient for ongoing crystallization trials. Initial purifications were based on expression of the genes under control of a galactose-inducible promoter, but higher cell densities and improved expression have been obtained through use of the yeast ADH2 promoter. Wide variations have been observed in the behavior of different TMP targets during purification; some can be readily purified, while others do not bind efficiently to affinity matrices, are not efficiently cleaved from the matrices, or remain tightly associated with the matrices even after cleavage of the affinity tags. The size, oligomeric state, and composition of purified protein-detergent complexes purified under different conditions were analyzed using a colorimetric assay of detergent concentrations and by analytical size-exclusion chromatography using static light scattering, refractive index, and UV absorption detection to monitor the elution profiles. Effective procedures were developed for obtaining high concentrations of purified TMPs without excessively concentrating detergents.
Collapse
|
20
|
Ma SM, Li JWH, Choi JW, Zhou H, Lee KKM, Moorthie VA, Xie X, Kealey JT, Da Silva NA, Vederas JC, Tang Y. Complete reconstitution of a highly reducing iterative polyketide synthase. Science 2009; 326:589-92. [PMID: 19900898 PMCID: PMC2875069 DOI: 10.1126/science.1175602] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Highly reducing iterative polyketide synthases are large, multifunctional enzymes that make important metabolites in fungi, such as lovastatin, a cholesterol-lowering drug from Aspergillus terreus. We report efficient expression of the lovastatin nonaketide synthase (LovB) from an engineered strain of Saccharomyces cerevisiae, as well as complete reconstitution of its catalytic function in the presence and absence of cofactors (the reduced form of nicotinamide adenine dinucleotide phosphate and S-adenosylmethionine) and its partner enzyme, the enoyl reductase LovC. Our results demonstrate that LovB retains correct intermediates until completion of synthesis of dihydromonacolin L, but off-loads incorrectly processed compounds as pyrones or hydrolytic products. Experiments replacing LovC with analogous MlcG from compactin biosynthesis demonstrate a gate-keeping function for this partner enzyme. This study represents a key step in the understanding of the functions and structures of this family of enzymes.
Collapse
Affiliation(s)
- Suzanne M. Ma
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Jesse W.-H. Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 Canada
| | - Jin W. Choi
- Department of Chemical Engineering and Material Science, University of California, Irvine, CA 92697, USA
| | - Hui Zhou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - K. K. Michael Lee
- Department of Chemical Engineering and Material Science, University of California, Irvine, CA 92697, USA
| | | | - Xinkai Xie
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - James T. Kealey
- Amyris Biotechnologies, 5885 Hollis Street, Suite 100 Emeryville, CA 94608, USA
| | - Nancy A. Da Silva
- Department of Chemical Engineering and Material Science, University of California, Irvine, CA 92697, USA
| | - John C. Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 Canada
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol 2008; 74:6041-52. [PMID: 18708514 DOI: 10.1128/aem.00394-08] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many industrial fermentation processes, the Saccharomyces cerevisiae yeast should ideally meet two partially conflicting demands. During fermentation, a high suspended yeast count is required to maintain a satisfactory rate of fermentation, while at completion, efficient settling is desired to enhance product clarification and recovery. In most fermentation industries, currently used starter cultures do not satisfy this ideal, probably because nonflocculent yeast strains were selected to avoid fermentation problems. In this paper, we assess molecular strategies to optimize the flocculation behavior of S. cerevisiae. For this purpose, the chromosomal copies of three dominant flocculation genes, FLO1, FLO5, and FLO11, of the haploid nonflocculent, noninvasive, and non-flor-forming S. cerevisiae FY23 strain were placed under the transcriptional control of the promoters of the ADH2 and HSP30 genes. All six promoter-gene combinations resulted in specific flocculation behaviors in terms of timing and intensity. The strategy resulted in stable expression patterns providing a platform for the direct comparison and assessment of the specific impact of the expression of individual dominant FLO genes with regard to cell wall characteristics, such as hydrophobicity, biofilm formation, and substrate adhesion properties. The data also clearly demonstrate that the flocculation behavior of yeast strains can be tightly controlled and fine-tuned to satisfy specific industrial requirements.
Collapse
|
22
|
Terpitz U, Raimunda D, Westhoff M, Sukhorukov VL, Beaugé L, Bamberg E, Zimmermann D. Electrofused giant protoplasts of Saccharomyces cerevisiae as a novel system for electrophysiological studies on membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1493-500. [DOI: 10.1016/j.bbamem.2008.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/15/2008] [Accepted: 03/20/2008] [Indexed: 11/26/2022]
|
23
|
Vega-Hernández MC, Gómez-Coello A, Villar J, Claverie-Martín F. Molecular cloning and expression in yeast of caprine prochymosin. J Biotechnol 2005; 114:69-79. [PMID: 15464600 DOI: 10.1016/j.jbiotec.2004.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 06/03/2004] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
We cloned and characterized a preprochymosin cDNA from the abomasum of milk-fed kid goats. This cDNA contained an open reading frame that predicts a polypeptide of 381 amino acid residues, with a signal peptide and a proenzyme region of 16 and 42 amino acids, respectively. Comparison of the caprine preprochymosin sequence with the corresponding sequences of lamb and calf revealed 99 and 94% identity at the amino acid level. The cDNA fragment encoding the mature portion of caprine prochymosin was fused in frame both to the killer toxin signal sequence and to the alpha-factor signal sequence-FLAG in two different yeast expression vectors. The recombinant plasmids were transformed into Kluyveromyces lactis and Saccharomyces cerevisiae cells, respectively. Culture supernatants of both yeast transformants showed milk-clotting activity after activation at acid pH. The FLAG-prochymosin fusion was purified from S. cerevisiae culture supernatants by affinity chromatography. Proteolytic activity assayed toward casein fractions indicated that the recombinant caprine chymosin specifically hydrolysed kappa-casein.
Collapse
Affiliation(s)
- Maria C Vega-Hernández
- Molecular Biology Laboratory, Research Unit, Nuestra Señora de Candelaria University Hospital, 38010, Santa Cruz de Tenerife, Spain
| | | | | | | |
Collapse
|
24
|
Lee KM, DaSilva NA. Evaluation of theSaccharomyces cerevisiae ADH2 promoter for protein synthesis. Yeast 2005; 22:431-40. [PMID: 15849781 DOI: 10.1002/yea.1221] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae ADH2 promoter (P(ADH2)) is repressed several hundred-fold in the presence of glucose; transcription is initiated once the glucose in the medium is exhausted. The promoter can thus be utilized for effective regulation of recombinant gene expression in S. cerevisiae without the addition of an inducer. To evaluate this promoter in the absence of plasmid copy number and stability variations, the P(ADH2)-lacZ cassette was integrated into the yeast chromosomes. The effects of medium composition, glucose concentration and cultivation time on promoter derepression and expression level were investigated. Maximum protein activity was obtained after 48 h of growth in complex YPD medium containing 1% glucose. The widely used S. cerevisiae GAL1 and CUP1 promoters both require the addition of an inducer [galactose and copper(II) ion, respectively] before regulated genes will be expressed. The strengths of these three different promoters were compared for cells containing one copy of an integrated lacZ gene under their control. The ADH2 promoter was superior for all induction strategies investigated.
Collapse
Affiliation(s)
- K Michael Lee
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA
| | | |
Collapse
|
25
|
Maggi RG, Govind NS. Regulated expression of green fluorescent protein in Debaryomyces hansenii. J Ind Microbiol Biotechnol 2004; 31:301-10. [PMID: 15258828 DOI: 10.1007/s10295-004-0150-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 04/06/2004] [Indexed: 11/30/2022]
Abstract
The broad range of environmental conditions under which Debaryomyces hansenii can grow, and its production of lipolytic and proteolytic enzymes, have promoted its widespread use. The present work represents a preliminary characterization of D. hansenii for heterologous expression and secretion of green fluorescent protein (GFP). Six heterologous expression vectors were used to address protein production efficiency under regulated expression conditions. Protein expression in D. hansenii seems to be similar to that in Saccharomyces cerevisiae, with transcription being controlled by almost all of the S. cerevisiae and D. hansenii inducible promoters tested, with the exception of the alcohol dehydrogenase 2 gene promoter from S. cerevisiae. Extracellular protein levels in D. hansenii were lower than in S. cerevisiae when Saccharomyces signal peptides were used.
Collapse
Affiliation(s)
- Ricardo G Maggi
- Department of Marine Sciences, Marine Station, University of Puerto Rico, P.O. Box 908, Lajas, PR 00667, USA.
| | | |
Collapse
|
26
|
Frykman S, Srienc F. Cell cycle-dependent protein secretion by Saccharomyces cerevisiae. Biotechnol Bioeng 2001; 76:259-68. [PMID: 11668462 DOI: 10.1002/bit.10003] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Synchronized Saccharomyces cerevisiae cell populations were used to examine secretion rates of a heterologous protein as a function of cell cycle position. The synchronization procedure had a profound effect on the type and quality of data obtained. When cell synchrony was induced by cell cycle-arresting drugs, a significant physiological perturbation of cells was observed that obscured representative secretion data. In contrast, synchronization with centrifugal elutriation resulted in synchronized first-generation daughter cells with undetectable perturbation of the physiological state. The synchronized cells did not secrete significant amounts of protein until they reached cell division, suggesting that the secretion process in these cells is strongly cell cycle dependent. However, the maximum secretion rate of the synchronized culture (7-14 molecules/cell/second) was significantly lower than that of an asynchronous culture (29-51 molecules/cell/second). This result indicates that young daughter cells isolated in the synchronization process exhibit different protein secretion behavior than older mother cells that are absent in the synchronized cell population but present in the asynchronous culture.
Collapse
Affiliation(s)
- S Frykman
- Department of Chemical Engineering and Materials Science, 151 Amundson Hall, 421 Washington Ave. S.E., Minneapolis, MN 55455-0132, USA
| | | |
Collapse
|
27
|
Kim TG, Kim J, Kim DH, Yang MS. Expression of nutritionally well-balanced protein, AmA1, inSaccharomyces cerevisiae. BIOTECHNOL BIOPROC E 2001. [DOI: 10.1007/bf02932546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Setati ME, Ademark P, van Zyl WH, Hahn-Hägerdal B, Stålbrand H. Expression of the Aspergillus aculeatus endo-beta-1,4-mannanase encoding gene (man1) in Saccharomyces cerevisiae and characterization of the recombinant enzyme. Protein Expr Purif 2001; 21:105-14. [PMID: 11162394 DOI: 10.1006/prep.2000.1371] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endo-beta-1,4-mannanase encoding gene man1 of Aspergillus aculeatus MRC11624 was amplified from mRNA by polymerase chain reaction using sequence-specific primers designed from the published sequence of man1 from A. aculeatus KSM510. The amplified fragment was cloned and expressed in Saccharomyces cerevisiae under the gene regulation of the alcohol dehydrogenase (ADH2(PT)) and phosphoglycerate kinase (PGK1(PT)) promoters and terminators, respectively. The man1 gene product was designated Man5A. Subsequently, the FUR1 gene of the recombinant yeast strains was disrupted to create autoselective strains: S. cerevisiae Man5ADH2 and S. cerevisiae Man5PGK1. The strains secreted 521 nkat/ml and 379 nkat/ml of active Man5A after 96 h of growth in a complex medium. These levels were equivalent to 118 and 86 mg/l of Man5A protein produced, respectively. The properties of the native and recombinant Man5A were investigated and found to be similar. The apparent molecular mass of the recombinant enzyme was 50 kDa compared to 45 kDa of the native enzyme due to glycosylation. The determined K(m) and V(max) values were 0.3 mg/ml and 82 micromol/min/mg for the recombinant and 0.15 mg/ml and 180 micromol/min/mg for the native Man5A, respectively. The maximum pH and thermal stability were observed within the range of pH 4-6 and 50 degrees C and below. The pH and temperature optima and stability were relatively similar for recombinant and native Man5A. Hydrolysis of an unbranched beta-1,4-linked mannan polymer released mannose, mannobiose, and mannotriose as the main products.
Collapse
Affiliation(s)
- M E Setati
- Department of Microbiology, University of Stellenbosch, Stellenbosch, 7600, South Africa
| | | | | | | | | |
Collapse
|
29
|
Loughney K, Snyder PB, Uher L, Rosman GJ, Ferguson K, Florio VA. Isolation and characterization of PDE10A, a novel human 3', 5'-cyclic nucleotide phosphodiesterase. Gene 1999; 234:109-17. [PMID: 10393245 DOI: 10.1016/s0378-1119(99)00171-7] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A gene encoding a novel human 3', 5'-cyclic nucleotide phosphodiesterase (PDE) was identified and characterized. PDE10A1 encodes a protein that is 779 amino acids in length. An incomplete cDNA for a second 5'-splice variant, PDE10A2, was isolated. The proteins encoded by the two variants share 766 amino acids in common. This common region includes an amino-terminal domain with partial homology to the cGMP-binding domains of PDE2, PDE5 and PDE6 as well as a carboxy-terminal region with homology to the catalytic regions of mammalian PDEs. Northern analysis revealed that PDE10A is widely expressed. The PDE10A gene was mapped to three yeast artificial chromosomes (YACs) that contain human DNA from chromosome 6q26-27. A recombinant protein corresponding to the 766 amino acid region common to PDE10A1 and PDE10A2 was expressed in yeast. It hydrolyzed both cAMP and cGMP. Inhibitors that are selective for other PDE families are poor inhibitors of PDE10A; however, PDE10A is inhibited by the non-specific PDE inhibitor, IBMX.
Collapse
Affiliation(s)
- K Loughney
- ICOS Corporation, Bothell, WA 98021, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Noronha SB, Wagner LW, Matheson NH, Shiloach J. Use of an ethanol sensor for feedback control of growth and expression of TBV25H in Saccharomyces cerevisiae. Biotechnol Bioeng 1999; 63:285-9. [PMID: 10099607 DOI: 10.1002/(sici)1097-0290(19990505)63:3<285::aid-bit4>3.0.co;2-f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A process for production of a malaria transmission blocking vaccine candidate under the control of the ADH2 promoter in Saccharomyces cerevisiae was developed. Monitoring and controlling the ethanol concentration during the process is essential for successful expression of the recombinant protein. A simple sensor accomplishing this task has been developed, the principle of its operation is the following: air-flow through silicone tubing submerged in the media picks up ethanol, which is detected by an alcohol sensor that relays a signal to a controller regulating the amount of ethanol added to the culture. The sensor was used successfully in high cell density cultures of various scales.
Collapse
Affiliation(s)
- S B Noronha
- Biotechnology Unit, LCDB, NIDDK, NIH, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
31
|
Malissard M, Zeng S, Berger EG. The yeast expression system for recombinant glycosyltransferases. Glycoconj J 1999; 16:125-39. [PMID: 10612412 DOI: 10.1023/a:1007055525789] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glycosyltransferases are increasingly being used for in vitro synthesis of oligosaccharides. Since these enzymes are difficult to purify from natural sources, expression systems for soluble forms of the recombinant enzymes have been developed. This review focuses on the current state of development of yeast expression systems. Two yeast species have mainly been used, i.e. Saccharomyces cerevisiae and Pichia pastoris. Safety and ease of fermentation are well recognized for S. cerevisiae as a biotechnological expression system; however, even soluble forms of recombinant glycosyltransferases are not secreted. In some cases, hyperglycosylation may occur. P. pastoris, by contrast, secrete soluble orthoglycosylated forms to the supernatant where they can be recovered in a highly purified form. The review also covers some basic features of yeast fermentation and describes in some detail those glycosyltransferases that have successfully been expressed in yeasts. These include beta1,4galactosyltransferase, alpha2,6sialyltransferase, alpha2,3sialyltransferase, alpha1,3fucosyltransferase III and VI and alpha1,2mannosyltransferase. Current efforts in introducing glycosylation systems of higher eukaryotes into yeasts are briefly addressed.
Collapse
Affiliation(s)
- M Malissard
- Institute of Physiology, University Zurich, Zürich, Switzerland
| | | | | |
Collapse
|
32
|
Abstract
To observe events occurring in the microenvironment surrounding individual cells, a mathematical framework has been developed describing the behavior of a compound following its secretion by a single cell. This description is based on the diffusional and binding processes taking place in the vicinity of the cell surface. It allows prediction of the rate of capture and accumulation of a secreted compound around a single cell. This concept provides the basis for the design of two experimental assays for measuring single-cell secretion rates: (1) Cells are immobilized in hydrogel microbeads which contain capture sites for the secreted compound; and (2) artificial receptors are bound directly to the cell surface which are capable of binding molecules secreted by individual cells. This general methodology is developed in the specific case of the model organism Saccharomyces cerevisiae secreting a heterologous protein, but can be applied to any cell/secreted protein combination. Binding studies have shown that approximately 2 x 10(5) of these artificial receptors can be attached to the surface of a single yeast cell. At this surface density of a putative artificial receptor, it is predicted that single-cell secretion rates of 47 molecules/cell/sec of a 150 kDa protein can be detected. Simulations indicate that a microbead loaded with 5 x 10(6) capture antibodies will result in detection of secretion of this protein at rates as low as 4 molecules/cell/sec.
Collapse
Affiliation(s)
- S Frykman
- Biological Process Technology Institute, 240 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota 55108, USA
| | | |
Collapse
|
33
|
Blank TE, Woods MP, Lebo CM, Xin P, Hopper JE. Novel Gal3 proteins showing altered Gal80p binding cause constitutive transcription of Gal4p-activated genes in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:2566-75. [PMID: 9111326 PMCID: PMC232106 DOI: 10.1128/mcb.17.5.2566] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gal4p-mediated activation of galactose gene expression in Saccharomyces cerevisiae normally requires both galactose and the activity of Gal3p. Recent evidence suggests that in cells exposed to galactose, Gal3p binds to and inhibits Ga180p, an inhibitor of the transcriptional activator Gal4p. Here, we report on the isolation and characterization of novel mutant forms of Gal3p that can induce Gal4p activity independently of galactose. Five mutant GAL3(c) alleles were isolated by using a selection demanding constitutive expression of a GAL1 promoter-driven HIS3 gene. This constitutive effect is not due to overproduction of Gal3p. The level of constitutive GAL gene expression in cells bearing different GAL3(c) alleles varies over more than a fourfold range and increases in response to galactose. Utilizing glutathione S-transferase-Gal3p fusions, we determined that the mutant Gal3p proteins show altered Gal80p-binding characteristics. The Gal3p mutant proteins differ in their requirements for galactose and ATP for their Gal80p-binding ability. The behavior of the novel Gal3p proteins provides strong support for a model wherein galactose causes an alteration in Gal3p that increases either its ability to bind to Gal80p or its access to Gal80p. With the Gal3p-Gal80p interaction being a critical step in the induction process, the Gal3p proteins constitute an important new reagent for studying the induction mechanism through both in vivo and in vitro methods.
Collapse
Affiliation(s)
- T E Blank
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | | | |
Collapse
|
34
|
la Grange DC, Pretorius IS, van Zyl WH. Expression of a Trichoderma reesei beta-xylanase gene (XYN2) in Saccharomyces cerevisiae. Appl Environ Microbiol 1996; 62:1036-44. [PMID: 8975597 PMCID: PMC167867 DOI: 10.1128/aem.62.3.1036-1044.1996] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The XYN2 gene encoding the main Trichoderma reesei QM 6a endo-beta-1,4-xylanase was amplified by PCR from first-strand cDNA synthesized on mRNA isolated from the fungus. The nucleotide sequence of the cDNA fragment was verified to contain a 699-bp open reading frame that encodes a 223-amino-acid propeptide. The XYN2 gene, located on URA3-based multicopy shuttle vectors, was successfully expressed in the yeast Saccharomyces cerevisiae under the control of the alcohol dehydrogenase II (ADH2) and phosphoglycerate kinase (PGK1) gene promoters and terminators, respectively. The 33-amino-acid leader peptide of the Xyn2 beta-xylanase was recognized and cleaved at the Kex2-like Lys-Arg residues, enabling the efficient secretion and glycosylation of the heterologous beta-xylanase. The molecular mass of the recombinant beta-xylanase was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 27 kDa. The construction of fur1 ura3 S. cerevisiae strains allowed for the autoselection of the URA3-based XYN2 shuttle vectors in nonselective complex medium. These autoselective S. cerevisiae strains produced 1,200 and 160 nkat of beta-xylanase activity per ml under the control of the ADH2 and PGK1 promoters in rich medium, respectively. The recombinant enzyme showed highest activity at pH 6 and 60 degrees C and retained more than 90% of its activity after 60 min at 50 degrees C.
Collapse
Affiliation(s)
- D C la Grange
- Department of Microbiology, University of Stellenbosch, South Africa
| | | | | |
Collapse
|
35
|
Greenhalf W, Stephan C, Chaudhuri B. Role of mitochondria and C-terminal membrane anchor of Bcl-2 in Bax induced growth arrest and mortality in Saccharomyces cerevisiae. FEBS Lett 1996; 380:169-75. [PMID: 8603730 DOI: 10.1016/0014-5793(96)00044-0] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In mammalian cells, the Bcl-2 and Bcl-x(L) proteins suppress programmed cell death whereas the topographically similar Bax protein accelerates the apoptotic process. Recently published data suggest that expression of the human Bax-alpha gene is lethal for the yeast Saccharomyces cerevisiae and that this toxicity can be overcome by co-expressing Bcl-2 or Bcl-x(L). Our findings corroborate these results. However, we find that although Bax induction invariably stops cell growth under all circumstances, it does not lead to death in 'petite' cells. Petites cannot respire because they lack functional mitochondria. It seems that in 'grande' cells, which do possess normal mitochondrial DNA, nutritional limitation is critical for increased mortality. Surprisingly, murine Bcl-2 lacking the membrane anchor of human Bcl-2 has no effect on grande cells, but can efficiently rescue petites in rich medium. It has been suggested that the C-terminal membrane anchor of human Bcl-2 may have a crucial role in rescuing apoptosis in mammalian cells. When murine Bcl-2 is fused to the membrane anchor of yeast mitochondrial Mas70 protein, the Bcl-2 variant mBcl-2-mma rescues not only petites but also grandes, just like human Bcl-x(L). The rescuing ability of Bcl-x(L), which contains its own membrane anchor, surpasses that of mBcl-2-mma. Our results indicate that the process involving Bax-induced growth inhibition followed by possible lethality, and the rescuing effect of Bcl-2 and Bcl-x(L) is linked to yeast mitochondrial function. We propose a model which is consistent with these observations.
Collapse
Affiliation(s)
- W Greenhalf
- Department of Core Drug Technologies (CDDT), Ciba-Geigy AG, Basel, Switzerland
| | | | | |
Collapse
|
36
|
Donoviel MS, Kacherovsky N, Young ET. Synergistic activation of ADH2 expression is sensitive to upstream activation sequence 2 (UAS2) orientation, copy number and UAS1-UAS2 helical phasing. Mol Cell Biol 1995; 15:3442-9. [PMID: 7760841 PMCID: PMC230579 DOI: 10.1128/mcb.15.6.3442] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The alcohol dehydrogenase 2 (ADH2) gene of Saccharomyces cerevisiae is under stringent glucose repression. Two cis-acting upstream activation sequences (UAS) that function synergistically in the derepression of ADH2 gene expression have been identified. UAS1 is the binding site for the transcriptional regulator Adr1p. UAS2 has been shown to be important for ADH2 expression and confers glucose-regulated, ADR1-independent activity to a heterologous reporter gene. An analysis of point mutations within UAS2, in the context of the entire ADH2 upstream regulatory region, showed that the specific sequence of UAS2 is important for efficient derepression of ADH2, as would be expected if UAS2 were the binding site for a transcriptional regulatory protein. In the context of the ADH2 upstream regulatory region, including UAS1, working in concert with the ADH2 basal promoter elements, UAS2-dependent gene activation was dependent on orientation, copy number, and helix phase. Multimerization of UAS2, or its presence in reversed orientation, resulted in a decrease in ADH2 expression. In contrast, UAS2-dependent expression of a reporter gene containing the ADH2 basal promoter and coding sequence was enhanced by multimerization of UAS2 and was independent of UAS2 orientation. The reduced expression caused by multimerization of UAS2 in the native promoter was observed only in the presence of ADR1. Inhibition of UAS2-dependent gene expression by Adr1p was also observed with a UAS2-dependent ADH2 reporter gene. This inhibition increased with ADR1 copy number and required the DNA-binding activity of Adr1p. Specific but low-affinity binding of Adr1p to UAS2 in vitro was demonstrated, suggesting that the inhibition of UAS2-dependent gene expression observed in vivo could be a direct effect due to Adr1p binding to UAS2.
Collapse
Affiliation(s)
- M S Donoviel
- Department of Biochemistry, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
37
|
Umemura K, Atomi H, Kanai T, Teranishi Y, Ueda M, Tanaka A. Effects of carbon source on the application of a novel foreign gene expression system in Saccharomyces cerevisiae using the upstream region of the Candida tropicalis isocitrate lyase gene (UPR-ICL). ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0922-338x(96)87727-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Donald KAG, Carle A, Gibbs MD, Bergquist PL. Production of a bacterial thermophilic xylanase inSaccharomyces cerevisiae. Appl Microbiol Biotechnol 1994. [DOI: 10.1007/bf00902734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
|
40
|
Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54067-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Leplatois P, Le Douarin B, Loison G. High-level production of a peroxisomal enzyme: Aspergillus flavus uricase accumulates intracellularly and is active in Saccharomyces cerevisiae. Gene 1992; 122:139-45. [PMID: 1452020 DOI: 10.1016/0378-1119(92)90041-m] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Strains of Saccharomyces cerevisiae producing Aspergillus flavus uricase (Uox) have been constructed. An artificial promoter which combined the upstream and downstream sequences of the GAL7 and ADH2 promoters, respectively, was found to be efficient in directing the synthesis of uaZ mRNAs encoding Uox. A good proportionality between the copy number of the uaZ expression cassette and the level of Uox production was found in the range of 1-10 copies. Transformants accumulated active and soluble Uox to a level exceeding 13% of total protein, as deduced from enzymatic assays. This relative level could be improved two- to threefold by using a recipient strain in which the wild-type GAL4 gene had been deleted and which expressed a GAL4 construct placed under the control of the ADH2 promoter.
Collapse
Affiliation(s)
- P Leplatois
- Unité de Microbiologie, Sanofi Elf Bio Recherches, Labège, France
| | | | | |
Collapse
|
42
|
Affiliation(s)
- M A Romanos
- Department of Cell Biology, Wellcome Research Laboratories, Beckenham, Kent, U.K
| | | | | |
Collapse
|