1
|
Liang X, Janks L, Egan TM. Using Whole-Cell Electrophysiology and Patch-Clamp Photometry to Characterize P2X7 Receptor Currents. Methods Mol Biol 2022; 2510:217-237. [PMID: 35776327 DOI: 10.1007/978-1-0716-2384-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fundamental property of P2X7 receptor (P2X7R) channels is the transport of cations across the cell surface membrane. Electrophysiology and patch-clamp photometry are readily accessible methods of measuring this flux in a wide range of cell types. They are important tools used to characterize the functional properties of native cells studied in cell culture, in vitro tissue slices, and, in some cases, in situ single cells. Further, they are efficient methods of probing the relation of structure to function of recombinant receptors expressed in heterologous systems. Here, we provide step-by-step procedures for use of two standard recording protocols, broken-patch and perforated-patch voltage clamp. Further, we describe a third technique, called the dye-overload method, that uses simultaneous measurement of membrane current and fura-2 fluorescence to quantify the contribution of Ca2+ flux to the ATP-gated current.
Collapse
Affiliation(s)
- Xin Liang
- The China-America Cancer Research Institute, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, P. R. China
| | - Laura Janks
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA
- Checkpoint Immunology, Immunology and Inflammation Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Terrance M Egan
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA.
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Yates P, Koester JA, Taylor AR. Brevetoxin and Conotoxin Interactions with Single-Domain Voltage-Gated Sodium Channels from a Diatom and Coccolithophore. Mar Drugs 2021; 19:md19030140. [PMID: 33801270 PMCID: PMC8002053 DOI: 10.3390/md19030140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/16/2023] Open
Abstract
The recently characterized single-domain voltage-gated ion channels from eukaryotic protists (EukCats) provide an array of novel channel proteins upon which to test the pharmacology of both clinically and environmentally relevant marine toxins. Here, we examined the effects of the hydrophilic µ-CTx PIIIA and the lipophilic brevetoxins PbTx-2 and PbTx-3 on heterologously expressed EukCat ion channels from a marine diatom and coccolithophore. Surprisingly, none of the toxins inhibited the peak currents evoked by the two EukCats tested. The lack of homology in the outer pore elements of the channel may disrupt the binding of µ-CTx PIIIA, while major structural differences between mammalian sodium channels and the C-terminal domains of the EukCats may diminish interactions with the brevetoxins. However, all three toxins produced significant negative shifts in the voltage dependence of activation and steady state inactivation, suggesting alternative and state-dependent binding conformations that potentially lead to changes in the excitability of the phytoplankton themselves.
Collapse
|
3
|
Yan L, Fang Q, Zhang X, Huang B. Optimal Pipette Resistance, Seal Resistance, and Zero-Current Membrane Potential for Loose Patch or Breakthrough Whole-Cell Recording in vivo. Front Neural Circuits 2020; 14:34. [PMID: 32714153 PMCID: PMC7344171 DOI: 10.3389/fncir.2020.00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/11/2020] [Indexed: 11/21/2022] Open
Abstract
In vivo loose patch and breakthrough whole-cell recordings are useful tools for investigating the intrinsic and synaptic properties of neurons. However, the correlation among pipette resistance, seal condition, and recording time is not thoroughly clear. Presently, we investigated the recording time of different pipette resistances and seal conditions in loose patch and breakthrough whole-cell recordings. The recording time did not change with pipette resistance for loose patch recording (Rp-loose) and first increased and then decreased as seal resistance for loose patch recording (Rs-loose) increased. For a high probability of a recording time ≥30 min, the low and high cutoff values of Rs-loose were 21.5 and 36 MΩ, respectively. For neurons with Rs-loose values of 21.5–36 MΩ, the action potential (AP) amplitudes changed slightly 30 min after the seal. The recording time increased as seal resistance for whole-cell recording (Rs-tight) increased and the zero-current membrane potential for breakthrough whole-cell recording (MPzero-current) decreased. For a high probability of a recording time ≥30 min, the cutoff values of Rs-tight and MPzero-current were 2.35 GΩ and −53.5 mV, respectively. The area under the curve (AUC) of the MPzero-current receiver operating characteristic (ROC) curve was larger than that of the Rs-tight ROC curve. For neurons with MPzero-current values ≤ −53.5 mV, the inhibitory or excitatory postsynaptic current amplitudes did not show significant changes 30 min after the seal. In neurons with Rs-tight values ≥2.35 GΩ, the recording time gradually increased and then decreased as the pipette resistance for whole-cell recording (Rp-tight) increased. For the high probability of a recording time ≥30 min, the low and high cutoff values of Rp-tight were 6.15 and 6.45 MΩ, respectively. Together, we concluded that the optimal Rs-loose range is 21.5–36 MΩ, the optimal Rp-tight range is 6.15–6.45 MΩ, and the optimal Rs-tight and MPzero-current values are ≥2.35 GΩ and ≤ −53.5 mV, respectively. Compared with Rs-tight, the MPzero-current value can more accurately discriminate recording times ≥30 min and <30 min.
Collapse
Affiliation(s)
- Linqing Yan
- Mental Health Center of Shantou University, Shantou, China
| | - Qi Fang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xingui Zhang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bowan Huang
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| |
Collapse
|
4
|
Papp F, Hajdu P, Tajti G, Toth A, Nagy E, Fazekas Z, Kovacs S, Vámosi G, Varga Z, Panyi G. Periodic Membrane Potential and Ca 2+ Oscillations in T Cells Forming an Immune Synapse. Int J Mol Sci 2020; 21:ijms21051568. [PMID: 32106594 PMCID: PMC7084896 DOI: 10.3390/ijms21051568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 11/25/2022] Open
Abstract
The immunological synapse (IS) is a specialized contact area formed between a T cell and an antigen presenting cell (APC). Besides molecules directly involved in antigen recognition such as the TCR/CD3 complex, ion channels important in the membrane potential and intracellular free Ca2+ concentration control of T cells are also recruited into the IS. These are the voltage-gated Kv1.3 and Ca2+-activated KCa3.1 K+ channels and the calcium release-activated Ca2+ channel (CRAC). However, the consequence of this recruitment on membrane potential and Ca2+ level control is not known. Here we demonstrate that the membrane potential (MP) of murine T cells conjugated with APCs in an IS shows characteristic oscillations. We found that depolarization of the membrane by current injection or by increased extracellular K+ concentration produced membrane potential oscillations (MPO) significantly more frequently in conjugated T cells than in lone T cells. Furthermore, oscillation of the free intracellular Ca2+ concentration could also be observed more frequently in cells forming an IS than in lone cells. We suggest that in the IS the special arrangement of channels and the constrained space between the interacting cells creates a favorable environment for these oscillations, which may enhance the signaling process leading to T cell activation.
Collapse
Affiliation(s)
- Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (F.P.); (G.T.); (A.T.); (E.N.); (Z.F.); (G.V.); (Z.V.)
| | - Peter Hajdu
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Gabor Tajti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (F.P.); (G.T.); (A.T.); (E.N.); (Z.F.); (G.V.); (Z.V.)
| | - Agnes Toth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (F.P.); (G.T.); (A.T.); (E.N.); (Z.F.); (G.V.); (Z.V.)
| | - Eva Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (F.P.); (G.T.); (A.T.); (E.N.); (Z.F.); (G.V.); (Z.V.)
| | - Zsolt Fazekas
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (F.P.); (G.T.); (A.T.); (E.N.); (Z.F.); (G.V.); (Z.V.)
| | - Sandor Kovacs
- Institute of Sectoral Economics and Methodology, Faculty of Economics and Business, Department of Statistics and Research Methodology, University of Debrecen, 4032 Debrecen, Hungary;
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (F.P.); (G.T.); (A.T.); (E.N.); (Z.F.); (G.V.); (Z.V.)
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (F.P.); (G.T.); (A.T.); (E.N.); (Z.F.); (G.V.); (Z.V.)
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (F.P.); (G.T.); (A.T.); (E.N.); (Z.F.); (G.V.); (Z.V.)
- Correspondence: ; Tel.: +36-52-258-603
| |
Collapse
|
5
|
Lazzari-Dean JR, Gest AM, Miller EW. Optical estimation of absolute membrane potential using fluorescence lifetime imaging. eLife 2019; 8:44522. [PMID: 31545164 PMCID: PMC6814365 DOI: 10.7554/elife.44522] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022] Open
Abstract
All cells maintain ionic gradients across their plasma membranes, producing transmembrane potentials (Vmem). Mounting evidence suggests a relationship between resting Vmem and the physiology of non-excitable cells with implications in diverse areas, including cancer, cellular differentiation, and body patterning. A lack of non-invasive methods to record absolute Vmem limits our understanding of this fundamental signal. To address this need, we developed a fluorescence lifetime-based approach (VF-FLIM) to visualize and optically quantify Vmem with single-cell resolution in mammalian cell culture. Using VF-FLIM, we report Vmem distributions over thousands of cells, a 100-fold improvement relative to electrophysiological approaches. In human carcinoma cells, we visualize the voltage response to growth factor stimulation, stably recording a 10-15 mV hyperpolarization over minutes. Using pharmacological inhibitors, we identify the source of the hyperpolarization as the Ca2+-activated K+ channel KCa3.1. The ability to optically quantify absolute Vmem with cellular resolution will allow a re-examination of its signaling roles.
Collapse
Affiliation(s)
- Julia R Lazzari-Dean
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Anneliese Mm Gest
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, Berkeley, United States.,Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
6
|
Kumar R, Hazan A, Geron M, Steinberg R, Livni L, Matzner H, Priel A. Activation of transient receptor potential vanilloid 1 by lipoxygenase metabolites depends on PKC phosphorylation. FASEB J 2016; 31:1238-1247. [PMID: 27986808 DOI: 10.1096/fj.201601132r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/06/2016] [Indexed: 11/11/2022]
Abstract
Peripheral neuronal activation by inflammatory mediators is a multifaceted physiological response that involves a multitude of regulated cellular functions. One key pathway that has been shown to be involved in inflammatory pain is Gq/GPCR, whose activation by inflammatory mediators is followed by the regulated response of the cation channel transient receptor potential vanilloid 1 (TRPV1). However, the mechanism that underlies TRPV1 activation downstream of the Gq/GPCR pathway has yet to be fully defined. In this study, we employ pharmacological and molecular biology tools to dissect this activation mechanism via perforated-patch recordings and calcium imaging of both neurons and a heterologous system. We showed that TRPV1 activity downstream of Gq/GPCR activation only produced a subdued current, which was noticeably different from the robust current that is typical of TRPV1 activation by exogenous stimuli. Moreover, we specifically demonstrated that 2 pathways downstream of Gq/GPCR signaling, namely endovanilloid production by lipoxygenases and channel phosphorylation by PKC, converge on TRPV1 to evoke a tightly regulated response. Of importance, we show that only when both pathways are acting on TRPV1 is the inflammatory-mediated response achieved. We propose that the requirement of multiple signaling events allows subdued TRPV1 activation to evoke regulated neuronal response during inflammation.-Kumar R., Hazan, A., Geron, M., Steinberg, R., Livni, L., Matzner, H., Priel, A. Activation of transient receptor potential vanilloid 1 by lipoxygenase metabolites depends on PKC phosphorylation.
Collapse
Affiliation(s)
- Rakesh Kumar
- Institute for Drug Research, School of Pharmacy, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adina Hazan
- Institute for Drug Research, School of Pharmacy, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Matan Geron
- Institute for Drug Research, School of Pharmacy, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rebbeca Steinberg
- Institute for Drug Research, School of Pharmacy, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lital Livni
- Institute for Drug Research, School of Pharmacy, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Henry Matzner
- Institute for Drug Research, School of Pharmacy, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Priel
- Institute for Drug Research, School of Pharmacy, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Zhou Y, Tencerová B, Hartveit E, Veruki ML. Functional NMDA receptors are expressed by both AII and A17 amacrine cells in the rod pathway of the mammalian retina. J Neurophysiol 2016; 115:389-403. [PMID: 26561610 PMCID: PMC4760463 DOI: 10.1152/jn.00947.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/08/2015] [Indexed: 11/22/2022] Open
Abstract
At many glutamatergic synapses, non-N-methyl-d-aspartate (NMDA) and NMDA receptors are coexpressed postsynaptically. In the mammalian retina, glutamatergic rod bipolar cells are presynaptic to two rod amacrine cells (AII and A17) that constitute dyad postsynaptic partners opposite each presynaptic active zone. Whereas there is strong evidence for expression of non-NMDA receptors by both AII and A17 amacrines, the expression of NMDA receptors by the pre- and postsynaptic neurons in this microcircuit has not been resolved. In this study, using patch-clamp recording from visually identified cells in rat retinal slices, we investigated the expression and functional properties of NMDA receptors in these cells with a combination of pharmacological and biophysical methods. Pressure application of NMDA did not evoke a response in rod bipolar cells, but for both AII and A17 amacrines, NMDA evoked responses that were blocked by a competitive antagonist (CPP) applied extracellularly and an open channel blocker (MK-801) applied intracellularly. NMDA-evoked responses also displayed strong Mg(2+)-dependent voltage block and were independent of gap junction coupling. With low-frequency application (60-s intervals), NMDA-evoked responses remained stable for up to 50 min, but with higher-frequency stimulation (10- to 20-s intervals), NMDA responses were strongly and reversibly suppressed. We observed strong potentiation when NMDA was applied in nominally Ca(2+)-free extracellular solution, potentially reflecting Ca(2+)-dependent NMDA receptor inactivation. These results indicate that expression of functional (i.e., conductance-increasing) NMDA receptors is common to both AII and A17 amacrine cells and suggest that these receptors could play an important role for synaptic signaling, integration, or plasticity in the rod pathway.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Espen Hartveit
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | |
Collapse
|
8
|
Enyeart JJ, Enyeart JA. Adrenal fasciculata cells express T-type and rapidly and slowly activating L-type Ca2+ channels that regulate cortisol secretion. Am J Physiol Cell Physiol 2015; 308:C899-918. [PMID: 25788571 DOI: 10.1152/ajpcell.00002.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/17/2015] [Indexed: 11/22/2022]
Abstract
In whole cell patch-clamp recordings, we characterized the L-type Ca(2+) currents in bovine adrenal zona fasciculata (AZF) cells and explored their role, along with the role of T-type channels, in ACTH- and angiotensin II (ANG II)-stimulated cortisol secretion. Two distinct dihydropyridine-sensitive L-type currents were identified, both of which were activated at relatively hyperpolarized potentials. One activated with rapid kinetics and, in conjunction with Northern blotting and PCR, was determined to be Cav1.3. The other, expressed in approximately one-half of AZF cells, activated with extremely slow voltage-dependent kinetics and combined properties not previously reported for an L-type Ca(2+) channel. The T-type Ca(2+) channel antagonist 3,5-dichloro-N-[1-(2,2-dimethyl-tetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide (TTA-P2) inhibited Cav3.2 current in these cells, as well as ACTH- and ANG II-stimulated cortisol secretion, at concentrations that did not affect L-type currents. In contrast, nifedipine specifically inhibited L-type currents and cortisol secretion, but less effectively than TTA-P2. Diphenylbutylpiperidine Ca(2+) antagonists, including pimozide, penfluridol, and fluspirilene, and the dihydropyridine niguldipine blocked Cav3.2 and L-type currents and inhibited ACTH-stimulated cortisol secretion with similar potency. This study shows that bovine AZF cells express three Ca(2+) channels, the voltage-dependent gating and kinetics of which could orchestrate complex mechanisms linking peptide hormone receptors to cortisol secretion through action potentials or sustained depolarization. The function of the novel, slowly activating L-type channel is of particular interest in this respect. Regardless, the well-correlated selective inhibition of T- and L-type currents and ACTH- and ANG II-stimulated cortisol secretion by TTA-P2 and nifedipine establish the critical importance of these channels in AZF cell physiology.
Collapse
Affiliation(s)
- John J Enyeart
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Judith A Enyeart
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
9
|
Thériault O, Poulin H, Thomas GR, Friesen AD, Al-Shaqha WA, Chahine M. Pyridoxal-5′-phosphate (MC-1), a vitamin B6 derivative, inhibits expressed P2X receptors. Can J Physiol Pharmacol 2014; 92:189-96. [DOI: 10.1139/cjpp-2013-0404] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
P2X receptors are cation-permeable ligand-gated ion channels that open in response to the binding of ATP. These receptors are present in many excitable cells, including neurons, striated muscle cells, epithelial cells, and leukocytes. They mediate fast excitatory neurotransmission in the central and peripheral nervous systems and are thought to be involved in neuropathic pain, inflammation, and cell damage following ischemia–reperfusion injuries. P2X receptors are thus a target for the development of new therapeutics to treat chronic pain and inflammation. In this study, we characterized the inhibition caused by pyridoxal-5′-phosphate, a natural metabolite of vitamin B6 (MC-1), of P2X2, P2X4, P2X7, and P2X2/3 receptors stably expressed in HEK293 cells using the patch-clamp technique in the whole-cell configuration. We also tested a new approach using VC6.1, a modified cameleon calcium-sensitive fluorescent protein, to characterize the inhibition of P2X2 and P2X2/3. MC-1 blocked these two P2X receptors, with an IC50 of 7 and 13 μmol/L, respectively. P2X2 exhibited the highest affinity for VC6.1, and the chimeric receptor P2X2/3, the lowest. The patch-clamp and imaging approaches gave similar results and indicated that VC6.1 may be useful for high throughput drug screening. Pyridoxal-5′-phosphate is an efficient P2X blocker and can be classified as a P2X antagonist.
Collapse
Affiliation(s)
- Olivier Thériault
- Le Centre de recherche de l’institut universitaire en santé mentale de Québec, and Department of Medicine, Université Laval, 2601 chemin de la Canardière, Quebec City, QC G1J 2G3, Canada
| | - Hugo Poulin
- Le Centre de recherche de l’institut universitaire en santé mentale de Québec, and Department of Medicine, Université Laval, 2601 chemin de la Canardière, Quebec City, QC G1J 2G3, Canada
| | - George R. Thomas
- CanAm BioResearch Inc., 6–1200 Waverley Street, Winnipeg, MB R3T 0P4, Canada
| | | | - Waleed A. Al-Shaqha
- College of Medicine, Al-Imam Muhammad Ibn Saud Islamic University, Riyadh, Kingdom of Saudi Arabia
| | - Mohamed Chahine
- Le Centre de recherche de l’institut universitaire en santé mentale de Québec, and Department of Medicine, Université Laval, 2601 chemin de la Canardière, Quebec City, QC G1J 2G3, Canada
| |
Collapse
|
10
|
Inayat S, Pinto LH, Troy JB. Minimizing cytosol dilution in whole-cell patch-clamp experiments. IEEE Trans Biomed Eng 2013; 60:2042-51. [PMID: 23446027 DOI: 10.1109/tbme.2013.2248084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
During a conventional whole-cell patch clamp experiment, diffusible cytosolic ions or molecules absent in the pipette solution can become diluted by a factor of one million or more, leading to diminished current or fluorescent signals. Existing methods to prevent or limit cytosol diffusion include reducing the diameter of the pipette's orifice, adding cytosolic extract or physiological entities to the pipette solution, and using the perforated patch clamp configuration. The first method introduces measurement error in recorded signals from increased series resistance and the latter two are cumbersome to perform. In addition, most perforated patch configurations, prevent investigators from using test compounds in the pipette solution. We present a method to overcome these limitations by minimizing cytosol dilution using a novel pipette holder. Cell-attached configuration is obtained with the pipette filled with pipette solution. Most of the pipette solution is then replaced with mineral oil so that cytosol dilution can be minimized in whole-cell configuration. To accomplish this requires a suction line and two Ag/AgCl electrodes inside the pipette. Testing our novel pipette holder with Chinese Hamster Ovarian cells, we demonstrate cytosol dilution factors between 76 and 234. For large cells with somas greater than 40 μm, cytosol dilution factors of 10 or less are achievable.
Collapse
Affiliation(s)
- Samsoon Inayat
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA.
| | | | | |
Collapse
|
11
|
Tarasov AI, Semplici F, Ravier MA, Bellomo EA, Pullen TJ, Gilon P, Sekler I, Rizzuto R, Rutter GA. The mitochondrial Ca2+ uniporter MCU is essential for glucose-induced ATP increases in pancreatic β-cells. PLoS One 2012; 7:e39722. [PMID: 22829870 PMCID: PMC3400633 DOI: 10.1371/journal.pone.0039722] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/25/2012] [Indexed: 01/09/2023] Open
Abstract
Glucose induces insulin release from pancreatic β-cells by stimulating ATP synthesis, membrane depolarisation and Ca2+ influx. As well as activating ATP-consuming processes, cytosolic Ca2+ increases may also potentiate mitochondrial ATP synthesis. Until recently, the ability to study the role of mitochondrial Ca2+ transport in glucose-stimulated insulin secretion has been hindered by the absence of suitable approaches either to suppress Ca2+ uptake into these organelles, or to examine the impact on β-cell excitability. Here, we have combined patch-clamp electrophysiology with simultaneous real-time imaging of compartmentalised changes in Ca2+ and ATP/ADP ratio in single primary mouse β-cells, using recombinant targeted (Pericam or Perceval, respectively) as well as entrapped intracellular (Fura-Red), probes. Through shRNA-mediated silencing we show that the recently-identified mitochondrial Ca2+ uniporter, MCU, is required for depolarisation-induced mitochondrial Ca2+ increases, and for a sustained increase in cytosolic ATP/ADP ratio. By contrast, silencing of the mitochondrial Na+-Ca2+ exchanger NCLX affected the kinetics of glucose-induced changes in, but not steady state values of, cytosolic ATP/ADP. Exposure to gluco-lipotoxic conditions delayed both mitochondrial Ca2+ uptake and cytosolic ATP/ADP ratio increases without affecting the expression of either gene. Mitochondrial Ca2+ accumulation, mediated by MCU and modulated by NCLX, is thus required for normal glucose sensing by pancreatic β-cells, and becomes defective in conditions mimicking the diabetic milieu.
Collapse
Affiliation(s)
- Andrei I. Tarasov
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Francesca Semplici
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Magalie A. Ravier
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
- Institut de Génomique Fonctionnelle, INSERM U661, CNRS UMR5203, Université Montpellier I et II, Montpellier, France
| | - Elisa A. Bellomo
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Timothy J. Pullen
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Patrick Gilon
- Pole of Endocrinology, Diabetes and Nutrition, Faculty of Medicine, Université Catholique de Louvain, Brussels, Belgium
| | - Israel Sekler
- Department of Physiology, Faculty of Health Sciences, Ben Gurion University, Beer-Sheva, Israel
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Guy A. Rutter
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Wang Z, Do CW, Valiunas V, Leung CT, Cheng AKW, Clark AF, Wax MB, Chatterton JE, Civan MM. Regulation of gap junction coupling in bovine ciliary epithelium. Am J Physiol Cell Physiol 2010; 298:C798-806. [PMID: 20089928 PMCID: PMC2853215 DOI: 10.1152/ajpcell.00406.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 01/20/2010] [Indexed: 12/11/2022]
Abstract
Aqueous humor is formed by fluid transfer from the ciliary stroma sequentially across the pigmented ciliary epithelial (PE) cells, gap junctions, and nonpigmented ciliary epithelial (NPE) cells. Which connexins (Cx) contribute to PE-NPE gap junctional formation appears species specific. We tested whether small interfering RNA (siRNA) against Cx43 (siCx43) affects bovine PE-NPE communication and whether cAMP affects communication. Native bovine ciliary epithelial cells were studied by dual-cell patch clamping, Lucifer Yellow (LY) transfer, quantitative polymerase chain reaction with reverse transcription (qRT-PCR), and Western immunoblot. qRT-PCR revealed at least 100-fold greater expression for Cx43 than Cx40. siCx43 knocked down target mRNA expression by 55 +/- 7% after 24 h, compared with nontargeting control siRNA (NTC1) transfection. After 48 h, siCx43 reduced Cx43 protein expression and LY transfer. The ratio of fluorescence intensity (R(f)) in recipient to donor cell was 0.47 +/- 0.09 (n = 11) 10 min after whole cell patch formation in couplets transfected with NTC1. siCx43 decreased R(f) by approximately 60% to 0.20 +/- 0.07 (n = 13, P < 0.02). Dibutyryl-cAMP (500 microM) also reduced LY dye transfer by approximately 60%, reducing R(f) from 0.41 +/- 0.05 (n = 15) to 0.17 +/- 0.05 (n = 20) after 10 min. Junctional currents were lowered by approximately 50% (n = 6) after 10-min perfusion with 500 microM dibutyryl-cAMP (n = 6); thereafter, heptanol abolished the currents (n = 5). Preincubation with the PKA inhibitor H-89 (2 microM) prevented cAMP-triggered current reduction (n = 6). We conclude that 1) Cx43, but not Cx40, is a major functional component of bovine PE-NPE gap junctions; and 2) under certain conditions, cAMP may act through PKA to inhibit bovine PE-NPE gap junctional communication.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Three Types of Single Voltage-Dependent Potassium Channels in the Sarcolemma of Frog Skeletal Muscle. J Membr Biol 2009; 228:51-62. [DOI: 10.1007/s00232-009-9158-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 01/31/2009] [Indexed: 10/21/2022]
|
14
|
Veruki ML, Oltedal L, Hartveit E. Electrical Synapses Between AII Amacrine Cells: Dynamic Range and Functional Consequences of Variation in Junctional Conductance. J Neurophysiol 2008; 100:3305-22. [DOI: 10.1152/jn.90957.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AII amacrine cells form a network of electrically coupled interneurons in the mammalian retina and tracer coupling studies suggest that the junctional conductance ( Gj) can be modulated. However, the dynamic range of Gjand the functional consequences of varying Gjover the dynamic range are unknown. Here we use whole cell recordings from pairs of coupled AII amacrine cells in rat retinal slices to provide direct evidence for physiological modulation of Gj, appearing as a time-dependent increase from about 500 pS to a maximum of about 3,000 pS after 30–90 min of recording. The increase occurred in recordings with low- but not high-resistance pipettes, suggesting that it was related to intracellular washout and perturbation of a modulatory system. Computer simulations of a network of electrically coupled cells verified that our recordings were able to detect and quantify changes in Gjover a large range. Dynamic-clamp electrophysiology, with insertion of electrical synapses between AII amacrine cells, allowed us to finely and reversibly control Gjwithin the same range observed for physiologically coupled cells and to examine the quantitative relationship between Gjand steady-state coupling coefficient, synchronization of subthreshold membrane potential fluctuations, synchronization and transmission of action potentials, and low-pass filter characteristics. The range of Gjvalues over which signal transmission was modulated depended strongly on the specific functional parameter examined, with the largest range observed for action potential transmission and synchronization, suggesting that the full range of Gjvalues observed during spontaneous run-up of coupling could represent a physiologically relevant dynamic range.
Collapse
|
15
|
|
16
|
Kozak JA, Matsushita M, Nairn AC, Cahalan MD. Charge screening by internal pH and polyvalent cations as a mechanism for activation, inhibition, and rundown of TRPM7/MIC channels. ACTA ACUST UNITED AC 2006; 126:499-514. [PMID: 16260839 PMCID: PMC2266608 DOI: 10.1085/jgp.200509324] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Mg2+-inhibited cation (MIC) current, believed to represent activity of TRPM7 channels, is found in lymphocytes and mast cells, cardiac and smooth muscle, and several other eukaryotic cell types. MIC current is activated during whole-cell dialysis with divalent-free internal solutions. Millimolar concentrations of intracellular Mg2+ (or other divalent metal cations) inhibit the channels in a voltage-independent manner. The nature of divalent inhibition and the mechanism of channel activation in an intact cell remain unknown. We show that the polyamines (spermine, spermidine, and putrescine) inhibit the MIC current, also in a voltage-independent manner, with a potency that parallels the number of charges. Neomycin and poly-lysine also potently inhibited MIC current in the absence of Mg2+. These same positively charged ions inhibited IRK1 current in parallel with MIC current, suggesting that they probably act by screening the head group phosphates on PIP2 and other membrane phospholipids. In agreement with this hypothesis, internal protons also inhibited MIC current. By contrast, tetramethylammonium, tetraethylammonium, and hexamethonium produced voltage-dependent block but no inhibition. We show that inhibition by internal polyvalent cations can be relieved by alkalinizing the cytosol using externally applied ammonium or by increasing pH in inside-out patches. Furthermore, in perforated-patch and cell-attached recordings, when intracellular Mg2+ is not depleted, endogenous MIC or recombinant TRPM7 currents are activated by cytosolic alkalinization and inhibited by acidification; and they can be reactivated by PIP2 following rundown in inside-out patches. We propose that MIC (TRPM7) channels are regulated by a charge screening mechanism and may function as sensors of intracellular pH.
Collapse
Affiliation(s)
- J Ashot Kozak
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Dynamic modulation of ion channels can produce dramatic alterations of electrical excitability in cardiac myocytes. This study addresses the effects of the Src family tyrosine kinase Fyn on Na
V
1.5 cardiac sodium channels. Sodium currents were acquired by whole cell recording on HEK-293 cells transiently expressing Na
V
1.5. Acute treatment of cells with insulin caused a depolarizing shift in steady-state inactivation, an effect eliminated by the Src-specific tyrosine kinase inhibitor PP2. Sodium channels were coexpressed with either constitutively active (Fyn
CA
) or catalytically inactive (Fyn
KD
) variants of Fyn. Fyn
CA
caused a 10-mV depolarizing shift of steady-state inactivation compared with Fyn
KD
without altering the activation conductance-voltage relationship. Comparable effects of these Fyn variants were obtained with whole-cell and perforated-patch recording. Tyrosine phosphorylation of immunoprecipitated Na
V
1.5 was increased in cells expressing Fyn
CA
compared with Fyn
KD
. We show that Fyn is present in rat cardiac myocytes, and that Na
V
1.5 channels from these myocytes are tyrosine-phosphorylated. In HEK-293 cells the effect of Fyn
CA
on Na
V
1.5 inactivation is abolished by the single point mutation Y1495F, a residue located within the cytoplasmic linker between the third and fourth homologous domains of the sodium channel. We provide evidence that this linker is a substrate for Fyn in vitro, and that Y1495 is a preferred phosphorylation site. These results suggest that cardiac sodium channels are physiologically relevant targets of Src family tyrosine kinases.
Collapse
Affiliation(s)
- Christopher A Ahern
- Department of Physiology, Institute of Hyperexcitability, Jefferson Medical College, Philadelphia, Pa 19107, USA
| | | | | | | |
Collapse
|
18
|
Pugsley MK, Walker MJA, Saint DA. BLOCK OF Na+ AND K+ CURRENTS IN RAT VENTRICULAR MYOCYTES BY QUINACAINOL AND QUINIDINE. Clin Exp Pharmacol Physiol 2005; 32:60-5. [PMID: 15730436 DOI: 10.1111/j.1440-1681.2005.04149.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. The electrophysiological actions of quinacainol were investigated on sodium (I(Na)), transient outward (i(to)) and sustained-outward plateau (iKsus) potassium currents in rat isolated cardiac myocytes using the whole-cell patch-clamp technique and compared with quinidine. 2. Quinacainol blocked sodium currents in a concentration-dependent manner and with a potency similar to that of quinidine (mean (+/-SEM) EC50 50+/-12 vs 95+/-25 micromol/L for quinidine and quinacainol, respectively). However, quinacainol had a considerably prolonged onset and recovery from block compared with quinidine. 3. Neither quinacainol nor quinidine significantly changed the steady state voltage dependence of activation of sodium currents. Quinidine produced a hyperpolarizing shift in the voltage dependence for sodium current inactivation, but no such shift was observed with quinacainol at doses that produced a substantial current block. 4. Although quinacainol did not effectively block voltage-dependent potassium currents, even at concentrations as high as 1.5 mmol/L, quinidine, at a half-maximal sodium channel-blocking concentration, reduced peak i(to) current amplitude, increased the rate of inactivation of i(to) and blocked iKsus. 5. These results indicate that quinacainol, a quinidine analogue, blocks sodium currents in cardiac myocytes with little effect on i(to) or iKsus potassium currents, which suggests that quinacainol may be exerting class 1c anti-arrhythmic actions.
Collapse
Affiliation(s)
- Michael K Pugsley
- Department of Pharmacology, Forest Research Institute, Jersey City, New Jersey, USA
| | | | | |
Collapse
|
19
|
Escobar LI, Martínez-Téllez JC, Salas M, Castilla SA, Carrisoza R, Tapia D, Vázquez M, Bargas J, Bolívar JJ. A voltage-gated K+ current in renal inner medullary collecting duct cells. Am J Physiol Cell Physiol 2004; 286:C965-74. [PMID: 14684382 DOI: 10.1152/ajpcell.00074.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the K+-selective conductances in primary cultures of rat renal inner medullary collecting duct (IMCD) using perforated-patch and conventional whole cell techniques. Depolarizations above –20 mV induced a time-dependent outward K+ current ( Ivto) similar to a delayed rectifier. Ivto showed a half-maximal activation around 5.6 mV with a slope factor of 6.8 mV. Its K+/Na+ selectivity ratio was 11.7. It was inhibited by tetraethylammonium, quinidine, 4-aminopyridine, and Ba2+ and was not Ca2+ dependent. The delayed rectifying characteristics of Ivto prompted us to screen the expression of Kv1 and Kv3 families by RT-PCR. Analysis of RNA isolated from cell cultures revealed the presence of three Kv α-subunits (Kv1.1, Kv1.3, and Kv1.6). Western blot analysis with Kv α-subunit antibodies for Kv1.1 and Kv1.3 showed labeling of ∼70-kDa proteins from inner medulla plasmatic and microsome membranes. Immunocytochemical analysis of cell culture and kidney inner medulla showed that Kv1.3 is colocalized with the Na+-K+-ATPase at the basolateral membrane, although it is also in the cytoplasm. This is the first evidence of recording, protein expression, and localization of a voltage-gated Kv1 in the kidney IMCD cells.
Collapse
Affiliation(s)
- Laura I Escobar
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City DF, 04510, México.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mulkey DK, Henderson RA, Ritucci NA, Putnam RW, Dean JB. Oxidative stress decreases pHi and Na+/H+ exchange and increases excitability of solitary complex neurons from rat brain slices. Am J Physiol Cell Physiol 2004; 286:C940-51. [PMID: 14668260 DOI: 10.1152/ajpcell.00323.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Putative chemoreceptors in the solitary complex (SC) are sensitive to hypercapnia and oxidative stress. We tested the hypothesis that oxidative stress stimulates SC neurons by a mechanism independent of intracellular pH (pHi). pHi was measured by using ratiometric fluorescence imaging microscopy, utilizing either the pH-sensitive fluorescent dye BCECF or, during whole cell recordings, pyranine in SC neurons in brain stem slices from rat pups. Oxidative stress decreased pHi in 270 of 436 (62%) SC neurons tested. Chloramine-T (CT), N-chlorosuccinimide (NCS), dihydroxyfumaric acid, and H2O2 decreased pHi by 0.19 ± 0.007, 0.20 ± 0.015, 0.15 ± 0.013, and 0.08 ± 0.002 pH unit, respectively. Hypercapnia decreased pHi by 0.26 ± 0.006 pH unit ( n = 95). The combination of hypercapnia and CT or NCS had an additive effect on pHi, causing a 0.42 ± 0.03 ( n = 21) pH unit acidification. CT slowed pHi recovery mediated by Na+/H+ exchange (NHE) from NH4Cl-induced acidification by 53% ( n = 20) in [Formula: see text]-buffered medium and by 58% ( n = 10) in HEPES-buffered medium. CT increased firing rate in 14 of 16 SC neurons, and there was no difference in the firing rate response to CT with or without a corresponding change in pHi. These results indicate that oxidative stress 1) decreases pHi in some SC neurons, 2) together with hypercapnia has an additive effect on pHi, 3) partially inhibits NHE, and 4) directly affects excitability of CO2/H+-chemosensitive SC neurons independently of pHi changes. These findings suggest that oxidative stress acidifies SC neurons in part by inhibiting NHE, and this acidification may contribute ultimately to respiratory control dysfunction.
Collapse
Affiliation(s)
- Daniel K Mulkey
- Department of Anatomy and Physiology, , Wright State University, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
21
|
Eloff BC, Gilat E, Wan X, Rosenbaum DS. Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction: evidence supporting a novel target for antiarrhythmic therapy. Circulation 2003; 108:3157-63. [PMID: 14656916 DOI: 10.1161/01.cir.0000101926.43759.10] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Disease-induced alterations of cardiac gap junctions lead to intercellular uncoupling, which is an important mechanism of arrhythmogenesis. Therefore, drugs that selectively open gap junctions potentially offer a novel strategy for antiarrhythmic therapy. Because the peptide ZP123 was found to increase conductance between paired myocytes, we hypothesized that ZP123 would suppress acidosis-induced gap junction closure in the intact heart. METHODS AND RESULTS High-resolution optical mapping was used to measure conduction velocity (CV) and action potential duration from ventricular epicardium of Langendorff-perfused guinea pig hearts at baseline (pH 7.4) and during 45 minutes of perfusion with acidotic (pH 6.0) Tyrode's solution with (n=8) and without (control, n=7) ZP123 (80 nmol/L). Acidosis produced conduction slowing transverse (29.1+/-0.1 to 16.8+/-0.2 cm/s, P<0.0001) and longitudinal (47.2+/-2.4 to 33.2+/-4.8 cm/s, P<0.0001) to cardiac fibers. Importantly, ZP123 inhibited conduction slowing during acidosis by approximately 60%. The peak effect of ZP123 was achieved after 16 minutes of acidosis, consistent with inhibition of uncoupling. ZP123 did not affect Na+ current in isolated myocytes, additionally affirming that preservation of CV was attributable to the compound's action on gap junctions. ZP123 had no effect on CV in the absence of acidosis, suggesting that drug activity targets gap junctions under metabolic stress. Action potential duration heterogeneity was significantly reduced by ZP123 (6.7+/-0.8 ms) compared with controls (9.7+/-3.1 ms, P<0.05), presumably by enhancing cell-to-cell coupling. CONCLUSIONS These data suggest that ZP123 significantly attenuates gap junction closure during acidosis. Preservation of intercellular coupling diminished CV slowing and heterogeneous repolarization, eliminating arrhythmogenic substrates.
Collapse
Affiliation(s)
- Benjamin C Eloff
- The Heart and Vascular Research Center and the Department of Biomedical Engineering, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio 44109-1998, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Ion channels provide the basis for the regulation of electrical excitability in the central and peripheral nervous systems. This review deals with the techniques that make the study of structure and function of single channel molecules in living cells possible. These are the patch clamp technique, which was derived from the conventional voltage clamp method and is currently being developed for automated and high throughput measurements; and fluorescence and nano-techniques, which were originally applied to non-biological surfaces and are only recently being used to study cell membranes and their proteins, especially in combination with the patch clamp technique. The characterisation of the membrane channels by techniques that resolve their morphological and physical properties and dynamics in space and time in the nano range is termed nanoscopy.
Collapse
|
23
|
Shieh CC, Gopalakrishnan M. Electrophysiological analysis of ATP-sensitive potassium channels in mammalian cells and Xenopus oocytes. CURRENT PROTOCOLS IN PHARMACOLOGY 2003; Chapter 11:Unit11.6. [PMID: 21956803 DOI: 10.1002/0471141755.ph1106s21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This unit describes general methodologies for the characterization of ATP-sensitive K+ channels and the study of ligand-channel interactions in native tissues and clonal cell lines by electrophysiological techniques. Detailed protocols on how to establish patch-clamp single-channel and whole-cell current recording are presented. Two-electrode voltage clamp techniques for studying ATP-sensitive K+ channels expressed in Xenopus oocytes are also included.
Collapse
|
24
|
Hattori S, Murakami F, Song WJ. Rundown of a transient potassium current is attributable to changes in channel voltage dependence. Synapse 2003; 48:57-65. [PMID: 12619039 DOI: 10.1002/syn.10185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many ionic currents undergo significant rundown during whole-cell recording. Although rundown is an artifact associated with the recording method, studying the mechanism of rundown may lead to understanding mechanisms regulating channel functions in physiological conditions. The mechanisms for rundown, however, remain obscure for many channels. Here we have studied the mechanism for rundown of an A-type K(+) current in mouse striatal cholinergic interneurons. The interneuron expressed a prominent component of A-type current which exhibited significant rundown during whole-cell recording. When the current was assessed with a highly hyperpolarized prepotential (-140 mV), however, the rundown was virtually fully suppressed, suggesting its being dependent on voltage. Estimation of channel voltage dependence revealed that both activation and inactivation curves shifted towards hyperpolarized potentials during rundown. The shift was suppressed by intracellular ATP, but was affected neither by phosphatase inhibitors nor by antioxidative reagents. The gradual shift of inactivation curve towards negative potentials would make the holding potential progressively inactivate the channel, resulting in apparent loss of activity of the channels. Our results thus provide a biophysical explanation for rundown of A-type current. .
Collapse
Affiliation(s)
- Satoko Hattori
- Department of Electronic Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
| | | | | |
Collapse
|
25
|
Diaz-Hernandez M, Cox JA, Migita K, Haines W, Egan TM, Voigt MM. Cloning and characterization of two novel zebrafish P2X receptor subunits. Biochem Biophys Res Commun 2002; 295:849-53. [PMID: 12127972 DOI: 10.1016/s0006-291x(02)00760-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this report we describe the cloning and characterization of two P2X receptor subunits cloned from the zebrafish (Danio rerio). Primary sequence analysis suggests that one cDNA encodes an ortholog of the mammalian P2X(4) subunit and the second cDNA encodes the ortholog of the mammalian P2X(5) subunit. The zP2X(4) subunit forms a homo-oligomeric receptor that displays a low affinity for ATP (EC(50)=274+/-48 microM) and very low affinity (EC(50)>500 microM) for other purinergic ligands such as alphabetameATP, suramin, and PPADS. As seen with the mammalian orthologs, the zP2X(5) subunit forms a homo-oligomeric receptor that yields very small whole-cell currents (<20pA), making determination of an EC(50) problematic. Both subunit genes were physically mapped onto the zebrafish genome using radiation hybrid analysis of the T51 panel, with the zp2x4 localized to LG21 and zp2x5 to LG5.
Collapse
Affiliation(s)
- Miguel Diaz-Hernandez
- Department of Pharmacological and Physiological Sciences, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
26
|
Haines WR, Migita K, Cox JA, Egan TM, Voigt MM. The first transmembrane domain of the P2X receptor subunit participates in the agonist-induced gating of the channel. J Biol Chem 2001; 276:32793-8. [PMID: 11438537 DOI: 10.1074/jbc.m104216200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on pharmacological properties, the P2X receptor family can be subdivided into those homo-oligomers that are sensitive to the ATP analog alphabeta-methylene ATP(alphabetameATP) (P2X(1) and P2X(3)) and those that are not (P2X(2), P2X(4), P2X(5), P2X(6), and P2X(7)). We exploited this dichotomy through the construction of chimeric receptors and site-directed mutagenesis in order to identify domains responsible for these differences in the abilities of extracellular agonists to gate P2X receptors. Replacement of the extracellular domain of the alphabetameATP-sensitive rat P2X(1) subunit with that of the alphabetameATP-insensitive rat P2X(2) subunit resulted in a receptor that was still alphabetameATP-sensitive, suggesting a non-extracellular domain was responsible for the differential gating of P2X receptors by various agonists. Replacement of the first transmembrane domain of the rat P2X(2) subunit with one from an alphabetameATP-sensitive subunit (either rat P2X(1) or P2X(3) subunit) converted the resulting chimera to alphabetameATP sensitivity. This conversion did not occur when the first transmembrane domain came from a non-alphabetameATP-sensitive subunit. Site-directed mutagenesis indicated that the C-terminal portion of the first transmembrane domain was important in determining the agonist selectivity of channel gating for these chimeras. These results suggest that the first transmembrane domain plays an important role in the agonist operation of the P2X receptor.
Collapse
Affiliation(s)
- W R Haines
- Department of Pharmacological and Physiological Sciences, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
27
|
Migita K, Haines WR, Voigt MM, Egan TM. Polar residues of the second transmembrane domain influence cation permeability of the ATP-gated P2X(2) receptor. J Biol Chem 2001; 276:30934-41. [PMID: 11402044 DOI: 10.1074/jbc.m103366200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P2X receptors are simple polypeptide channels that mediate fast purinergic depolarizations in both nerve and muscle. Although the depolarization results mainly from the influx of Na(+), these channels also conduct a significant Ca(2+) current that is large enough to evoke transmitter release from presynaptic neurons. We sought to determine the molecular basis of this Ca(2+) conductance by a mutational analysis of recombinant P2X(2) receptors. Wild type and 31 mutant P2X(2) receptors were expressed in HEK-293 cells and studied under voltage-clamp. We found that the relative Ca(2+) permeability measured from the reversal potentials of ATP-gated currents was unaffected by neutralizing fixed charge (Asp(315), Asp(349)) near the mouths of the channel pore. By contrast, mutations that changed the character or side chain volume of three polar residues (Thr(336), Thr(339), Ser(340)) within the pore led to significant changes in P(Ca)/P(Cs). The largest changes occurred when Thr(339) and Ser(340) were replaced with tyrosine; these mutations almost completely abolished Ca(2+) permeability, reduced P(Li)/P(Cs) by about one-half, and shifted the relative permeability sequence of Cs(+), Rb(+), K(+), and Na(+) to their relative mobility in water. Our results suggest that the permeability sequence of the P2X(2) receptor arises in part from interactions of permeating cations with the polar side chains of three amino acids located in a short stretch of the second transmembrane domain.
Collapse
Affiliation(s)
- K Migita
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | |
Collapse
|
28
|
Tang XD, Daggett H, Hanner M, Garcia ML, McManus OB, Brot N, Weissbach H, Heinemann SH, Hoshi T. Oxidative regulation of large conductance calcium-activated potassium channels. J Gen Physiol 2001; 117:253-74. [PMID: 11222629 PMCID: PMC2225619 DOI: 10.1085/jgp.117.3.253] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen/nitrogen species are readily generated in vivo, playing roles in many physiological and pathological conditions, such as Alzheimer's disease and Parkinson's disease, by oxidatively modifying various proteins. Previous studies indicate that large conductance Ca(2+)-activated K(+) channels (BK(Ca) or Slo) are subject to redox regulation. However, conflicting results exist whether oxidation increases or decreases the channel activity. We used chloramine-T, which preferentially oxidizes methionine, to examine the functional consequences of methionine oxidation in the cloned human Slo (hSlo) channel expressed in mammalian cells. In the virtual absence of Ca(2+), the oxidant shifted the steady-state macroscopic conductance to a more negative direction and slowed deactivation. The results obtained suggest that oxidation enhances specific voltage-dependent opening transitions and slows the rate-limiting closing transition. Enhancement of the hSlo activity was partially reversed by the enzyme peptide methionine sulfoxide reductase, suggesting that the upregulation is mediated by methionine oxidation. In contrast, hydrogen peroxide and cysteine-specific reagents, DTNB, MTSEA, and PCMB, decreased the channel activity. Chloramine-T was much less effective when concurrently applied with the K(+) channel blocker TEA, which is consistent with the possibility that the target methionine lies within the channel pore. Regulation of the Slo channel by methionine oxidation may represent an important link between cellular electrical excitability and metabolism.
Collapse
Affiliation(s)
- Xiang D. Tang
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242
| | - Heather Daggett
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242
| | - Markus Hanner
- Merck Research Laboratories, Rahway, New Jersey 07065
| | | | | | - Nathan Brot
- Hospital for Special Surgery, Cornell University Medical Center, New York, New York 10021
| | - Herbert Weissbach
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Boca Raton, Florida 33431
| | - Stefan H. Heinemann
- AG Molekulare und Zelluläre Biophysik am Klinikum der Universitat Jena, D-07447 Jena, Germany
| | - Toshinori Hoshi
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
29
|
Hicks JH, Dani JA, Lester RA. Regulation of the sensitivity of acetylcholine receptors to nicotine in rat habenula neurons. J Physiol 2000; 529 Pt 3:579-97. [PMID: 11118491 PMCID: PMC2270233 DOI: 10.1111/j.1469-7793.2000.00579.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Time-dependent changes in nicotinic acetylcholine receptor (nAChR) function were studied in acutely isolated medial habenula neurons during whole-cell perfusion. The peak amplitude of inward currents induced by 1 s pulses of nicotinic agonists, applied at 30 s intervals, gradually increased over the first several minutes of whole-cell recording. The ratio of response amplitudes at 1 and 15 min (t15/t1) was 1.9. Run-up of responses occurred independently of channel activation and was specific to nAChRs. The channel blocker chlorisondamine (30 microM), co-applied with nicotine, was used to irreversibly block the majority (91 %) of the nAChRs that opened in the first 2 min of recording. Run-up in the remaining 9 % unblocked channels assessed at 15 min (t15/t2 = 3.4) was similar to that in control cells not exposed to nicotine and chlorisondamine simultaneously, implying that run-up is not due to the incorporation of new receptors. A marked alteration in the sensitivity of nAChRs to extracellular Ca2+ was also observed during whole-cell perfusion. The ratio of current amplitudes obtained in 0.2 and 4.0 mM Ca2+ changed from 0.54 (t = 5 min) to 0.82 (t = 30 min). Inward rectification of nicotine-induced responses was reduced during internal dialysis. Voltages for half-maximal conductance were -23.0 and -13.8 mV at 2 and 15 min, respectively. Inclusion of either free Mg2+ ( approximately 2 mM) or spermine (100 microM) in the internal solution counteracted the change in rectification, but did not prevent run-up. The period of run-up was followed by a use-dependent run-down phase. Little run-down in peak current amplitude was induced provided that agonist was applied infrequently (5 min intervals), whereas applications at 30 s intervals produced a loss of channel function after approximately 15 min whole-cell perfusion. The time at which run-down began ( approximately 5-30 min) was correlated with the initial rate of nAChR desensitization ( approximately 200-4000 ms); slowly desensitizing nicotinic currents demonstrated delayed run-down. We suggest that run-up of nAChR-mediated responses does not require receptor activation and may result from a change in channel open probability. We also hypothesize that channel run-down reflects accumulation of nAChRs in long-lived desensitized/inactivated states.
Collapse
Affiliation(s)
- J H Hicks
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
30
|
Vellani V, Reynolds AM, McNaughton PA. Modulation of the synaptic Ca2+ current in salamander photoreceptors by polyunsaturated fatty acids and retinoids. J Physiol 2000; 529 Pt 2:333-44. [PMID: 11101644 PMCID: PMC2270203 DOI: 10.1111/j.1469-7793.2000.00333.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Synaptic transmission between retinal photoreceptors and second-order neurones is controlled by an L-type Ca2+ conductance (gCa) in the photoreceptor inner segment. Modulation of this conductance therefore influences the flow of visual information to higher centres. Possible modulation of gCa by retinal factors was investigated using patch clamp and Ca2+ imaging. No significant modulation of gCa by retinal neurotransmitters nor by intracellular signalling pathways was found. gCa was inhibited by retinoids (all-trans retinal) and by polyunsaturated fatty acids (PUFAs) such as arachidonic acid and docosahexaenoic acid, which are known to be released in the retina by exposure to light. Some PUFAs tested are physiological substrates for the cyclo-oxygenase, lipoxygenase and epoxygenase pathways, but specific inhibitors of these pathways had no effect on the inhibition of gCa. Treatments designed to activate or inhibit G-protein-coupled pathways or protein kinases A and C similarly had no effect on the inhibition by PUFAs nor on gCa itself. Inhibitors of phosphatases 1 and 2A were also largely ineffective. The inhibition by PUFAs is, however, dependent on membrane potential, suggesting that it arises from a direct interaction of fatty acids with the Ca2+ channel. The effect was not use or frequency dependent, suggesting that the effect does not depend on channel gating state. Control by retinoids and by PUFAs may be an important mechanism by which the Ca2+ conductance, and consequently the transmission of the visual signal, is modulated at the first retinal synapse.
Collapse
Affiliation(s)
- V Vellani
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK
| | | | | |
Collapse
|
31
|
Egan TM, Cox JA, Voigt MM. Molecular cloning and functional characterization of the zebrafish ATP-gated ionotropic receptor P2X(3) subunit. FEBS Lett 2000; 475:287-90. [PMID: 10869573 DOI: 10.1016/s0014-5793(00)01685-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe a P2X subunit cloned from the zebrafish (Danio rerio) that is an orthologue of the mammalian P2X(3) subunit. Like the mammalian P2X(3), this receptor desensitizes rapidly in the presence of agonist. However, it differs in that alphabeta-meATP is a much less potent agonist than ATP and the antagonist TNP-ATP is not active at low nanomolar concentrations. Similar to the rat P2X(3) subunit, the zebrafish subunit forms hetero-oligomeric assemblies with the rat P2X(2) that possesses a phenotype distinct from either parent. This novel clone will provide an important basis for future experiments investigating the structure/function relationships of P2X subunit domains.
Collapse
Affiliation(s)
- T M Egan
- Department of Pharmacological and Physiological Sciences, Saint Louis University School of Medicine, 1402 S. Grand Blvd., 63104, St. Louis, MO 63104, USA
| | | | | |
Collapse
|
32
|
Tang XD, Hoshi T. Rundown of the hyperpolarization-activated KAT1 channel involves slowing of the opening transitions regulated by phosphorylation. Biophys J 1999; 76:3089-98. [PMID: 10354434 PMCID: PMC1300278 DOI: 10.1016/s0006-3495(99)77461-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Disappearance of the functional activity or rundown of ion channels upon patch excision in many cells involves a decrease in the number of channels available to open. A variety of cellular and biophysical mechanisms have been shown to be involved in the rundown of different ion channels. We examined the rundown process of the plant hyperpolarization-activated KAT1 K+ channel expressed in Xenopus oocytes. The decrease in the KAT1 channel activity on patch excision was accompanied by progressive slowing of the activation time course, and it was caused by a shift in the voltage dependence of the channel without any change in the single-channel amplitude. The single-channel analysis showed that patch excision alters only the transitions leading up to the burst states of the channel. Patch cramming or concurrent application of protein kinase A (PKA) and ATP restored the channel activity. In contrast, nonspecific alkaline phosphatase (ALP) accelerated the rundown time course. Low internal pH, which inhibits ALP activity, slowed the KAT1 rundown time course. The results show that the opening transitions of the KAT1 channel are enhanced not only by hyperpolarization but also by PKA-mediated phosphorylation.
Collapse
Affiliation(s)
- X D Tang
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
33
|
Molitor SC, Manis PB. Voltage-gated Ca2+ conductances in acutely isolated guinea pig dorsal cochlear nucleus neurons. J Neurophysiol 1999; 81:985-98. [PMID: 10085327 DOI: 10.1152/jn.1999.81.3.985] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although it is known that voltage-gated Ca2+ conductances (VGCCs) contribute to the responses of dorsal cochlear nucleus (DCN) neurons, little is known about the properties of VGCCs in the DCN. In this study, the whole cell voltage-clamp technique was used to examine the pharmacology and voltage dependence of VGCCs in unidentified DCN neurons acutely isolated from guinea pig brain stem. The majority of cells responded to depolarization with sustained inward currents that were enhanced when Ca2+ was replaced by Ba2+, were blocked partially by Ni2+ (100 microM), and were blocked almost completely by Cd2+ (50 microM). Experiments using nifedipine (10 microM), omegaAga IVA (100 nM) and omegaCTX GVIA (500 nM) demonstrated that a variety of VGCC subtypes contributed to the Ba2+ current in most cells, including the L, N, and P/Q types and antagonist-insensitive R type. Although a large depolarization from rest was required to activate VGCCs in DCN neurons, VGCC activation was rapid at depolarized levels, having time constants <1 ms at 22 degrees C. No fast low-threshold inactivation was observed, and a slow high-threshold inactivation was observed at voltages more positive than -20 mV, indicating that Ba2+ currents were carried by high-voltage activated VGCCs. The VGCC subtypes contributing to the overall Ba2+ current had similar voltage-dependent properties, with the exception of the antagonist-insensitive R-type component, which had a slower activation and a more pronounced inactivation than the other components. These data suggest that a variety of VGCCs is present in DCN neurons, and these conductances generate a rapid Ca2+ influx in response to depolarizing stimuli.
Collapse
Affiliation(s)
- S C Molitor
- Department of Biomedical Engineering, The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
34
|
Affiliation(s)
- S M Assmann
- Department of Biology, Pennsylvania State University, University Park 16802, USA
| | | |
Collapse
|
35
|
Burgoon PW, Boulant JA. Synaptic inhibition: its role in suprachiasmatic nucleus neuronal thermosensitivity and temperature compensation in the rat. J Physiol 1998; 512 ( Pt 3):793-807. [PMID: 9769422 PMCID: PMC2231232 DOI: 10.1111/j.1469-7793.1998.793bd.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. Whole-cell patch clamp recordings of neurones in the suprachiasmatic nucleus (SCN) from rat brain slices were analysed for changes in spontaneous synaptic activity during changes in temperature. While recent studies have identified temperature-sensitive responses in some SCN neurones, it is not known whether or how thermal information can be communicated through SCN neural networks, particularly since biological clocks such as the SCN are assumed to be temperature compensated. 2. Synaptic activity was predominantly inhibitory and mediated through GABAA receptor activation. Spontaneous inhibitory postsynaptic potentials (IPSPs) and currents (IPSCs) were usually blocked with perifusion of 10-50 microM bicuculline methiodide (BMI). BMI was used to test hypotheses that inhibitory synapses are capable of either enhancing or suppressing the thermosensitivity of SCN neurones. 3. Temperature had opposite effects on the amplitude of IPSPs and IPSCs. Warming decreased IPSP amplitude but increased IPSC amplitude. This suggests that thermally induced changes in IPSP amplitude are primarily influenced by resistance changes in the postsynaptic membrane. The thermal effect on IPSP amplitude contributed to an enhancement of thermosensitivity in some neurones. 4. In many SCN neurones, temperature affected the frequency of IPSPs and IPSCs. An increase in IPSP frequency with warming and a decrease in frequency during cooling made several SCN neurones temperature insensitive, allowing these neurones to maintain a relatively constant firing rate during changes in temperature. This temperature-adjusted change in synaptic frequency provides a mechanism of temperature compensation in the rat SCN.
Collapse
Affiliation(s)
- P W Burgoon
- Department of Physiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
36
|
Sakamoto N, Uemura H, Hara Y, Saito T, Masuda Y, Nakaya H. Bradykinin B2-receptor-mediated modulation of membrane currents in guinea-pig cardiomyocytes. Br J Pharmacol 1998; 125:283-92. [PMID: 9786500 PMCID: PMC1565618 DOI: 10.1038/sj.bjp.0702060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. In order to define the electrophysiological mechanism(s) responsible for bradykinin (BK)-induced positive inotropic and chronotropic responses in isolated guinea-pig atria, effects of BK on the membrane currents were examined in isolated atrial cells using patch clamp techniques. 2. BK (0.1-1000 nM) increased the L-type Ca2+ current (I(Ca)), which was recorded from enzymatically-dissociated atrial myocytes by the nystatin-perforated patch method, in a concentration-dependent fashion, and the calculated EC50 value for increasing I(Ca) was 5.2 nM. In conventional ruptured patch experiments, BK inhibited the muscarinic acetylcholine receptor-operated K+ current (I(K.ACh)) that was activated by the muscarinic agonist carbachol (1 microM) with an EC50 value of 0.57 nM. Both the increase in I(Ca) and the decrease in I(K.ACh) were blocked by HOE140, a selective bradykinin B2 receptor antagonist. 3. The BK-induced inhibition of I(K.ACh) was significantly attenuated by staurosporine and calphostin C, protein kinase C inhibitors. In addition, the I(K.ACh) inhibition by BK was also attenuated by the tyrosine kinase inhibitor genistein or tyrphostin but not by daidzein, an inactive analogue of genistein. However, neither protein kinase C inhibitor nor tyrosine kinase inhibitor affected the BK-induced increase in I(Ca). 4. In the presence and absence of muscarinic stimulation, BK prolonged the action potential recorded from the atrial cells in the current clamp mode. 5. We conclude that BK increases I(Ca) and decreases I(K.ACh) in atrial cells, resulting in positive inotropic and chronotropic responses in atrial preparations. Protein kinase C activation, and possibly tyrosine kinase activation, may be involved in the B2-receptor-mediated I(K.ACh) inhibition.
Collapse
Affiliation(s)
- N Sakamoto
- Department of Pharmacology, Chiba University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
We explored the relationship between neurite outgrowth and the onset of synaptic activity in the central neuropil of the leech embryo in vivo. To follow changes in early morphology and the onset of synaptic activity in the same identified neuron, we obtained whole-cell patch-clamp recordings and fluorescent dye fills from dorsal pressure-sensitive (P) cells, the first neurons that could be reliably identified in the early embryo. We followed the development of the P cell from the first extension of neurites to the elaboration of an adult-like arbor. After the growth of primary neurites, we observed a profuse outgrowth of transient neurites within the neuropil. Retraction of the transient neurites left the primary branches studded with spurs. After a dormant period, stable secondary branches grew apparently from the spurs and became tipped with terminals. At this time, neurites of the Retzius (R) cell, a known presynaptic partner in the adult, were observed to apparently contact the terminals. Although voltage-dependent currents were seen in the P cell at the earliest stage, spontaneous synaptic activity was only observed when terminals had formed. Spontaneous release was observed before evoked release could be detected from the R cell. Our results suggest that transient neurites are formed during an exploratory phase of development, whereas the more precisely timed outgrowth of stable neurites from the spurs signals functional differentiation during synaptogenesis. Because spurs have also been observed in neurons of the mammalian brain, they may constitute a primordial synaptic organizer.
Collapse
|
38
|
Rho JM, Donevan SD, Rogawski MA. Direct activation of GABAA receptors by barbiturates in cultured rat hippocampal neurons. J Physiol 1996; 497 ( Pt 2):509-22. [PMID: 8961191 PMCID: PMC1161000 DOI: 10.1113/jphysiol.1996.sp021784] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. The direct activation of the GABAA receptor by pentobarbitone (PB) and phenobarbitone (PHB) was characterized in cultured rat hippocampal neurons using whole-cell voltage clamp and single channel recording techniques. 2. In whole-cell recordings, PB and PHB produced a concentration-dependent activation of Cl- current (EC50 values, 0.33 and 3.0 mM, respectively). The response to the barbiturates was similar to that produced by GABA, although GABA was more potent (EC50, 5.5 microM). PB and PHB were substantially more potent in enhancing the response to 1 microM GABA (EC50 values, 94 microM and 0.89 mM, respectively). The maximal magnitude of the responses to PB was similar to that of the maximal response to GABA or GABA + PB. PHB appeared to be modestly less efficacious. 3. The mean deactivation time constant for whole-cell Cl- currents evoked by 1 mM PB + 1 microM GABA was significantly longer (480 +/- 34 ms) than for 1 mM PB (170 +/- 9 ms) or 1 microM GABA (180 +/- 14 ms) alone. 4. Whole-cell currents directly activated by 300 microM PB and 1 microM GABA were blocked by the GABA receptor antagonists bicuculline and picrotoxin. 5. Unitary GABAA receptor channel currents evoked by 300 microM PB had similar main conductance, mean open time and mean burst duration as those activated by 2 microM GABA alone. Single channel openings and bursts were of shorter mean duration when 100 and 300 microM PHB were used. 6. High concentrations of PB (1-3 mM) and PHB (3-10 mM) produced a rapid block of currents activated by the barbiturate alone or by the barbiturate in the presence of 1 microM GABA. The estimated IC50 values for block of PB- and PHB-potentiated GABA currents were 2.8 and 12.9 mM, respectively. 7. Single channel currents activated by high concentrations of PB and PHB alone or in the presence of GABA demonstrated flickering, probably reflecting fast channel block. 8. We conclude that the gating of the GABAA receptor channel by PHB and PB is functionally similar to that produced by the natural agonist GABA alone, but distinct from that obtained when barbiturates modulate the response to GABA. At high concentrations, the barbiturates produce a channel blocking action that limits the maximum total current conducted by the channel.
Collapse
Affiliation(s)
- J M Rho
- Neuronal Excitability Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
39
|
Kukkonen JP, Hautala R, Akerman KE. Muscarinic depolarization of SH-SY5Y human neuroblastoma cells as determined using oxonol V. Neurosci Lett 1996; 212:57-60. [PMID: 8823762 DOI: 10.1016/0304-3940(96)12781-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Membrane potential was measured in the suspension of SH-SY5Y cells using the anionic potentiometric probe, oxonol V. The relation of fluorescence to membrane potential was assessed by increasing the external [K+] in the presence of the K+ ionophore valinomycin. The response was linear in the range of 5 to 30 mM K+ (membrane potential change of approximately 40 mV). Muscarine increased the fluorescence indicating a depolarization. The competitive inhibitory constant (112 nM) of the muscarinic antagonist pirenzepine (5,11-dihydro-11-([4-methyl-1-piperazinyl]acetyl)-6H-pyrido[2,3-b] (1,4)benzodiazepin-6-one-dihydrochloride) suggests that Hm1 receptors are not involved. The protein kinase C inhibitor, GF 109203X (3-[1-(3-demethylaminopropyl)-indol-3-yl]-3-(indol-3-yl)-maleimide ), and a reduction of extracellular Na+ both produced an additive partial inhibition. The results suggest that muscarinic receptors depolarize these cells by separate Na(+)-dependent and -independent mechanisms, the Na(+)-independent mechanism being protein kinase C-dependent.
Collapse
Affiliation(s)
- J P Kukkonen
- Department of Biochemistry and Pharmacy, Abo Akademi University BioCity, Turku, Finland.
| | | | | |
Collapse
|
40
|
Puro DG, Yuan JP, Sucher NJ. Activation of NMDA receptor-channels in human retinal Müller glial cells inhibits inward-rectifying potassium currents. Vis Neurosci 1996; 13:319-26. [PMID: 8737283 DOI: 10.1017/s0952523800007562] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although it is well known that neurotransmitters mediate neuron-to-neuron communication, it is becoming clear that neurotransmitters also affect glial cells. However, knowledge of neuron-to-glial signalling is limited. In this study, we examined the effects of the glutamate agonist N-methyl-D-aspartate (NMDA) on Müller cells, the predominant glia of the retina. Our immunocytochemical studies and immunodetection by Western blotting with monoclonal antibodies specific for the NMDAR1 subunit provided evidence for the expression by human Müller cells of this essential component of NMDA receptor-channels. Under conditions in which potassium currents were blocked, NMDA-induced currents could be detected in perforated-patch recordings from cultured and freshly dissociated human Müller cells. These currents were inhibited by competitive and non-competitive blockers of NMDA receptor-channels. Extracellular magnesium reduced the NMDA-activated currents in a voltage-dependent manner. However, despite a partial block by magnesium, Müller cells remained responsive to NMDA at the resting membrane potential. Under assay conditions not blocking K+ currents, exposure of Müller cells to NMDA was associated with an MK-801 sensitive inhibition of the inward-rectifying K+ current (IK(IR)), the largest current of these glia. This inhibitory effect of NMDA appears to be mediated by an influx of calcium since the inhibition of IK(IR) was significantly reduced when calcium was removed from the bathing solution or when the Müller cells contained the calcium chelator, BAPTA. Inhibition of the Müller cell KIR channels by the neurotransmitter glutamate is likely to have significant functional consequences for the retina since these ion channels are involved in K+ homeostasis, which in turn influences neuronal excitability.
Collapse
Affiliation(s)
- D G Puro
- Department of Ophthalmology, University of Michigan, Ann Arbor 48105, USA
| | | | | |
Collapse
|
41
|
Abstract
The KAT1 channel is a hyperpolarization-activated K+ channel cloned from the higher plant Arabidopsis. The deduced amino acid sequence suggests that its structural organization is similar to that of the Shaker-like K+ channel activated by depolarization. Electrophysiological properties of the KAT1 channel expressed in Xenopus oocytes indicate that voltage-dependent activation of the KAT1 channel is not caused by the divalent ion block and that it is intrinsic to the channel. Activity of the KAT1 channel progressively decreases upon patch excision. This rundown of the channel is accompanied by a large shift in the voltage dependence of the channel to a more negative direction. The voltage dependence is also regulated by pH, ATP, and cGMP.
Collapse
Affiliation(s)
- T Hoshi
- Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City 52242, USA
| |
Collapse
|
42
|
Wang Z, Van den Berg RJ, Ypey DL. Resting membrane potentials and excitability at different regions of rat dorsal root ganglion neurons in culture. Neuroscience 1994; 60:245-54. [PMID: 8052416 DOI: 10.1016/0306-4522(94)90218-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To study the role of electrical membrane processes in neuronal regeneration and growth, resting membrane potentials and action potentials of sensory (dorsal root ganglion) neurons growing in culture were measured at the soma, neurite and growth cone using the whole-cell patch-clamp technique. Our results show that resting membrane potentials measured at the soma (-56.8 +/- 8.8 mV), neurite varicosity (-55.8 +/- 5.2 mV) and growth cone (-57.2 +/- 4.1 mV) of growing neurons were not statistically different. The membrane resistance measured around the resting membrane potential at the neurite varicosity (160 +/- 70 M omega) was smaller than those at the soma (687 +/- 540 M omega) and growth cone (922 +/- 825 M omega). The resting membrane potential measured at the soma using a perforated patch (-60.3 +/- 4.4 mV) was not different from that measured in the normal whole cell. In both configurations, isotonic KCl (140 mM) depolarized the membrane potential to above 0 mV. The K+ channel blockers quinine, Cs+, 4-aminopyridine and tetraethylammonium depolarized the membrane potential by 10-40 mV, while Na(+)-free extracellular solution hyperpolarized it by about 10 mV. Extracellularly applied ouabain, intracellular Na(+)-free or low Cl(-)-containing solutions did not affect the resting membrane potential. Similar results were obtained for growth cones. Action potentials could be evoked by current pulses in 81% of somata and in all growth cones, but not in neurite varicosities. Current-induced repetitive firing was found in 19% of somata and in 65% of growth cones.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Z Wang
- Laboratory of Physiology, University of Leiden, The Netherlands
| | | | | |
Collapse
|
43
|
Lester RA, Dani JA. Time-dependent changes in central nicotinic acetylcholine channel kinetics in excised patches. Neuropharmacology 1994; 33:27-34. [PMID: 7514279 DOI: 10.1016/0028-3908(94)90093-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The behavior of nicotinic acetylcholine receptor (nAChR) channels in acutely isolated habenula neurons was examined by rapidly applying nicotinic agonists to outside-out membrane patches. At negative membrane potentials, applications of 100 microM nicotine routinely produced macroscopic currents due to the opening of a large number of channels. During the continuous application of the agonist, the number of open nAChR channels decreased exponentially, i.e. receptor desensitization. A progressive loss in the number of channels contributing to the peak current was observed with time following outside-out patch excision, i.e. receptor rundown. In addition to rundown there was a time-dependent increase in the rate of desensitization and a concomitant slowing in the rate of recovery from desensitization. The extent of rundown and the changes in desensitization were coupled to the time after patch excision and were not dependent on ligand activation of nicotinic channels.
Collapse
Affiliation(s)
- R A Lester
- Division of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|
44
|
Abstract
1. The calcium binding capacity (kappa S) of bovine chromaffin cells preloaded with fura-2 was measured during nystatin-perforated-patch recordings. 2. Subsequently, the perforated patch was ruptured to obtain a whole-cell recording situation, and the time course of kappa S was monitored during periods of up to one hour. 3. No rapid change (within 10-20 s) of kappa S was observed upon transition to whole-cell recording, as would be expected, if highly mobile organic anions contributed significantly to calcium buffering. However, approximately half of the cells investigated displayed a drop in kappa S within 2-5 min, indicative of the loss of soluble Ca2+ binding proteins in the range of 7-20 kDa. 4. The average Ca2+ binding capacity (differential ratio of bound calcium over free calcium) was 9 +/- 7 (mean +/- S.E.M.) for the poorly mobile component and 31 +/- 10 for the fixed component. It was concluded that a contribution of 7 from highly mobile buffer would have been detected, if present. Thus, this value can be considered as an upper bound to highly mobile Ca2+ buffer. 5. Both mobile and fixed calcium binding capacity appeared to have relatively low Ca2+ affinity, since kappa S did not change in the range of Ca2+ concentrations between 0.1 and 3 microM. 6. It was found that cellular autofluorescence and contributions to fluorescence of non-hydrolysed or compartmentalized dye contribute a serious error in estimation of kappa S. 'Balanced loading', a degree of fura-2 loading such that the calcium binding capacity of fura-2 equals cellular calcium binding capacity, minimizes these errors. Also, changes in kappa S at the transition from perforated-patch to whole-cell recording can be most faithfully recorded for similar degrees of loading in both situations. 7. Nystatin was found unable to make pores from inside of the plasma membrane of chromaffin cells. With careful preparation and storage the diluted nystatin solution maintained its high activity of membrane perforation for more than one week. 8. An equation for the effective diffusion constant for total cytoplasmic calcium, D'Ca, was derived, which takes into account fixed buffer and poorly mobile buffer as determined, as well as calcium bound to fura-2 and some highly mobile buffers.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- Z Zhou
- Max-Planck-Institut für biophysikalische Chemie, Göttingen, FRG
| | | |
Collapse
|
45
|
Klöckner U. Intracellular calcium ions activate a low-conductance chloride channel in smooth-muscle cells isolated from human mesenteric artery. Pflugers Arch 1993; 424:231-7. [PMID: 8414911 DOI: 10.1007/bf00384347] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Calcium-activated chloride currents were studied by the patch-clamp technique in vascular smooth muscle cells (VSMC) isolated from human mesenteric arteries. Bath application of 20 mM caffeine caused the cell membrane to depolarize by a calcium-activated inward current that peaked to -654 +/- 230 pA (holding potential -50 mV). Cell-attached, at the same time inwardly directed single-channel currents were detected with an amplitude of -0.22 pA. In open-cell-attached patches channel activity was triggered by elevating [Ca2+]i to 10 microM. At -60 mV the mean amplitude of the current was -0.24 pA and the mean open time of the channels was 28 ms. Plotting the amplitude of the current versus the test potential yielded a single-channel conductance of 2.8 +/- 0.5 pS. The currents disappeared when [Cl-] was reduced from 150 mM to 5 mM at the cytosolic side of the inside-out patch at a holding potential of -60 mV (calculated reversal potential -58 mV) suggesting that the calcium-activated current was a chloride current. This suggests that, in human mesenteric VSMC, elevation of [Ca2+]i activates a low-conductance chloride channel, which may mediate the agonist-induced depolarization of the cell membrane.
Collapse
Affiliation(s)
- U Klöckner
- Department of Physiology, University of Köln, Germany
| |
Collapse
|