1
|
Saadi S, Saari N, Ghazali HM, Abdulkarim MS. Mitigation of antinutritional factors and protease inhibitors of defatted winged bean-seed proteins using thermal and hydrothermal treatments: Denaturation/unfolding coupled hydrolysis mechanism. Curr Res Food Sci 2022; 5:207-221. [PMID: 35106485 PMCID: PMC8789533 DOI: 10.1016/j.crfs.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
The inactivation of antinutritional factors, protease inhibitors within winged bean protein was induced by two respective method treatments. The physical method based on steam vapor that was conducted using an autoclave and chemical method consisting on pH-gradients of buffer solutions prepared at respective acidic pH, neutral pH and alkaline pH ranges. The activity of remaining protease inhibitors of bowman birk inhibitor (BBI), and kunitz-trypsin inhibitor (KTI) after and before treatments was enzymatically confirmed using relevant antagonistic trypsin and combined trypsin-α-chymotrypsin digests. The resulting molecular assembly indicating an interval molecular relaxation range of °0.16 < °DA < °0.2 corresponding to reconformation in protein units with volume-mass changes of -2.17 < ∂v' < +2.17 and with denaturation/unfolding efficiency based on heat capacity ΔCp of 36.36 < DE/UF% < 54.67. These structural changes had a great benefit in determining and producing functional protein hydrolysates.
Collapse
Affiliation(s)
- Sami Saadi
- Institut de la Nutrition, de l’Alimentation et des Technologies Agro-alimentaires INATAA 25017, Université Frères Mentouri, Constantine 1, Algeria
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hasanah Mohd Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | | |
Collapse
|
2
|
Kumar S, Kumar P, Nair MS. Exploring the binding of resveratrol to a promoter DNA sequence d(CCAATTGG) 2 through multispectroscopic, nuclear magnetic resonance and molecular dynamics studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119488. [PMID: 33545510 DOI: 10.1016/j.saa.2021.119488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
We report the interaction of resveratrol with an octamer DNA sequence d(CCAATTGG)2, present in the promoter region of many oncogenes, using a combination of absorption, fluorescence, calorimetric and nuclear magnetic resonance techniques to probe the binding. Resveratrol binds to the duplex sequence with a binding constant 2.20 × 106 M-1 in absorption studies. A ligand-duplex stoichiometry of 2.2:1 was obtained with binding constant varying from 103 to 104 M-1 in fluorescence titration measurements. Spectral changes indicated external binding of resveratrol to duplex DNA. Circular dichroism data displayed minimal variation suggesting external binding. Melting temperatures of DNA and its 1:1 complex showed a difference of approximately 2.25 °C, supporting the external binding. Nuclear magnetic resonance data showed resveratrol binds to the minor groove region near the AT base pair from the nuclear Overhauser effect spectroscopic cross peaks. Distance restrained molecular dynamics was employed in explicit solvent condition to obtain the lowest energy structure. The complex was stable and retained the B DNA conformation. Findings in this study identify resveratrol as a minor groove binder to the AT region of DNA and pave the way for exploring resveratrol and its analogues as promising anticancer/antibacterial drug.
Collapse
Affiliation(s)
- Shailendra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Peeyush Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Maya S Nair
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
3
|
Saadi S, Saari N, Abdulkarim MS, Ghazali HM, Anwar F. Smart electrical bi-layers lipopeptides: Novel peptidic chains like zigzag map esterified with phospho-glyceride as mono-layer moieties capable in forming a meso-sphere- envelop with scaffold- ability to cellular impurities. J Control Release 2018; 274:93-101. [DOI: 10.1016/j.jconrel.2017.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
|
4
|
Lin J, Lucius AL. Examination of ClpB Quaternary Structure and Linkage to Nucleotide Binding. Biochemistry 2016; 55:1758-71. [PMID: 26891079 DOI: 10.1021/acs.biochem.6b00122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Escherichia coli caseinolytic peptidase B (ClpB) is a molecular chaperone with the unique ability to catalyze protein disaggregation in collaboration with the KJE system of chaperones. Like many AAA+ molecular motors, ClpB assembles into hexameric rings, and this reaction is thermodynamically linked to nucleotide binding. Here we show that ClpB exists in a dynamic equilibrium of monomers, dimers, tetramers, and hexamers in the presence of both limiting and excess ATPγS. We find that ClpB monomer is only able to bind one nucleotide, whereas all 12 sites in the hexameric ring are bound by nucleotide at saturating concentrations. Interestingly, dimers and tetramers exhibit stoichiometries of ∼3 and 7, respectively, which is one fewer than the maximum number of binding sites in the formed oligomer. This observation suggests an open conformation for the intermediates based on the need for an adjacent monomer to fully form the binding pocket. We also report the protein-protein interaction constants for dimers, tetramers, and hexamers and their dependencies on nucleotide. These interaction constants make it possible to predict the concentration of hexamers present and able to bind to cochaperones and polypeptide substrates. Such information is essential for the interpretation of many in vitro studies. Finally, the strategies presented here are broadly applicable to a large number of AAA+ molecular motors that assemble upon nucleotide binding and interact with partner proteins.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Chemistry, The University of Alabama at Birmingham , 1530 Third Avenue S, Birmingham, Alabama 35294-1240, United States
| | - Aaron L Lucius
- Department of Chemistry, The University of Alabama at Birmingham , 1530 Third Avenue S, Birmingham, Alabama 35294-1240, United States
| |
Collapse
|
5
|
Abstract
This unit describes the application of calorimetry to characterize the thermodynamics of nucleic acids, specifically, the two major calorimetric methodologies that are currently employed: differential scanning (DSC) and isothermal titration calorimetry (ITC). DSC is used to study thermally induced order-disorder transitions in nucleic acids. A DSC instrument measures, as a function of temperature (T), the excess heat capacity (C(p)(ex)) of a nucleic acid solution relative to the same amount of buffer solution. From a single curve of C(p)(ex) versus T, one can derive the following information: the transition enthalpy (ΔH), entropy (ΔS), free energy (ΔG), and heat capacity (ΔCp); the state of the transition (two-state versus multistate); and the average size of the molecule that melts as a single thermodynamic entity (e.g., the duplex). ITC is used to study the hybridization of nucleic acid molecules at constant temperature. In an ITC experiment, small aliquots of a titrant nucleic acid solution (strand 1) are added to an analyte nucleic acid solution (strand 2), and the released heat is monitored. ITC yields the stoichiometry of the association reaction (n), the enthalpy of association (ΔH), the equilibrium association constant (K), and thus the free energy of association (ΔG). Once ΔH and ΔG are known, ΔS can also be derived. Repetition of the ITC experiment at a number of different temperatures yields the ΔCp for the association reaction from the temperature dependence of ΔH.
Collapse
Affiliation(s)
- Eriks Rozners
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York
| | - Daniel S Pilch
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
6
|
Kim BG, Evans HM, Dubins DN, Chalikian TV. Effects of Salt on the Stability of a G-Quadruplex from the Human c-MYC Promoter. Biochemistry 2015; 54:3420-30. [DOI: 10.1021/acs.biochem.5b00097] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Byul G. Kim
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Heather M. Evans
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - David N. Dubins
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V. Chalikian
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
7
|
|
8
|
Ghimire A, Kasi RM, Kumar CV. Proton-Coupled Protein Binding: Controlling Lysozyme/Poly(acrylic acid) Interactions with pH. J Phys Chem B 2014; 118:5026-33. [DOI: 10.1021/jp500310w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ananta Ghimire
- Department of Chemistry, U-3060, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Rajeswari M. Kasi
- Department of Chemistry, U-3060, University of Connecticut, Storrs, Connecticut 06269-3060, United States
- Polymer Program, The Institute of Materials
Science, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Challa V. Kumar
- Department of Chemistry, U-3060, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
9
|
Bermejo IL, Arnulphi C, Ibáñez de Opakua A, Alonso-Mariño M, Goñi FM, Viguera AR. Membrane partitioning of the pore-forming domain of colicin A. Role of the hydrophobic helical hairpin. Biophys J 2014; 105:1432-43. [PMID: 24047995 DOI: 10.1016/j.bpj.2013.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022] Open
Abstract
The colicins are bacteriocins that target Escherichia coli and kill bacterial cells through different mechanisms. Colicin A forms ion channels in the inner membranes of nonimmune bacteria. This activity resides exclusively in its C-terminal fragment (residues 387-592). The soluble free form of this domain is a 10 α-helix bundle. The hydrophobic helical hairpin, H8-H9, is buried inside the structure and shielded by eight amphipathic surface helices. The interaction of the C-terminal colicin A domain and several chimeric variants with lipidic vesicles was examined here by isothermal titration calorimetry. In the mutant constructions, natural sequences of the hydrophobic helices H8 and H9 were either removed or substituted by polyalanine or polyleucine. All the constructions fully associated with DOPG liposomes including the mutant that lacked helices H8 and H9, indicating that amphipathic rather than hydrophobic helices were the major determinants of the exothermic binding reactions. Alanine is not specially favored in the lipid-bound form; the chimeric construct with polyalanine produced lower enthalpy gain. On the other hand, the large negative heat capacities associated with partitioning, a characteristic feature of the hydrophobic effect, were found to be dependent on the sequence hydrophobicity of helices H8 and H9.
Collapse
Affiliation(s)
- Ivan L Bermejo
- Unidad de Biofísica (CSIC, UPV/EHU), Barrio Sarriena s/n, Leioa, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Andronescu M, Condon A, Turner DH, Mathews DH. The determination of RNA folding nearest neighbor parameters. Methods Mol Biol 2014; 1097:45-70. [PMID: 24639154 DOI: 10.1007/978-1-62703-709-9_3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The stability of RNA secondary structure can be predicted using a set of nearest neighbor parameters. These parameters are widely used by algorithms that predict secondary structure. This contribution introduces the UV optical melting experiments that are used to determine the folding stability of short RNA strands. It explains how the nearest neighbor parameters are chosen and how the values are fit to the data. A sample nearest neighbor calculation is provided. The contribution concludes with new methods that use the database of sequences with known structures to determine parameter values.
Collapse
Affiliation(s)
- Mirela Andronescu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
11
|
Shek YL, Noudeh GD, Nazari M, Heerklotz H, Abu-Ghazalah RM, Dubins DN, Chalikian TV. Folding thermodynamics of the hybrid-1 type intramolecular human telomeric G-quadruplex. Biopolymers 2013; 101:216-27. [DOI: 10.1002/bip.22317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 06/04/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Yuen Lai Shek
- Department of Pharmaceutical Sciences; Leslie Dan Faculty of Pharmacy, University of Toronto; 144 College Street Toronto, Ontario Canada M5S 3M2
| | - Golamreza Dehghan Noudeh
- Department of Pharmaceutical Sciences; Leslie Dan Faculty of Pharmacy, University of Toronto; 144 College Street Toronto, Ontario Canada M5S 3M2
| | - Mozhgan Nazari
- Department of Pharmaceutical Sciences; Leslie Dan Faculty of Pharmacy, University of Toronto; 144 College Street Toronto, Ontario Canada M5S 3M2
| | - Heiko Heerklotz
- Department of Pharmaceutical Sciences; Leslie Dan Faculty of Pharmacy, University of Toronto; 144 College Street Toronto, Ontario Canada M5S 3M2
| | - Rashid M. Abu-Ghazalah
- Department of Pharmaceutical Sciences; Leslie Dan Faculty of Pharmacy, University of Toronto; 144 College Street Toronto, Ontario Canada M5S 3M2
| | - David N. Dubins
- Department of Pharmaceutical Sciences; Leslie Dan Faculty of Pharmacy, University of Toronto; 144 College Street Toronto, Ontario Canada M5S 3M2
| | - Tigran V. Chalikian
- Department of Pharmaceutical Sciences; Leslie Dan Faculty of Pharmacy, University of Toronto; 144 College Street Toronto, Ontario Canada M5S 3M2
| |
Collapse
|
12
|
Kawachi T, Matsuura Y, Iyoda F, Arakawa S, Okamoto M. Preparation and characterization of DNA/allophane composite hydrogels. Colloids Surf B Biointerfaces 2013; 112:429-34. [DOI: 10.1016/j.colsurfb.2013.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/05/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
|
13
|
Bastos M, Alves N, Maia S, Gomes P, Inaba A, Miyazaki Y, Zanotti JM. Hydration water and peptide dynamics – two sides of a coin. A neutron scattering and adiabatic calorimetry study at low hydration and cryogenic temperatures. Phys Chem Chem Phys 2013; 15:16693-703. [DOI: 10.1039/c3cp51937f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Le VH, Buscaglia R, Chaires JB, Lewis EA. Modeling complex equilibria in isothermal titration calorimetry experiments: thermodynamic parameters estimation for a three-binding-site model. Anal Biochem 2012; 434:233-41. [PMID: 23262283 DOI: 10.1016/j.ab.2012.11.030] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/13/2012] [Accepted: 11/28/2012] [Indexed: 12/21/2022]
Abstract
Isothermal titration calorimetry (ITC) is a powerful technique that can be used to estimate a complete set of thermodynamic parameters (e.g., K(eq) (or ΔG), ΔH, ΔS, and n) for a ligand-binding interaction described by a thermodynamic model. Thermodynamic models are constructed by combining equilibrium constant, mass balance, and charge balance equations for the system under study. Commercial ITC instruments are supplied with software that includes a number of simple interaction models, for example, one binding site, two binding sites, sequential sites, and n-independent binding sites. More complex models, for example, three or more binding sites, one site with multiple binding mechanisms, linked equilibria, or equilibria involving macromolecular conformational selection through ligand binding, need to be developed on a case-by-case basis by the ITC user. In this paper we provide an algorithm (and a link to our MATLAB program) for the nonlinear regression analysis of a multiple-binding-site model with up to four overlapping binding equilibria. Error analysis demonstrates that fitting ITC data for multiple parameters (e.g., up to nine parameters in the three-binding-site model) yields thermodynamic parameters with acceptable accuracy.
Collapse
Affiliation(s)
- Vu H Le
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | |
Collapse
|
15
|
Thilakarathne VK, Briand VA, Kasi RM, Kumar CV. Tuning hemoglobin-poly(acrylic acid) interactions by controlled chemical modification with triethylenetetramine. J Phys Chem B 2012; 116:12783-92. [PMID: 23030246 DOI: 10.1021/jp307206h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein-polymer interactions play a very important role in a number of applications, but details of these interactions are not fully understood. Chemical modification was introduced here to tune protein-polymer interactions in a systematic manner, where methemoglobin (Hb) and poly(acrylic acid) (PAA) served as a model system. Under similar conditions of pH and ionic strength, the influence of protein charge on Hb/PAA interaction was studied using chemically modified Hb by isothermal titration calorimetry (ITC). A small fraction of COOH groups of Hb were amidated with triethylenetetramine (TETA) or ammonium chloride to produce the corresponding charge ladders of Hb-TETA and Hb-ammonia derivatives, respectively. All the Hb/PAA complexes produced here are bioactive, entirely soluble in water, and indicated the retention of Hb structure to a significant extent. Binding of Hb to PAA was exothermic (ΔH < 0). The binding of Hb-TETA charge ladder to PAA indicated decrease of ΔH from -8 ± 0.2 to -89 ± 4 kcal/mol, at a rate of -3.8 kcal/mol per unit charge introduced via modification. The Hb-ammonia charge ladder, in contrast, showed a decrease of ΔH from -8 ± 0.2 to -17 ± 1.5 kcal/mol, at much slower rate of -1.0 kcal/mol per unit charge. Thus, the amine used for the modification played a strong role in tuning Hb/PAA interactions, even after correcting for the charge, synergistically. Charge clustering may be responsible for this synergy, and this interesting observation may be exploited to construct protein/polymer platforms for advanced biomacromolecular applications.
Collapse
Affiliation(s)
- Vindya K Thilakarathne
- Department of Chemistry, U-3060, University of Connecticut, Storrs, Connecticut 06269-3060, USA
| | | | | | | |
Collapse
|
16
|
Rumora AE, Kolodziejczak KM, Malhowski Wagner A, Núñez ME. Thymine dimer-induced structural changes to the DNA duplex examined with reactive probes (†). Biochemistry 2012; 47:13026-35. [PMID: 19006320 DOI: 10.1021/bi801417u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite significant progress in the past decade, questions still remain about the complete structural, dynamic, and thermodynamic effect of the cis-syn cyclobutane pyrimidine dimer lesion (hereafter called the thymine dimer) on double-stranded genomic DNA. We examined a 19-mer oligodeoxynucleotide duplex containing a thymine dimer lesion using several small, base-selective reactive chemical probes. These molecules probe whether the presence of the dimer causes the base pairs to be more accessible to the solution, either globally or adjacent to the dimer. Though all of the probes confirm that the overall structure of the dimer-containing duplex is conserved compared to that of the undamaged parent duplex, reactions with both diethyl pyrocarbonate and Rh(bpy)(2)(chrysi)(3+) indicate that the duplex is locally destabilized near the lesion. Reactions with potassium permanganate and DEPC hint that the dimer-containing duplex may also be globally more accessible to the solution through a subtle shift in the double-stranded DNA ↔ single-stranded DNA equilibrium. To begin to distinguish between kinetic and thermodynamic effects, we determined the helix melting thermodynamic parameters for the dimer-containing and undamaged parent duplexes by microcalorimetry and UV melting. The presence of the thymine dimer causes this DNA duplex to be slightly less stable enthalpically but slightly less unstable entropically at 298 K, causing the overall free energy of duplex melting to remain unchanged by the dimer lesion within the error of the experiment. Here we consider these results in the context of what has been learned about the thymine dimer lesion from NMR, X-ray crystallographic, and molecular biological methods.
Collapse
Affiliation(s)
- Amy E Rumora
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075
| | | | | | | |
Collapse
|
17
|
Abbott DW, Boraston AB. Quantitative approaches to the analysis of carbohydrate-binding module function. Methods Enzymol 2012; 510:211-31. [PMID: 22608728 DOI: 10.1016/b978-0-12-415931-0.00011-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbohydrate-binding modules (CBMs) are important components of carbohydrate-active enzymes. Their primary functions are to assist in substrate turnover by targeting appended catalytic modules to substrate and concentrating appended catalytic modules on the surface of substrate. Presented here are four well-established methodologies for investigating and quantifying the CBM-polysaccharide binding relationship. These methods include: (1) the solid state depletion assay, (2) affinity gel electrophoresis, (3) UV difference and fluorescence spectroscopy, and (4) isothermal titration calorimetry. In addition, entropy-driven CBM-crystalline cellulose binding events and differential approaches to calculating stoichiometry with polyvalent polysaccharide ligands are also discussed.
Collapse
Affiliation(s)
- D Wade Abbott
- Lethbridge Research Station, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | | |
Collapse
|
18
|
Izanloo C, Parsafar GA, Abroshan H, Akbarzadeh H. Denaturation of Drew-Dickerson DNA in a high salt concentration medium: Molecular dynamics simulations. J Comput Chem 2011; 32:3354-61. [DOI: 10.1002/jcc.21908] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 07/09/2011] [Accepted: 07/15/2011] [Indexed: 11/09/2022]
|
19
|
Araque JC, Panagiotopoulos AZ, Robert MA. Lattice model of oligonucleotide hybridization in solution. I. Model and thermodynamics. J Chem Phys 2011; 134:165103. [PMID: 21528982 DOI: 10.1063/1.3568145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A coarse-grained lattice model of DNA oligonucleotides is proposed to investigate the general mechanisms by which single-stranded oligonucleotides hybridize to their complementary strands in solution. The model, based on a high-coordination cubic lattice, is simple enough to allow the direct simulation of DNA solutions, yet capturing how the fundamental thermodynamic processes are microscopically encoded in the nucleobase sequences. Physically relevant interactions are considered explicitly, such as interchain excluded volume, anisotropic base-pairing and base-stacking, and single-stranded bending rigidity. The model is studied in detail by a specially adapted Monte Carlo simulation method, based on parallel tempering and biased trials, which is designed to overcome the entropic and enthalpic barriers associated with the sampling of hybridization events of multiple single-stranded chains in solution. This methodology addresses both the configurational complexity of bringing together two complementary strands in a favorable orientation (entropic barrier) and the energetic penalty of breaking apart multiple associated bases in a double-stranded state (enthalpic barrier). For strands with sequences restricted to nonstaggering association and homogeneous pairing and stacking energies, base-pairing is found to dominate the hybridization over the translational and conformational entropy. For strands with sequence-dependent pairing corresponding to that of DNA, the complex dependence of the model's thermal stability on concentration, sequence, and degree of complementarity is shown to be qualitatively and quantitatively consistent both with experiment and with the predictions of statistical mechanical models.
Collapse
Affiliation(s)
- Juan C Araque
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|
20
|
Hansen LD, Fellingham GW, Russell DJ. Simultaneous determination of equilibrium constants and enthalpy changes by titration calorimetry: Methods, instruments, and uncertainties. Anal Biochem 2010; 409:220-9. [PMID: 21073852 DOI: 10.1016/j.ab.2010.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/28/2010] [Accepted: 11/03/2010] [Indexed: 11/16/2022]
Abstract
Calorimetric methods have been used to determine equilibrium constants since 1937, but no comprehensive review of the various calorimeters and methods has been done previously. This article reports methods for quantitative comparison of the capabilities of calorimeters for simultaneous determination of equilibrium constants and enthalpy changes, for determining optimal experimental conditions, and for assessing the effects of systematic and random errors on the accuracy and precision of equilibrium constants and enthalpy changes determined by this method.
Collapse
Affiliation(s)
- Lee D Hansen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.
| | | | | |
Collapse
|
21
|
Duff MR, Kumar CV. Molecular signatures of enzyme-solid interactions: thermodynamics of protein binding to alpha-Zr(IV) phosphate nanoplates. J Phys Chem B 2010; 113:15083-9. [PMID: 19835407 DOI: 10.1021/jp9051775] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isothermal titration calorimetry (ITC) was used to determine the thermodynamics of protein binding to the nanoplates of alpha-Zr(HPO4)2.H2O (alpha-ZrP). The binding constants (K(b)) and DeltaG, DeltaH, and DeltaS have been evaluated for a small set of proteins, and K(b) values are in the range of 2-760 x 10(5) M(-1). The binding of positively charged proteins to the negatively charged alpha-ZrP was endothermic, while the binding of negatively charged proteins was exothermic, and these are contrary to expectations based on a simple electrostatic model. The binding enthalpies of the proteins varied over a range of -24 to +25 kcal/mol, and these correlated roughly with the net charge on the protein (R2 = 0.964) but not with other properties such as the number of basic residues, polar residues, isoelectric point, surface area, or molecular mass. Linear fits to the enthalpy plots indicated that each charge on the protein contributes 1.18 kcal/mol toward the binding enthalpy. Binding entropies of positively charged proteins were favorable (>0) while the binding entropies of negatively charged proteins were unfavorable (<0). The DeltaS values varied over a range of -51 to +98 cal/mol x K, and these correlated very well with the net charge on the protein (R2 = 0.999), but DeltaS is in the opposite direction of DeltaH. The binding or release of cations to/from the protein-solid interface can account for these observations. There was no correlation between the binding free energy (DeltaG(obs)) and any specific molecular properties, but it is likely to be a sum of several opposing interactions of large magnitudes. For the first time, the binding enthalpies and entropies are connected to specific molecular properties. The model suggests that the thermodynamic parameters can be controlled by choosing appropriate cations or by adjusting the net charge on the protein. We hope that physical insights such as these will be useful in understanding the complex behavior of proteins at biological interfaces.
Collapse
Affiliation(s)
- Michael R Duff
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, USA
| | | |
Collapse
|
22
|
Duff MR, Kumar CV. Protein-solid interactions: important role of solvent, ions, temperature, and buffer in protein binding to alpha-Zr(IV) phosphate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:12635-12643. [PMID: 19856993 DOI: 10.1021/la901901k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The interaction of proteins with a solid surface involves a complex set of interactions, and elucidating the details of these interactions is essential in the rational design of solid surfaces for applications in biosensors, biocatalysis, and biomedical applications. We examined the enthalpy changes accompanying the binding of met-hemoglobin, met-myoglobin, and lysozyme to layered alpha-Zr(IV)phosphate (20 mM NaPipes, 1 mM TBA, pH 7.2, 298 K) by titration calorimetry, under specific conditions. The corresponding binding enthalpies for the three proteins are -24.2 +/- 2.2, -10.6 +/- 2, and 6.2 +/- 0.2 kcal/mol, respectively. The binding enthalpy depended on the charge of the protein where the binding of positively charged proteins to the negatively charged solid surface was endothermic while the binding of negatively charged proteins to the negatively charged solid was exothermic. These observations are contrary to a simple electrostatic model where binding to the oppositely charged surface is expected to be exothermic. The binding enthalpy depended on the net charge on the protein, ionic strength of the medium, the type of buffer ions present, and temperature. The temperature dependence studies of binding enthalpies resulted in the estimation of heat capacity changes accompanying the binding. The heat capacity changes observed with Hb, Mb, and lysozyme are 1.4 +/- 0.3, 0.89 +/- 0.2, and 0.74 +/- 0.1 kcal/(mol.K), respectively, and these values depended on the net charge of the protein. The enthalpy changes also depended linearly on the enthalpy of ionization of the buffer, and the numbers of protons released per protein estimated from this data are 12.6 +/- 2, 6.0 +/- 1.2, and 1.2 +/- 0.5 for Hb, Mb, and lysozyme, respectively. Binding enthalpies, independent of buffer ionization, are also estimated from these data. Entropy changes are related to the loss in the degrees of freedom when the protein binds to the solid and the displacement of solvent molecules/protons/ions from the protein-solid interface. Proton coupled protein binding is one of the major processes in these systems, which is novel, and the binding enthalpies can be predicted from the net charge of the protein, enthalpy of buffer ionization, ionic strength, and temperature.
Collapse
Affiliation(s)
- Michael R Duff
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, USA
| | | |
Collapse
|
23
|
Abstract
Understanding the forces driving formation of protein/DNA complexes requires measurement of the Gibbs energy of association, DeltaG, and its component enthalpic, DeltaH, and entropic, DeltaS, contributions. Isothermal titration calorimetry provides the enthalpy (heat) of the binding reaction and an estimate of the association constant, if not too high. Repeating the ITC experiment at several temperatures yields DeltaC ( p ), the change in heat capacity, an important quantity permitting extrapolation of enthalpies and entropies to temperatures outside the experimental range. Binding constants, i.e. Gibbs energies, are best obtained by optical methods such as fluorescence at temperatures where the components are maximally folded. Since DNA-binding domains are often partially unfolded at physiological temperatures, the ITC-observed enthalpy of binding may need to be corrected for the negative contribution from protein refolding. This correction is obtained by differential scanning calorimetric melting of the free DNA-binding domain. Corrected enthalpies are finally combined with accurate Gibbs energies to yield the entropy factor (TDeltaS) at various temperatures. Gibbs energies can be separated into electrostatic and non-electrostatic contributions from the ionic strength dependence of the binding constant.
Collapse
|
24
|
Kaur H, Arora A, Gogoi K, Solanke P, Gunjal AD, Kumar VA, Maiti S. Effects for the Incorporation of Five-atom Thioacetamido Nucleic Acid (TANA) Backbone on Hybridization Thermodynamics and Kinetics of DNA Duplexes. J Phys Chem B 2009; 113:2944-51. [DOI: 10.1021/jp808747g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Harleen Kaur
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India, and Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Amit Arora
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India, and Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - K. Gogoi
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India, and Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - P. Solanke
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India, and Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Anita D. Gunjal
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India, and Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Vaijayanti A. Kumar
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India, and Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Souvik Maiti
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India, and Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
25
|
Duff MR, Mudhivarthi VK, Kumar CV. Rational Design of Anthracene-Based DNA Binders. J Phys Chem B 2009; 113:1710-21. [DOI: 10.1021/jp807164f] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Michael R. Duff
- Department of Chemistry, U-3060, 55 North Eagleville Road, University of Connecticut, Storrs, Connecticut 06269-3060
| | - Vamsi K. Mudhivarthi
- Department of Chemistry, U-3060, 55 North Eagleville Road, University of Connecticut, Storrs, Connecticut 06269-3060
| | - Challa V. Kumar
- Department of Chemistry, U-3060, 55 North Eagleville Road, University of Connecticut, Storrs, Connecticut 06269-3060
| |
Collapse
|
26
|
Sankaran NB, Sato Y, Sato F, Rajendar B, Morita K, Seino T, Nishizawa S, Teramae N. Small-Molecule Binding at an Abasic Site of DNA: Strong Binding of Lumiflavin for Improved Recognition of Thymine-Related Single Nucleotide Polymorphisms. J Phys Chem B 2009; 113:1522-9. [DOI: 10.1021/jp808576t] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N. B. Sankaran
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Fuyuki Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Burki Rajendar
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Kotaro Morita
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Takehiro Seino
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Norio Teramae
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| |
Collapse
|
27
|
Abstract
The reversible interaction or binding of ligands to biological macromolecules is fundamental to nearly every aspect of biochemistry and cell biology. Binding events typically do not occur in isolation in biochemistry, and are almost always coupled or linked to other reactions such as protonation changes, other ligand-binding interactions, structural transitions, and folding. It is rarely sufficient to simply state that something binds. An understanding of binding requires a measure of affinity, stoichiometry, and the contributions of linked reactions. Emphasis is placed here on defining binding and the influence of linkage on binding and stability using both spectroscopic and calorimetric data.
Collapse
Affiliation(s)
- John W Shriver
- Department of Chemistry and Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, USA
| | | |
Collapse
|
28
|
Abstract
Ultrasensitive microcalorimetric techniques for measuring the heat capacities of proteins in dilute solutions over a broad temperature range (DSC) and the heats of protein reactions at fixed temperatures (ITC) are described and the methods of working with these instruments are considered. Particular attention is paid to analyzing the thermal properties of individual proteins, their stability, the energetics of their folding, and their association with specific macromolecular partners. Use of these calorimetric methods is illustrated with examples of small compact globular proteins, small proteins having loose noncompact structure, multidomain proteins, and protein complexes, particularly with DNA.
Collapse
Affiliation(s)
- Peter L Privalov
- Department of Biology, John Hopkins University, Baltimore, MD, USA
| |
Collapse
|
29
|
Rosu F, Nguyen CH, De Pauw E, Gabelica V. Ligand binding mode to duplex and triplex DNA assessed by combining electrospray tandem mass spectrometry and molecular modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1052-62. [PMID: 17459721 DOI: 10.1016/j.jasms.2007.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 05/15/2023]
Abstract
In this paper, we report the analysis of seven benzopyridoindole and benzopyridoquinoxaline drugs binding to different duplex DNA and triple helical DNA, using an approach combining electrospray ionization mass spectrometry (ESI-MS), tandem mass spectrometry (MS/MS), and molecular modeling. The ligands were ranked according to the collision energy (CE(50)) necessary to dissociate 50% of the complex with the duplex or the triplex in tandem MS. To determine the probable ligand binding site and binding mode, molecular modeling was used to calculate relative ligand binding energies in different binding sites and binding modes. For duplex DNA binding, the ligand-DNA interaction energies are roughly correlated with the experimental CE(50), with the two benzopyridoindole ligands more tightly bound than the benzopyridoquinoxaline ligands. There is, however, no marked AT versus GC base preference in binding, as supported both by the ESI-MS and the calculated ligand binding energies. Product ion spectra of the complexes with triplex DNA show only loss of neutral ligand for the benzopyridoquinoxalines, and loss of the third strand for the benzopyridoindoles, the ligand remaining on the duplex part. This indicates a higher binding energy of the benzopyridoindoles, and also shows that the ligands interact with the triplex via the duplex. The ranking of the ligand interaction energies compared with the CE(50) values obtained by MS/MS on the complexes with the triplex clearly indicates that the ligands intercalate via the minor groove of the Watson-Crick duplex. Regarding triplex versus duplex selectivity, our experiments have demonstrated that the most selective drugs for triplex share the same heteroaromatic core.
Collapse
Affiliation(s)
- Frédéric Rosu
- Laboratory of Mass Spectrometry, University of Liège, Liège, Belgium
| | | | | | | |
Collapse
|
30
|
Nishimura T, Takeda Y, Shimada N, Sakurai K. DNA Conformational Switching by Use of an Intercalator and Its Receptor. CHEM LETT 2007. [DOI: 10.1246/cl.2007.388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Abstract
The most essential feature of living biological systems is their high degree of structural organization. The key role is played by two linear heteropolymers, the proteins and nucleic acids. Under environmental conditions close to physiological, these biopolymers are folded into unique native conformations, genetically determined by the arrangement of their standard building blocks. In their native conformation, biological macromolecules recognize their partners and associate with them, forming specific, higher-order complexes, the "molecular machines". Folding of biopolymers into their native conformation and their association with partners is in principle a reversible, thermodynamically driven process. Investigation of the thermodynamics of these basic biological processes has prime importance for understanding the mechanisms of forming these supra-macromolecular constructions and their functioning.
Collapse
Affiliation(s)
- Peter L. Privalov
- 1Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
32
|
Duff MR, Tan WB, Bhambhani A, Perrin BS, Thota J, Rodger A, Kumar CV. Contributions of Hydroxyethyl Groups to the DNA Binding Affinities of Anthracene Probes. J Phys Chem B 2006; 110:20693-701. [PMID: 17034261 DOI: 10.1021/jp063997m] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Contributions of hydroxyethyl functions to the DNA binding affinities of substituted anthracenes are evaluated by calorimetry and spectroscopy. Isothermal titration calorimetry indicated that binding of the ligands to calf thymus DNA (5 mM Tris buffer, 50 mM NaCl, pH 7.2, 25 degrees C) is exothermic. The binding constants increased from 1.5 x 10(4) to 1.7 x 10(6) M(-1) as a function of increase in the number of hydroxyethyl functions (0-4). DNA binding was accompanied by red-shifted absorption (approximately 630 cm(-1)), strong hypochromism (>65%), positive induced-circular dichroism bands, and negative linear dichroism signals. DNA binding, in general, increased the helix stabilities to a significant extent (DeltaT(m) approximately 7 degrees C, DeltaDeltaH approximately 3 kcal/mol, DeltaDeltaS approximately 6-20 cal/K.mol). The binding constants showed a strong correlation with the number of hydroxyethyl groups present on the anthracene ring system. Analysis of the binding data using the hydrophobicity parameter (Log P) showed a poor correlation between the binding affinity and hydrophobicity. This observation was also supported by a comparison of the affinities of probes carrying N-ethyl (Kb = 0.8 x 10(5) M(-1)) versus N-hydroxyethyl side chains (Kb = 5.5 x 10(5) M(-1)). These are the very first examples of a strong quantitative correlation between the DNA binding affinity of a probe and the number of hydroxyethyl groups present on the probe. These quantitative findings are useful in the rational design of new ligands for high-affinity binding to DNA.
Collapse
Affiliation(s)
- Michael R Duff
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Freyer MW, Buscaglia R, Nguyen B, Wilson WD, Lewis EA. Binding of netropsin and 4,6-diamidino-2-phenylindole to an A2T2 DNA hairpin: a comparison of biophysical techniques. Anal Biochem 2006; 355:259-66. [PMID: 16828700 DOI: 10.1016/j.ab.2006.04.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 04/19/2006] [Accepted: 04/25/2006] [Indexed: 11/23/2022]
Abstract
Isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and biosensor-surface plasmon resonance (SPR) are evaluated for their accuracy in determining equilibrium constants, ease of use, and range of application. Systems chosen for comparison of the three techniques were the formation of complexes between two minor groove binding compounds, netropsin and 4,6-diamidino-2-phenylindole (DAPI), and a DNA hairpin having the sequence 5'-d(CGAATTCGTCTCCGAATTCG)-3'. These systems were chosen for their structural differences, simplicity (1:1 binding), and binding affinity in the range of interest (K approximately 10(8) M(-1)). The binding affinities determined from all three techniques were in excellent agreement; for example, netropsin/DNA formation constants were determined to be K = 1.7x10(8) M(-1) (ITC), K = 2.4x10(8) M(-1) (DSC), and K = 2.9x10(8) M(-1) (SPR). DSC and SPR techniques have an advantage over ITC in studies of ligands that bind with affinities greater than 10(8) M(-1). The ITC technique has the advantage of determining a full set of thermodynamic parameters, including deltaH, TdeltaS, and deltaC(p) in addition to deltaG (or K). The ITC data revealed complex binding behavior in these minor groove binding systems not detected in the other methods. All three techniques provide accurate estimates of binding affinity, and each has unique benefits for drug binding studies.
Collapse
Affiliation(s)
- Matthew W Freyer
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ 86011, USA
| | | | | | | | | |
Collapse
|
34
|
Modukuru NK, Snow KJ, Perrin BS, Thota J, Kumar CV. Contributions of a Long Side Chain to the Binding Affinity of an Anthracene Derivative to DNA. J Phys Chem B 2005; 109:11810-8. [PMID: 16852450 DOI: 10.1021/jp050995d] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Systematic studies on the DNA binding of a new anthracene derivative, carrying a 1,8-octyldiamine side chain, were carried out. Calorimetric, spectroscopic, and helix melting studies show that the side chain, consisting of eight methylene groups, enhances the binding constant by a factor of approximately 35 when compared to the binding of a probe lacking the long side chain. Furthermore, the enthalpy of binding of the long-chain derivative to calf thymus DNA (Delta H = 4.1 +/- 0.1 kcal/mol) is far greater than the sum of the enthalpy changes associated with the binding of the probe lacking the long side chain, and the enthalpy for the binding of 1,8-octyldiamine.2HCl. Strong synergistic effects, therefore, are seen with the long-chain derivative. Spectroscopic data indicate bathochromism, strong hypochromism, and quenching of anthryl fluorescence when the above ligand binds to calf thymus DNA. Fluorescence energy transfer studies and circular dichroism data strongly suggest intercalation of the anthryl ring system. The binding stabilizes the double helix, and the helix melting temperature is increased from 78 degrees C to >90 degrees C. The binding to DNA is reversible, depended on the ionic strength, and the major binding mode was suppressed at high ionic strengths and a new mode begins to dominate binding. Substitution of the anthracene ring with 1,8-octyldiamine chain provided a simple method to enhance the binding constant by nearly a factor of 35.
Collapse
Affiliation(s)
- Naga K Modukuru
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
This article presents a general statistical mechanical approach to describe self-folding together with the hybridization between a pair of finite length DNA or RNA molecules. The model takes into account the entire ensemble of single- and double-stranded species in solution and their mole fractions at different temperatures. The folding and hybridization models deal with matched pairs, mismatches, symmetric and asymmetric interior loops, bulges, and single-base stacking that might exist at duplex ends or at the ends of helices. All possible conformations of the single- and double-stranded species are explored. Only intermolecular basepairs are considered in duplexes at this stage.In particular we focus on the role of stacking between neighboring nucleotide residues of single unfolded strands as an important source of enthalpy change on helix formation which has not been modeled computationally thus far. Changes in the states of the single strands with temperature are shown to lead to a larger heat effect at higher temperature. An important consequence of this is that predictions of enthalpies, which are based on databases of nearest-neighbor energy parameters determined for molecules or duplexes with lower melting temperatures compared with the melting temperatures of the oligos for which they are used as a predictive tool, will be underestimated.
Collapse
Affiliation(s)
- Roumen A Dimitrov
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | |
Collapse
|
36
|
Matos C, Lima JLC, Reis S, Lopes A, Bastos M. Interaction of antiinflammatory drugs with EPC liposomes: calorimetric study in a broad concentration range. Biophys J 2004; 86:946-54. [PMID: 14747330 PMCID: PMC1303942 DOI: 10.1016/s0006-3495(04)74170-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Isothermal titration calorimetry was used to characterize and quantify the partition of indomethacin and acemetacin between the bulk aqueous phase and the membrane of egg phosphatidylcholine vesicles. Significant electrostatic effects were observed due to binding of the charged drugs to the membrane, which implied the use of the Gouy-Chapman theory to calculate the interfacial concentrations. The binding/partition phenomenon was quantified in terms of the partition coefficient (K(p)), and/or the equilibrium constant (K(b)). Mathematical expressions were developed, either to encompass the electrostatic effects in the partition model, or to numerically relate partition coefficients and binding constants. Calorimetric titrations conducted under a lipid/drug ratio >100:1 lead to a constant heat release and were used to directly calculate the enthalpy of the process, DeltaH, and indirectly, DeltaG and DeltaS. As the lipid/drug ratio decreased, the constancy of reaction enthalpy was tested in the fitting process. Under low lipid/drug ratio conditions simple partition was no longer valid and the interaction phenomenon was interpreted in terms of binding isotherms. A mathematical expression was deduced for quantification of the binding constants and the number of lipid molecules associated with one drug molecule. The broad range of concentrations used stressed the biphasic nature of the interaction under study. As the lipid/drug ratio was varied, the results showed that the interaction of both drugs does not present a unique behavior in all studied regimes: the extent of the interaction, as well as the binding stoichiometry, is affected by the lipid/drug ratio. The change in these parameters reflects the biphasic behavior of the interaction-possibly the consequence of a modification of the membrane's physical properties as it becomes saturated with the drug.
Collapse
Affiliation(s)
- Carla Matos
- Rede de Química e Tecnologia/Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal.
| | | | | | | | | |
Collapse
|
37
|
Lobo BA, Koe GS, Koe JG, Middaugh CR. Thermodynamic analysis of binding and protonation in DOTAP/DOPE (1:1): DNA complexes using isothermal titration calorimetry. Biophys Chem 2003; 104:67-78. [PMID: 12834828 DOI: 10.1016/s0301-4622(02)00339-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A better understanding of the nature of the interaction between various cationic lipids used for gene delivery and DNA would lend insight into their structural and physical properties that may modulate their efficacy. We therefore separated the protonation and binding events which occur upon complexation of 1:1 DOTAP (1,2-dioleoyl-3-trimethylammonium propane):DOPE (1,2-dioleoylphosphatidylethanolamine) liposomes to DNA using proton linkage theory and isothermal titration calorimetry (ITC). The enthalpy of DOPE protonation was estimated as -45.0+/-0.7 kJ/mol and the intrinsic binding enthalpy of lipid to DNA as +2.8+/-0.3 kJ/mol. The pK(a) of DOPE was calculated to shift from 7.7+/-0.1 in the free state to 8.8+/-0.1 in the complex. At physiological ionic strength, proton linkage was not observed upon complex formation and the buffer-independent binding enthalpy was +1.0+/-0.4 kJ/mol. These studies indicate that the intrinsic interaction between 1:1 DOTAP/DOPE and DNA is an entropy-driven process and that the affinities of cationic lipids that are formulated with and without DOPE for DNA are controlled by the positive entropic changes that occur upon complex formation.
Collapse
Affiliation(s)
- Brian A Lobo
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA
| | | | | | | |
Collapse
|
38
|
Dragan AI, Liggins JR, Crane-Robinson C, Privalov PL. The energetics of specific binding of AT-hooks from HMGA1 to target DNA. J Mol Biol 2003; 327:393-411. [PMID: 12628246 DOI: 10.1016/s0022-2836(03)00050-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The interaction of the second and third AT-hooks of HMGA1 (formerly HMGI/Y), which bind selectively in the minor groove of an AT-rich DNA sequence, was studied at different temperatures and ionic strengths by spectropolarimetry, spectrofluorimetry, isothermal titration calorimetry and differential scanning calorimetry. The data show that binding of the ten amino acid core element of the two AT-hooks, which penetrates deep into the minor groove, is entropically driven: both the entropy and enthalpy of association of the peptides to the target DNA are positive up to 50 degrees C. The seven amino acid extension of the core in the second AT-hook, which extends out from the minor groove and loops over the phosphodiester backbone, adds a substantial negative enthalpic component into the binding of the 17 residue DBD2 peptide to DNA that corresponds in magnitude to the enthalpy of formation of two hydrogen bonds. The ionic strength dependence of the association constant allowed an estimation of the electrostatic component of binding and, by subtraction, the contribution of the non-electrostatic component, which results from dehydration of the contacting surfaces and makes up almost 70% of the total energy of complex formation. The exceptionally large positive entropy and enthalpy of association of the core AT-hook peptides with target DNA suggest that the water, which is removed from the minor groove of DNA upon binding, is in a highly ordered state. Acetylation of the lysine residue in the second AT-hook, which corresponds to Lys65 of HMGA1, has little effect on the DNA binding; so it appears that repression of the hIFNbeta gene, which follows this modification, is not a direct result of the abrogation of DNA binding.
Collapse
Affiliation(s)
- Anatoly I Dragan
- Department of Biology, Johns Hopkins University, 144 Mudd Hall, 3400 N Charles Street, Baltimore, MD 21218-2685, USA
| | | | | | | |
Collapse
|
39
|
Filfil R, Chalikian TV. The thermodynamics of protein-protein recognition as characterized by a combination of volumetric and calorimetric techniques: the binding of turkey ovomucoid third domain to alpha-chymotrypsin. J Mol Biol 2003; 326:1271-88. [PMID: 12589768 DOI: 10.1016/s0022-2836(03)00022-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have used ultrasonic velocimetry, high-precision densimetry, and fluorescence spectroscopy, in conjunction with isothermal titration and differential scanning calorimetry, to characterize the binding of turkey ovomucoid third domain (OMTKY3) to alpha-chymotrypsin. We report the changes in volume and adiabatic compressibility that accompany the association of these proteins at 25 degrees C and pH 4.5. In addition, we report the changes in free energy, enthalpy, entropy, and heat capacity upon the binding of OMTKY3 to alpha-chymotrypsin over a temperature range of 20-40 degrees C. Our volume and compressibility data, in conjunction with X-ray crytsallographic data on the OMTKY3-alpha-chymotrypsin complex, suggest that 454(+/-22) water molecules are released to the bulk state upon the binding of OMTKY3 to alpha-chymotrypsin. Furthermore, these volumetric data suggest that the intrinsic compressibility of the two proteins decreases by 7%. At each temperature studied, OMTKY3 association with alpha-chymotrypsin is entropy driven with a large, unfavorable enthalpy contribution. The observed entropy of the binding reflects interplay between two very large favorable and unfavorable terms. The favorable term reflects an increase in the hydrational entropy resulting from release to the bulk of 454 water molecules. The unfavorable term is related to a decrease in the configurational entropy and, consequently, a decrease in the conformational dynamics of the two proteins. In general, we discuss the relationship between macroscopic and microscopic properties, in particular, identifying and quantifying the role of hydration in determining the thermodynamics of protein recognition as reflected in volumetric and calorimetric parameters.
Collapse
Affiliation(s)
- Rana Filfil
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 19 Russell Street, Toronto, Ont., Canada M5S 2S2
| | | |
Collapse
|
40
|
Movileanu L, Benevides JM, Thomas GJ. Determination of base and backbone contributions to the thermodynamics of premelting and melting transitions in B DNA. Nucleic Acids Res 2002; 30:3767-77. [PMID: 12202762 PMCID: PMC137406 DOI: 10.1093/nar/gkf471] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In previous papers of this series the temperature-dependent Raman spectra of poly(dA).poly(dT) and poly(dA-dT).poly(dA-dT) were used to characterize structurally the melting and premelting transitions in DNAs containing consecutive A.T and alternating A.T/T.A base pairs. Here, we describe procedures for obtaining thermodynamic parameters from the Raman data. The method exploits base-specific and backbone-specific Raman markers to determine separate thermodynamic contributions of A, T and deoxyribosyl-phosphate moieties to premelting and melting transitions. Key findings include the following: (i) Both poly(dA).poly(dT) and poly(dA-dT). poly(dA-dT) exhibit robust premelting transitions, due predominantly to backbone conformational changes. (ii) The significant van't Hoff premelting enthalpies of poly(dA).poly(dT) [DeltaH(vH)(pm) = 18.0 +/- 1.6 kcal x mol(-1) (kilocalories per mole cooperative unit)] and poly(dA-dT).poly(dA-dT) (DeltaH(vH)(pm) = 13.4 +/- 2.5 kcal x mol(-1)) differ by an amount (approximately 4.6 kcal x mol(-1)) estimated as the contribution from three-centered inter-base hydrogen bonding in (dA)(n).(dT)(n) tracts. (iii) The overall stacking free energy of poly(dA). poly(dT) [-6.88 kcal x mol(bp)(-1) (kilocalories per mole base pair)] is greater than that of poly(dA-dT). poly(dA-dT) (-6.31 kcal x mol(bp)(-1)). (iv) The difference between stacking free energies of A and T is significant in poly(dA).poly(dT) (DeltaDeltaG(st) = 0.8 +/- 0.3 kcal. mol(bp)(-1)), but marginal in poly(dA-dT).poly(dA-dT) (DeltaDeltaG(st) = 0.3 +/- 0.3 kcal x mol(bp)(-1)). (v) In poly(dA). poly(dT), the van't Hoff parameters for melting of A (DeltaH(vH)(A) = 407 +/- 23 kcal.mol(-1), DeltaS(vH)(A) = 1166 +/- 67 cal. degrees K(-1) x mol(-1), DeltaG(vH(25 degrees C))(A) = 60.0 +/- 3.2 kcal x mol(-1)) are clearly distinguished from those of T (DeltaH(vH)(T) = 185 +/- 38 kcal x mol(-1), DeltaS(vH)(T) = 516 +/- 109 cal. degrees K(-1) x mol(-1), DeltaG(vH(25 degrees C))(T) = 27.1 +/- 5.5 kcal x mol(-1)). (vi) Similar relative differences are observed in poly(dA-dT). poly(dA-dT) (DeltaH(vH)(A) = 333 +/- 54 kcal x mol(-1), DeltaS(vH)(A) = 961 +/- 157 cal. degrees K(-1) x mol(-1), DeltaG(vH(25 degrees C))(A) = 45.0 +/- 7.6 kcal x mol(-1); DeltaH(vH)(T) = 213 +/- 30 kcal x mol(-1), DeltaS(vH)(T) = 617 +/- 86 cal. degrees K(-1) x mol(-1), DeltaG(vH(25 degrees C))(T) = 29.3 +/- 4.9 kcal x mol(-1)). The methodology employed here distinguishes thermodynamic contributions of base stacking, base pairing and backbone conformational ordering in the molecular mechanism of double-helical B DNA formation.
Collapse
Affiliation(s)
- Liviu Movileanu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110-2499, USA
| | | | | |
Collapse
|
41
|
Liang Y, Du F, Zhou BR, Zhou H, Zou GL, Wang CX, Qu SS. Thermodynamics and kinetics of the cleavage of DNA catalyzed by bleomycin A5. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2851-9. [PMID: 12071947 DOI: 10.1046/j.1432-1033.2002.02948.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microcalorimetry and UV-vis spectroscopy were used to conduct thermodynamic and kinetic investigations of the scission of calf thymus DNA catalyzed by bleomycin A5 (BLM-A5) in the presence of ferrous ion and oxygen. The molar reaction enthalpy for the cleavage, the Michaelis-Menten constant for calf thymus DNA and the turnover number of BLM-A5 were calculated by a novel thermokinetic method for an enzyme-catalyzed reaction to be -577 +/- 19 kJ.mol-1, 20.4 +/- 3.8 microm and 2.28 +/- 0.49 x 10-2 s-1, respectively, at 37.0 degrees C. This DNA cleavage was a largely exothermic reaction. The catalytic efficiency of BLM-A5 is of the same order of magnitude as that of lysozyme but several orders of magnitude lower than those of TaqI restriction endonuclease, NaeI endonuclease and BamHI endonuclease. By comparing the molar enthalpy change for the cleavage of calf thymus DNA induced by BLM-A5 with those for the scission of calf thymus DNA mediated by adriamycin and by (1,10-phenanthroline)-copper, it was found that BLM-A5 possessed the highest DNA cleavage efficiency among these DNA-damaging agents. These results suggest that BLM-A5 is not as efficient as a DNA-cleaving enzyme although the cleavage of DNA by BLM-A5 follows Michaelis-Menten kinetics. Binding of BLM-A5 to calf thymus DNA is driven by a favorable entropy increase with a less favorable enthalpy decrease, in line with a partial intercalation mode involved in BLM-catalyzed breakage of DNA.
Collapse
Affiliation(s)
- Yi Liang
- College of Life Sciences and College of Chemistry and Molecular Science, Wuhan University, China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Dam TK, Brewer CF. Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry. Chem Rev 2002; 102:387-429. [PMID: 11841248 DOI: 10.1021/cr000401x] [Citation(s) in RCA: 360] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tarun K Dam
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | |
Collapse
|
43
|
Haq I, Chowdhry BZ, Jenkins TC. Calorimetric techniques in the study of high-order DNA-drug interactions. Methods Enzymol 2001; 340:109-49. [PMID: 11494846 DOI: 10.1016/s0076-6879(01)40420-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- I Haq
- Krebs Institute for Biomolecular Science, Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | | | | |
Collapse
|
44
|
Shriver JW, Peters WB, Szary N, Clark AT, Edmondson SP. Calorimetric analyses of hyperthermophile proteins. Methods Enzymol 2001; 334:389-422. [PMID: 11398479 DOI: 10.1016/s0076-6879(01)34483-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- J W Shriver
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | | | | | | | | |
Collapse
|
45
|
Barceló F, Ortiz-Lombardía M, Portugal J. Heterogeneous DNA binding modes of berenil. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1519:175-84. [PMID: 11418183 DOI: 10.1016/s0167-4781(01)00233-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isothermal titration calorimetry (ITC) profiles of berenil bound to different DNAs show that, despite the strong preference of berenil for AT-rich regions in DNA, it can bind to other DNA sequences significantly. The ITC results were used to quantify the binding of berenil, and the thermodynamic profiles were obtained using natural DNAs as well as synthetic polynucleotides. ITC binding isotherms cannot be simply described when a single set of identical binding sites is considered, except for poly[d(A-T)2]. Ultraviolet melting of DNA and differential scanning calorimetry were also used to quantify several aspects of the binding of berenil to salmon testes DNA. We present evidence for secondary binding sites for berenil in DNA, corresponding to G+C rich sites. Berenil binding to poly[d(G-C)2] is also observed. Circular dichroism experiments showed that binding to GC-rich sites involves drug intercalation. Using a molecular modeling approach we demonstrate that intercalation of berenil into CpG steps is sterically feasible.
Collapse
Affiliation(s)
- F Barceló
- Departament de Biologia Fundamental i Ciencies de la Salut, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | | |
Collapse
|
46
|
Affiliation(s)
- Daniel S. Pilch
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School Piscataway New Jersey
| |
Collapse
|
47
|
Privalov GP, Privalov PL. Problems and prospects in microcalorimetry of biological macromolecules. Methods Enzymol 2001; 323:31-62. [PMID: 10944746 DOI: 10.1016/s0076-6879(00)23360-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- G P Privalov
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| | | |
Collapse
|
48
|
Liu Y, Beveridge DL. A refined prediction method for gel retardation of DNA oligonucleotides from dinucleotide step parameters: reconciliation of DNA bending models with crystal structure data. J Biomol Struct Dyn 2001; 18:505-26. [PMID: 11245247 DOI: 10.1080/07391102.2001.10506684] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The development and assessment of a prediction method for gel retardation and sequence dependent curvature of DNA based on dinulcleotide step parameters are described. The method is formulated using the Babcock-Olson equations for base pair step geometry (1) and employs Monte Carlo simulated annealing for parameter optimization against experimental data. The refined base pair step parameters define a stuctural construct which, when the width of observed parameter distributions is taken into account, is consistent with the results of DNA oligonucleotide crystal structures. The predictive power of the method is demonstrated and tested via comparisons with DNA bending data on sets of sequences not included in the training set, including A-tracts with and without periodic helix phasing, phased A4T4 and T4A4 motifs, a sequence with a phased GGGCCC motif, some "unconventional" helix phasing sequences, and three short fragments of kinetoplast DNA from Crithidia fasiculata that exhibit significantly different behavior on non-denaturing polyacrylamide gels. The nature of the structural construct produced by the methodology is discussed with respect to static and dynamic models of structure and representations of bending and bendability. An independent theoretical account of sequence dependent chemical footprinting results is provided. Detailed analysis of sequences with A-tract induced axis bending forms the basis for a critical discussion of the applicability of wedge models,junction models and non A-tract, general sequence models for understanding the origin of DNA curvature at the molecular level.
Collapse
Affiliation(s)
- Y Liu
- Chemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | | |
Collapse
|
49
|
Chakrabarti S, Aich P, Sarker D, Bhattacharyya D, Dasgupta D. Role of Mg2+ in the interaction of anticancer antibiotic, chromomycin A3 with DNA: does neutral antibiotic bind DNA in absence of the metal ion? J Biomol Struct Dyn 2000; 18:209-18. [PMID: 11089642 DOI: 10.1080/07391102.2000.10506659] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Antitumor antibiotic, Chromomycin A3 (CHR), inhibits DNA replication and transcription via reversible interaction with double stranded DNA with GC-base specificity. The interaction, at and above physiological pH, requires the presence of bivalent metal ions, such as Mg2+. Anionic antibiotic does not bind DNA in the absence of Mg2+. In this paper we have examined the structural potential of neutral CHR at pH 5.2 to bind DNA in the absence of Mg2+. We have demonstrated the ability of the neutral antibiotic to bind DNA by means of different spectroscopic techniques and evaluated the necessary thermodynamic parameters for elucidation of the molecular basis of recognition. The results are compared with the scenario when Mg2+ is present in the system, because the ultimate aim of these studies is to elucidate the role of Mg2+ in CHR-DNA recognition. Neutral CHR binds to Mg2+ with lesser affinity than its anionic form. Spectroscopic features of the drug and its Mg2+ complex indicate self association of the antibiotic in the absence and presence of Mg2+. GC-base specificity of the drug and its Mg2+ complex are retained at pH 5.2, though the modes of recognition of DNA by the two ligands are different. Minor groove width of DNA plays a role in the accommodation of the ligand(s) during the GC base specific recognition while positive charge of Mg2+ in CHR:Mg2+ complex further facilitates the association. Relatively lower affinity of the neutral drug and its Mg2+ complex for DNA can be ascribed to the self association of these ligands in the absence of DNA.
Collapse
Affiliation(s)
- S Chakrabarti
- Biophysics Division, Saha Institute of Nuclear Physics, Calcutta, India
| | | | | | | | | |
Collapse
|
50
|
Abstract
The thermodynamics of RNA secondary structure formation in small model systems provides a database for predicting RNA structure from sequence. Methods for making these measurements are reviewed with emphasis on optical methods and treatment of experimental errors. Analysis of experimental results in terms of simple nearest-neighbor models is presented. Some measured sequence dependences of non-Watson-Crick motifs are discussed.
Collapse
Affiliation(s)
- J SantaLucia
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|