1
|
Neonatal 6-hydroxydopamine lesioning of rats and dopaminergic neurotoxicity: proposed animal model of Parkinson’s disease. J Neural Transm (Vienna) 2022; 129:445-461. [DOI: 10.1007/s00702-022-02479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 10/18/2022]
|
2
|
Kostrzewa JP, Kostrzewa RM. p-Chloroamphetamine-Enhanced Neostriatal Dopamine Exocytosis in Rats Neonatally Co-lesioned with 6-OHDA and 5,7-DHT: Relevance to Parkinson's Disease. Neurotox Res 2020; 37:543-552. [PMID: 31939043 DOI: 10.1007/s12640-019-00145-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/26/2019] [Indexed: 02/08/2023]
Abstract
Serotoninergic nerves are known to modulate sensitization of dopamine receptors (DA-R) in a rodent model of Parkinson's disease (PD). However, serotoninergic nerves are not known to have a prominent role on DA exocytosis in intact rats. The current study was undertaken to explore the possible influence of serotoninergic nerves on DA exocytosis in Parkinsonian rats. Rat pups were treated at 3 days after birth with the neurotoxin 6-hydroxydopamine (6-OHDA; 134 μg icv, half into each lateral ventricle; desipramine, 1 h pretreatment), in order to produce marked long-lasting destruction of neostriatal dopaminergic innervation, as evidenced by the 90-95% depletion of DA (p < 0.001) [HPLC/ED] into adulthood. Controls received vehicle/desipramine in place of 6-OHDA. Other groups received the serotoninergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT; 25 μg base, icv, half in each lateral ventricle; desipramine, 1 h; 75 mg/kg pargyline HCl, 30 min) at 3 days post-birth; or both 6-OHDA+5,7-DHT treatments. In adulthood, an in vivo microdialysis study was undertaken to ascertain that p-chloroamphetamine (PCA, 1 mM in the microdialysate)-evoked DA release in the neostriatum was reduced approximately 50% in the 6-OHDA group, while PCA-evoked DA release in the 6-OHDA+5,7-DHT group was substantially increased, to a level equivalent to that of the vehicle control. The baseline neostriatal microdialysate level of 3,4-dihydroxyphenylacetic acid (DOPAC) was also higher in the 6-OHDA+5,7-DHT group vs 6-OHDA group; also, during the 2nd hour of PCA infusion. PCA-enhanced DA exocytosis occurred in the absence of changes in hydroxyl radical (HO·) in the microdialysate (i.e., assay of 2,3- and 2,5-dihydroxybenzoic acid, 2,3-DHBA; 2,5-DHBA). The overall findings demonstrate that an adulthood serotoninergic nerve lesion enhanced PCA-evoked DA exocytosis in a rodent model of severe PD, while susceptibility to oxidative stress was unchanged. The implication is that serotoninergic nerves may normally suppress the release of DA and/or act as an uptake site and storage sink for accumulated DA in parkinsonian-like neostriatum. Potentially, serotoninergic agonists or antagonists, targeting subtype-selective serotonin receptors, may be viable therapeutic adjuncts in PD.
Collapse
Affiliation(s)
- John P Kostrzewa
- North Alabama ENT Associates, 927 Franklin St SE Fl 1 Ste 100, Huntsville, AL, 35801, USA
| | - Richard M Kostrzewa
- Department of Pharmacology, Quillen College of Medicine,, East Tennessee State University, Johnson City, TN, 37614, USA. .,Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN, 37614, USA.
| |
Collapse
|
3
|
Abstract
Over the past 60 years, a large number of selective neurotoxins were discovered and developed, making it possible to animal-model a broad range of human neuropsychiatric and neurodevelopmental disorders. In this paper, we highlight those neurotoxins that are most commonly used as neuroteratologic agents, to either produce lifelong destruction of neurons of a particular phenotype, or a group of neurons linked by a specific class of transporter proteins (i.e., dopamine transporter) or body of receptors for a specific neurotransmitter (i.e., NMDA class of glutamate receptors). Actions of a range of neurotoxins are described: 6-hydroxydopamine (6-OHDA), 6-hydroxydopa, DSP-4, MPTP, methamphetamine, IgG-saporin, domoate, NMDA receptor antagonists, and valproate. Their neuroteratologic features are outlined, as well as those of nerve growth factor, epidermal growth factor, and that of stress. The value of each of these neurotoxins in animal modeling of human neurologic, neurodegenerative, and neuropsychiatric disorders is discussed in terms of the respective value as well as limitations of the derived animal model. Neuroteratologic agents have proven to be of immense importance for understanding how associated neural systems in human neural disorders may be better targeted by new therapeutic agents.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Box 500, 430 50, Gothenburg, Sweden.
| | - Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN, 37614, USA
| |
Collapse
|
4
|
Kostrzewa JP, Kostrzewa RA, Kostrzewa RM, Brus R, Nowak P. Perinatal 6-Hydroxydopamine to Produce a Lifelong Model of Severe Parkinson's Disease. Curr Top Behav Neurosci 2016; 29:313-332. [PMID: 26475156 DOI: 10.1007/7854_2015_396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The classic rodent model of Parkinson's disease (PD) is produced by unilateral lesioning of pars compacta substantia nigra (SNpc) in adult rats, producing unilateral motor deficits which can be assessed by dopamine (DA) D2 receptor (D2-R) agonist induction of measurable unilateral rotations. Bilateral SNpc lesions in adult rats produce life-threatening aphagia, adipsia, and severe motor disability resembling paralysis-a PD model that is so compromised that it is seldom used. Described in this paper is a PD rodent model in which there is bilateral 99 % loss of striatal dopaminergic innervation, produced by bilateral intracerebroventricular or intracisternal 6-hydroxydopamine (6-OHDA) administration to perinatal rats. This procedure produces no lethality and does not shorten the life span, while rat pups continue to suckle through the pre-weaning period; and eat without impairment post-weaning. There is no obvious motor deficit during or after weaning, except with special testing, so that parkinsonian rats are indistinguishable from control and thus allow for behavioral assessments to be conducted in a blinded manner. L-DOPA (L-3,4-dihydroxyphenylalanine) treatment increases DA content in striatal tissue, also evokes a rise in extraneuronal (i.e., in vivo microdialysate) DA, and is able to evoke dyskinesias. D2-R agonists produce effects similar to those of L-DOPA. In addition, effects of both D1- and D2-R agonist effects on overt or latent receptor supersensitization are amenable to study. Elevated basal levels of reactive oxygen species (ROS), namely hydroxyl radical, occurring in dopaminergic denervated striatum are suppressed by L-DOPA treatment. Striatal serotoninergic hyperinnervation ensuing after perinatal dopaminergic denervation does not appear to interfere with assessments of the dopaminergic system by L-DOPA or D1- or D2-R agonist challenge. Partial lesioning of serotonin fibers with a selective neurotoxin either at birth or in adulthood is able to eliminate serotoninergic hyperinnervation and restore the normal level of serotoninergic innervation. Of all the animal models of PD, that produced by perinatal 6-OHDA lesioning provides the most pronounced destruction of nigrostriatal neurons, thus representing a model of severe PD, as the neurochemical outcome resembles the status of severe PD in humans but without obvious motor deficits.
Collapse
Affiliation(s)
| | | | - Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN, 37614, USA.
| | - Ryszard Brus
- Department of Nurse, High School of Strategic Planning, Koscielna 6, 41-303, Dabrowa Gornicza, Poland
| | - Przemysław Nowak
- Department of Toxicology and Occupational Health Protection, Public Health Faculty, Medical University of Silesia, Medykow 18, 40-752, Katowice Ligota, Poland
| |
Collapse
|
5
|
Nowak P. Selective Lifelong Destruction of Brain Monoaminergic Nerves Through Perinatal DSP-4 Treatment. Curr Top Behav Neurosci 2016; 29:51-71. [PMID: 26427851 DOI: 10.1007/7854_2015_398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) is a highly selective neurotoxin for noradrenergic projections originating from the locus coeruleus (LC). The outcome of the systemic DSP-4 treatment of newborn rats is an alteration in postnatal development of the noradrenergic system, involving the permanent denervation of distal noradrenergic projection areas (neocortex, hippocampus, spinal cord), accompanied by noradrenergic hyperinnervation in regions proximal to the LC cell bodies (cerebellum, pons-medulla). DSP-4 is well tolerated by developing rats and does not increase the mortality rate. Permanent noradrenergic denervation in the cerebral cortex and spinal cord is present at all developmental stages, although this effect is more pronounced in rats treated with DSP-4 at an early age, i.e., up to postnatal day 5 (PND 5). Notably, regional hyperinnervation is a hallmark of neonatal DSP-4 treatment, which is not observed after either prenatal or adult DSP-4 application. In contrast to robust biochemical changes in the brain, DSP-4 treatment of newborn rats has a marginal effect on arousal and cognition functions assessed in adulthood, and these processes are critically influenced by the action of the noradrenergic neurotransmitter, norepinephrine (NE). Conversely, neonatal DSP-4 does not significantly affect 5-hydroxytryptamine (serotonin; 5-HT), dopamine (DA), gamma-aminobutyric acid (GABA), and histamine levels in brain. However, as a consequence of altering the functional efficacy of 5-HT1A, 5-HT1B, DA, and GABA receptors, these neurotransmitter systems are profoundly affected in adulthood. Thus, the noradrenergic lesion obtained with neonatal DSP-4 treatment represents a unique neurobiological technique for exploring the interplay between various neuronal phenotypes and examining the pathomechanism of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Przemysław Nowak
- Department of Toxicology and Addiction, Department of Toxicology and Health Protection, School of Public Health in Bytom, Medical University of Silesia, Medyków 18 Street, 40-752, Katowice, Poland.
| |
Collapse
|
6
|
Kostrzewa JP, Kostrzewa RA, Kostrzewa RM, Brus R, Nowak P. Perinatal 6-Hydroxydopamine Modeling of ADHD. Curr Top Behav Neurosci 2016; 29:279-293. [PMID: 26475157 DOI: 10.1007/7854_2015_397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The neonatally 6-hydroxydopamine (n6-OHDA)-lesioned rat has been the standard for 40 years, as an animal model of attention-deficit hyperactivity disorder (ADHD). Rats so lesioned during postnatal ontogeny are characterized by ~99 % destruction of dopaminergic nerves in pars compacta substantia nigra, with comparable destruction of the nigrostriatal tract and lifelong ~99 % dopaminergic denervation of striatum, with lesser destructive effect on the ventral tegmental nucleus and associated lesser dopaminergic denervation of nucleus accumbens and prefrontal cortex. As a consequence of striatal dopaminergic denervation, reactive serotoninergic hyperinnervation of striatum ensues. The striatal extraneuronal milieu of DA and serotonin is markedly altered. Also, a variety of sensitization changes occur for dopaminergic D1 and D2 receptors, and for serotoninergic receptors. Behaviorally, these rats in adulthood display spontaneous hyperlocomotor activity, attentional deficits, and cognitive impairment-all of which are acutely attenuated by the psychostimulants amphetamine (AMPH) and methylphenidate (MPH) (i.e., opposite to the acute effects of AMPH and MPH in intact control rats). The acute behavioral effects of AMPH and MPH in intact and lesioned rats are analogous to their respective acute effects in non-ADHD and in ADHD humans. The neurochemical template of brain, and behavioral series of changes in n6-OHDA-lesioned rats, is described in the review. Despite the fact that nigrostriatal damage is not an underlying pathophysiological process of human ADHD (i.e., lacking construct validity), the described animal model has face validity (behavioral profile) and predictive validity (mirror of ADHD/MPH effects, as well as putative and new ADHD treatment effects). Also described in this review is a modification of the n6-OHDA rat, produced by adulthood partial lesioning of the serotoninergic fiber overgrowth. This ADHD model has even more accentuated hyperlocomotor and attentional deficits, counteracted by AMPH-thus providing a more robust means of animal modeling of ADHD. The n6-OHDA rat as a model of ADHD continues to be important in the search for new ADHD treatments.
Collapse
Affiliation(s)
| | | | - Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, 70577, Johnson City, TN, 37614, USA.
| | - Ryszard Brus
- Department of Nurse, High School of Strategic Planning, Koscielna 6, 41-303, Dabrowa Gornicza, Poland
| | - Przemysław Nowak
- Public Health Faculty, Department of Toxicology and Occupational Health Protection, Medical University of Silesia, Medykow 18, 40-752, Katowice Ligota, Poland
| |
Collapse
|
7
|
Perinatal Treatments with the Dopamine D₂-Receptor Agonist Quinpirole Produces Permanent D₂-Receptor Supersensitization: a Model of Schizophrenia. Neurochem Res 2015; 41:183-92. [PMID: 26547196 DOI: 10.1007/s11064-015-1757-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 01/24/2023]
Abstract
Repeated daily treatments of perinatal rats with the dopamine D2-receptor (D2-R) agonist quinpirole for a week or more produces the phenomenon of 'priming'-gradual but long-term sensitization of D2-R. In fact a daily dose of quinpirole as low as 50 µg/kg/day is adequate for sensitizing D2-R. Primed rats as neonates and in adolescence, when acutely treated with quinpirole display enhanced eating/gnawing/nursing on dams, also horizontal locomotor activity. Between 3 and 5 weeks of age, acute quinpirole treatment of primed rats produces profound vertical jumping with paw treading-a behavior that is not observed in control rats. At later ages acute quinpirole treatment is associated with enhanced yawning, a D2-R-associated behavior. This long-term D2-R supersensitivity is believed to be life-long, despite the relatively brief period of D2-R priming near the time of birth. D2-R supersensitivity is not associated with an increase in the number or affinity of D2-R, as assessed in the striatum of rats; nor is it induced with the D3-R agonist 7-OH-DPAT. However, quinpirole-induced D2-R supersensitivity is associated with cognitive deficits, also a deficit in pre-pulse inhibition and in neurotrophic factors, and low levels of the transcript regulator of G-protein signaling (RGS) RGS9 in brain; and acute reversal of these alterations by the antipsychotic agent olanzapine. In sum, rats ontogenetically D2-R supersensitized have face validity, construct validity and predictive ability for schizophrenia.
Collapse
|
8
|
Kostrzewa RM, Brus R. Lifelong Rodent Model of Tardive Dyskinesia-Persistence After Antipsychotic Drug Withdrawal. Curr Top Behav Neurosci 2015; 29:353-362. [PMID: 26472552 DOI: 10.1007/7854_2015_395] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Tardive dyskinesia (TD), first appearing in humans after introduction of the phenothiazine class of antipsychotics in the 1950s, is now recognized as an abnormality resulting predominately by long-term block of dopamine (DA) D2 receptors (R). TD is thus reproduced in primates and rodents by chronic administration of D2-R antagonists. Through a series of studies predominately since the 1980s, it has been shown in rodent modeling of TD that when haloperidol or other D2-R antagonist is added to drinking water, rats develop spontaneous oral dyskinesias, vacuous chewing movements (VCMs), after ~3 months, and this TD is associated with an increase in the number of striatal D2-R. This TD persists for the duration of haloperidol administration and another ~2 months after haloperidol withdrawal. By neonatally lesioning dopaminergic nerves in brain in neonatal rats with 6-hydroxydopamine (6-OHDA), it has been found that TD develops sooner, at ~2 months, and also is accompanied by a much higher number of VCMs in these haloperidol-treated lesioned rats, and the TD persists lifelong after haloperidol withdrawal, but is not associated with an increased D2-R number in the haloperidol-withdrawn phase. TD apparently is related in part to supersensitization of both D1-R and serotoninergic 5-HT2-R, which is also a typical outcome of neonatal 6-OHDA (n6-OHDA) lesioning. Testing during the haloperidol-withdrawn phase in n6-OHDA rats displaying TD reveals that receptor agonists and antagonists of a host of neuronal phenotypic classes have virtually no effect on spontaneous VCM number, except for 5-HT2-R antagonists which acutely abate the incidence of VCMs in part. Extrapolating to human TD, it appears that (1) 5-HT2-R supersensitization is the crucial alteration accounting for persistence of TD, (2) dopaminergic-perhaps age-related partial denervation-is a risk factor for the development of TD, and (3) 5-HT2-R antagonists have the therapeutic potential to alleviate TD, particularly if/when an antipsychotic D2-R blocker is withdrawn.
Collapse
Affiliation(s)
- Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN, 37614, USA.
| | - Ryszard Brus
- Department of Nurse, High School of Strategic Planning, Koscielna 6, 41-303, Dabrowa Gornicza, Poland
| |
Collapse
|
9
|
Effects of sarizotan in animal models of ADHD: challenging pharmacokinetic–pharmacodynamic relationships. J Neural Transm (Vienna) 2015; 122:1221-38. [DOI: 10.1007/s00702-015-1392-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/07/2015] [Indexed: 11/25/2022]
|
10
|
Kostrzewa RM, Kostrzewa JP, Kostrzewa RA, Kostrzewa FP, Brus R, Nowak P. Stereotypic Progressions in Psychotic Behavior. Neurotox Res 2010; 19:243-52. [DOI: 10.1007/s12640-010-9192-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/26/2010] [Accepted: 03/26/2010] [Indexed: 11/30/2022]
|
11
|
Orr AG, Sharma A, Binder NB, Miller AH, Pearce BD. Interleukin-1 Mediates Long-Term Hippocampal Dentate Granule Cell Loss Following Postnatal Viral Infection. J Mol Neurosci 2009; 41:89-96. [DOI: 10.1007/s12031-009-9293-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 09/09/2009] [Indexed: 12/23/2022]
|
12
|
Acute L: -DOPA effect on hydroxyl radical- and DOPAC-levels in striatal microdialysates of parkinsonian rats. Neurotox Res 2009; 17:299-304. [PMID: 19760476 DOI: 10.1007/s12640-009-9105-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 08/19/2009] [Accepted: 08/19/2009] [Indexed: 10/20/2022]
Abstract
The object of the current study was to determine the effect of L: -3,4-dihydroxyphenylalanine (L: -DOPA) on the in vivo striatal microdialysate levels of the respective dopamine and serotonin metabolites 3,4-dihydroxyphenlalanine (DOPAC) and 5-hydroxyindoleacetic acid (5-HIAA) and hydroxyl radical level (HO(*); 2,3- and 2,5-dihydroxybenzoic acid, 2,3- and 2,5-DHBA) in adult rats made parkinsonian by treatment at 3 days after birth with the neurotoxin 6-hydroxydopamine (6-OHDA; 66.7 microg, base form, on each side; desipramine pretreatment, 1 h). Using HPLC/ED we found that in 6-OHDA-lesioned rats the basal striatal extraneuronal level of DOPAC was dramatically reduced and constituted only approximately 4.5% of referenced value (intact rats). Conversely, the striatal microdialysate level of 5-HIAA was elevated 2-fold in 6-OHDA-lesioned rats. Acute L: -DOPA (60 mg/kg i.p.; S-carbidopa pretreatment, 12.5 mg/kg i.p., 30 min) produced a rapid rise in the extraneuronal DOPAC in both tested groups but to a much greater extent in intact rats (P < 0.05). Levels of HO(*) (spin-trap products of salicylate, 2,3- and 2,5-DHBA) were elevated 2-fold in 6-OHDA-lesioned rats. However, L: -DOPA did not enhance HO(*) production; acute 6-OHDOPA treatment (60 mg/kg i.p.) also did not alter HO(*) production. In summary, L: -DOPA, an effective drug in ameliorating PD symptoms, did not acutely pose a risk for HO(*) generation in parkinsonian rats. We conclude that L: -DOPA is not likely to generate reactive oxygen species in humans nor is L: -DOPA likely to accelerate PD in humans.
Collapse
|
13
|
Dopamine receptor supersensitivity: development, mechanisms, presentation, and clinical applicability. Neurotox Res 2009; 14:121-8. [PMID: 19073420 DOI: 10.1007/bf03033804] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The process of receptor supersensitivity (RSS) has a long history and is an epiphenomenon of neuronal denervation. Dopamine (DA) RSS (DARSS) similarly occurs after DA denervation, and this process is invoked in neuropsychiatric and neurodegenerative disorders. From studies largely over the past 25 years, much has been learned regarding DARSS. For example, overt D1 DARSS occurs after perinatal destruction of nigrostriatal DA fibers. However, following perinatal destruction of DA innervation, the most-prominent behavioral effects of a D1 agonist are observed after a series of D1 agonist treatments--a process known as priming of D1 DA receptors. Moreover, perinatal lesioning of DA fibers produces prominent serotonin (5-HT) RSS, and in fact 5-HT RSS appears to modulate D1 DA RSS. In rodents, receptor supersensitization by these means appears to be irreversible. In contrast to the observed D1 DARSS, D2 DARSS apparently does not occur after perinatal DA denervation. Also, while repeated D1 agonist treatment of intact rats has no observable effect, repeated D2 agonist treatments, during or after the ontogenetic phase, produces prominent life-long D2 RSS. The process may have an association with substance abuse. Therefore, production of D1 and D2 DARSS occurs by different means and under different circumstances, and in association with perhaps different neuronal phenotypes, and with greater incidence in either intact (D2) or DA-lesioned counterparts (D1). The physiological consequence of RSS are multiple.
Collapse
|
14
|
Nowak P, Bortel A, Dabrowska J, Biedka I, Slomian G, Roczniak W, Kostrzewa RM, Brus R. Histamine H3 receptor ligands modulate L-dopa-evoked behavioral responses and L-dopa-derived extracellular dopamine in dopamine-denervated rat striatum. Neurotox Res 2008; 13:231-40. [DOI: 10.1007/bf03033506] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Nowak P, Jochem J, Zwirska-Korczala K, Josko J, Noras L, Kostrzewa RM, Brus R. Ontogenetic noradrenergic lesion alters histaminergic activity in adult rats. Neurotox Res 2008; 13:79-83. [DOI: 10.1007/bf03033559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Nowak P, Bortel A, Dabrowska J, Oswiecimska J, Drosik M, Kwiecinski A, Opara J, Kostrzewa RM, Brus R. Amphetamine and mCPP effects on dopamine and serotonin striatal in vivo microdialysates in an animal model of hyperactivity. Neurotox Res 2007; 11:131-44. [PMID: 17449455 DOI: 10.1007/bf03033391] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the neonatally 6-hydroxydopamine (6-OHDA)-lesioned rat hyperlocomotor activity, first described in the 1970s, was subsequently found to be increased by an additional lesion with 5,7-dihydroxytryptamine (5,7-DHT) (i.c.v.) in adulthood. The latter animal model (i.e., 134 microg 6-OHDA at 3 d postbirth plus 71 microg 5,7-DHT at 10 weeks; desipramine pretreatments) was used in this study, in an attempt to attribute hyperlocomotor attenuation by D,L-amphetamine sulfate (AMPH) and m-chlorophenylpiperazine di HCl (mCPP), to specific changes in extraneuronal (i.e., in vivo microdialysate) levels of dopamine (DA) and/or serotonin (5-HT). Despite the 98-99% reduction in striatal tissue content of DA, the baseline striatal microdialysate level of DA was reduced by 50% or less at 14 weeks, versus the intact control group. When challenged with AMPH (0.5 mg/kg), the microdialysate level of DA went either unchanged or was slightly reduced over the next 180 min (i.e., 20 min sampling), while in the vehicle group and 5,7-DHT (alone) lesioned group, the microdialysate level was maximally elevated by approximately 225% and approximately 450%, respectively--and over a span of nearly 2 h. Acute challenge with mCPP (1 mg/kg salt form) had little effect on microdialysate levels of DA, DOPAC and 5-HT. Moreover, there was no consistent change in the microdialysate levels of DA, DOPAC, and 5-HT between intact, 5-HT-lesioned rats, and DA-lesioned rats which might reasonably account for an attenuation of hyperlocomotor activity. These findings indicate that there are other important neurochemical changes produced by AMPH- and mCPP-attenuated hyperlocomotor activity, or perhaps a different brain region or multiple brain regional effects are involved in AMPH and mCPP behavioral actions.
Collapse
Affiliation(s)
- Przemyslaw Nowak
- Department of Pharmacology, Medical University of Silesia, H. Jordana 38, 41-808 Zabrze, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kostrzewa RM, Huang NY, Kostrzewa JP, Nowak P, Brus R. Modeling tardive dyskinesia: Predictive 5-HT2C receptor antagonist treatment. Neurotox Res 2007; 11:41-50. [PMID: 17449447 DOI: 10.1007/bf03033481] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tardive dyskinesia (TD), a movement disorder produced by long-term treatment with a classical antipsychotic drug, is generally considered to be a disorder of dopamine (DA) systems, since classical antipsychotics are potent DA D(2) receptor blockers. Also, acute DA D(1) agonist treatment of rats is known to produce vacuous chewing movements (VCMs), a behavioral feature resembling the oral dyskinesia that is so prominent in most instances of TD. In this paper we outline a series of studies in a new animal model of TD in which DA D(1) receptor supersensitivity was produced by neonatal 6-hydroxydopamine (6-OHDA) -induced destruction of nigrostriatal DA fibers. In rats so-lesioned 5-HT receptor supersensitivity is additionally produced, and in fact 5-HT receptor antagonists attenuate enhanced DA D(1) induction of VCMs. Moreover, in 6-OHDA-lesioned rats treated with haloperidol for one year, there a 2-fold increase in numbers of VCMs (vs intact rats treated with haloperidol); and this high frequency of VCMs persists for more than 6 months after discontinuing haloperidol treatment. During this stage, 5-HT(2) receptor antagonists, but not DA D(1) receptor antagonists, attenuate the incidence of VCMs. This series of findings implicates the 5-HT neuronal phenotype in TD, and promotes 5-HT(2) receptor antagonists, more specifically 5-HT(2C) receptor antagonists, as a rational treatment approach for TD in humans.
Collapse
Affiliation(s)
- Richard M Kostrzewa
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| | | | | | | | | |
Collapse
|
18
|
Archer T, Beninger RJ. Movement disorders: neurodevelopment and neurobehavioural expression. J Neural Transm (Vienna) 2006; 114:XXXIII-XLI. [PMID: 17024325 DOI: 10.1007/s00702-006-0572-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 07/31/2006] [Indexed: 12/15/2022]
Abstract
Braak and co-workers have recently shown that movement disorders such as Parkinson's disease develop progressively over years with early neuronal losses in brainstem regions caudal to the substantia nigra. The relevance of this finding to notions of comorbidity between movement disorders and psychiatric symptoms was recognised at the recent meeting concerning, "Implications of Comorbidity for the Etiology and Treatment of Neuropsychiatric Disorders" held in Oct. 2005 in Mazagon, Spain. The identification of stages in the early development of neurodegenerative disorders appeared to unify multiple, diverse findings. These included: novel therapeutic innovations for Parkinson's disease, Alzheimer's disease and depression in the aged; the neurochemical ontogeny of drug-induced oral dyskinesias; the types of chemical agents abused in neuropsychiatric states; postnatal iron overload effects upon the functional and interactive role of dopaminergic and noradrenergic pathways that contribute to the expression of movement disorders; and the spectrum of motor symptoms expressed in schizophrenia and attention deficit hyperactivity disorder and the eventual treatment of these disorders. A continued focus on a number of neuropsychiatric diseases as progressive disorders may lead to further advances in understanding their etiology and in developing better therapeutics.
Collapse
Affiliation(s)
- T Archer
- Department of Psychology, University of Göteborg, Göteborg, Sweden.
| | | |
Collapse
|
19
|
Nowak P, Dabrowska J, Bortel A, Biedka I, Szczerbak G, Słomian G, Kostrzewa RM, Brus R. Histamine H3 receptor agonist- and antagonist-evoked vacuous chewing movements in 6-OHDA-lesioned rats occurs in an absence of change in microdialysate dopamine levels. Eur J Pharmacol 2006; 552:46-54. [PMID: 17055481 DOI: 10.1016/j.ejphar.2006.08.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 07/20/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
In rats lesioned neonatally with 6-hydroxydopamine (6-OHDA), repeated treatment with SKF 38393 (1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol), a dopamine D(1)/D(5) receptor agonist, produces robust stereotyped and locomotor activities. The gradual induction of dopamine D(1) receptor supersensitivity is known as a priming phenomenon, and this process is thought to underlie not only the appearance of vacuous chewing movements in humans with tardive dyskinesia, but also the onset of motor dyskinesias in L-dihydroxyphenylalanine (L-DOPA)-treated Parkinson's disease patients. The object of the present study was to determine the possible influence of the histaminergic system on dopamine D(1) agonist-induced activities. We found that neither imetit (5.0 mg/kg i.p.), a histamine H(3) receptor agonist, nor thioperamide (5.0 mg/kg i.p.), a histamine H(3) receptor antagonist/inverse agonist, altered the numbers of vacuous chewing movements in non-primed-lesioned rats. However, in dopamine D(1) agonist-primed rats, thioperamide alone produced a vacuous chewing movements response (i.e., P < 0.05 vs SKF 38393, 1.0 mg/kg i.p.), but did not modify the SKF 38393 effect. Notably, both imetit and thioperamide-induced catalepsy in both non-primed and primed 6-OHDA-lesioned rats, comparable in magnitude to the effect of the dopamine D(1)/D(5) receptor antagonist SCH 23390 (7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine; 0.5 mg/kg i.p.). Furthermore, in primed animals both imetit and thioperamide intensified SCH 23390-evoked catalepsy. In vivo microdialysis established that neither imetit nor thioperamide altered extraneuronal levels of dopamine and its metabolites in the striatum of 6-OHDA-lesioned rats. On the basis of the present study, we believe that histaminergic systems may augment dyskinesias induced by dopamine receptor agonists, independent of direct actions on dopaminergic neurons.
Collapse
Affiliation(s)
- Przemysław Nowak
- Department of Pharmacology, Medical University of Silesia, H. Jordana 38, 41-808 Zabrze, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Nowak P, Labus Ł, Kostrzewa RM, Brus R. DSP-4 prevents dopamine receptor priming by quinpirole. Pharmacol Biochem Behav 2006; 84:3-7. [PMID: 16675001 DOI: 10.1016/j.pbb.2006.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 03/20/2006] [Accepted: 03/22/2006] [Indexed: 11/16/2022]
Abstract
Repeated treatments of rats with the dopamine (DA) D2 receptor agonist quinpirole, consistently produce long-lived DA D2 receptor supersensitization, by the process that has been termed priming. Rats so-primed in ontogeny behaviorally demonstrate adulthood enhancement of low-dose quinpirole-induced yawning. Because 1) dopaminergic neurons originate in midbrain nuclei (substantia nigra and ventral tegmental area), and 2) noradrenergic neurons originate in pontine (locus coeruleus) and medullary areas, it might be presumed that these two monoaminergic systems are independent, not interdependent. However, in the present study we demonstrate that there was an attenuation of quinpirole-enhanced yawning at 8 weeks in rats that were 1) primed by repeated neonatal quinpirole HCl treatments (50 microg/kg per day SC) during the first ten days of postnatal ontogeny, and 2) lesioned at 3 days after birth with DSP-4 (N-2-chloroethyl-N-ethyl-2-bromobenzylamine hydrochloride, 50 mg/kg SC). Dose-effect curves indicated a 23-45% reduction in yawning by DSP-4 treatment of quinpirole-primed rats, acutely treated as adults with quinpirole (25, 50, or 100 microg/kg). Effectiveness of DSP-4 is reflected by the 95% and 99% reductions in norepinephrine contents of frontal cortex and hippocampus, respectively (HPLC/ED method). The findings are supportive of a modulatory role of noradrenergic fibers on dopamine receptor priming (supersensitization) in rat brain.
Collapse
Affiliation(s)
- Przemysław Nowak
- Department of Pharmacology, Medical University of Silesia, H. Jordana 38 St., 41-808 Zabrze, Poland
| | | | | | | |
Collapse
|
21
|
Sobrian SK, Jones BL, James H, Kamara FN, Holson RR. Prenatal ethanol preferentially enhances reactivity of the dopamine D1 but not D2 or D3 receptors in offspring. Neurotoxicol Teratol 2005; 27:73-93. [PMID: 15681123 DOI: 10.1016/j.ntt.2004.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 09/03/2004] [Accepted: 09/07/2004] [Indexed: 11/26/2022]
Abstract
Reports of prenatal ethanol (ETOH) effects on the dopamine system are inconsistent. In an attempt to clarify this issue, dams were given 35% ethanol-derived calories as the sole nutrient source in a liquid diet from the 10th through the 20th day of gestation (ETOH). Controls were pair-fed (PF) an isocaloric liquid diet or given ad libitum access to laboratory chow (LC). Prenatal exposure to both liquid diets reduced body weight of offspring relative to LC controls, more so for ETOH than for PF exposure. Prenatal ETOH also decreased litter size and viability, relative to both LC and PF control groups. On postnatal days 21-23, male and female offspring were given an injection of saline vehicle or one of eight specific dopamine receptor agonists or antagonists. Immediately after injection subjects were placed in individual observation cages, and over the following 30 min, eight behaviors (square entries, grooming, rearing, circling, sniffing, yawning, head and oral movements) were observed and quantified. No prenatal treatment effects on drug-induced behaviors were observed for dopamine D2 (Apomorphine, DPAT or Quinpirole) or D3 (PD 152255, Nafadotride, Apo or Quin effects on yawning) receptor agonists or antagonists, or for the vehicle control. In contrast, prenatal treatment effects were seen with drugs affecting the dopamine D1 receptor. Both D1 agonists (SKF 38393) and antagonists (SCH 23390 and high doses of spiperone) altered behaviors, especially oral and sniffing behaviors, in a manner which suggested enhanced dopamine D1 drug sensitivity in both ETOH and PF offspring relative to LC controls. These results suggest that at this age, both sexes experience a prenatal undernutrition-linked increase in the behavioral response to dopamine D1 agonists and antagonists, which can be intensified by gestational exposure to alcohol.
Collapse
Affiliation(s)
- Sonya K Sobrian
- Department of Pharmacology, Howard University College of Medicine, 520 W Street, NW, Washington, DC 20059, USA.
| | | | | | | | | |
Collapse
|
22
|
Brus R, Nowak P, Szkilnik R, Mikolajun U, Kostrzewa RM. Serotoninergics attenuate hyperlocomotor activity in rats. Potential new therapeutic strategy for hyperactivity. Neurotox Res 2004; 6:317-25. [PMID: 15545015 DOI: 10.1007/bf03033442] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hyperactivity is thought to be associated with an alteration of dopamine (DA) neurochemistry in brain. This conventional view became solidified on the basis of observed hyperactivity in DA-lesioned animals and effectiveness of the dopaminomimetics such amphetamine (AMP) in abating hyperactivity in humans and in animal models of hyperactivity. However, because AMP releases serotonin (5-HT) as well as DA, we investigated the potential role of 5-HT in an animal model of hyperactivity. We found that a greater intensity of hyperactivity was produced in rats when both DA and 5-HT neurons were damaged at appropriate times in ontogeny. Therefore, previously we proposed this as an animal model of attention deficit hyperactivity disorder (ADHD) - induced by destruction of dopaminergic neurons with 6-hydroxydopamine (6-OHDA) (neonatally) and serotoninergic neurons with 5,7-dihydroxytryptamine (5,7-DHT) (in adulthood). In this model effects similar to that of AMP (attenuation of hyperlocomotion) were produced by m-chlorophenylpiperazine (m-CPP) but not by 1-phenylbiguanide (1-PG), respective 5-HT2 and 5-HT3 agonists. The effect of m-CPP was shown to be replicated by desipramine, and was largely attenuated by the 5-HT2 antagonist mianserin. These findings implicate 5-HT neurochemistry as potentially important therapeutic targets for treating human hyperactivity and possibly childhood ADHD.
Collapse
Affiliation(s)
- Ryszard Brus
- Department of Pharmacology, Medical University of Silesia, 41-808 Zabrze, Poland
| | | | | | | | | |
Collapse
|
23
|
Brus R, Kostrzewa RM, Nowak P, Perry KW, Kostrzewa JP. Ontogenetic quinpirole treatments fail to prime for D2 agonist-enhancement of locomotor activity in 6-hydroxydopamine-lesioned rats. Neurotox Res 2003; 5:329-38. [PMID: 14715452 DOI: 10.1007/bf03033153] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Repeated treatments with a dopamine (DA) D2 receptor agonist results in the induction of DA D2 receptor supersensitivity, as evidenced by enhanced behavioral responses to subsequent D2 agonist treatments - a phenomenon known as priming of receptors. Priming of D2 receptors has been well-studied in otherwise intact (non-lesioned) rats. In contrast to D2 priming, repeated treatments with a DA D1 agonist are unable to prime D1 receptors unless nigrostriatal DA fibers are largely destroyed in early postnatal ontogeny. In order to determine if D2 receptors could be primed in rats in which nigrostriatal DA fibers were largely destroyed in early postnatal ontogeny, rats were (a) lesioned at 3 days after birth with 6-hydroxydopamine (67 micrograms in each lateral ventricle; desipramine, 20 mg/kg IP, 1 h; 6-OHDA), (b) treated daily for the first 28 days after birth with the D2 agonist quinpirole HCl (3.0 mg/kg IP), and (c) observed in adulthood for both quinpirole-induced and SKF 38393- (D1 agonist-) induced locomotor activity and stereotyped activities. In 6-OHDA-lesioned rats in which endogenous striatal DA was reduced by 99%, quinpirole did not produce enhanced locomotor or stereotyped activities. However, SKF 38393 produced increased locomotor and stereotyped activities even after the first dose of SKF 38393. These findings demonstrate that D2 receptors are not primed by ontogenetic quinpirole treatments of neonatally 6-OHDA-lesioned rats, although D2 agonist treatments do at least partially prime D1 receptors in the 6-OHDA-lesioned rats.
Collapse
Affiliation(s)
- Ryszard Brus
- Department of Pharmacology, Medical University of Silesia, 41-808 Zabrze, Poland
| | | | | | | | | |
Collapse
|
24
|
Kostrzewa RM, Kostrzewa JP, Brus R. Dopamine receptor supersensitivity: an outcome and index of neurotoxicity. Neurotox Res 2003; 5:111-8. [PMID: 12832226 DOI: 10.1007/bf03033376] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The characteristic feature of neurotoxicity is a definable lesion which can account for observed deficits, corresponding to loss of nuclei or axonal fibers normally comprising a specific pathway or tract. However, with ontogenetic lesions, the operative definition fails. In rats lesioned as neonates with 6-hydroxydopamine (6-OHDA), near-total destruction of dopamine- (DA-) containing nerves is produced, and this itself is definable. However, the most prominent feature of rats so-lesioned is the DA receptor supersensitivity (DARSS) that develops and then persists throughout the lifespan. DA D(1) receptors show overt supersensitivity to agonists producing vacuous chewing movements (VCMs), while D(1) receptors associated with locomotor activity have a latent supersensitivity that must be unmasked by repeated D(1) or D(2) agonist treatments - a 'priming' phenomenon. This D(1) DARSS is not usually associated in either a change in D(1) receptor number (B(max)) or affinity (K(d)). In contrast to D(1) DARSS, D(2) receptors are not so predictably supersensitized by a lesion of DA neurons. In reality, the permanently exaggerated response to an agonist by supersensitized receptors is per se a manifestation of neurotoxicity. Despite dramatic behavioral responses mediated by supersensitized receptors, DARSS has not been easy to correlate with enhanced production of second messengers or early response genes. Altered signaling (i.e., neuronal cross-talk) in defined pathways may represent the mechanism that produces so-called receptor supersensitization. Long-lived agonist-induced behavioral abnormality, with or without anatomic evidence of a neuronal lesion, is one of the products of DA D(1) receptor supersensitization -- itself an index of neurotoxicity.
Collapse
Affiliation(s)
- Richard M Kostrzewa
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, U.S.A.
| | | | | |
Collapse
|
25
|
Siero? A, Brus R, Szkilnik R, Plech A, Kuba?ski N, Cie?lar G. Influence of alternating low frequency magnetic fields on reactivity of central dopamine receptors in neonatal 6-hydroxydopamine treated rats. Bioelectromagnetics 2001. [DOI: 10.1002/bem.76] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Neal-Beliveau BS, Joyce JN. Behavioral responsitivity to dopamine receptor agonists after extensive striatal dopamine lesions during development. Dev Psychobiol 1998. [DOI: 10.1002/(sici)1098-2302(199805)32:4<313::aid-dev6>3.0.co;2-q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Stodgell CJ, Loupe PS, Schroeder SR, Tessel RE. Cross-sensitization between footshock stress and apomorphine on self-injurious behavior and neostriatal catecholamines in a rat model of Lesch-Nyhan syndrome. Brain Res 1998; 783:10-8. [PMID: 9479035 DOI: 10.1016/s0006-8993(97)01128-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effects of footshock sensitization (priming), apomorphine (APO) priming and their combination on behavior and neostriatal and cortical catecholamines were examined in adult rats which had neonatally received bilateral intracerebroventricular injections with 6-hydroxydopamine (6-OHDA; a model of Lesch-Nyhan syndrome (LNS)) or vehicle (unlesioned rats). Lesioned (6-OHDA-treated) rats displayed self-biting (SB; 7/20 rats) and self-injurious behavior (SIB; 1/20 rats) during APO priming, but not during footshock priming. During subsequent acute cumulative APO dosing, 20-30% of lesioned rats primed with APO alone or footshock alone displayed SB and SIB. However, SB and SIB incidence in APO+footshock-primed lesioned rats was nearly tripled. Dopamine (DA) synthesis, metabolism and extracellular concentrations (disposition) in unlesioned rats and in cortices of lesioned animals were unaffected by priming. In lesioned rats primed with APO alone or footshock alone, only neostriatal 3-methoxytyramine (3-MT) was significantly increased. However, neostriatal DA and metabolite concentrations (and norepinephrine (NE)) were all significantly elevated in lesioned rats primed with both APO and footshock. These results confirm that neonatal 6-OHDA-induced neostriatal catecholamine depletion can be antagonized by experiential change, suggest that behavioral and neurochemical cross-sensitization between APO and footshock in such rats is unidirectional and support the view that stress can exacerbate the incidence of SIB in LNS.
Collapse
Affiliation(s)
- C J Stodgell
- Department of Pharmacology and Toxicology, 5036A Malott, School of Pharmacy, University of Kansas, Lawrence, KS 66045-2505, USA
| | | | | | | |
Collapse
|
28
|
Moy SS, Criswell HE, Breese GR. Differential effects of bilateral dopamine depletion in neonatal and adult rats. Neurosci Biobehav Rev 1997; 21:425-35. [PMID: 9195600 DOI: 10.1016/s0149-7634(96)00040-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Both Lesch-Nyhan syndrome and Parkinson's disease are associated with decreased brain dopamine, yet each disorder is characterized by a different set of motor symptoms. Lesch-Nyhan syndrome is manifested in early childhood, while parkinsonism usually does not appear until adulthood, suggesting that age at the time of dopamine loss is one determinant of the effects of neurotransmitter deficiency. Support for this view is found in studies of animals given dopamine-depleting lesions at different ages and then tested in adulthood. Animals lesioned as neonates show a supersensitivity to dopamine agonists, especially D1-dopamine receptor agonists, and to MK-801, an NMDA receptor antagonist. In addition, neonatally treated animals show a 'priming' effect following repeated exposure to D1-dopamine agonists. Animals depleted of dopamine as adults are more supersensitive to agonists acting on the D2-dopamine receptor, and do not evidence priming to dopamine agonists or an enhanced response to MK-801. These differential pharmacological profiles suggest that the changes in neurotransmitter systems following dopamine depletion are, at least in part, determined by age at the time of the lesion.
Collapse
Affiliation(s)
- S S Moy
- Department of Anesthesiology, University of North Carolina at Chapel Hill 27599, USA
| | | | | |
Collapse
|
29
|
Penit-Soria J, Durand C, Besson MJ, Herve D. Levels of stimulatory G protein are increased in the rat striatum after neonatal lesion of dopamine neurons. Neuroreport 1997; 8:829-33. [PMID: 9141047 DOI: 10.1097/00001756-199703030-00005] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
After neonatal lesions of dopamine neurones, an enhanced behavioural responsiveness towards D1 agonists has been described, suggesting a D1 receptor hypersensitivity. In the present study, unilateral striatal dopamine denervation in newborn rats induced a pronounced rotational behaviour following apomorphine injection at the adult age, without any change in the density of D1 binding sites in the denervated striatum. The amount of stimulatory G(olf) alpha subunit was increased by 35% in the lesioned striatum. The large form and the short forms of Gs alpha were also increased by 26% and 9%, respectively. Since in striatal neurones, the coupling of D1 receptor to adenylate cyclase is mostly provided by G(olf) alpha, our results strongly suggest that D1 hypersensitivity described after neonatal dopamine lesions results from an increase in the levels of G(olf) alpha protein.
Collapse
Affiliation(s)
- J Penit-Soria
- Laboratoire de Neurochimie-Anatomie, Institute des Neurosciences, URA 1488-CNRS, Université Pierre et Marie Curie, Paris, France
| | | | | | | |
Collapse
|
30
|
Joyce JN, Frohna PA, Neal-Beliveau BS. Functional and molecular differentiation of the dopamine system induced by neonatal denervation. Neurosci Biobehav Rev 1996; 20:453-86. [PMID: 8880735 DOI: 10.1016/0149-7634(95)00025-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The administration of the neurotoxin 6-hydroxydopamine (6-OHDA) to damage the mesostriatal dopamine (DA) system in the neonate results in different neurochemical and behavioral consequences as compared to lesions made in adulthood. There have been few direct data to support the conclusion that the behavioral changes following neonatal 6-OHDA lesions reflect plasticity of the DA system. It is our hypothesis that the plasticity of the developing DA system is fundamentally different from that of the adult. Responses to 6-OHDA lesions can only be understood within the context of the status of the mesostriatal DA system at the time of the lesion. There are stages of development in the early postnatal period when certain components of the mesostriatal DA system are differentially sensitive to 6-OHDA lesions. These "windows" of vulnerability can be predicted from an analysis of the developmental expression of DA receptors and the maturation of the subpopulation of the mesostriatal DA system that innervates them. We review the differences in the behavioral plasticity of the adult and neonate sustaining 6-OHDA lesions to the mesostriatal DA system, the mechanisms responsible for the behavioral plasticity in the adult, and our conceptualization of which mechanisms are affected in the neonate.
Collapse
Affiliation(s)
- J N Joyce
- Department of Psychiatry, School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
31
|
Perry KW, Kostrzewa RM, Fuller RW. Persistence of long-lasting serotonin depletion by p-chloroamphetamine in rat brain after 6-hydroxydopamine lesioning of dopamine neurons. Biochem Pharmacol 1995; 50:1305-7. [PMID: 7488249 DOI: 10.1016/0006-2952(95)00248-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In rats that had been treated neonatally with 6-hydroxydopamine (6OHDA) to deplete striatal dopamine more than 95%, a single injection of p-chloroamphetamine (pCA) (5 or 10 mg/kg, i.p.) resulted in depletion of striatal and hippocampal serotonin at 1 week to a similar extent as in control rats. These findings suggest that striatal dopamine is not essential to the long-lasting depletion of brain serotonin by pCA in rats.
Collapse
Affiliation(s)
- K W Perry
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46185, USA
| | | | | |
Collapse
|
32
|
Plech A, Brus R, Kalbfleisch JH, Kostrzewa RM. Enhanced oral activity responses to intrastriatal SKF 38393 and m-CPP are attenuated by intrastriatal mianserin in neonatal 6-OHDA-lesioned rats. Psychopharmacology (Berl) 1995; 119:466-73. [PMID: 7480527 DOI: 10.1007/bf02245863] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Enhanced oral activity is induced in neonatal 6-hydroxydopamine- (6-OHDA-) lesioned rats by systemic administration of the dopamine (DA) D1 receptor agonist SKF 38393 and serotonin (5-HT) 5-HT2A,2C agonist m-chlorophenylpiperazine (m-CPP). The DA D1 receptor antagonist SCH 23390 effectively attenuates the effect of SKF 38393 but not m-CPP. The 5-HT2 antagonist mianserin attenuates the effects of both m-CPP and SKF 38393, suggesting that DA agonist effects are mediated by 5-HT neurochemical systems. To test whether DA and 5-HT agonist effects and interactions might occur within the neostriatum, rats were implanted with permanent injection cannulae, with tips in the ventral striatum. One group of rats was lesioned at 3 days after birth with 6-OHDA HBr (100 micrograms salt form, in each lateral ventricle; desipramine HCl pretreatment, 20 mg/kg IP, base form, 1 h), while controls received the vehicle in place of 6-OHDA. Cannulae were implanted when rats weighed 200-250 g. During a 1-h observation session SKF 38393 (5 nmol per side) produced 74.3 +/- 19.2 oral movements in intact rats and 310.7 +/- 97.0 oral movements in 6-OHDA-lesioned rats. m-CPP (10 nmol per side) produced 72.6 +/- 15.1 and 274.5 +/- 65.0 oral movements in these respective groups. These responses were several-fold greater than the 25.3 +/- 7.3 and 41.8 +/- 9.5 oral movements in the same groups after saline (0.5 microliter per side) (P < 0.05). Mianserin (6 nmol per side) alone had no effect on oral activity but attenuated responses to both SKF 38393 and m-CPP in intact and 6-OHDA-lesioned rats.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Plech
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City 37614-0577, USA
| | | | | | | |
Collapse
|
33
|
Reader TA, Radja F, Dewar KM, Descarries L. Denervation, hyperinnervation, and interactive regulation of dopamine and serotonin receptors. Ann N Y Acad Sci 1995; 757:293-310. [PMID: 7611686 DOI: 10.1111/j.1749-6632.1995.tb17487.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- T A Reader
- Department of Physiology, Faculty of Medicine, University of Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
34
|
Brus R, Plech A, Kostrzewa RM. Enhanced quinpirole response in rats lesioned neonatally with 5,7-dihydroxytryptamine. Pharmacol Biochem Behav 1995; 50:649-53. [PMID: 7617714 DOI: 10.1016/0091-3057(94)00328-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ontogenic destruction of dopamine (DA) neurons in rat brain is associated with supersensitization of DA D1 receptors. This effect is attenuated when rats are cotreated in ontogeny with the serotonin (5-HT) neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT). In an attempt to determine whether 5-HT fibers might have a similar modulatory role on the sensitivity of the DA D2 receptor complex, we pretreated rats with desipramine HCl (20 mg/kg, IP, base), 1 h before the DA neurotoxin, 6-hydroxydopamine (6-OHDA; 134 micrograms ICV, base) and/or 5,7-DHT (75 micrograms ICV) and/or vehicle. At about 3 months after birth dose-effect curves for quinpirole-induced oral activity were constructed for each group of rats. We found that quinpirole, an agonist for the DA D2 receptor complex, produced a dose-related increase in oral activity in all groups of rats. After a 200 micrograms/kg dose of quinpirole HCl, however, neonatal 5,7-DHT-lesioned rats had a peak oral response of 54.4 +/- 5.1 (mean and SEM) vs. 22.6 +/- 4.8 for control rats (p < 0.01). In neonatal 6-OHDA-lesioned rats this dose of quinpirole increased oral activity to 36.8 +/- 5.8 oral movements (p < 0.05 vs. control). In rats lesioned with both 5,7-DHT and 6-OHDA, the oral response was not different from control. The enhanced oral response to quinpirole in 5,7-DHT-lesioned rats was attenuated by spiperone, an antagonist for the DA D2 receptor complex.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Brus
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City 37614, USA
| | | | | |
Collapse
|
35
|
Abstract
Dopamine (DA) receptor supersensitivity refers to the phenomenon of an enhanced physiological, behavioral or biochemical response to a DA agonist. Literature related to ontogenetic aspects of this process was reviewed. Neonatal 6-hydroxydopamine (6-OHDA) destruction of rat brain DA neurons produces overt sensitization to D1 agonist-induced oral activity, overt sensitization of some D2 agonist-induced stereotyped behaviors and latent sensitization of D1 agonist-induced locomotor and some stereotyped behaviors. This last process is unmasked by repeated treatments with D1 (homologous "priming") or D2 (heterologous "priming") agonists. A serotonin (5-HT) neurotoxin (5,7-dihydroxytryptamine) and 5-HT2C receptor antagonist (mianserin) attenuate some enhanced behavioral effects of D1 agonists, indicating that 5-HT neurochemical systems influence D1 receptor sensitization. Unlike the relative absence of change in brain D1 receptor number, DA D2 receptor proliferation accompanies D2 sensitization in neonatal 6-OHDA-lesioned rats. Robust D2 receptor supersensitization can also be induced in intact rats by repeated treatments in ontogeny with the D2 agonist quinpirole. In these rats quinpirole treatments produce vertical jumping at 3-5 wk after birth and subsequent enhanced quinpirole-induced antinociception and yawning. The latter is thought to represent D3 receptor sensitization. Except for enhanced D1 agonist-induced expression of c-fos, there are no changes in the receptor or receptor-mediated processes which account for receptor sensitization. Adaptive mechanisms by multiple "in series" neurons with different neurotransmitters may account for the phenomenon known as receptor supersensitivity.
Collapse
Affiliation(s)
- R M Kostrzewa
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City 37614, USA
| |
Collapse
|
36
|
Johnson BJ, Bruno JP. Dopaminergic modulation of striatal acetylcholine release in rats depleted of dopamine as neonates. Neuropharmacology 1995; 34:191-203. [PMID: 7617145 DOI: 10.1016/0028-3908(94)00144-h] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A repeated sessions, in vivo microdialysis design was used to determine the D1- and D2-like receptor modulation of striatal ACh efflux in intact adult rats and those depleted of DA on postnatal Day 3. Systemic administration of the D1-like agonist SKF 38393 (1.0 or 10.0 mg/kg, or the D2-like antagonist clebopride (1.0 or 10.0 mg/kg) increased ACh efflux in both controls and DA-depleted animals. Systemic administration of the D1-like antagonist SCH 23390 (0.05 or 0.2 mg/kg) or D2-like agonist quinpirole (0.5 or 1.0 mg/kg) decreased ACh efflux in both groups of animals. DA-depleted animals exhibited a larger response than did controls to the lower doses of these drugs. Intrastriatal administration of clebopride (10 microM) increased ACh efflux in DA-depleted animals. Finally, basal and clebopride-stimulated ACh efflux were unaffected by the repeated microdialysis sessions. These data demonstrate that the reciprocal modulation of striatal ACh efflux, seen in controls and in rats depleted of DA as adults, is also present in adults depleted of DA as neonates. Because the roles of D1- and D2-receptors in the expression of motor behavior differ between rats depleted of DA as adults vs as neonates, these data suggest that alterations in the dopaminergic modulation of striatal ACh release do not underlie the sparing from motoric deficits seen in animals depleted of DA as neonates.
Collapse
Affiliation(s)
- B J Johnson
- Department of Psychology, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
37
|
Schroeder SR, Hammock RG, Mulick JA, Rojahn J, Walson P, Fernald W, Meinhold P, Saphare G. Clinical trials of D1 and D2 dopamine modulating drugs and self-injury in mental retardation and developmental disability. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/mrdd.1410010208] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Breese GR, Criswell HE, Duncan GE, Moy SS, Johnson KB, Wong DF, Mueller RA. Model for reduced brain dopamine in Lesch-Nyhan syndrome and the mentally retarded: Neurobiology of neonatal-6-hydroxydopamine-lesioned rats. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/mrdd.1410010207] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Huang NY, Kostrzewa RM. Persistent oral dyskinesias in haloperidol-withdrawn neonatal 6-hydroxydopamine-lesioned rats. Eur J Pharmacol 1994; 271:433-7. [PMID: 7705443 DOI: 10.1016/0014-2999(94)90803-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Because chronic haloperidol-treated rats demonstrate an increased incidence of spontaneous oral activity, while neonatal 6-hydroxydopamine-lesioned rats demonstrate an increased incidence of dopamine agonist-induced oral activity, we studied the influence of haloperidol in 6-hydroxydopamine-lesioned rats. At 3 days after birth rats received 6-hydroxydopamine hydrobromide (200 micrograms intracerebroventricularly; desipramine pretreatment, 20 mg/kg i.p., 1 h) or vehicle. Two months later haloperidol (1.5 mg/kg per day x 2 days per week, for 4 weeks; then 1.5 mg/kg per day, every day for 10 months) was added to the drinking water. After 15 weeks the level of spontaneous oral activity was stable. At 11 months there were 35.8 +/- 4.9 vs. 18.4 +/- 2.1 oral movements in 6-hydroxydopamine-lesioned vs. intact rats receiving haloperidol. This effect persisted unabated in lesioned rats for 4 months after haloperidol withdrawal. This stable high frequency of oral dyskinesias is an advantage for studying putative therapeutic drugs for tardive dyskinesia.
Collapse
Affiliation(s)
- N Y Huang
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City 37614-0577
| | | |
Collapse
|
40
|
Byrnes EM, Bruno JP. Development of uncoupling between D1- and D2-mediated motor behavior in rats depleted of dopamine as neonates. Dev Psychobiol 1994; 27:409-24. [PMID: 8001729 DOI: 10.1002/dev.420270608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The D1- and D2-mediation of stimulated motor behavior was studied in pups (Days 10-11) and weanlings (Days 20-21) that had been depleted of dopamine (DA) on postnatal Day 3. Administration of the D1-like agonist SKF 38393 (30.0 mg/kg) or the D2-like agonist quinpirole (3.0 mg/kg) increased the incidence of sniffing and locomotion in intact and DA-depleted animals tested at either age. However, the ability of selective DA antagonists to reduce these stimulated responses interacted with both the depletion and the age at the time of testing. When tested as pups, both the D1 antagonist SCH 23390 (0.2 or 0.4 mg/kg) and the D2 antagonist clebopride (10.0 mg/kg) suppressed the behaviors induced by either class of DA agonist. When tested as weanlings, intact animals exhibited the profile of pups (i.e., either antagonist blocked each agonist). In DA-depleted weanlings, however, only the D1 antagonist blocked the D1 agonist-induced responses and only the D2 antagonist blocked the D2 agonist-induced responses. These data demonstrate that the interactions between D1 and D2 receptors in the expression of stimulated motor behaviors are altered following DA depletions in neonates. Moreover, this change in receptor function occurs sometime between 7 and 13 days after the DA depletion.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Aging/physiology
- Animals
- Animals, Newborn
- Benzamides/pharmacology
- Benzazepines/pharmacology
- Brain/drug effects
- Brain/physiology
- Dopamine/physiology
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Dose-Response Relationship, Drug
- Ergolines/pharmacology
- Female
- Male
- Motor Activity/drug effects
- Motor Activity/physiology
- Quinpirole
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/physiology
- Stereotyped Behavior/drug effects
- Stereotyped Behavior/physiology
Collapse
Affiliation(s)
- E M Byrnes
- Department of Psychology, Ohio State University, Columbus 43210
| | | |
Collapse
|
41
|
Fernandes Xavier FG, Doucet G, Geffard M, Descarries L. Dopamine neoinnervation in the substantia nigra and hyperinnervation in the interpeduncular nucleus of adult rat following neonatal cerebroventricular administration of 6-hydroxydopamine. Neuroscience 1994; 59:77-87. [PMID: 8190274 DOI: 10.1016/0306-4522(94)90100-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An aberrant network of dopamine axons was found to pervade the rat substantia nigra following neonatal destruction of its dopamine nerve cell bodies and dendrites by cerebroventricular administration of 6-hydroxydopamine. Light-microscopic immunocytochemistry with a primary monoclonal antibody directed against dopamine-glutaraldehyde-protein was used to investigate the time-course of development and the critical period of induction of this ectopic dopamine innervation (neoinnervation). In rats 6-hydroxydopamine-lesioned at postnatal day 3 (P3) and examined at P7, P10, P15, P30 or later, some dopamine fibers were already present in the substantia nigra at P7; their number increased sharply until P15 and only slightly thereafter, assuming a topographic distribution reminiscent of the missing dopamine nerve cell bodies and dendrites. A similar growth of dopamine fibers took place in the substantia nigra after lesions made at P6, P9 and P12, but was less pronounced after lesion at P15 and absent after lesion at P21 or later. Excessive innervation by dopamine axons (hyperinnervation) was concomitantly observed in the nearby interpeduncular nucleus. The sprouting of dopamine axons in both regions was therefore rapid and coincided in time and space with the developmental redistribution of mesencephalic dopamine neurons in normal rat. It is conceivable that these aberrant dopamine innervations play a role in the peculiar behavior and responsiveness to dopaminergic agents manifested by neonatally 6-hydroxydopamine-lesioned rats. It will be of particular interest to investigate the functional consequences of the dopamine neoinnervation in the substantia nigra, where an eventual axonal release might thus be replacing the normal somatodendritic release of this amine.
Collapse
Affiliation(s)
- F G Fernandes Xavier
- Département de pathologie, Faculté de médecine, Université de Montréal, Québec, Canada
| | | | | | | |
Collapse
|
42
|
Huang NY, Kostrzewa RM. Enhanced oral activity response to A77636 in neonatal 6-hydroxydopamine-lesioned rats. Eur J Pharmacol 1994; 253:163-6. [PMID: 7912196 DOI: 10.1016/0014-2999(94)90771-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To study the role of dopamine D1 receptors in enhanced oral activity effects of SKF 38393 ((+-)-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol) in neonatal 6-hydroxydopamine-lesioned rats, SKF 38393 was compared to the full agonist, A77636 ((1R,3S)-3-(1'-adamantyl)-1-aminomethyl-3,4-dihydro-5,6-dihydroxy- 1H-2-benzopyran). At 3 days after birth rats were treated with 6-hydroxydopamine HBr (200 micrograms salt form, i.c.v.; desipramine (20 mg/kg i.p.), 1 h) or vehicle. At 6-8 months a 0.01 mg/kg dose of A77636 HCl increased oral activity in 6-hydroxydopamine vs. control rats (P < 0.01). A77636 and SKF 38393 produced identical maximal responses of 35-36 oral movements at 0.1 and 1.0 mg/kg, respectively. SCH 23390 (R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benz azepine ) HCl (0.3 mg/kg i.p.) attenuated the response to A77636. Neither A77636 HCl (0.01-1.0 mg/kg i.p.) nor SKF 38393 HCl (0.03-3.0 mg/kg i.p.) induced oral activity in intact rats. The findings demonstrate that A77636 is more potent than SKF 38393, and that supersensitized dopamine D1 receptors are involved in the induction of oral behavior in neonatal 6-hydroxydopamine-lesioned rats.
Collapse
Affiliation(s)
- N Y Huang
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City 37614-0577
| | | |
Collapse
|
43
|
Kostrzewa RM, Brus R, Kalbfleisch JH, Perry KW, Fuller RW. Proposed animal model of attention deficit hyperactivity disorder. Brain Res Bull 1994; 34:161-7. [PMID: 7913871 DOI: 10.1016/0361-9230(94)90013-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dopamine (DA) neurons are implicated in the hyperlocomotion of neonatal 6-hydroxydopamine (6-OHDA)-lesioned rats, an animal model of attention deficit hyperactivity disorder (ADHD). Because serotonin (5-HT) neurons mediate some DA agonist effects, we investigated the possible role of 5-HT neurons on locomotor activity. Rats were treated at 3 days after birth with vehicle or 6-OHDA (134 micrograms ICV; desipramine pretreatment, 20 mg/kg IP, 1 h), and at 10 weeks with vehicle or 5,7-dihydroxytryptamine (5,7-DHT; 75 micrograms ICV; pretreatment with desipramine and pargyline, 75 mg/kg IP, 30 min), to destroy DA and/or 5-HT fibers. Intense spontaneous hyperlocomotor activity was produced in rats lesioned with both 6-OHDA and 5,7-DHT. Locomotor time in this group was 550 +/- 17 s in a 600 s session, vs. 127 +/- 13 s in the 6-OHDA group and < 75 s in 5,7-DHT and intact control groups (p < 0.001). Oral activity dose-effect curves established that 5,7-DHT attenuated DA D1 receptor supersensitivity and further sensitized 5-HT2c receptors. Acute treatment with dextroamphetamine (0.25 mg/kg SC) reduced locomotor time in 6-OHDA + 5,7-DHT-lesioned rats to 76 +/- 37 s (p < 0.001). Striatal DA was reduced by 99% and 5-HT was reduced by 30% (vs. 6-OHDA group). Because combined 6-OHDA (to neonates) and 5,7-DHT (to adults) lesions produce intense hyperlocomotion that is attenuated by amphetamine, we propose this as a new animal model of ADHD. The findings suggest that hyperactivity in ADHD may be due to injury or impairment of both DA and 5-HT neurons.
Collapse
Affiliation(s)
- R M Kostrzewa
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City 37614
| | | | | | | | | |
Collapse
|
44
|
Gong L, Kostrzewa RM, Perry KW, Fuller RW. Dose-related effects of a neonatal 6-OHDA lesion on SKF 38393- and m-chlorophenylpiperazine-induced oral activity responses of rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 76:233-8. [PMID: 8149589 DOI: 10.1016/0165-3806(93)90211-r] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neonatal 6-hydroxydopamine (6-OHDA) treatment of rats is associated with concurrent supersensitization of dopamine (DA) D1 and serotonin 5-HT1C receptors, for agonist-induced oral activity. The present study was conducted to determine if graded reduction of striatal DA content and/or graded elevation of striatal 5-HT content by 6-OHDA would alter sensitivity of either receptor type, and thereby influence oral activity responses to DA and 5-HT agonists. At 3 days after birth, groups of rats were pretreated with desipramine (20 mg/kg i.p.), 1 h before administration of a range of doses of 6-OHDA HBr (15, 30, 60, 100, 150 and 200 micrograms, i.c.v., salt form; half in each lateral ventricle) or the vehicle, saline (0.85%)-ascorbic acid (0.1%). Between 2 and 4 months, a series of challenge doses of SKF 38393 HCl (0.30 to 3.0 mg/kg i.p.) and m-chlorophenylpiperazine 2HCl (0.30 to 6.0 mg/kg i.p.; m-CPP 2HCl) were administered to each group of rats and oral activity was observed. Oral activity was determined for 1 min every 10 min during a 60-min period, starting 10 min after injection of agonist or vehicle. SKF 38393 dose-response curves demonstrated enhanced oral activity responses in rats lesioned neonatally with 150 or 200 micrograms of 6-OHDA. m-CPP dose-response curves demonstrated enhanced oral activity responses in these 2 groups of rats, as well as those lesioned neonatally with 100 micrograms of 6-OHDA. Striatal DA content was reduced by > 97% in these 3 groups of rats.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L Gong
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City 37614-0577
| | | | | | | |
Collapse
|
45
|
Radja F, el Mansari M, Soghomonian JJ, Dewar KM, Ferron A, Reader TA, Descarries L. Changes of D1 and D2 receptors in adult rat neostriatum after neonatal dopamine denervation: quantitative data from ligand binding, in situ hybridization and iontophoresis. Neuroscience 1993; 57:635-48. [PMID: 7906013 DOI: 10.1016/0306-4522(93)90011-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The specific binding of [3H]SCH23390 to D1 and of [3H]raclopride to D2 dopamine receptors was measured by autoradiography in the rostral and caudal halves of neostriatum and in the substantia nigra of adult rats subjected to near total destruction of nigrostriatal dopamine neurons by intraventricular 6-hydroxydopamine soon after birth. Three months after this lesion, [3H]SCH23390 binding (D1 receptors) was slightly but significantly decreased in the rostral neostriatum (22%), but unchanged in its caudal half and in the substantia nigra. In contrast, [3H]raclopride binding (D2 receptors) was considerably increased throughout the neostriatum (10-40%), while markedly decreased in the substantia nigra (80%). In the rostral neostriatum, there were no parallel changes in D2 receptor messenger RNA levels, as measured by in situ hybridization on adjacent sections. Caudally, however, slight but significant increases in D2 messenger RNA could be observed (10-20%). As assessed by quantitative iontophoresis, there was a marked enhancement (63%) of the inhibitory responsiveness of spontaneously firing units in the rostral neostriatum to dopamine and the D1 agonist, SKF38393, in neonatally lesioned compared to control rats. On the other hand, responsiveness to PPHT, a potent D2 agonist, appeared to be unchanged. Such opposite changes in the number of D1 and D2 binding sites, dissociated from the expression of D2 receptor messenger RNA and from the sensitivity to dopamine and D1 and D2 agonists, suggested independent adaptations of these various parameters following the neonatal dopamine denervation of neostriatum. They also provided further evidence for mechanisms other than the dopamine innervation in the control of the expression of neostriatal D2 receptor messenger RNA during ontogenesis, and emphasized that the effects of dopamine and its D1 and D2 agonists in neostriatum do not depend strictly on the number of D1 and D2 primary ligand recognition sites.
Collapse
Affiliation(s)
- F Radja
- Département de Physiologie, Faculté de Médecine, Université de Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Gong L, Kostrzewa RM, Brus R, Fuller RW, Perry KW. Ontogenetic SKF 38393 treatments sensitize dopamine D1 receptors in neonatal 6-OHDA-lesioned rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 76:59-65. [PMID: 8306431 DOI: 10.1016/0165-3806(93)90122-q] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neonatal 6-hydroxydopamine (6-OHDA) treatment of rats is associated with supersensitization of the dopamine (DA) D1 agonist induction of stereotyped and locomotor behaviors. The present study was conducted to determine whether ontogenetic treatments of these rats with the DA D1 receptor agonist, SKF 38393, would produce a maximal DA D1 receptor supersensitivity, as measured by locomotor behavior in adulthood. Rat pups were treated daily with SKF 38393-HCl (3.0 mg/kg per day, i.p.) or saline vehicle for 28 consecutive days from birth. These animals were additionally treated at 3 days after birth with 6-OHDA-HBr (100 micrograms, in each lateral ventricle, salt form) or its vehicle. Between 6 and 9 weeks locomotor activity or stereotyped behaviors were observed after weekly challenge doses of SKF 38393-HCl (3.0 mg/kg, i.p.). In the neonatal 6-OHDA group, successive SKF 38393 treatments produced progressively greater locomotor activity. In the group of rats treated during postnatal ontogeny with both 6-OHDA and SKF 38393 daily treatments, the first adult challenge dose of SKF 38393 produced an enhanced locomotor response, greater than that seen in other groups (P < 0.01). Subsequent SKF 38393 treatments of this group produced increasingly greater locomotor responses. SKF 38393-induced stereotyped behavioral effects were greater in the 6-OHDA-lesioned groups, whether or not SKF 38393 was administered ontogenetically. Profound reductions (> 99%) of DA and its metabolites were found in the striatum of neonatal 6-OHDA treated rats, regardless of whether SKF 38393 was co-administered ontogenetically.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L Gong
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City 37614
| | | | | | | | | |
Collapse
|
47
|
Kostrzewa RM, Brus R, Perry KW, Fuller RW. Age-dependence of a 6-hydroxydopamine lesion on SKF 38393- and m-chlorophenylpiperazine-induced oral activity responses of rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 76:87-93. [PMID: 8306435 DOI: 10.1016/0165-3806(93)90126-u] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neonatal 6-hydroxydopamine (6-OHDA) treatment is associated with destruction of dopamine (DA) fibers and subsequent sprouting of serotonin (5-HT) fibers in the striatum of rats. Enhanced oral activity responses to SKF 38393 and m-chlorophenylpiperazine (m-CPP), respective agonists for the DA D1 receptor complex and 5-HT2C receptor complex, ensue. To study the ontogenetic nature of this effect, rats were treated at birth, 3 days, 7 days, 10 days or 14 days with 6-OHDA-HBr (200 micrograms i.c.v.; salt form), following desipramine-HCl pretreatment (20 mg/kg i.p., 1 h; base form). Another group of rats was treated at 35 days and again at 42 days with 6-OHDA-HBr (300 micrograms i.c.v.), following desipramine-HCl (20 mg/kg i.p., 1 h) and pargyline-HCl (50 mg/kg i.p., 30 min). In rats treated from birth to 10 days, 6-OHDA reduced striatal DA content at 5 months by > or = 94%. Striatal 5-HT content was elevated by 28% to 51%, but only in rats treated with 6-OHDA at 7 days from birth or earlier. An enhanced oral activity response to SKF 38393-HCl (0.03 to 1.0 mg/kg i.p.) was absent in rats treated 7 days or later, and the change in SKF 38393 effect was correlated with a change in striatal DA content. An enhanced response to m-CPP.2HCl (0.3 to 6.0 mg/kg i.p.) was absent after treatment at 14 or 35 days, when striatal DA content was reduced only 44% to 63% and 5-HT content was not changed.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R M Kostrzewa
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City 37614-0577
| | | | | | | |
Collapse
|
48
|
Gong L, Kostrzewa RM, Kalbfleisch JH. MIF-1 fails to modify agonist-induced oral activity in neonatal 6-OHDA-treated rats. Peptides 1993; 14:1159-64. [PMID: 7907787 DOI: 10.1016/0196-9781(93)90170-l] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
L-Prolyl-L-leucyl-glycinamide (MIF-1) is known to attenuate apomorphine-induced stereotypes in adult rats that are lesioned as neonates with 6-hydroxydopamine (6-OHDA). To test whether MIF-1 would affect dopamine (DA) agonist-induced and serotonin (5-HT) agonist-induced oral activity, both intact and neonatal 6-OHDA-treated rats were studied. Rats at 3 days from birth were injected with desipramine (20 mg/kg, IP), 1 h before 6-OHDA HBr (100 micrograms, salt form, in each lateral ventricle) or its vehicle, saline-ascorbic acid (0.1%). At approximately 6 months rats were treated with MIF-1 (0.1, 1.0, or 10.0 mg/kg, IP), 10 min before SKF 38393 HCl (1.0 mg/kg, IP) or m-chlorophenylpiperazine 2HCl (m-CPP 2HCl; 0.5 mg/kg, IP), DA D1 and 5-HT1C,2 receptor agonists, respectively. Although both agonists increased oral activity in control and neonatal 6-OHDA-treated rats, MIF-1 did not modify the response. In rats that received either of the three doses of MIF-1 for 21 consecutive days, there was still no observed effect of MIF-1 on the oral response of control and 6-OHDA-lesioned rats to SKF 38393 and m-CPP. These findings indicate that MIF-1 does not modify the oral activity response of supersensitized D1 and 5-HT1C receptors in adult rats that are lesioned neonatally with 6-OHDA.
Collapse
Affiliation(s)
- L Gong
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City 37614
| | | | | |
Collapse
|
49
|
Kostrzewa RM, Neely D. Enhanced pilocarpine-induced oral activity responses in neonatal 6-OHDA treated rats. Pharmacol Biochem Behav 1993; 45:737-40. [PMID: 8332633 DOI: 10.1016/0091-3057(93)90534-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neonatal destruction of rat nigrostriatal dopaminergic fibers results in an enhanced oral activity response to both dopamine (DA) D1 and serotonin (5-HT) agonists. Because cholinergic systems represent another one of the neural circuits involved in oral behavior, it was of interest to determine whether muscarinic receptors might also be sensitized in the lesioned rats. At 3 days after birth, rats were pretreated with desipramine HCl (20 mg/kg, IP) 1 h before 6-hydroxydopamine (6-OHDA) HBr (100 micrograms in each lateral ventricle) or saline-ascorbic acid (0.1%) vehicle. Between 2 and 4 months, behavioral supersensitivity to a D1 agonist (SK&F 38393) and 5-HT agonist (m-chlorophenylpiperazine; m-CPP) was established before rats were challenged with the muscarinic receptor agonist, pilocarpine HCl (0.125 to 10.0 mg/kg, IP). The pilocarpine dose-effect curve was shifted to the left, with a maximal effect of 63.7 +/- 8.6 oral movements being produced by a 1.0 mg/kg pilocarpine HCl dose in the 6-OHDA lesioned rats, versus 15.0 +/- 2.4 oral movements in the control group (p < 0.001). The enhanced response to pilocarpine was attenuated by the muscarinic receptor antagonist, scopolamine HCl (0.1 mg/kg IP). These findings indicate that neonatal 6-OHDA treatment produces supersensitization of muscarinic receptors in rats.
Collapse
Affiliation(s)
- R M Kostrzewa
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City 37614-0577
| | | |
Collapse
|
50
|
Meltzer HY, Maes M, Lee MA. The cimetidine-induced increase in prolactin secretion in schizophrenia: effect of clozapine. Psychopharmacology (Berl) 1993; 112:S95-104. [PMID: 7831446 DOI: 10.1007/bf02245013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There is considerable interest in the role of serotonin (5-HT) in the pathophysiology of schizophrenia and in the mechanism of action of clozapine, an atypical antipsychotic agent and a potent dopamine (DA), 5-HT2/5-HT1C and histamine (H) antagonist. Cimetidine, an H2 antagonist, produces robust, transient increase in plasma prolactin (PRL) levels in man following intravenous administration. This effect has been attributed, in part, to indirect central serotonergic mechanisms involving 5-HT2 receptors in the hypothalamus, but the evidence is inconclusive. This study investigated the effects of cimetidine on plasma PRL levels in unmedicated schizophrenic patients versus normal controls and the effect of chronic treatment with clozapine on the cimetidine-induced PRL response. The PRL response to cimetidine was significantly blunted in male but not female schizophrenic patients. The PRL response in male schizophrenic patients was inversely related to psychopathology. Chronic treatment with clozapine completely suppressed the plasma PRL response following cimetidine. These data are consistent with the hypothesis of an abnormality of serotonergic activity, including downregulation of 5-HT2 receptors, in male but not female schizophrenic patients. The role of antagonism of 5-HT2 receptors in the action of clozapine is discussed.
Collapse
Affiliation(s)
- H Y Meltzer
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH
| | | | | |
Collapse
|