1
|
Blanchard DC, Canteras NS. Uncertainty and anxiety: Evolution and neurobiology. Neurosci Biobehav Rev 2024; 162:105732. [PMID: 38797459 DOI: 10.1016/j.neubiorev.2024.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Anxiety is a complex phenomenon: Its eliciting stimuli and circumstances, component behaviors, and functional consequences are only slowly coming to be understood. Here, we examine defense systems from field studies; laboratory studies focusing on experimental analyses of behavior; and, the fear conditioning literature, with a focus on the role of uncertainty in promoting an anxiety pattern that involves high rates of stimulus generalization and resistance to extinction. Respectively, these different areas provide information on evolved elicitors of defense (field studies); outline a defense system focused on obtaining information about uncertain threat (ethoexperimental analyses); and, provide a simple, well-researched, easily measured paradigm for analysis of nonassociative stress-enhanced fear conditioning (the SEFL). Results suggest that all of these-each of which is responsive to uncertainty-play multiple and interactive roles in anxiety. Brain system findings for some relevant models are reviewed, with suggestions that further analyses of current models may be capable of providing a great deal of additional information about these complex interactions and their underlying biology.
Collapse
Affiliation(s)
- D Caroline Blanchard
- Pacific Bioscience Research Institute, University of Hawaii, Manoa, USA; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
2
|
Ma J, Wang J, Wang G, Wan Y, Li N, Luo L, Gou H, Gu J. The potential beneficial effects of Lactobacillus plantarum GM11 on rats with chronic unpredictable mild stress- induced depression. Nutr Neurosci 2024; 27:413-424. [PMID: 37116073 DOI: 10.1080/1028415x.2023.2205742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
OBJECTIVE The main purpose of the present study was to assess the beneficial effect of Lactobacillus plantarum GM11 (LacP GM11), screened from Sichuan traditional fermented food, in depressive rats induced by chronic unpredictable mild stress (CUMS). METHODS Male SPF SD rats were randomly assigned to 3 groups: the control group, CUMS group and CUMS + LacP GM11 group (n = 10). The rats in the CUMS and LacP GM11 groups received CUMS stimulation for 42 d. The behavioral tests and levels of monoamine neurotransmitter, glucocorticoid hormone and brain-derived neurotrophic factor (BDNF) in the serum and hippocampus were measured. The effects of LacP GM11 on the mRNA and protein expression of BDNF and cAMP response element binding protein (CREB) in the hippocampus were also investigated. RESULTS After supplementation for 21 d, LacP GM11 was associated with alleviation of depressive-like behavior, not anxiety-like behavior, in depressive rats. LacP GM11 increased the levels of 5-hydroxytryptamine (5-HT) and BDNF and decreased the level of cortisol (CORT) in the serum and hippocampus in depressed rats. In addition, treatment with LacP GM11 also increased the mRNA and protein expression of BDNF and CREB in the hippocampus. CONCLUSIONS This work has revealed that LacP GM11 has potential beneficial effects on depression. This effect might be related to alleviating monoamine neurotransmitter deficiency, HPA axis hyperfunction and CREB-BDNF signaling pathway downregulation. This study demonstrates that LacP GM11 could be a potential therapeutic approach to treat depression and other mental health problems.
Collapse
Affiliation(s)
- Jie Ma
- Department of Research and Development, Weichuang Tianyi Biotechnology Co., Ltd, Chengdu, Sichuan, People's Republic of China
| | - Junrui Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Department of Orthopaedics, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Gang Wang
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd, Chengdu, Sichuan, People's Republic of China
| | - Yujun Wan
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd, Chengdu, Sichuan, People's Republic of China
| | - Nanzhen Li
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd, Chengdu, Sichuan, People's Republic of China
| | - Lijuan Luo
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd, Chengdu, Sichuan, People's Republic of China
| | - Hongmei Gou
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd, Chengdu, Sichuan, People's Republic of China
| | - Jianwen Gu
- Department of Neurosurgery, PLA Strategic Support Force Characteristic Medical Center, Beijing, People's Republic of China
| |
Collapse
|
3
|
Vila-Merkle H, González-Martínez A, Campos-Jiménez R, Martínez-Ricós J, Teruel-Martí V, Lloret A, Blasco-Serra A, Cervera-Ferri A. Sex differences in amygdalohippocampal oscillations and neuronal activation in a rodent anxiety model and in response to infralimbic deep brain stimulation. Front Behav Neurosci 2023; 17:1122163. [PMID: 36910127 PMCID: PMC9995972 DOI: 10.3389/fnbeh.2023.1122163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Depression and anxiety are highly comorbid mental disorders with marked sex differences. Both disorders show altered activity in the amygdala, hippocampus, and prefrontal cortex. Infralimbic deep brain stimulation (DBS-IL) has anxiolytic and antidepressant effects, but the underlying mechanisms remain unclear. We aimed to contribute to understanding sex differences in the neurobiology of these disorders. Methods In male and female rats, we recorded neural oscillations along the dorsoventral axis of the hippocampus and the amygdala in response to an anxiogenic drug, FG-7142. Following this, we applied DBS-IL. Results Surprisingly, in females, the anxiogenic drug failed to induce most of the changes observed in males. We found sex differences in slow, delta, theta, and beta oscillations, and the amygdalo-hippocampal communication in response to FG-7142, with modest changes in females. Females had a more prominent basal gamma, and the drug altered this band only in males. We also analyzed c-Fos expression in both sexes in stress-related structures in response to FG-7142, DBS-IL, and combined interventions. With the anxiogenic drug, females showed reduced expression in the nucleus incertus, amygdala, septohippocampal network, and neocortical levels. In both experiments, the DBS-IL reversed FG-7142-induced effects, with a more substantial effect in males than females. Discussion Here, we show a reduced response in female rats which contrasts with the higher prevalence of anxiety in women but is consistent with other studies in rodents. Our results open compelling questions about sex differences in the neurobiology of anxiety and depression and their study in animal models.
Collapse
Affiliation(s)
- Hanna Vila-Merkle
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Alicia González-Martínez
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Rut Campos-Jiménez
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Joana Martínez-Ricós
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Vicent Teruel-Martí
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, Health Research Institute INCLIVA, CIBERFES, University of Valencia, Valencia, Spain
| | - Arantxa Blasco-Serra
- Study Group for the Anatomical Substrate of Pain and Analgesia (GESADA) Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Ana Cervera-Ferri
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
4
|
Zhang J, Lin L, Dai X, Xiao N, Ye Q, Chen X. ApoE4 increases susceptibility to stress-induced age-dependent depression-like behavior and cognitive impairment. J Psychiatr Res 2021; 143:292-301. [PMID: 34530340 DOI: 10.1016/j.jpsychires.2021.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 02/01/2023]
Abstract
Though apolipoprotein E ε4 (APOE ε4) is a major genetic risk factor for late-onset Alzheimer's disease, its association with depression remains controversial. In present study, 3-month-old and 8-month-old apoE-targeted replacement (TR) mice were both subjected to chronic unpredictable mild stress (CUMS) for six weeks. The results showed that 8-month apoE4-TR mice were more susceptible to the CUMS-induced depression-like behaviors and cognitive impairment than age-matched apoE3-TR mice. Stress induced a loss of GABAergic neurons and decline of Reelin level in the prefrontal cortex (PFC) and in the dentate gyrus (DG) of the hippocampus in both 3-month-old and 8-month-old apoE-TR mice, which were more pronounced in the 8-month-old apoE4-TR mice. Of note, stress decreased the level of PSD95 in the hippocampal synaptosome and increased the phosphorylation of N-methyl-D-aspartate receptor subunit GluN2B in the hippocampus of 8-month-old apoE4-TR mice. However, the expressions of apoE and apoE receptor 2 (apoER2) were not affected by stress. The study provides rodent evidence that APOE ε4 may increase the risk of depression and dementia in the elderly population by impairing the GABAergic signaling pathway and enhancing the GluN2B phosphorylation, which signifies that GluN2B inhibitors in clinical settings may be effective for elderly depression patients with APOE4 carriers.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Lanyan Lin
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350005, China; Department of Geriatrics, Fujian Provincial Hospital, 134 Dongjie Road, Fuzhou, Fujian, 350001, China
| | - Xiaoman Dai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Nai'an Xiao
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Qinyong Ye
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350005, China.
| |
Collapse
|
5
|
The Oscillatory Profile Induced by the Anxiogenic Drug FG-7142 in the Amygdala-Hippocampal Network Is Reversed by Infralimbic Deep Brain Stimulation: Relevance for Mood Disorders. Biomedicines 2021; 9:biomedicines9070783. [PMID: 34356846 PMCID: PMC8301458 DOI: 10.3390/biomedicines9070783] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 01/02/2023] Open
Abstract
Anxiety and depression exhibit high comorbidity and share the alteration of the amygdala–hippocampal–prefrontal network, playing different roles in the ventral and dorsal hippocampi. Deep brain stimulation of the infralimbic cortex in rodents or the human equivalent—the subgenual cingulate cortex—constitutes a fast antidepressant treatment. The aim of this work was: (1) to describe the oscillatory profile in a rodent model of anxiety, and (2) to deepen the therapeutic basis of infralimbic deep brain stimulation in mood disorders. First, the anxiogenic drug FG-7142 was administered to anaesthetized rats to characterize neural oscillations within the amygdala and the dorsoventral axis of the hippocampus. Next, deep brain stimulation was applied. FG-7142 administration drastically reduced the slow waves, increasing delta, low theta, and beta oscillations in the network. Moreover, FG-7142 altered communication in these bands in selective subnetworks. Deep brain stimulation of the infralimbic cortex reversed most of these FG-7142 effects. Cross-frequency coupling was also inversely modified by FG-7142 and by deep brain stimulation. Our study demonstrates that the hyperactivated amygdala–hippocampal network associated with the anxiogenic drug exhibits an oscillatory fingerprint. The study contributes to comprehending the neurobiological basis of anxiety and the effects of infralimbic deep brain stimulation.
Collapse
|
6
|
Gall AJ, Griffin GD. Anxiolytic effects of administration of a commercially available prebiotic blend of galacto-oligosaccharides and beta glucans in Sprague-Dawley rats. Benef Microbes 2021; 12:35-43. [PMID: 34169805 DOI: 10.3920/bm2020.0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prebiotics are nondigestible food agents that stimulate the growth of bacteria in the gut, whereas probiotics are live microorganisms that replace or restore beneficial bacteria in the digestive tract. Both agents have been shown to have beneficial qualities within the microbiota-gut-brain axis, but the behavioural effects of prebiotics have been less studied than probiotics. Whereas several studies have shown that prebiotics reduce inflammation and modulate anxiety in animals that are injected with lipopolysacccharides or chronically stressed animals, respectively, it is not yet known how they affect a healthy organism. Here, we tested the behavioural effects of galacto-oligosaccharides and beta glucan as a commercially available prebiotic blend in healthy, naïve Sprague-Dawley rats. We used the open field test and elevated plus maze to assess anxiety-like behaviour in controls and in rats that ingested the prebiotic blend in their drinking water. We also used the Morris Water Maze to assess spatial memory performance in controls and prebiotic treated rats. Rats treated with prebiotics spent more time in the intermediate zone of the open field test and in the open arms of the elevated plus maze, and exhibited a shorter latency to enter each of these zones. No significant differences between groups were found in the Morris Water Maze. Our results suggest that whereas prebiotics significantly reduced anxiety-like behaviours, it had no effect on spatial memory performance. Altogether, our data indicate that commercially available prebiotic beta glucan blends have anxiolytic effects in healthy rats.
Collapse
Affiliation(s)
- A J Gall
- Department of Psychology and Neuroscience Program, Hope College, 35 E. 12th Street, Holland, MI 49423, USA
| | - G D Griffin
- Department of Psychology and Neuroscience Program, Hope College, 35 E. 12th Street, Holland, MI 49423, USA.,Department of Biology, Hope College, 35 East 12th Street, Holland, MI 49423, USA
| |
Collapse
|
7
|
Verbruggen L, Sprimont L, Bentea E, Janssen P, Gharib A, Deneyer L, De Pauw L, Lara O, Sato H, Nicaise C, Massie A. Chronic Sulfasalazine Treatment in Mice Induces System x c - - Independent Adverse Effects. Front Pharmacol 2021; 12:625699. [PMID: 34084129 PMCID: PMC8167035 DOI: 10.3389/fphar.2021.625699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/26/2021] [Indexed: 01/17/2023] Open
Abstract
Despite ample evidence for the therapeutic potential of inhibition of the cystine/glutamate antiporter system xc− in neurological disorders and in cancer, none of the proposed inhibitors is selective. In this context, a lot of research has been performed using the EMA- and FDA-approved drug sulfasalazine (SAS). Even though this molecule is already on the market for decades as an anti-inflammatory drug, serious side effects due to its use have been reported. Whereas for the treatment of the main indications, SAS needs to be cleaved in the intestine into the anti-inflammatory compound mesalazine, it needs to reach the systemic circulation in its intact form to allow inhibition of system xc−. The higher plasma levels of intact SAS (or its metabolites) might induce adverse effects, independent of its action on system xc−. Some of these effects have however been attributed to system xc− inhibition, calling into question the safety of targeting system xc−. In this study we chronically treated system xc− - deficient mice and their wildtype littermates with two different doses of SAS (160 mg/kg twice daily or 320 mg/kg once daily, i.p.) and studied some of the adverse effects that were previously reported. SAS had a negative impact on the survival rate, the body weight, the thermoregulation and/or stress reaction of mice of both genotypes, and thus independent of its inhibitory action on system xc−. While SAS decreased the total distance travelled in the open-field test the first time the mice encountered the test, it did not influence this parameter on the long-term and it did not induce other behavioral changes such as anxiety- or depressive-like behavior. Finally, no major histological abnormalities were observed in the spinal cord. To conclude, we were unable to identify any undesirable system xc−-dependent effect of chronic administration of SAS.
Collapse
Affiliation(s)
- Lise Verbruggen
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lindsay Sprimont
- Laboratory Neurodegeneration and Regeneration, URPHyM-NARILIS, Université de Namur, Namur, Belgium
| | - Eduard Bentea
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pauline Janssen
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Azzedine Gharib
- Laboratory Neurodegeneration and Regeneration, URPHyM-NARILIS, Université de Namur, Namur, Belgium
| | - Lauren Deneyer
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laura De Pauw
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Olaya Lara
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hideyo Sato
- Department of Medical Technology, Niigata University, Niigata, Japan
| | - Charles Nicaise
- Laboratory Neurodegeneration and Regeneration, URPHyM-NARILIS, Université de Namur, Namur, Belgium
| | - Ann Massie
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
8
|
Huang HT, Chen PS, Kuo YM, Tzeng SF. Intermittent peripheral exposure to lipopolysaccharide induces exploratory behavior in mice and regulates brain glial activity in obese mice. J Neuroinflammation 2020; 17:163. [PMID: 32450884 PMCID: PMC7249324 DOI: 10.1186/s12974-020-01837-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/03/2020] [Indexed: 12/23/2022] Open
Abstract
Background Consecutive peripheral immune challenges can modulate the responses of brain resident microglia to stimuli. High-fat diet (HFD) intake has been reported to stimulate the activation of astrocytes and microglia in the arcuate nucleus (ARC) of the hypothalamus in obese rodents and humans. However, it is unknown whether intermittent exposure to additional peripheral immune challenge can modify HFD-induced hypothalamic glial activation in obese individuals. Methods In this study, we administered 1 mg/kg LPS (or saline) by intraperitoneal (i.p.) injection to 8-week-old male mice after 1, 2, or 8 weeks of a regular diet (show) or HFD. The level of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) expression in the plasma and hypothalamic tissue was analyzed 24 h after each LPS injection. The behaviors of the animals in the four groups (the chow-saline, chow-LPS, HFD-saline, and HFD-LPS groups) were examined 5 months after exposure to chow or a HFD. Morphological examination of microglia in related brain regions was also conducted. Results The plasma levels and hypothalamic mRNA levels of IL-1β and TNF-α were significantly upregulated 24 h after the first injection of LPS but not after the second or third injection of LPS. Chow-LPS mice displayed increased exploratory behavior 5 months after feeding. However, this LPS-induced abnormal exploratory behavior was inhibited in HFD-fed mice. Chronic HFD feeding for 5 months induced apparent increases in the number and cell body size of microglia, mainly in the ARC, and also increased the size of microglia in the nucleus accumbens (NAc) and insula. Moreover, microglial activation in the ARC, anterior cingulate cortex (ACC), insula, and basolateral amygdala (BLA) was observed in chow-LPS mice. However, microglial activation in the analyzed brain regions was suppressed in HFD-LPS mice. Conclusions Altogether, the results indicate that intermittent peripheral challenge with LPS might prime microglia in the ARC and NAc to modify their response to chronic HFD feeding. Alternatively, chronic HFD feeding might mediate microglia in LPS-affected brain regions and subsequently suppress LPS-induced atypical exploratory behavior. Our findings suggest that the interaction of intermittent acute peripheral immune challenges with chronic HFD intake can drive microglia to amend the microenvironment and further modify animal behaviors in the later life.
Collapse
Affiliation(s)
- Hui-Ting Huang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Po-See Chen
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan. .,Department of Life Sciences, National Cheng Kung University, #1 University Road, Tainan, Taiwan.
| |
Collapse
|
9
|
Pardo-García TR, Yusif-Rodriguez N, Yudowski G, Maldonado-Vlaar CS. Blockade of the endovanilloid receptor, TRPV1, and of the endocannabinoid enzyme, FAAH, within the nucleus accumbens shell elicits anxiolytic-like effects in male rats. Neurosci Lett 2020; 732:135023. [PMID: 32422166 DOI: 10.1016/j.neulet.2020.135023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022]
Abstract
RATIONALE The functional role of the endocannabinoid system (ECS) and Transient Receptor Potential Vanilloid type-1 (TRPV1) within the Nucleus Accumbens shell (NAc shell) remains unknown. Preclinical studies in rodents have reported that the ECS modulates emotional responses such as anxiety. The NAc shell has a high density of synaptically co-localized cannabinoid receptor type-1 (CB1R) and TRPV1, suggesting a potential involvement in the modulation of anxiety. OBJECTIVES The present study aims to establish the role of ECS-TRPV1 interactions within the NAc shell and its effects on anxiety. It is hypothesized that the neurochemical regulation elicited by ECS within the NAc shell mediates anxiety-like behaviors in rodents. METHODS In this study, male Sprague Dawley rats were implanted with bilateral brain cannula targeting the NAc shell. Following recovery from surgery, animals received microinfusion pretreatments (0, 0.125, 0.5 nmol/0.4 μl) of N-arachidonoyl-serotonin (AA-5-HT), a dual blocker of the endocannabinoid-inactivating enzyme, fatty acid amide hydrolase (FAAH) and a TRPV1 antagonist in the NAc shell. Following treatment, animals were tested in an elevated plus maze (EPM) paradigm for a period of 5 minutes. At the end of the experiment, animals were sacrificed and their brains collected for histological and biochemical analysis. RESULTS Results showed that animals treated with AA-5-HT in a dose dependent manner spent significantly more time in the open arms than vehicle-treated animals. In addition, AA-5-HT administration induced a significant downregulation of CB1R expression in the NAc shell. CONCLUSIONS The present findings suggest that the ECS within the NAc shell modulates anxiety-like behaviors via FAAH and CB1R activity.
Collapse
Affiliation(s)
- Thibaut R Pardo-García
- University of Puerto Rico-Rio Piedras Campus, Department of Biology, PO Box 23360, San Juan, 00931, Puerto Rico.
| | - Nadira Yusif-Rodriguez
- University of Puerto Rico-Rio Piedras Campus, Department of Biology, PO Box 23360, San Juan, 00931, Puerto Rico.
| | - Guillermo Yudowski
- University of Puerto Rico-Medical School, Institute of Neurobiology, San Juan, 00936, Puerto Rico
| | - Carmen S Maldonado-Vlaar
- University of Puerto Rico-Rio Piedras Campus, Department of Biology, PO Box 23360, San Juan, 00931, Puerto Rico.
| |
Collapse
|
10
|
Akbar S, Subhan F, Karim N, Aman U, Ullah S, Shahid M, Ahmad N, Fawad K, Sewell RD. Characterization of 6-methoxyflavanone as a novel anxiolytic agent: A behavioral and pharmacokinetic approach. Eur J Pharmacol 2017; 801:19-27. [DOI: 10.1016/j.ejphar.2017.02.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/18/2017] [Accepted: 02/27/2017] [Indexed: 12/01/2022]
|
11
|
de Araújo ÉJF, de Almeida AAC, Silva OA, da Costa IHF, Rezende-Júnior LM, Lima FDCA, Cavalheiro AJ, Pessoa C, de Moraes MO, Ferreira PMP. Behavioral effects induced by antitumor cleronade diterpenes from Casearia sylvestris and in silico interactions with neuron receptors. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:460-467. [PMID: 28077331 DOI: 10.1016/j.jep.2017.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Casearia sylvestris is a medicinal plant traditionally used to treat snakebites, wounds, inflammation and gastric ulcers and scientific supports for have demonstrated its antitumor, antihyperlipidemic and antiparasitic properties. AIM OF THE STUDY To assess the effects of a fraction with casearins (FC) on adult mice using classical experimental models of animal behavior and theoretical calculations to verify the interaction of Casearin X (Cas X) with neuron receptors. MATERIALS AND METHODS Animals divided in 6 groups (n=9/group) were intraperitoneally treated with vehicle (DMSO 4%), FC (2.5, 5, 10 and 25mg/kg/day) and diazepam (2mg/kg) for 7 days. Thirty minutes after the last dose of treatment, acute toxicity and behavioral experiments were performed. RESULTS The highest dose of FC (25mg/kg/day) caused diarrhea, weight loss and death of one animal. Elevated plus maze test showed that lower doses [2.5mg/kg/day (36.4±5.1s) and 5mg/kg/day (43.9±6.2s)] increased the time spent in open arms (TSOA). Open field test revealed reduction in the number of crossings (54.9%, 51.1%, 48% and 67.7% for 2.5, 5, 10 and 25mg/kg/day, respectively) in all doses of FC studied and decrease of rearings at 25mg/kg/day (p<0.05). Computational calculations showed that the inhibition constant (Ki) for the Cas X-D1 complex is up to 1000-fold more favourable than the Cas X-GABAA complex. All ∆G° values obtained for Cas X-D1 complexes were more negative than those seen with Cas X-GABAA complexes. CONCLUSIONS Findings indicate a probable anxiolytic action of the FC since it reduces the number of crossings and rearings and prolonged the time spent in open arms, without sedative and myorelaxant effects, probably due to the interaction of Cas X with dopaminergic system.
Collapse
Affiliation(s)
- Éverton José Ferreira de Araújo
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil; Department of Pharmacy, Federal University of Piauí, Teresina, Brazil
| | | | - Oskar Almeida Silva
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | | | | | - Francisco das Chagas Alves Lima
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Brazil; Quantum Computational Chemistry Laboratory, Department of Chemistry, State University of Piauí, Teresina, Piauí, Brazil
| | - Alberto José Cavalheiro
- Department of Organic Chemisty, Chemistry Institute, State University of São Paulo Júlio de Mesquita Filho, Araraquara, Brazil
| | - Cláudia Pessoa
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Manoel Odorico de Moraes
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil; Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Brazil; Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Brazil.
| |
Collapse
|
12
|
Sukoff Rizzo SJ, Silverman JL. Methodological Considerations for Optimizing and Validating Behavioral Assays. ACTA ACUST UNITED AC 2016; 6:364-379. [PMID: 27906464 DOI: 10.1002/cpmo.17] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Preclinical animal models are indispensable tools for translational research for which behavioral characterization and phenotyping are essential to testing hypotheses and for evaluating the potential of novel therapeutic agents to treat diseases. The methods employed for comprehensive behavioral phenotyping and pharmacological experiments are complex and should be conducted exclusively by trained technicians with demonstrated proficiency. The ultimate goal is to identify disease-relevant and translational behavioral endpoints that are robust, reliable, and reproducible, and that can be employed to evaluate potential of novel therapeutic agents to treat disease. The intent of the present article is to provide a pragmatic outline for establishing and optimizing behavioral assays and phenotyping batteries, ensuring that the assays and the data are reliable such that they can be reproduced within and across technicians and laboratories and, more importantly, that the data is translatable to the clinic. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Stacey J Sukoff Rizzo
- Mouse Neurobehavioral Phenotyping Facility, Center for Biometric Analysis, The Jackson Laboratory, Bar Harbor, Maine
| | - Jill L Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, California
| |
Collapse
|
13
|
Chagraoui A, Skiba M, Thuillez C, Thibaut F. To what extent is it possible to dissociate the anxiolytic and sedative/hypnotic properties of GABAA receptors modulators? Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:189-202. [PMID: 27495357 DOI: 10.1016/j.pnpbp.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/21/2016] [Accepted: 08/01/2016] [Indexed: 01/16/2023]
Abstract
The relatively common view indicates a possible dissociation between the anxiolytic and sedative/hypnotic properties of benzodiazepines (BZs). Indeed, GABAA receptor (GABAAR) subtypes have specific cerebral distribution in distinct neural circuits. Thus, GABAAR subtype-selective drugs may be expected to perform distinct functions. However, standard behavioral test assays provide limited direction towards highlighting new action mechanisms of ligands targeting GABAARs. Automated behavioral tests, lack sensitivity as some behavioral characteristics or subtle behavioral changes of drug effects or that are not considered in the overall analysis (Ohl et al., 2001) and observation-based analyses are not always performed. In addition, despite the use of genetically engineered mice, any possible dissociation between the anxiolytic and sedative properties of BZs remains controversial. Moreover, the involvement the different subtypes of GABAAR subtypes in the anxious behavior and the mechanism of action of anxiolytic agents remains unclear since there has been little success in the pharmacological investigations so far. This raises the question of the involvement of the different subunits in anxiolytic-like and/or sedative effects; and the actual implication of these subunits, particularly, α-subunits in the modulation of sedation and/or anxiety-related disorders. This present review was prompted by several conflicting studies on the degree of involvement of these subunits in anxiolytic-like and/or sedative effects. To this end, we explored the GABAergic system, particularly, the role of different subunits containing synaptic GABAARs. We report herein the targeting gene encoding the different subunits and their contribution in anxiolytic-like and/or sedative actions, as well as, the mechanism underlying tolerance to BZs.
Collapse
Affiliation(s)
- A Chagraoui
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedecine, Normandy University, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France.
| | - M Skiba
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedecine, Normandy University, France
| | - C Thuillez
- Department of Pharmacology, Rouen University Hospital, Rouen, and INSERM U1096, Laboratory of New Pharmacological Targets for Endothelial Protection and Heart Failure, Institute for Research and Innovation in Biomedicine, Normandy University, France
| | - F Thibaut
- Department of Psychiatry, University Hospital Cochin (site Tarnier), University of Paris-Descartes and INSERM U 894 Laboratory of Psychiatry and Neurosciences, Paris, France
| |
Collapse
|
14
|
Kapogiannatou A, Paronis E, Paschidis K, Polissidis A, Kostomitsopoulos NG. Effect of light colour temperature and intensity on τhε behaviour of male C57CL/6J mice. Appl Anim Behav Sci 2016. [DOI: 10.1016/j.applanim.2016.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Adongo DW, Mante PK, Edem Kukuia KK, Ameyaw EO, Woode E, Azi IH. Anxiolytic-like effect of the leaves of Pseudospondias microcarpa (A. Rich.) Engl. in mice. J Basic Clin Physiol Pharmacol 2016; 27:533-46. [PMID: 27124674 DOI: 10.1515/jbcpp-2015-0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 03/24/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Pseudospondias microcarpa is a plant used for managing various diseases including CNS disorders. Previous studies showed sedative and anticonvulsant effects, suggesting possible anxiolytic activity. This study therefore assessed the anxiolytic effects of P. microcarpa hydroethanolic leaf extract (PME) in mice. METHODS In the present study, anxiolytic-like effect of the extract in behavioural paradigms of anxiety - the elevated plus maze (EPM), light/dark box (LDB), social interaction test and stress-induced hyperthermia (SIH) - was evaluated. RESULTS Mice treated with PME (30-300 mg kg-1, p.o.) exhibited anxiolytic-like activity similar to diazepam in all the anxiety models used. The extract increased open arm activity (p<0.05) in the EPM as well as increasing the time spent in the lit area in relation to the time spent in the dark area of the LDB. Sociability and preference for social novelty significantly (p<0.05-0.001) increased in mice treated with PME. In the SIH paradigm in mice, both PME and the benzodiazepine receptor agonist, diazepam, significantly (p<0.05) reduced the stress-induced increase in rectal temperature. The extract did not impair motor coordination and balance in the beam walk test. CONCLUSIONS Results of the present study indicate that PME possesses anxiolytic-like effects in mice.
Collapse
|
16
|
Lin LY, Zhang J, Dai XM, Xiao NA, Wu XL, Wei Z, Fang WT, Zhu YG, Chen XC. Early-life stress leads to impaired spatial learning and memory in middle-aged ApoE4-TR mice. Mol Neurodegener 2016; 11:51. [PMID: 27406263 PMCID: PMC4941053 DOI: 10.1186/s13024-016-0107-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/12/2016] [Indexed: 12/25/2022] Open
Abstract
Background Apolipoprotein E (ApoE) is a major lipid carrier that supports lipid transport and injury repair in the brain. The APOE ε4 allele is associated with depression, mild cognitive impairment (MCI) and dementia; however, the precise molecular mechanism through which ApoE4 influences the risk of disease development remains unknown. To address this gap in knowledge, we investigated the potential effects of chronic unpredictable mild stress (CUMS) on ApoE3 and ApoE4 target replacement (ApoE3-TR and ApoE4-TR) mice. Results All ApoE-TR mice exposed to CUMS at 3 months old recovered from a depression-like state by the age of 12 months. Of note, ApoE4-TR mice, unlike age-matched ApoE3-TR mice, displayed impaired spatial cognitive abilities, loss of GABAergic neurons, decreased expression of Reelin, PSD95, SYN and Fyn, and reduced phosphorylation of NMDAR2B and CREB. Conclusion These results suggest that early-life stress may mediate cognitive impairment in middle-age ApoE4-TR mice through sustained reduction of GABAergic neurons and Reelin expression, which might further diminish the activation of the Fyn/NMDAR2B signaling pathway.
Collapse
Affiliation(s)
- Lan-Yan Lin
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Jing Zhang
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Xiao-Man Dai
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Nai-An Xiao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Xi-Lin Wu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Zhen Wei
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Wen-Ting Fang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Yuan-Gui Zhu
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Xiao-Chun Chen
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China. .,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China. .,Department of Neurology, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China.
| |
Collapse
|
17
|
Ennaceur A, Chazot PL. Preclinical animal anxiety research - flaws and prejudices. Pharmacol Res Perspect 2016; 4:e00223. [PMID: 27069634 PMCID: PMC4804324 DOI: 10.1002/prp2.223] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 12/22/2022] Open
Abstract
The current tests of anxiety in mice and rats used in preclinical research include the elevated plus-maze (EPM) or zero-maze (EZM), the light/dark box (LDB), and the open-field (OF). They are currently very popular, and despite their poor achievements, they continue to exert considerable constraints on the development of novel approaches. Hence, a novel anxiety test needs to be compared with these traditional tests, and assessed against various factors that were identified as a source of their inconsistent and contradictory results. These constraints are very costly, and they are in most cases useless as they originate from flawed methodologies. In the present report, we argue that the EPM or EZM, LDB, and OF do not provide unequivocal measures of anxiety; that there is no evidence of motivation conflict involved in these tests. They can be considered at best, tests of natural preference for unlit and/or enclosed spaces. We also argued that pharmacological validation of a behavioral test is an inappropriate approach; it stems from the confusion of animal models of human behavior with animal models of pathophysiology. A behavioral test is developed to detect not to produce symptoms, and a drug is used to validate an identified physiological target. In order to overcome the major methodological flaws in animal anxiety studies, we proposed an open space anxiety test, a 3D maze, which is described here with highlights of its various advantages over to the traditional tests.
Collapse
Affiliation(s)
| | - Paul L. Chazot
- School of Biological and Biomedical SciencesDurham UniversityDurhamUK
| |
Collapse
|
18
|
Zheng Y, Fan W, Zhang X, Dong E. Gestational stress induces depressive-like and anxiety-like phenotypes through epigenetic regulation of BDNF expression in offspring hippocampus. Epigenetics 2016; 11:150-62. [PMID: 26890656 DOI: 10.1080/15592294.2016.1146850] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Exposure to stressful life events during pregnancy exerts profound effects on neurodevelopment and increases the risk for several neurodevelopmental disorders including major depression. The mechanisms underlying the consequences of gestational stress are complex and remain to be elucidated. This study investigated the effects of gestational stress on depressive-like behavior and epigenetic modifications in young adult offspring. Gestational stress was induced by a combination of restraint and 24-hour light disturbance to pregnant dams throughout gestation. Depressive-like and anxiety-like behaviors of young adult offspring were examined. The expression and promoter methylation of brain derived neurotrophic factor (BDNF) were measured using RT-qPCR, Western blot, methylated DNA immunoprecipitation (MeDIP) and chromatin immunoprecipitation (ChIP). In addition, the expressions of histone deacetylases (HDACs) and acetylated histone H3 lysine 14 (AcH3K14) were also analyzed. Our results show that offspring from gestational stress dams exhibited depressive-like and anxiety-like behaviors. Biochemically, stress-offspring showed decreased expression of BDNF, increased expression of DNMT1, HDAC1, and HDAC2, and decreased expression of AcH3K14 in the hippocampus as compared to non-stress offspring. Data from MeDIP and ChIP assays revealed an increased methylation as well as decreased binding of AcH3K14 on specific BDNF promoters. Pearson analyses indicated that epigenetic changes induced by gestational stress were correlated with depressive-like and anxiety-like behaviors. These data suggest that gestational stress may be a suitable model for understanding the behavioral and molecular epigenetic changes observed in patients with depression.
Collapse
Affiliation(s)
- Yu Zheng
- a Oncology Department , The second affiliated hospital, Chongqing Medical University , No.76 Linjiang Road, Yuzhong District, Chongqing , China
| | - Weidong Fan
- a Oncology Department , The second affiliated hospital, Chongqing Medical University , No.76 Linjiang Road, Yuzhong District, Chongqing , China
| | - Xianquan Zhang
- a Oncology Department , The second affiliated hospital, Chongqing Medical University , No.76 Linjiang Road, Yuzhong District, Chongqing , China
| | - Erbo Dong
- a Oncology Department , The second affiliated hospital, Chongqing Medical University , No.76 Linjiang Road, Yuzhong District, Chongqing , China.,b The Psychiatric Institute , Department of Psychiatry , College of Medicine, University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
19
|
Demuyser T, Deneyer L, Bentea E, Albertini G, Van Liefferinge J, Merckx E, De Prins A, De Bundel D, Massie A, Smolders I. In-depth behavioral characterization of the corticosterone mouse model and the critical involvement of housing conditions. Physiol Behav 2015; 156:199-207. [PMID: 26707853 DOI: 10.1016/j.physbeh.2015.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022]
Abstract
Depression and anxiety are disabling and highly prevalent psychiatric disorders. To better understand the neurobiological basis of mood and anxiety disorders, relevant animal models are needed. The corticosterone mouse model is frequently used to study depression. Chronic stress and accompanying glucocorticoid elevation causes pathological changes in the central nervous system, which are related to psychiatric symptoms. Exogenous administration of corticosterone is therefore often used to induce depressive-like behavior in mice and in some cases also features of anxiety-like behavior are shown. However, a thorough characterization of this model has never been conducted and housing conditions of the used subjects often differ between the implemented protocols. We chronically administered a subcutaneous corticosterone bolus injection to single- and group-housed mice, and we subsequently evaluated the face validity of this model by performing a battery of behavioral tests (forced swim test, mouse-tail suspension test, saccharin intake test, novelty-suppressed feeding test, elevated plus maze, light/dark paradigm and open field test). Our results show that corticosterone treatment has a substantial overall effect on depressive-like behavior. Increases in anxiety-like behavior on the other hand are mainly seen in single housed animals, independent of treatment. The current study therefore does not only show a detailed behavioral characterization of the corticosterone mouse model, but furthermore also elucidates the critical influence of housing conditions on the behavioral outcome in this model.
Collapse
Affiliation(s)
- Thomas Demuyser
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lauren Deneyer
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eduard Bentea
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Giulia Albertini
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joeri Van Liefferinge
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ellen Merckx
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - An De Prins
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ann Massie
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
20
|
Zhang C, Chua BE, Yang A, Shabanpoor F, Hossain MA, Wade JD, Rosengren KJ, Smith CM, Gundlach AL. Central relaxin-3 receptor (RXFP3) activation reduces elevated, but not basal, anxiety-like behaviour in C57BL/6J mice. Behav Brain Res 2015; 292:125-32. [DOI: 10.1016/j.bbr.2015.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 01/02/2023]
|
21
|
Anxiogenic drug administration and elevated plus-maze exposure in rats activate populations of relaxin-3 neurons in the nucleus incertus and serotonergic neurons in the dorsal raphe nucleus. Neuroscience 2015; 303:270-84. [DOI: 10.1016/j.neuroscience.2015.06.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 12/20/2022]
|
22
|
Bentea E, Demuyser T, Van Liefferinge J, Albertini G, Deneyer L, Nys J, Merckx E, Michotte Y, Sato H, Arckens L, Massie A, Smolders I. Absence of system xc- in mice decreases anxiety and depressive-like behavior without affecting sensorimotor function or spatial vision. Prog Neuropsychopharmacol Biol Psychiatry 2015; 59:49-58. [PMID: 25619129 DOI: 10.1016/j.pnpbp.2015.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/05/2015] [Accepted: 01/16/2015] [Indexed: 01/22/2023]
Abstract
There is considerable preclinical and clinical evidence indicating that abnormal changes in glutamatergic signaling underlie the development of mood disorders. Astrocytic glutamate dysfunction, in particular, has been recently linked with the pathogenesis and treatment of mood disorders, including anxiety and depression. System xc- is a glial cystine/glutamate antiporter that is responsible for nonvesicular glutamate release in various regions of the brain. Although system xc- is involved in glutamate signal transduction, its possible role in mediating anxiety or depressive-like behaviors is currently unknown. In the present study, we phenotyped adult and aged system xc- deficient mice in a battery of tests for anxiety and depressive-like behavior (open field, light/dark test, elevated plus maze, novelty suppressed feeding, forced swim test, tail suspension test). Concomitantly, we evaluated the sensorimotor function of system xc- deficient mice, using motor and sensorimotor based tests (rotarod, adhesive removal test, nest building test). Finally, due to the presence and potential functional relevance of system xc- in the eye, we investigated the visual acuity of system xc- deficient mice (optomotor test). Our results indicate that loss of system xc- does not affect motor or sensorimotor function, in either adult or aged mice, in any of the paradigms investigated. Similarly, loss of system xc- does not affect basic visual acuity, in either adult or aged mice. On the other hand, in the open field and light/dark tests, and forced swim and tail suspension tests respectively, we could observe significant anxiolytic and antidepressive-like effects in system xc- deficient mice that in certain cases (light/dark, forced swim) were age-dependent. These findings indicate that, under physiological conditions, nonvesicular glutamate release via system xc- mediates aspects of higher brain function related to anxiety and depression, but does not influence sensorimotor function or spatial vision. As such, modulation of system xc- might constitute the basis of innovative interventions in mood disorders.
Collapse
Affiliation(s)
- Eduard Bentea
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Demuyser
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joeri Van Liefferinge
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Giulia Albertini
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lauren Deneyer
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julie Nys
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ellen Merckx
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yvette Michotte
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hideyo Sato
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ann Massie
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
23
|
Effects of intra-infralimbic prefrontal cortex injections of cannabidiol in the modulation of emotional behaviors in rats: Contribution of 5HT1A receptors and stressful experiences. Behav Brain Res 2015; 286:49-56. [DOI: 10.1016/j.bbr.2015.02.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 01/27/2023]
|
24
|
Santos ECS, Bicca MA, Blum-Silva CH, Costa APR, Dos Santos AA, Schenkel EP, Farina M, Reginatto FH, de Lima TCM. Anxiolytic-like, stimulant and neuroprotective effects of Ilex paraguariensis extracts in mice. Neuroscience 2015; 292:13-21. [PMID: 25681522 DOI: 10.1016/j.neuroscience.2015.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/16/2015] [Accepted: 02/03/2015] [Indexed: 01/07/2023]
Abstract
Yerba-mate (Ilex paraguariensis St. Hil.) is the most used beverage in Latin America with approximately 426 thousand of tons consumed per year. Considering the broad use of this plant, we aimed to investigate the anxiety-like and stimulant activity of both the hydroethanolic (HE) and aqueous (AE) extracts from leaves of I. paraguariensis. Swiss mice were treated with I. paraguariensis HE or AE chronically or acutely, respectively, followed by evaluation in the elevated plus-maze (EPM; anxiety-like paradigm), open field (OF; locomotor activity) or the step-down avoidance task (memory assessment). Following behavioral protocols the brains were collected for evaluation of acetylcholinesterase (AChE) activity ex vivo. Chronic treatment with HE induced an anxiolytic-like effect and increased motor activity besides augmented AChE activity. Additionally, acute treatment with AE prevented the scopolamine-induced memory deficit in the step-down avoidance task. Overall, our results indicate the importance of the I. paraguariensis-induced CNS effects, since it is a widely used nutraceutical. We have reported anxiolytic, stimulant and neuroprotective effects for this plant species. These effects are potentially modulated by the cholinergic system as well as by caffeine.
Collapse
Affiliation(s)
- E C S Santos
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil
| | - M A Bicca
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil
| | - C H Blum-Silva
- Departamento de Ciências Farmacêuticas, Centro de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil
| | - A P R Costa
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil
| | - A A Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil
| | - E P Schenkel
- Departamento de Ciências Farmacêuticas, Centro de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil
| | - M Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil
| | - F H Reginatto
- Departamento de Ciências Farmacêuticas, Centro de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil
| | - T C M de Lima
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
25
|
Abuhamdah RM, Hussain MD, Chazot PL, Ennaceur A. Effects of chronic fluoxetine treatment on anxious behaviour of BALB/c mice in a 3-dimensional maze. Stress 2015; 18:677-85. [PMID: 26365460 DOI: 10.3109/10253890.2015.1083550] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Here we used a 3-dimensional (3D) maze, a modification of the radial maze, to assess the effects of treatment for two weeks with a single daily dose of fluoxetine (20 mg/kg, i.p.) on anxiety in male BALB/c mice. We examined whether anxiolytic effects of fluoxetine can be detected over three daily test sessions. We examined also whether repeated handling associated with chronic treatment interferes with effects of fluoxetine on anxiety responses. The 3D maze comprises nine arms, each connected to an upward inclined bridge radiating from a central platform. In this maze, BALB/c mice cross frequently into the bridges but avoid the arms. This avoidance is used as an index of anxiety. Two separate groups received once a day either saline (SALCH, n = 8) or fluoxetine (FLUCH, n = 8) for 14 days, and up to 30 min before the test during the subsequent 3 days. A third group received saline (SALAC, n = 8) 30 min before the test, once a day for 3 days. SALAC mice did not cross into the arms, and continued this avoidance over 3 sessions. SALCH mice avoided the arms in session 1 whereas FLUCH mice did cross into the arms, and like SALCH mice, increased number of crossings into and time on the arms in subsequent sessions. Fluoxetine evidently had an anxiolytic effect but only in the first session. These results indicate that handling experience decreased fear and anxiety in the mice, which may have masked the anxiolytic effect of fluoxetine in the second and third test sessions.
Collapse
Affiliation(s)
- R M Abuhamdah
- a Sunderland Pharmacy School, University of Sunderland , Sunderland , UK and
- b School of Biological and Biomedical Sciences, Durham University , Durham , UK
| | - M D Hussain
- a Sunderland Pharmacy School, University of Sunderland , Sunderland , UK and
- b School of Biological and Biomedical Sciences, Durham University , Durham , UK
| | - P L Chazot
- b School of Biological and Biomedical Sciences, Durham University , Durham , UK
| | - A Ennaceur
- a Sunderland Pharmacy School, University of Sunderland , Sunderland , UK and
| |
Collapse
|
26
|
Hewlett KA, Kelly MH, Corbett D. ‘Not-so-minor’ stroke: Lasting psychosocial consequences of anterior cingulate cortical ischemia in the rat. Exp Neurol 2014; 261:543-50. [DOI: 10.1016/j.expneurol.2014.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/10/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
|
27
|
Campos AC, Fogaça MV, Aguiar DC, Guimarães FS. Animal models of anxiety disorders and stress. BRAZILIAN JOURNAL OF PSYCHIATRY 2014; 35 Suppl 2:S101-11. [PMID: 24271222 DOI: 10.1590/1516-4446-2013-1139] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Anxiety and stress-related disorders are severe psychiatric conditions that affect performance in daily tasks and represent a high cost to public health. The initial observation of Charles Darwin that animals and human beings share similar characteristics in the expression of emotion raise the possibility of studying the mechanisms of psychiatric disorders in other mammals (mainly rodents). The development of animal models of anxiety and stress has helped to identify the pharmacological mechanisms and potential clinical effects of several drugs. Animal models of anxiety are based on conflict situations that can generate opposite motivational states induced by approach-avoidance situations. The present review revisited the main rodent models of anxiety and stress responses used worldwide. Here we defined as "ethological" the tests that assess unlearned/unpunished responses (such as the elevated plus maze, light-dark box, and open field), whereas models that involve learned/punished responses are referred to as "conditioned operant conflict tests" (such as the Vogel conflict test). We also discussed models that involve mainly classical conditioning tests (fear conditioning). Finally, we addressed the main protocols used to induce stress responses in rodents, including psychosocial (social defeat and neonatal isolation stress), physical (restraint stress), and chronic unpredictable stress.
Collapse
Affiliation(s)
- Alline C Campos
- Laboratory of Immunopharmacology, Institute of Biological Sciences, School of Medicine, Universidade Federal de Minas Gerais, Belo HorizonteMG, Brazil
| | | | | | | |
Collapse
|
28
|
Bert B, Schmidt N, Voigt J, Fink H, Rex A. Evaluation of cage leaving behaviour in rats as a free choice paradigm. J Pharmacol Toxicol Methods 2013; 68:240-249. [DOI: 10.1016/j.vascn.2013.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 12/28/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
|
29
|
A translational rodent assay of affective biases in depression and antidepressant therapy. Neuropsychopharmacology 2013; 38:1625-35. [PMID: 23503126 PMCID: PMC3717539 DOI: 10.1038/npp.2013.69] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 02/08/2013] [Accepted: 02/27/2013] [Indexed: 12/26/2022]
Abstract
The subjective measures used to study mood disorders in humans cannot be replicated in animals; however, the increasing application of objective neuropsychological methods provides opportunities to develop translational animal tasks. Here we describe a novel behavioral approach, which has enabled us to investigate similar affective biases in rodents. In our affective bias test (ABT), rats encounter two independent positive experiences--the association between food reward and specific digging substrate--during discrimination learning sessions. These are performed on separate days under either neutral conditions or during a pharmacological or affective state manipulation. Affective bias is then quantified using a preference test where both previously rewarded substrates are presented together and the rat's choices recorded. The absolute value of the experience is kept consistent and all other factors are counterbalanced so that any bias at recall can be attributed to treatment. Replicating previous findings from studies in healthy volunteers, we observe significant positive affective biases following acute treatment with typical (fluoxetine, citalopram, reboxetine, venlafaxine, clomipramine) and atypical antidepressants (agomelatine, mirtazapine), and significant negative affective biases following treatment with drugs associated with inducing negative affective states in humans (FG7142, rimonabant, 13-cis retinoic acid). We also observed that acute psychosocial stress and environmental enrichment induce significant negative and positive affective biases, respectively, and provide evidence that these affective biases involve memory consolidation. The positive and negative affective biases induced in our test also mirror the antidepressant and pro-depressant effects of these drugs in patients suggesting our test has both translational and predictive validity. Our results suggest that cognitive affective biases could contribute to drug- or stress-induced mood changes in people and support the hypothesis that a cognitive neuropsychological mechanism contributes to antidepressant drug efficacy.
Collapse
|
30
|
Yeung M, Lu L, Hughes AM, Treit D, Dickson CT. FG7142, yohimbine, and βCCE produce anxiogenic-like effects in the elevated plus-maze but do not affect brainstem activated hippocampal theta. Neuropharmacology 2013; 75:47-52. [PMID: 23851259 DOI: 10.1016/j.neuropharm.2013.06.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/20/2013] [Accepted: 06/27/2013] [Indexed: 01/08/2023]
Abstract
The neurobiological underpinnings of anxiety are of paramount importance to selective and efficacious pharmaceutical intervention. Hippocampal theta frequency in urethane anaesthetized rats is suppressed by all known (and some previously unknown) anti-anxiety (anxiolytic) drugs. Although these findings support the predictive validity of this assay, its construct validity (i.e., whether theta frequency actually indexes anxiety per se) has not been a subject of systematic investigation. We reasoned that if anxiolytic drugs suppress hippocampal theta frequency, then drugs that increase anxiety (i.e., anxiogenic agents) should increase theta frequency, thus providing evidence of construct validity. We used three proven anxiogenic drugs--two benzodiazepine receptor inverse agonists, N-methyl-β-carboline-3-carboxamide (FG7142) and β-carboline-3-carboxylate ethyl ester (βCCE), and one α2 noradrenergic receptor antagonist, 17α-hydroxy-yohimban-16α-carboxylic acid methyl ester (yohimbine) as pharmacological probes to assess the construct validity of the theta model. Although all three anxiogenic drugs significantly increased behavioural measures of anxiety in the elevated plus-maze, none of the three increased the frequency of hippocampal theta oscillations in the neurophysiological model. As a positive control, we demonstrated that diazepam, a proven anxiolytic drug, decreased the frequency of hippocampal theta, as in all other studies using this model. Given this discrepancy between the significant effects of anxiogenic drugs in the behavioural model and the null effects of these drugs in the neurophysiological model, we conclude that the construct validity of the hippocampal theta model of anxiety is questionable.
Collapse
Affiliation(s)
- Michelle Yeung
- Department of Psychology, University of Alberta, P-449 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9
| | - Lily Lu
- Department of Psychology, University of Alberta, P-449 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9
| | - Adam M Hughes
- Department of Psychology, University of Alberta, P-449 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9
| | - Dallas Treit
- Department of Psychology, University of Alberta, P-449 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9; Centre for Neuroscience, 513 Heritage Medical Research Center, University of Alberta, Edmonton, AB, Canada T6G 2R3.
| | - Clayton T Dickson
- Department of Psychology, University of Alberta, P-449 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9; Centre for Neuroscience, 513 Heritage Medical Research Center, University of Alberta, Edmonton, AB, Canada T6G 2R3; Department of Physiology, 7-55 Medical Sciences Building, University of Alberta, Edmonton, AB, Canada T6G 2H7
| |
Collapse
|
31
|
Sorregotti T, Mendes-Gomes J, Rico JL, Rodgers RJ, Nunes-de-Souza RL. Ethopharmacological analysis of the open elevated plus-maze in mice. Behav Brain Res 2013; 246:76-85. [DOI: 10.1016/j.bbr.2013.02.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/20/2013] [Accepted: 02/24/2013] [Indexed: 10/27/2022]
|
32
|
Kurumaji A, Nishikawa T. An anxiogenic drug, FG 7142, induced an increase in mRNA of Btg2 and Adamts1 in the hippocampus of adult mice. Behav Brain Funct 2012; 8:43. [PMID: 22913326 PMCID: PMC3541064 DOI: 10.1186/1744-9081-8-43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/09/2012] [Indexed: 01/03/2023] Open
Abstract
Background Anxiety and stress-related disorders are among the most common psychiatric disorders. The hippocampus is a crucial brain area involved in the neural circuits of the pathophysiology of anxiety and stress-related disorders, and GABA is one of most important neurotransmitters related to these disorders. An anxiogenic drug and a pharmacological stressor, FG7142 (N-methyl-ß-carboline-3-carboxamide), produces anxiety in humans and experimental animals, acting at the benzodiazepine sites of the GABAA receptors as a partial inverse agonist. This drug as well as immobilization stress produced an increased mRNA in a number of genes, e.g., Btg2 and Adamsts1, in the cortex of rodents. The present study was carried out to clarify the effect of the anxiogenic drug on the gene expressions in the hippocampus and to obtain a new insight into the GABAergic system involved in the pathophysiology of the disorders. Method We examined the effects of FG7142 on the gene expression of Btg2 and Adamts1 in the hippocampus of mice using a quantitative RT-PCR method as well as an in situ hybridization method. Results The intraperitoneal administration of FG7142 at a dose of 20 mg/kg, but not 10 mg/kg, induced a statistically significant increase in the hippocampal mRNA of both genes in adult mice (postnatal days 56), being blocked by co-administrations of flumazenil (twice of 10 mg/kg, i.p.), an antagonist at the benzodiazepine binding site, while FG7142 failed to produce any change in the gene expressions in infant mice (postnatal days 8). In addition, the in situ hybridization experiment demonstrated an upregulation of the gene expressions restricted to the dentate gyrus of the hippocampus in adult mice. Conclusions The present study suggests a functional coupling between the GABAergic system and the transcriptional regulation of the two genes (Btg2 and Adamsts1) in the hippocampus of adult mice, which may play a role in the brain function related to anxiety and stress such as memory of fear.
Collapse
Affiliation(s)
- Akeo Kurumaji
- Section of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | |
Collapse
|
33
|
Choy KHC, Yu J, Hawkes D, Mayorov DN. Analysis of vigilant scanning behavior in mice using two-point digital video tracking. Psychopharmacology (Berl) 2012; 221:649-57. [PMID: 22193725 DOI: 10.1007/s00213-011-2609-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 12/04/2011] [Indexed: 11/26/2022]
Abstract
RATIONALE Vigilant scanning of the environment is a major risk assessment activity in many species. However, due to difficulties in its manual scoring, scanning has rarely been quantified in laboratory rodent studies. OBJECTIVES AND METHODS We developed a novel method for automated measurement of vigilant scanning in mice, based on simultaneous tracking of an animal's nose- and center-points. The studied scanning parameters included the frequency and duration of scans and scanning (nose-point) speed. The sensitivity of these parameters to anxiolytic diazepam (1-2 mg/kg) and anxiogenic FG-7142 (5 mg/kg) was evaluated upon exposure to the context (conditioning chamber) before and 24 h after footshock. RESULTS Scanning behavior was observed in all C57BL/6, 129xC57BL/6, and DBA/2 mice, as recurrent stationary episodes accompanied by observatory head movements. These episodes respectively comprised 28 ± 1%, 29 ± 1%, and 24 ± 2% of preexposure time. Diazepam dose-dependently decreased the scanning frequency and duration, without affecting the scanning speed. Fear conditioning increased freezing and inhibited other behaviors upon reexposure, with scanning being only marginally affected and still comprising 17 ± 2%, 16 ± 2%, and 19 ± 1% of reexposure time, respectively. Consequently, scanning accounted for most (DBA/2) or virtually all (C57BL/6 and 129xC57BL/6) gross motor activities upon reexposure. FG-7142 mirrored the effects of conditioning, inducing behavioral inhibition with scanning being least affected. CONCLUSIONS Two-point tracking is effective for studying vigilant scanning in mice. Using this approach, we show that scanning is a key risk assessment activity in both unconditioned and conditioned mice; scanning is resistant to threat-induced behavioral inhibition and is highly sensitive to anxiolytic treatment.
Collapse
Affiliation(s)
- Kwok Ho C Choy
- Department of Pharmacology, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | | | | | |
Collapse
|
34
|
Abstract
Animal tests of anxiety are used to screen novel compounds for anxiolytic or anxiogenic activity, to investigate the neurobiology of anxiety, and to assess the impact of other occurrences such as exposure to predator odors or early rearing experiences. This unit presents protocols for the most commonly used animal tests of anxiety. The Geller-Seifter conflict test, the social interaction test, light/dark exploration, the elevated plus-maze, defensive burying, and the thirsty rat conflict. The protocols are described in terms of drug screening tests, but can be modified easily for other purposes.
Collapse
|
35
|
de Almeida AAC, Costa JP, de Carvalho RBF, de Sousa DP, de Freitas RM. Evaluation of acute toxicity of a natural compound (+)-limonene epoxide and its anxiolytic-like action. Brain Res 2012; 1448:56-62. [PMID: 22364736 DOI: 10.1016/j.brainres.2012.01.070] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 01/27/2012] [Accepted: 01/30/2012] [Indexed: 11/17/2022]
Abstract
The aim of the study is to determine the acute toxicity and anxiolytic-like effects of a mixture of cis and trans of (+)-limonene epoxide in animal models of anxiety. After acute treatment with (+)-limonene epoxide at doses of 25, 50 and 75 mg/kg (i.p.) no mortality was noted during 14 days of observation. In general, behavior, food and water consumption showed no significant changes. In open field test, (+)-limonene epoxide at doses of 25, 50 and 75 mg/kg, after intraperitoneal administration, significantly decreased the number of crossings, grooming and rearing (p<0.001). All these effects were reversed by the pre-treatment with flumazenil (25 mg/kg, i.p.), similar to those observed with diazepam used as a positive standard. In the elevated-plus-maze test, (+)-limonene epoxide increased the time of permanence and the number of entrances in the open arms. All these effects were reversed by flumazenil, an antagonist of benzodiazepine receptors. In addition, (+)-limonene epoxide (75 mg/kg) also produced a significant inhibition of the motor coordination (p<0.01), that was reversed by flumazenil. In conclusion, the present work evidenced sedative and anxiolytic-like effects of (+)-limonene epoxide, which might involve an action on benzodiazepine-type receptors. These results indicate that the properties of (+)-limonene epoxide should be more thoroughly examined in order to achieve newer tools for management and/or treatment of central nervous system diseases and anxiolytic-like effects. The LD50 obtained for the acute toxicity studies using intraperitoneal route of administration was 4.0 g/kg. These findings suggest that acute administration of the (+)-limonene epoxide exerts an anxiolytic-like effect on mice, and it could serve as a new approach for the treatment anxiety, since it practically does not produce toxic effects.
Collapse
|
36
|
Williams LR, Wong K, Stewart A, Suciu C, Gaikwad S, Wu N, Dileo J, Grossman L, Cachat J, Hart P, Kalueff AV. Behavioral and physiological effects of RDX on adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:33-8. [PMID: 21382508 DOI: 10.1016/j.cbpc.2011.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/25/2011] [Accepted: 02/26/2011] [Indexed: 11/22/2022]
Abstract
1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) is a nitroamine explosive, with common toxic effects including seizures. Here, we explore the behavioral effects of acute RDX exposure in adult zebrafish Danio rerio, a rapidly developing model in neuroscience and neurotoxicology research. Overall, a 30-min exposure to RDX low dose of 0.1 mM evoked behavioral activation in zebrafish, while a higher dose of 1 mM markedly reduced exploration, increased freezing and evoked seizure-like responses (i.e., bouts of hyperactivity, spasms, and corkscrew swimming). Likewise, whole-body cortisol levels were also significantly elevated in fish exposed to 1 mM (but not 0.1 mM) RDX. In line with clinical and animal data, our study demonstrates the dose-dependent behavioral activation and pro-convulsant effects of RDX in zebrafish-based models.
Collapse
Affiliation(s)
- Larry R Williams
- Directorate of Toxicology Health Effects Research Program, US Army Public Health Command, 5158 Blackhawk Rd. Aberdeen Proving Ground, MD 21010-5403, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sartori SB, Landgraf R, Singewald N. The clinical implications of mouse models of enhanced anxiety. FUTURE NEUROLOGY 2011; 6:531-571. [PMID: 21901080 PMCID: PMC3166843 DOI: 10.2217/fnl.11.34] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mice are increasingly overtaking the rat model organism in important aspects of anxiety research, including drug development. However, translating the results obtained in mouse studies into information that can be applied in clinics remains challenging. One reason may be that most of the studies so far have used animals displaying 'normal' anxiety rather than 'psychopathological' animal models with abnormal (elevated) anxiety, which more closely reflect core features and sensitivities to therapeutic interventions of human anxiety disorders, and which would, thus, narrow the translational gap. Here, we discuss manipulations aimed at persistently enhancing anxiety-related behavior in the laboratory mouse using phenotypic selection, genetic techniques and/or environmental manipulations. It is hoped that such models with enhanced construct validity will provide improved ways of studying the neurobiology and treatment of pathological anxiety. Examples of findings from mouse models of enhanced anxiety-related behavior will be discussed, as well as their relation to findings in anxiety disorder patients regarding neuroanatomy, neurobiology, genetic involvement and epigenetic modifications. Finally, we highlight novel targets for potential anxiolytic pharmacotherapeutics that have been established with the help of research involving mice. Since the use of psychopathological mouse models is only just beginning to increase, it is still unclear as to the extent to which such approaches will enhance the success rate of drug development in translating identified therapeutic targets into clinical trials and, thus, helping to introduce the next anxiolytic class of drugs.
Collapse
Affiliation(s)
- Simone B Sartori
- Department of Pharmacology & Toxicology, Institute of Pharmacy & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayr-Street 1, A-6020, Innsbruck, Austria
| | - Rainer Landgraf
- Max Planck Institute of Psychiatry, Department of Behavioral Neuroendocrinology, Munich, Germany
| | - Nicolas Singewald
- Department of Pharmacology & Toxicology, Institute of Pharmacy & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayr-Street 1, A-6020, Innsbruck, Austria
| |
Collapse
|
38
|
Bambico FR, Cassano T, Dominguez-Lopez S, Katz N, Walker CD, Piomelli D, Gobbi G. Genetic deletion of fatty acid amide hydrolase alters emotional behavior and serotonergic transmission in the dorsal raphe, prefrontal cortex, and hippocampus. Neuropsychopharmacology 2010; 35:2083-100. [PMID: 20571484 PMCID: PMC3055302 DOI: 10.1038/npp.2010.80] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pharmacological blockade of the anandamide-degrading enzyme, fatty acid amide hydrolase (FAAH), produces CB(1) receptor (CB(1)R)-mediated analgesic, anxiolytic-like and antidepressant-like effects in murids. Using behavioral and electrophysiological approaches, we have characterized the emotional phenotype and serotonergic (5-HT) activity of mice lacking the FAAH gene in comparison to their wild type counterparts, and their response to a challenge of the CB(1)R antagonist, rimonabant. FAAH null-mutant (FAAH(-/-)) mice exhibited reduced immobility in the forced swim and tail suspension tests, predictive of antidepressant activity, which was attenuated by rimonabant. FAAH(-/-) mice showed an increase in the duration of open arm visits in the elevated plus maze, and a decrease in thigmotaxis and an increase in exploratory rearing displayed in the open field, indicating anxiolytic-like effects that were reversed by rimonabant. Rimonabant also prolonged the initiation of feeding in the novelty-suppressed feeding test. Electrophysiological recordings revealed a marked 34.68% increase in dorsal raphe 5-HT neural firing that was reversed by rimonabant in a subset of neurons exhibiting high firing rates (33.15% mean decrease). The response of the prefrontocortical pyramidal cells to the 5-HT(2A/2C) agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane ((+/-)-DOI) revealed desensitized 5-HT(2A/2C) receptors, likely linked to the observed anxiolytic-like behaviors. The hippocampal pyramidal response to the 5-HT(1A) antagonist, WAY-100635, indicates enhanced tonus on the hippocampal 5-HT(1A) heteroreceptors, a hallmark of antidepressant-like action. Together, these results suggest that FAAH genetic deletion enhances anxiolytic-like and antidepressant-like effects, paralleled by altered 5-HT transmission and postsynaptic 5-HT(1A) and 5-HT(2A/2C) receptor function.
Collapse
Affiliation(s)
| | - Tommaso Cassano
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy
| | - Sergio Dominguez-Lopez
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Noam Katz
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Claire Dominique Walker
- Neuroscience and Mood, Anxiety and Impulsivity Disorders-Related Research Division, Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Daniele Piomelli
- Department of Pharmacology and Center for Drug Discovery, University of California, Irvine, CA, USA
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, QC, Canada,Department of Psychiatry Research and Training Building, McGill University, Neurobiological Psychiatry Unit, 1033 Pine Avenue West, Montréal, Québec, Canada H3A 1A1, Tel: +1 514 398 1290, Fax: +1 514 398 4866, E-mail:
| |
Collapse
|
39
|
Fraser LM, Brown RE, Hussin A, Fontana M, Whittaker A, O'Leary TP, Lederle L, Holmes A, Ramos A. Measuring anxiety- and locomotion-related behaviours in mice: a new way of using old tests. Psychopharmacology (Berl) 2010; 211:99-112. [PMID: 20454890 DOI: 10.1007/s00213-010-1873-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 04/19/2010] [Indexed: 12/14/2022]
Abstract
RATIONALE Batteries of tests that are thought to measure different aspects of anxiety-related behaviour are used to characterise mice after genetic or pharmacological manipulation. However, because of the potentially confounding effects of repeated testing and natural intra-individual variations in behaviour over time, subjecting mice to a succession of tests is not ideal. OBJECTIVES The aim of this study was to investigate, in mice, the utility of an integrated apparatus that combines three classical tests of anxiety, the open field, elevated plus maze (EPM) and light/dark box. METHODS Mice from four different strains (CD-1, BALB/cJ, DBA/2J, C57BL/6J) were used in a series of five experiments where their behaviour was observed for 15 min in the integrated apparatus. Responses to anxiety-modulating drugs and 2-day repeated testing were evaluated. RESULTS CD-1 mice explored the apparatus thoroughly, providing measures from all areas throughout the entire testing session. Factor analysis showed that measures of locomotion and anxiety-related behaviour were dissociable. BALB/cJ, DBA/2J and C57BL/6J showed markedly different behavioural profiles, largely consistent with previous studies examining individual tests. Avoidance of aversive environments did not increase with repeated testing. In CD-1 mice, the anxiolytics diazepam and alprazolam (4 and 2 mg/kg, respectively) increased the approach towards the EPM open arms. Alprazolam also had sedative effects, whereas the anxiogenic pentylenetetrazole had no effects. CONCLUSIONS These findings suggest that the triple test is sensitive to genetic/pharmacological influences on anxiety and locomotion and that, by providing quasi-simultaneous measures from three different apparatuses, it may represent an alternative to the use of test batteries.
Collapse
Affiliation(s)
- Leanne M Fraser
- Psychology Department and Neuroscience Institute, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4J1
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bijlsma EY, de Jongh R, Olivier B, Groenink L. Fear-potentiated startle, but not light-enhanced startle, is enhanced by anxiogenic drugs. Pharmacol Biochem Behav 2010; 96:24-31. [PMID: 20394767 DOI: 10.1016/j.pbb.2010.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 02/16/2010] [Accepted: 04/06/2010] [Indexed: 01/27/2023]
Abstract
RATIONALE AND OBJECTIVES The light-enhanced startle paradigm (LES) is suggested to model anxiety, because of the non-specific cue and the long-term effect. In contrast, the fear-potentiated startle (FPS) is suggested to model conditioned fear. However, the pharmacological profiles of these two paradigms are very similar. The present study investigated the effects of putative anxiogenic drugs on LES and FPS and aimed at determining the sensitivity of LES for anxiogenic drugs and to potentially showing a pharmacological differentiation between these two paradigms. METHODS Male Wistar rats received each dose of the alpha(2)-adrenoceptor antagonist yohimbine (0.25-1.0mg/kg), the 5-HT(2C) receptor agonist m-chlorophenylpiperazine (mCPP, 0.5-2.0mg/kg) or the GABA(A) inverse receptor agonist pentylenetetrazole (PTZ, 3-30mg/kg) and were subsequently tested in either LES or FPS. RESULTS None of the drugs enhanced LES, whereas mCPP increased percentage FPS and yohimbine increased absolute FPS values. Furthermore, yohimbine increased baseline startle amplitude in the LES, while mCPP suppressed baseline startle in both the LES and FPS and PTZ suppressed baseline startle in the FPS. CONCLUSIONS In contrast to findings in the FPS paradigm, none of the drugs were able to exacerbate the LES response. Thus, a clear pharmacological differentiation was found between LES and FPS.
Collapse
Affiliation(s)
- Elisabeth Yvonne Bijlsma
- Section Psychopharmacology, Utrecht Institute for Pharmaceutical Sciences and Rudolf Magnus Institute of Neuroscience, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
41
|
Curio M, Jacone H, Perrut J, Pinto ÂC, Filho VFV, Silva RCB. Acute effect of Copaifera reticulata Ducke copaiba oil in rats tested in the elevated plus-maze: an ethological analysis. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.08.0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
Copaiba oil oleoresin exuded from Copaifera reticulata Ducke (CRD) is commonly used in anti-inflammatory, healing and anti-tumoral folk medicines. The purpose of this study was to investigate the putative anxiolytic effect of acute administration of CRD.
Methods
CRD was administered (100, 400 and 800 mg/kg, p.o.) to male Wistar rats submitted to the elevated plus-maze model of anxiety using an ethopharmacological analysis.
Key findings
In comparison with control rats, CRD increased the percentage of entries in the open arms over the entire dose range tested (vehicle, 33.6 ± 4.5; CRD 100 mg/kg, 44.67 ± 3.68; CRD 400 mg/kg, 47.2 ± 2.3; CRD 800 mg/kg, 50.7 ± 2.2) and the percentage of time spent in the open arms of the elevated plus-maze at the highest dose (800 mg/kg) (vehicle, 26.4 ± 5.7; CRD 800 mg/kg, 52.0 ± 2.7). A standard anxiolytic, diazepam (3 mg/kg, p.o.), was used as a positive control. In a similar way, diazepam increased the percentage of entries and time spent in the open arms when compared with vehicle (% open entries: vehicle, 45.4 ± 1.3; diazepam, 50.7 ± 1.9; % time spent in open arms: vehicle, 28.2 ± 0.9; diazepam, 38.9 ± 1.2). Regarding ethological measures, CRD at the highest dose (800 mg/kg) reduced peeping out (anxiety-related behaviour) (vehicle, 3.1 ± 0.6; CRD, 0.9 ± 0.2) and increased end-arm activity (vehicle, 0.2 ± 0.2; CRD, 2.0 ± 0.4), indicating an enhanced tendency of the rats to explore actively the potentially dangerous areas of the maze. Diazepam decreased peeping out (vehicle, 3.3 ± 0.3; diazepam, 1.0 ± 0.2) and flat-back approach (vehicle, 0.8 ± 0.2; diazepam, 0.2 ± 0.1) and increased end-arm activity (vehicle, 0.3 ± 0.1; diazepam, 2.5 ± 0.3) and head-dipping (vehicle, 8.2 ± 0.4; diazepam, 12.0 ± 0.5).
Conclusions
These data showed, for the first time, that acute treatment with CRD copaiba oil produced a dose-dependent anxiolytic-like effect over the dose range tested, on conventional and ethological parameters, without adversely affecting general activity levels.
Collapse
Affiliation(s)
- Mateus Curio
- Laboratório de Psicologia Comparada, Departamento de Psicologia e Educação, Universidade Estácio de Sá, Nova Friburgo, Rio de Janeiro, Brazil
| | - Hellena Jacone
- Laboratório de Psicologia Comparada, Departamento de Psicologia e Educação, Universidade Estácio de Sá, Nova Friburgo, Rio de Janeiro, Brazil
| | - Jaime Perrut
- Laboratório de Psicologia Comparada, Departamento de Psicologia e Educação, Universidade Estácio de Sá, Nova Friburgo, Rio de Janeiro, Brazil
| | - Âengelo C Pinto
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Valdir F Veiga Filho
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Regina C B Silva
- Laboratório de Psicologia Experimental, Departamento de Biociências, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| |
Collapse
|
42
|
Mamczarz J, Pereira EF, Aracava Y, Adler M, Albuquerque EX. An acute exposure to a sub-lethal dose of soman triggers anxiety-related behavior in guinea pigs: interactions with acute restraint. Neurotoxicology 2010; 31:77-84. [PMID: 19883683 PMCID: PMC5644990 DOI: 10.1016/j.neuro.2009.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 10/23/2009] [Indexed: 11/20/2022]
Abstract
In this study, we tested the hypothesis that a single exposure of guinea pigs to sub-lethal doses of soman triggers anxiety-related behavior that is modifiable by acute stress. Prepubertal male guinea pigs were subjected to one of the following treatments: (i) saline (0.5 ml/kg, sc), (ii) soman (0.6x or 0.8xLD50, sc), (iii) saline followed 30 min later by 2-h restraint, or (iv) soman followed 30 min later by 2-h restraint. Behavior of the animals was examined 2 and 3 months later in a large open field and in the elevated plus maze. Animals that had been exposed to restraint stress alone or soman alone showed decreased exploratory activity when tested in the open field with bare floor at light intensity of 20-30 lx. Total distance traveled and distance traveled in the center of the field were shorter for animals that were exposed to either restraint stress or soman than for saline-injected animals. In addition, animals challenged with soman or restraint stress remained immobile for a longer time in the open field than did saline-injected guinea pigs. Performance in the elevated plus maze test revealed that exposure of guinea pigs to soman or restraint stress decreased their number of entries and the time spent in the open arms of the maze (measures of anxiety) and reduced their overall locomotor activity. Soman exposure and restraint stress cancelled out each other's effect on locomotion, while only attenuating one another's effect on anxiety-related behavior. It is concluded that a single exposure to sub-lethal doses of soman triggers long-lasting anxiogenesis and decreased locomotor activity and that acute restraint stress modifies the magnitude of these effects.
Collapse
Affiliation(s)
- Jacek Mamczarz
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD
| | - Edna F.R. Pereira
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD
| | - Yasco Aracava
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD
| | - Michael Adler
- Neurobehavior and Toxicology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD
| | - Edson X. Albuquerque
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
43
|
Bambico FR, Nguyen NT, Katz N, Gobbi G. Chronic exposure to cannabinoids during adolescence but not during adulthood impairs emotional behaviour and monoaminergic neurotransmission. Neurobiol Dis 2009; 37:641-55. [PMID: 19969082 DOI: 10.1016/j.nbd.2009.11.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/21/2009] [Accepted: 11/26/2009] [Indexed: 12/27/2022] Open
Abstract
The pathophysiological neural mechanism underlying the depressogenic and anxiogenic effects of chronic adolescent cannabinoid use may be linked to perturbations in monoaminergic neurotransmission. We tested this hypothesis by administering the CB(1) receptor agonist WIN55,212-2, once daily for 20 days to adolescent and adult rats, subsequently subjecting them to tests for emotional reactivity paralleled by the in vivo extracellular recordings of serotonergic and noradrenergic neurons. Chronic adolescent exposure but not adult exposure to low (0.2 mg/kg) and high (1.0 mg/kg) doses led to depression-like behaviour in the forced swim and sucrose preference test, while the high dose also induced anxiety-like consequences in the novelty-suppressed feeding test. Electrophysiological recordings revealed both doses to have attenuated serotonergic activity, while the high dose also led to a hyperactivity of noradrenergic neurons only after adolescent exposure. These suggest that long-term exposure to cannabinoids during adolescence induces anxiety-like and depression-like behaviours in adulthood and that this may be instigated by serotonergic hypoactivity and noradrenergic hyperactivity.
Collapse
Affiliation(s)
- Francis Rodriguez Bambico
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, Canada H3A1A1
| | | | | | | |
Collapse
|
44
|
Clément Y, Le Guisquet AM, Venault P, Chapouthier G, Belzung C. Pharmacological alterations of anxious behaviour in mice depending on both strain and the behavioural situation. PLoS One 2009; 4:e7745. [PMID: 19907641 PMCID: PMC2770638 DOI: 10.1371/journal.pone.0007745] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 08/06/2009] [Indexed: 11/18/2022] Open
Abstract
A previous study comparing non-emotive mice from the strain C57BL/6/ByJ with ABP/Le mice showed ABP/Le to be more anxious in an open-field situation. In the present study, several compounds affecting anxiety were assayed on ABP/Le and C57BL/6/ByJ mice using three behavioural models of anxiety: the elevated plus-maze, the light-dark discrimination test and the free exploratory paradigm. The compounds used were the full benzodiazepine receptor agonist, chlordiazepoxide, and the antagonist, flumazenil, the GABA(A) antagonist, bicuculline, the full 5-HT(1A) agonist 8-OH-DPAT, and the mixed 5-HT(1A)/5-HT(1B) agonist, RU 24969. Results showed the effect of the compounds to be dependent on both the strain and the behavioural task. Several compounds found to be anxiolytic in ABP/Le mice had an anxiogenic effect on C57BL/6/ByJ mice. More behavioural changes were observed for ABP/Le in the elevated plus-maze, but the clearest findings for C57BL/6/ByJ mice were observed in the light-dark discrimination apparatus. These data demonstrate that anxious behaviour is a complex phenomenon which cannot be described by a single behavioural task nor by the action of a single compound.
Collapse
Affiliation(s)
- Yan Clément
- Université Reims Champagne-Ardenne, Reims, France.
| | | | | | | | | |
Collapse
|
45
|
Gracceva G, Venerosi A, Santucci D, Calamandrei G, Ricceri L. Early social enrichment affects responsiveness to different social cues in female mice. Behav Brain Res 2009; 196:304-9. [DOI: 10.1016/j.bbr.2008.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 09/15/2008] [Accepted: 09/19/2008] [Indexed: 10/21/2022]
|
46
|
Calabrese EJ. An Assessment of Anxiolytic Drug Screening Tests: Hormetic Dose Responses Predominate. Crit Rev Toxicol 2008; 38:489-542. [DOI: 10.1080/10408440802014238] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Lapiz-Bluhm MDS, Bondi CO, Doyen J, Rodriguez GA, Bédard-Arana T, Morilak DA. Behavioural assays to model cognitive and affective dimensions of depression and anxiety in rats. J Neuroendocrinol 2008; 20:1115-37. [PMID: 18673411 PMCID: PMC2603578 DOI: 10.1111/j.1365-2826.2008.01772.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Animal models have been used extensively to investigate neuropsychiatric disorders, such as depression, and their treatment. However, the aetiology and pathophysiology of many such disorders are largely unknown, which makes validation of animal models particularly challenging. Furthermore, many diagnostic symptoms are difficult to define, operationalize and quantify, especially in experimental animals such as rats. Thus, rather than attempting to model complex human syndromes such as depression in their entirety, it can be more productive to define and model components of the illness that may account for clusters of co-varying symptoms, and that may share common underlying neurobiological mechanisms. In preclinical investigations of the neural regulatory mechanisms linking stress to depression and anxiety disorders, as well as the mechanisms by which chronic treatment with antidepressant drugs may exert their beneficial effects in these conditions, we have employed a number of behavioural tests in rats to model specific cognitive and anxiety-like components of depression and anxiety disorders. In the present study, we review the procedures for conducting four such behavioural assays: the attentional set-shifting test, the elevated-plus maze, the social interaction test and the shock-probe defensive burying test. The purpose is to serve as a guide to the utility and limitations of these tools, and as an aid in optimising their use and productivity.
Collapse
Affiliation(s)
- M D S Lapiz-Bluhm
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
48
|
Effects of pharmacological stressors on c-fos and CRF mRNA in mouse brain: relationship to alcohol seeking. Neurosci Lett 2008; 444:254-8. [PMID: 18755245 DOI: 10.1016/j.neulet.2008.08.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/13/2008] [Accepted: 08/14/2008] [Indexed: 11/20/2022]
Abstract
A marked heterogeneity exists among stressors in their ability to reinstate alcohol seeking in rats. We have reported that the pharmacological stressor yohimbine, an alpha-2 adrenoceptor antagonist, potently reinstated alcohol seeking, but FG-7142, a benzodiazepine inverse agonist was ineffective. In rats, we determined that yohimbine elicits patterns of brain expression of the mRNAs for c-fos, a marker of neuronal activation, and corticotropin-releasing factor (CRF) a stress-related peptide, distinct from that produced by FG-7142. The purpose of the present experiment is to determine if these differential effects of yohimbine and FG-7142 on regional c-fos and CRF mRNA expression generalize to another animal commonly used in alcohol research, the C57 BL/6J mouse. In comparing the results of the present study to those of our previous one, we found a number of commonalities in the patterns of activation elicited by yohimbine and FG-7142 between the two species, and some notable differences. As we found in the rat, yohimbine selectively increased c-fos mRNA in the mouse NACs, BLA and CeA. Yohimbine increased CRF mRNA only in the mouse PVN, but was without effect on CRF mRNA in extrahypothalamic sites, the BNST and CeA. This differs from what we saw in the rat, where yohimbine increased CRF mRNA in these extrahypothalamic regions, but not the PVN. The selective induction of c-fos in the NACs, BLA and CeA of mice and rats by yohimbine offers further support for the idea that activation of these structures participates in reinstatement induced by such stressors.
Collapse
|
49
|
Kurumaji A, Ito T, Ishii S, Nishikawa T. Effects of FG7142 and immobilization stress on the gene expression in the neocortex of mice. Neurosci Res 2008; 62:155-9. [PMID: 18771696 DOI: 10.1016/j.neures.2008.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 12/17/2022]
Abstract
Several psychiatric disorders are often precipitated or exacerbated by exposure to stressors. FG7142 (N-methyl-beta-carboline-3-carboxamide), a partial inverse agonist of benzodiazepine receptors, mimics the physiological (an increased release in the adrenal steroid hormone) and neurochemical (an enhanced neurotransmission of monoamines) changes induced by stressful stimuli. We examined the effects of FG7142 and immobilization stress on the gene expression of the mouse neocortex in order to obtain a new insight into the molecular stress-responsive system. The effect of FG7142 (20 mg/kg, i.p.) on the gene expression of the brain area was examined using a DNA microarray method. The genes showing a significant change in expression were investigated in further experiments using the quantitative RT-PCR method. There was an increase in the mRNA of seven genes in the neocortex of mice 1h after treatment with FG7142. In addition, there was an increase in the mRNAs of five of the seven genes (Fos, Cyr61, Btg2, Adamts1, and Gem) in the neocortex of mice exposed to the stress for 1h. The up-regulation of these five genes by both FG7142 and immobilization stress indicates that these genes may be involved in the stress-responsive system. Dysfunctions of the system may be associated with the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Akeo Kurumaji
- Section of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyou-ku, Tokyo 113-8519, Japan.
| | | | | | | |
Collapse
|
50
|
Abstract
Animal tests of anxiety are used to screen novel compounds for anxiolytic or anxiogenic activity, to investigate the neurobiology of anxiety, and to assess the impact of other occurrences such as exposure to predator odors or early rearing experiences. This unit presents protocols for the most commonly used animal tests of anxiety. The Geller-Seifter conflict test, the social interaction test, light/dark exploration, the elevated plus-maze, defensive burying, and the thirsty rat conflict. The protocols are described in terms of drug screening tests, but can be modified easily for other purposes.
Collapse
|