1
|
Topchiy I, Mohbat J, Folorunso OO, Wang ZZ, Lazcano-Etchebarne C, Engin E. GABA system as the cause and effect in early development. Neurosci Biobehav Rev 2024; 161:105651. [PMID: 38579901 PMCID: PMC11081854 DOI: 10.1016/j.neubiorev.2024.105651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
GABA is the primary inhibitory neurotransmitter in the adult brain and through its actions on GABAARs, it protects against excitotoxicity and seizure activity, ensures temporal fidelity of neurotransmission, and regulates concerted rhythmic activity of neuronal populations. In the developing brain, the development of GABAergic neurons precedes that of glutamatergic neurons and the GABA system serves as a guide and framework for the development of other brain systems. Despite this early start, the maturation of the GABA system also continues well into the early postnatal period. In this review, we organize evidence around two scenarios based on the essential and protracted nature of GABA system development: 1) disruptions in the development of the GABA system can lead to large scale disruptions in other developmental processes (i.e., GABA as the cause), 2) protracted maturation of this system makes it vulnerable to the effects of developmental insults (i.e., GABA as the effect). While ample evidence supports the importance of GABA/GABAAR system in both scenarios, large gaps in existing knowledge prevent strong mechanistic conclusions.
Collapse
Affiliation(s)
- Irina Topchiy
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Julie Mohbat
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland
| | - Oluwarotimi O Folorunso
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Ziyi Zephyr Wang
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | | | - Elif Engin
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Madden JT, Thompson SM, Magcalas CM, Wagner JL, Hamilton DA, Savage DD, Clark BJ, Pentkowski NS. Moderate prenatal alcohol exposure reduces parvalbumin expressing GABAergic interneurons in the dorsal hippocampus of adult male and female rat offspring. Neurosci Lett 2019; 718:134700. [PMID: 31874217 DOI: 10.1016/j.neulet.2019.134700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022]
Abstract
Prenatal alcohol exposure (PAE) negatively impacts hippocampal development and impairs hippocampal-sensitive learning and memory. However, hippocampal neural adaptations in response to moderate PAE are not completely understood. To explore the effects of moderate PAE on GABAergic interneuron expression, this study used a rat model of moderate PAE to examine the effects of PAE on parvalbumin (PARV)-positive cells in fields CA1, CA3 and the dentate gyrus (DG) of the dorsal hippocampus (dHC). Long-Evans dams were given daily access to 5 % (vol/vol) ethanol or saccharine (SAC) control solutions throughout the course of gestation. Offspring were divided into four separate groups: PAE (n = 7) or SAC (n = 7) males, or PAE (n = 8) or SAC (n = 8) females. All rats were aged to adulthood and, following testing in the Morris water task, their brains were analyzed for the expression of the GABAergic neuronal marker PARV. We report a main effect of PAE on GABAergic expression, with significant reductions in PARV-positive cells in area CA3 for males and the DG for females. There was also a trend for a reduction in PARV expressing neurons in fields CA1 and CA3 in females. The results are discussed in relation to hippocampal GABAergic interneuron function, PAE and behavior.
Collapse
Affiliation(s)
- John T Madden
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Shannon M Thompson
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Christy M Magcalas
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Jennifer L Wagner
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Daniel D Savage
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Nathan S Pentkowski
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
3
|
Fish EW, Wieczorek LA, Rumple A, Suttie M, Moy SS, Hammond P, Parnell SE. The enduring impact of neurulation stage alcohol exposure: A combined behavioral and structural neuroimaging study in adult male and female C57BL/6J mice. Behav Brain Res 2017; 338:173-184. [PMID: 29107713 DOI: 10.1016/j.bbr.2017.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/18/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022]
Abstract
Prenatal alcohol exposure (PAE) can cause behavioral and brain alterations over the lifespan. In animal models, these effects can occur following PAE confined to critical developmental periods, equivalent to the third and fourth weeks of human gestation, before pregnancy is usually recognized. The current study focuses on PAE during early neurulation and examines the behavioral and brain structural consequences that appear in adulthood. On gestational day 8 C57BL/6J dams received two alcohol (2.8g/kg, i.p), or vehicle, administrations, four hours apart. Male and female offspring were reared to adulthood and examined for performance on the elevated plus maze, rotarod, open field, Morris water maze, acoustic startle, social preference (i.e. three-chambered social approach test), and the hot plate. A subset of these mice was later evaluated using magnetic resonance imaging to detect changes in regional brain volumes and shapes. In males, PAE increased exploratory behaviors on the elevated plus maze and in the open field; these changes were associated with increased fractional anisotropy in the anterior commissure. In females, PAE reduced social preference and the startle response, and decreased cerebral cortex and brain stem volumes. Vehicle-treated females had larger pituitaries than did vehicle-treated males, but PAE attenuated this sex difference. In males, pituitary size correlated with open field activity, while in females, pituitary size correlated with social activity. These findings indicate that early neurulation PAE causes sex specific behavioral and brain changes in adulthood. Changes in the pituitary suggest that this structure is especially vulnerable to neurulation stage PAE.
Collapse
Affiliation(s)
- E W Fish
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States.
| | - L A Wieczorek
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - A Rumple
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - M Suttie
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - S S Moy
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - P Hammond
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - S E Parnell
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| |
Collapse
|
4
|
Fish EW, Holloway HT, Rumple A, Baker LK, Wieczorek LA, Moy SS, Paniagua B, Parnell SE. Acute alcohol exposure during neurulation: Behavioral and brain structural consequences in adolescent C57BL/6J mice. Behav Brain Res 2016; 311:70-80. [PMID: 27185739 DOI: 10.1016/j.bbr.2016.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022]
Abstract
Prenatal alcohol exposure (PAE) can induce physical malformations and behavioral abnormalities that depend in part on thedevelopmental timing of alcohol exposure. The current studies employed a mouse FASD model to characterize the long-term behavioral and brain structural consequences of a binge-like alcohol exposure during neurulation; a first-trimester stage when women are typically unaware that they are pregnant. Time-mated C57BL/6J female mice were administered two alcohol doses (2.8g/kg, four hours apart) or vehicle starting at gestational day 8.0. Male and female adolescent offspring (postnatal day 28-45) were then examined for motor activity (open field and elevated plus maze), coordination (rotarod), spatial learning and memory (Morris water maze), sensory motor gating (acoustic startle and prepulse inhibition), sociability (three-chambered social test), and nociceptive responses (hot plate). Regional brain volumes and shapes were determined using magnetic resonance imaging. In males, PAE increased activity on the elevated plus maze and reduced social novelty preference, while in females PAE increased exploratory behavior in the open field and transiently impaired rotarod performance. In both males and females, PAE modestly impaired Morris water maze performance and decreased the latency to respond on the hot plate. There were no brain volume differences; however, significant shape differences were found in the cerebellum, hypothalamus, striatum, and corpus callosum. These results demonstrate that alcohol exposure during neurulation can have functional consequences into adolescence, even in the absence of significant brain regional volumetric changes. However, PAE-induced regional shape changes provide evidence for persistent brain alterations and suggest alternative clinical diagnostic markers.
Collapse
Affiliation(s)
- E W Fish
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - H T Holloway
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - A Rumple
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - L K Baker
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - L A Wieczorek
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - S S Moy
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - B Paniagua
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - S E Parnell
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
5
|
Patten AR, Sawchuk S, Wortman RC, Brocardo PS, Gil-Mohapel J, Christie BR. Prenatal ethanol exposure impairs temporal ordering behaviours in young adult rats. Behav Brain Res 2015; 299:81-9. [PMID: 26632335 DOI: 10.1016/j.bbr.2015.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 02/03/2023]
Abstract
Prenatal ethanol exposure (PNEE) causes significant deficits in functional (i.e., synaptic) plasticity in the dentate gyrus (DG) and cornu ammonis (CA) hippocampal sub-regions of young adult male rats. Previous research has shown that in the DG, these deficits are not apparent in age-matched PNEE females. This study aimed to expand these findings and determine if PNEE induces deficits in hippocampal-dependent behaviours in both male and female young adult rats (PND 60). The metric change behavioural test examines DG-dependent deficits by determining whether an animal can detect a metric change between two identical objects. The temporal order behavioural test is thought to rely in part on the CA sub-region of the hippocampus and determines whether an animal will spend more time exploring an object that it has not seen for a larger temporal window as compared to an object that it has seen more recently. Using the liquid diet model of FASD (where 6.6% (v/v) ethanol is provided through a liquid diet consumed ad libitum throughout the entire gestation), we found that PNEE causes a significant impairment in the temporal order task, while no deficits in the DG-dependent metric change task were observed. There were no significant differences between males and females for either task. These results indicate that behaviours relying partially on the CA-region may be more affected by PNEE than those that rely on the DG.
Collapse
Affiliation(s)
- Anna R Patten
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada.
| | - Scott Sawchuk
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Ryan C Wortman
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Patricia S Brocardo
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Joana Gil-Mohapel
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R Christie
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada; Brain Research Centre and Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Schambra UB, Goldsmith J, Nunley K, Liu Y, Harirforoosh S, Schambra HM. Low and moderate prenatal ethanol exposures of mice during gastrulation or neurulation delays neurobehavioral development. Neurotoxicol Teratol 2015; 51:1-11. [PMID: 26171567 DOI: 10.1016/j.ntt.2015.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 06/28/2015] [Accepted: 07/05/2015] [Indexed: 11/29/2022]
Abstract
Human and animal studies show significant delays in neurobehavioral development in offspring after prolonged prenatal exposure to moderate and high ethanol doses resulting in high blood alcohol concentration (BECs). However, none have investigated the effects of lower ethanol doses given acutely during specific developmental time periods. Here, we sought to create a mouse model for modest and circumscribed human drinking during the 3rd and 4th weeks of pregnancy. We acutely treated mice during embryo gastrulation on gestational day (GD) 7 or neurulation on GD8 with a low or moderate ethanol dose given via gavage that resulted in BECs of 107 and 177 mg/dl, respectively. We assessed neonatal physical development (pinnae unfolding, and eye opening); weight gain from postnatal day (PD) 3-65; and neurobehavioral maturation (pivoting, walking, cliff aversion, surface righting, vertical screen grasp, and rope balance) from PD3 to 17. We used a multiple linear regression model to determine the effects of dose, sex, day of treatment and birth in animals dosed during gastrulation or neurulation, relative to their vehicle controls. We found that ethanol exposure during both time points (GD7 and GD8) resulted in some delays of physical development and significant sensorimotor delays of pivoting, walking, and thick rope balance, as well as additional significant delays in cliff aversion and surface righting after GD8 treatment. We also found that treatment with the low ethanol dose more frequently affected neurobehavioral development of the surviving pups than treatment with the moderate ethanol dose, possibly due to a loss of severely affected offspring. Finally, mice born prematurely were delayed in their physical and sensorimotor development. Importantly, we showed that brief exposure to low dose ethanol, if administered during vulnerable periods of neuroanatomical development, results in significant neurobehavioral delays in neonatal mice. We thus expand concerns about alcohol consumption during the 3rd and 4th weeks of human pregnancy to include occasional light to moderate drinking.
Collapse
Affiliation(s)
- Uta B Schambra
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Jeff Goldsmith
- Columbia Mailman School of Public Health, Department of Biostatistics, New York, NY 10023, USA
| | - Kevin Nunley
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Yali Liu
- Department of Mathematics & Statistics, College of Arts and Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| | - Sam Harirforoosh
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA
| | - Heidi M Schambra
- Department of Rehabilitation & Regenerative Medicine, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
7
|
Abstract
Individuals diagnosed with alcohol-related neurodevelopmental disorder (ARND) exhibit difficulty on hippocampally mediated memory tasks and show reduced hippocampal size. However inconsistencies exist regarding the affected memory functions and where within the hippocampi effects occur. Given recent studies showing anterior and posterior segments support distinct memory functions and sex dimorphisms in hippocampal function, we asked whether these factors influence memory performance in youth with ARND (n = 18) and typically developing controls (n = 17). Participants received a battery of memory tests and a structural MRI scan. Right and left hippocampi were manually traced; anterior and posterior segments were delineated at the uncus. Measured were intracranial volumes (ICV) and right and left hippocampi and hippocampal segments. Volumes were adjusted for ICV. Relative to controls, the ARND group had lower IQs and memory performance on most tasks and marginally smaller ICVs. Left and right hippocampal volumes and posterior segments were smaller in the ARND group. Although no sex differences were observed between groups, females overall had larger anterior hippocampi than males. Positive and negative associations between hippocampal and selective memory indices were found in the ARND group only. These findings are the first to suggest that posterior hippocampal development may be compromised in youth with ARND.
Collapse
|
8
|
Canales JJ, Ferrer-Donato A. Prenatal Exposure to Alcohol and 3,4-Methylenedioxymethamphetamine (Ecstasy) Alters Adult Hippocampal Neurogenesis and Causes Enduring Memory Deficits. Dev Neurosci 2014; 36:10-7. [DOI: 10.1159/000356820] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/25/2013] [Indexed: 11/19/2022] Open
|
9
|
Sickmann HM, Patten AR, Morch K, Sawchuk S, Zhang C, Parton R, Szlavik L, Christie BR. Prenatal ethanol exposure has sex-specific effects on hippocampal long-term potentiation. Hippocampus 2013; 24:54-64. [PMID: 23996604 DOI: 10.1002/hipo.22203] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2013] [Indexed: 11/09/2022]
Abstract
Alcohol consumption during pregnancy is deleterious to the developing brain of the fetus and leads to persistent deficits in adulthood. Long-term potentiation (LTP) is a biological model for learning and memory processes and previous evidence has shown that prenatal ethanol exposure (PNEE) affects LTP in a sex specific manner during adolescence. The objective of this study was to determine if there are sex specific differences in adult animals and to elucidate the underlying molecular mechanisms that contribute to these differences. Pregnant Sprague-Dawley dams were assigned to either; liquid ethanol, pair-fed or standard chow diet. In vivo electrophysiology was performed in the hippocampal dentate gyrus (DG) of adult offspring. LTP was induced by administering 400 Hz stimuli. Western blot analysis for glutamine synthetase (GS) and glutamate decarboxylase from tissue of the DG indicated that GS expression was increased following PNEE. Surprisingly, adult females did not show any deficit in N-methyl-D-aspartate (NMDA)-dependent LTP after PNEE. In contrast, males showed a 40% reduction in LTP. It was indicated that glutamine synthetase expression was increased in PNEE females, suggesting that altered excitatory neurotransmitter replenishment may serve as a compensatory mechanism. Ovariectomizing females did not influence LTP in control or PNEE animals, suggesting that circulating estradiol levels do not play a major role in maintaining LTP levels in PNEE females. These results demonstrate the sexually dimorphic effects of PNEE on the ability for the adult brain to elicit LTP in the DG. The mechanisms for these effects are not fully understood, but an increase in glutamine synthetase in females may underlie this phenomenon.
Collapse
Affiliation(s)
- H M Sickmann
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Altered spatial learning and delay discounting in a rat model of human third trimester binge ethanol exposure. Behav Pharmacol 2012; 23:54-65. [PMID: 22129556 DOI: 10.1097/fbp.0b013e32834eb07d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ethanol exposure during perinatal development can cause cognitive abnormalities including difficulties in learning, attention, and memory, as well as heightened impulsivity. The purpose of this study was to assess performance in spatial learning and impulsive choice tasks in rats subjected to an intragastric intubation model of binge ethanol exposure during human third trimester-equivalent brain development. Male and female Sprague-Dawley rat pups were intubated with ethanol (5.25 g/kg/day) on postnatal days 4-9. At adolescence (between postnatal days 35-38), these rats and sham intubated within-litter controls were trained in both spatial and cued versions of the Morris water maze. A subset of the male rats was subsequently tested on a delay-discounting task to assess impulsive choice. Ethanol-exposed rats were spatially impaired relative to controls, but performed comparably to controls on the cued version of the water maze. Ethanol-exposed rats also showed greater preference for large delayed rewards on the delay discounting task, but no evidence for altered reward sensitivity or perseverative behavior. These data demonstrate that early postnatal intermittent binge-like ethanol exposure has prolonged, detrimental, but selective effects on cognition, suggesting that even relatively brief ethanol exposure late in human pregnancy can be deleterious for cognitive function.
Collapse
|
11
|
Zink M, Ferbert T, Frank ST, Seufert P, Gebicke-Haerter PJ, Spanagel R. Perinatal exposure to alcohol disturbs spatial learning and glutamate transmission-related gene expression in the adult hippocampus. Eur J Neurosci 2011; 34:457-68. [DOI: 10.1111/j.1460-9568.2011.07776.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Zink M, Araç G, Frank ST, Gass P, Gebicke-Härter PJ, Spanagel R. Perinatal exposure to alcohol reduces the expression of complexins I and II. Neurotoxicol Teratol 2009; 31:400-5. [PMID: 19671442 DOI: 10.1016/j.ntt.2009.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/29/2009] [Accepted: 08/02/2009] [Indexed: 12/19/2022]
Abstract
Perinatal exposure to alcohol (PEA) induces general developmental and specific neuropsychiatric disturbances. Ethanol affects amino acid neurotransmission and synaptic plasticity. We were interested in the transcriptional effects of ethanol on the expression of complexins I and II, two synaptic vesicle proteins (SVP) with relevance for cognition and memory. We exposed pregnant Wistar inbred rats (N=4) and their pups until postnatal day 8 (P8) in vapor chambers and performed in situ-hybridizations regarding complexins I and II at P8 as well as neurobehavioral testing in adult animals of the same litters. At P8, serum ethanol levels of 281+/-58 mg/dl were achieved. PEA animals presented a pronounced retardation of postnatal growth. Significantly lower expression levels of complexin I was observed in CA1, together with trends of reductions in other hippocampal and cortical regions. Complexin II was found reduced in anterior cingulate, prefrontal and fronto-parietal cortex. Adult rats of exposed litters showed worse performance in hippocampus-dependent learning (Morris water maze). The observed suppression of complexins I and II reveals disturbed synaptic plasticity and corresponds with long lasting, ethanol-induced deficits of learning and memory. Further investigations should focus on other synaptic vesicle protein genes in order to unravel the molecular basis of ethanol-induced neurocognitive disabilities.
Collapse
Affiliation(s)
- Mathias Zink
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Parks EA, McMechan AP, Hannigan JH, Berman RF. Environmental enrichment alters neurotrophin levels after fetal alcohol exposure in rats. Alcohol Clin Exp Res 2008; 32:1741-51. [PMID: 18652597 DOI: 10.1111/j.1530-0277.2008.00759.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Prenatal alcohol exposure causes abnormal brain development, leading to behavioral deficits, some of which can be ameliorated by environmental enrichment. As both environmental enrichment and prenatal alcohol exposure can individually alter neurotrophin expression, we studied the interaction of prenatal alcohol and postweaning environmental enrichment on brain neurotrophin levels in rats. METHODS Pregnant rats received alcohol by gavage, 0, 4, or 6 g/kg/d (Zero, Low, or High groups), or no treatment (Naïve group), on gestational days 8 to 20. After weaning on postnatal day 21, offspring were housed for 6 weeks in Isolated, Social, or Enriched conditions. Levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) were then measured in frontal cortex, occipital cortex, hippocampus, and cerebellar vermis. RESULTS Prenatal alcohol exposure increased NGF levels in frontal cortex (High-dose group) and cerebellar vermis (High- and Low-dose groups); increased BDNF in frontal cortex, occipital cortex and hippocampus (Low-dose groups), and increased NT-3 in hippocampus and cerebellar vermis (High-dose). Environmental enrichment resulted in lower NGF, BDNF, and NT-3 levels in occipital cortex and lower NGF in frontal cortex. The only significant interaction between prenatal alcohol treatment and environment was in cerebellar vermis where NT-3 levels were higher for enriched animals after prenatal alcohol exposure, but not for animals housed under Isolated or Social conditions. CONCLUSIONS Both prenatal alcohol exposure and postweaning housing conditions alter brain neurotrophin levels, but the effects appear to be largely independent. Although environmental enrichment can improve functional outcomes, these results do not provide strong support for the hypothesis that rearing in a complex environment ameliorates prenatal alcohol effects on brain neurotrophin levels in rats.
Collapse
Affiliation(s)
- Elizabeth A Parks
- Department of Neurological Surgery, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
14
|
Harré EM, Galic MA, Mouihate A, Noorbakhsh F, Pittman QJ. Neonatal inflammation produces selective behavioural deficits and alters N-methyl-D-aspartate receptor subunit mRNA in the adult rat brain. Eur J Neurosci 2008; 27:644-53. [PMID: 18279317 DOI: 10.1111/j.1460-9568.2008.06031.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peripheral inflammation causes production of central cytokines that alter transmission at the N-methyl-D-aspartate receptor (NR). During development, NRs are important for synaptic plasticity and network connectivity. We therefore asked if neonatal inflammation would alter expression of NRs in the brain and behavioural performance in adulthood. We gave lipopolysaccharide (LPS) (100 microg/kg, i.p.) or saline to male rats on postnatal day (P)5, P14, P30 or P77. Subsequently we assessed mRNA levels of the NR1, NR2A, B, C and D subunits in the hippocampus and cortex either acutely (2 h) or in adulthood using real-time reverse transcriptase-polymerase chain reaction. We explored learning and memory behaviours in adult rats using the Morris water maze and contextual fear conditioning paradigms. Hippocampal NR1 mRNA was acutely increased in the P5- and P77-treated rats but was reduced in adults treated with LPS at P5, P30 and P77. P14 LPS-treated rats showed few acute changes but showed pronounced increases in NR2A, B, C and D subunit mRNA later in adulthood. The cortex displayed relatively few acute changes in expression in the neonatal-treated rats; however, it showed robust changes in NR2B, C and D mRNA in all groups given LPS in adulthood. Behavioural deficits were observed specifically in the P5 and P30 LPS-treated groups in the water maze probe trial and fear conditioning tests, consistent with hippocampal NR1 mRNA down-regulation. Thus, a single bout of inflammation during development can programme specific and persistent differences in NR mRNA subunit expression in the hippocampus, which could be associated with behavioural and cognitive deficits in adulthood.
Collapse
Affiliation(s)
- E-M Harré
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Health Sciences Centre, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N4N1
| | | | | | | | | |
Collapse
|
15
|
Summers BL, Rofe AM, Coyle P. Prenatal zinc treatment at the time of acute ethanol exposure limits spatial memory impairments in mouse offspring. Pediatr Res 2006; 59:66-71. [PMID: 16326994 DOI: 10.1203/01.pdr.0000190573.23893.13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Zinc (Zn) treatment given together with acute ethanol in early pregnancy has previously been demonstrated to protect against physical birth abnormalities in mice. The current study examined whether this Zn treatment (s.c. injection) can also prevent the more subtle cognitive impairments caused by ethanol exposure in early pregnancy. Pregnant C57BL/6J dams were injected with saline (0.85% wt/vol NaCl) or 25% ethanol (0.015 mL/g body weight) intraperitoneally at 0 and 4 h on gestational d (GD) 8. ZnSO4 (2.5 microg Zn/g at 0 h) treatment was administered by s.c. injection immediately following ethanol treatment. Offspring were randomly selected from litters for each of the three treatment groups and were tested at 55 and 70 d of age using a cross-maze water escape task for spatial learning and memory impairments consecutively. No differences were observed between treatments for the spatial learning task. However, young adult mice exposed to ethanol in utero demonstrated impaired spatial memory, with a decrease in correct trials and increased escape latency and incorrect entry measurements, compared with saline-treated controls. In comparison, offspring given s.c. Zn treatment at the time of ethanol exposure were not cognitively impaired, performing at the same level as control mice in the cross-maze escape task. These findings indicate that critically timed Zn administration can limit spatial memory impairments caused by ethanol exposure in early pregnancy.
Collapse
|
16
|
Rout UK. Alcohol, GABA receptors, and neurodevelopmental disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 71:217-37. [PMID: 16512353 DOI: 10.1016/s0074-7742(05)71010-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ujjwal K Rout
- Department of Surgery, Division of Pediatric Surgery, Research Laboratories University of Mississippi Medical Center, Jackson 39216, USA
| |
Collapse
|
17
|
Harris-White ME, Balverde Z, Lim GP, Kim P, Miller SA, Hammer H, Galasko D, Frautschy SA. Role of LRP in TGF?2-mediated neuronal uptake of A? and effects on memory. J Neurosci Res 2004; 77:217-28. [PMID: 15211588 DOI: 10.1002/jnr.20149] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is increasing evidence that soluble amyloid-beta peptide (Abeta) uptake into neurons is an early event in the pathogenesis of Alzheimer's disease (AD). Identification of the early events leading to neuronal dysfunction is key to developing therapeutic strategies, but relative roles of receptors and factors modulating uptake are poorly understood. Studies have shown that transforming growth factor beta (TGFbeta), particularly TGFbeta2, can influence the targeting of Abeta to cells in vitro. TGFbeta2 can target Abeta to neurons in organotypic hippocampal slice cultures (OHSC). We examine a specific mechanism for TGFbeta2-mediated targeting of Abeta to neurons. The receptor-associated protein (RAP), a low-density lipoprotein receptor-related protein (LRP) antagonist, can attenuate the cellular targeting of Abeta both in vitro and in vivo and prevent Abeta/TGFbeta2-induced memory retention deficits. Using both in vitro and in vivo methods, we identify LRP as playing a role in TGFbeta2-mediated Abeta uptake, neurodegeneration, and spatial memory impairment.
Collapse
Affiliation(s)
- Marni E Harris-White
- Department of Medicine, University of California, Los Angeles, California 91343, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gabriel KI, Johnston S, Weinberg J. Prenatal ethanol exposure and spatial navigation: effects of postnatal handling and aging. Dev Psychobiol 2002; 40:345-57. [PMID: 12115293 DOI: 10.1002/dev.10023] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prenatal ethanol exposure results in spatial navigation deficits in young and mid-aged animals. In contrast, postnatal handling attenuates spatial deficits that emerge with age in animals that are not handled. Therefore, we investigated the ability of handling to attenuate spatial deficits in animals prenatally exposed to ethanol (E). Sprague-Dawley male offspring from E, pair-fed (PF), and control (C) groups were handled (H) or nonhandled (NH) from 1 to 15 days of age and tested on the Morris water maze at 2 or 13 to 14 months of age. In young animals, H-E males had longer latencies to locate the submerged platform, and E animals, across handling conditions, showed altered search patterns compared to their PF and C counterparts. Mid-aged animals had longer latencies than young animals, with no differences among E, PF, and C animals. However, corticosterone levels were higher in mid-aged E than in C males. Handling did not attenuate impairments associated with either prenatal ethanol exposure or aging.
Collapse
Affiliation(s)
- Kara I Gabriel
- Department of Anatomy, University of British Columbia, 2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | | | | |
Collapse
|
19
|
D'Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 36:60-90. [PMID: 11516773 DOI: 10.1016/s0165-0173(01)00067-4] [Citation(s) in RCA: 1421] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Morris water maze (MWM) was described 20 years ago as a device to investigate spatial learning and memory in laboratory rats. In the meanwhile, it has become one of the most frequently used laboratory tools in behavioral neuroscience. Many methodological variations of the MWM task have been and are being used by research groups in many different applications. However, researchers have become increasingly aware that MWM performance is influenced by factors such as apparatus or training procedure as well as by the characteristics of the experimental animals (sex, species/strain, age, nutritional state, exposure to stress or infection). Lesions in distinct brain regions like hippocampus, striatum, basal forebrain, cerebellum and cerebral cortex were shown to impair MWM performance, but disconnecting rather than destroying brain regions relevant for spatial learning may impair MWM performance as well. Spatial learning in general and MWM performance in particular appear to depend upon the coordinated action of different brain regions and neurotransmitter systems constituting a functionally integrated neural network. Finally, the MWM task has often been used in the validation of rodent models for neurocognitive disorders and the evaluation of possible neurocognitive treatments. Through its many applications, MWM testing gained a position at the very core of contemporary neuroscience research.
Collapse
Affiliation(s)
- R D'Hooge
- Laboratory of Neurochemistry and Behavior, Born-Bunge Foundation, and Department of Neurology/Memory Clinic, Middelheim Hospital, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| | | |
Collapse
|
20
|
Abstract
Prenatal exposure to alcohol can result in fetal alcohol syndrome (FAS), characterized by growth retardation, facial dysmorphologies, and a host of neurobehavioral impairments. Neurobehavioral effects in FAS, and in alcohol-related neurodevelopmental disorder, include poor learning and memory, attentional deficits, and motor dysfunction. Many of these behavioral deficits can be modeled in rodents. This paper reviews the literature suggesting that many fetal alcohol effects result, at least in part, from teratogenic effects of alcohol on the hippocampus. Neurobehavioral studies show that animals exposed prenatally to alcohol are impaired in many of the same spatial learning and memory tasks sensitive to hippocampal damage, including T-mazes, the Morris water maze, and the radial arm maze. Direct evidence for hippocampal involvement is provided by neuroanatomical studies of the hippocampus documenting reduced numbers of neurons, lower dendritic spine density on pyramidal neurons, and decreased morphological plasticity after environmental enrichment in rats exposed prenatally to alcohol. Electrophysiological studies also demonstrate changes in synaptic activity in in vitro hippocampal brain slices isolated from prenatal alcohol-exposed animals. Considered together, these observations demonstrate that prenatal exposure to alcohol can result in abnormal hippocampal development and function. Such studies provide a better understanding of neurological deficits associated with FAS in humans, and may also contribute to the development of strategies to ameliorate the effects of prenatal alcohol exposure on behavior.
Collapse
Affiliation(s)
- R F Berman
- Department of Neurological Surgery, Center for Neuroscience, University of California at Davis, 95616, USA.
| | | |
Collapse
|
21
|
Guerri C. Neuroanatomical and neurophysiological mechanisms involved in central nervous system dysfunctions induced by prenatal alcohol exposure. Alcohol Clin Exp Res 1998; 22:304-12. [PMID: 9581633 DOI: 10.1111/j.1530-0277.1998.tb03653.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the most severe consequences of maternal ethanol consumption is the damage to the developing central nervous system, which is manifested by long-term cognitive and behavioral deficits in the offspring. Prenatal exposure to ethanol affects many crucial neurochemical and cellular components of the developing brain. Ethanol interferes with all of the stages of brain development, and the severity of the damage depends on the amount of ethanol intake and level of exposure. Experimental observations also indicate that the toxic effects of ethanol are not uniform: some brain regions are more affected than others and, even within a given region, some cell populations are more vulnerable than others. The neocortex, the hippocampus, and the cerebellum are the regions in which the neurotoxic effects of ethanol have been associated with the behavioral deficits. At the cellular level, ethanol disrupts basic developmental processes, including interference with division and proliferation, cell growth, and differentiation and the migration of maturing cells. Alterations in astroglia development and in neuronal-glial interactions may also influence the development of the nervous system. An impairment of several neurotransmitter systems and/or their receptors, as well as changes in the endocrine environment during brain development, are also important factors involved in the behavioral dysfunctions observed after prenatal ethanol exposure. Finally, some molecular mechanisms of ethanol-induced behavioral dysfunctions will be discussed.
Collapse
Affiliation(s)
- C Guerri
- Instituto Investigaciones Citológicas, Valencia, Spain
| |
Collapse
|