1
|
Feeding circuit development and early-life influences on future feeding behaviour. Nat Rev Neurosci 2019; 19:302-316. [PMID: 29662204 DOI: 10.1038/nrn.2018.23] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A wide range of maternal exposures - undernutrition, obesity, diabetes, stress and infection - are associated with an increased risk of metabolic disease in offspring. Developmental influences can cause persistent structural changes in hypothalamic circuits regulating food intake in the service of energy balance. The physiological relevance of these alterations has been called into question because maternal impacts on daily caloric intake do not persist to adulthood. Recent behavioural and epidemiological studies in humans provide evidence that the relative contribution of appetitive traits related to satiety, reward and the emotional aspects of food intake regulation changes across the lifespan. This Opinion article outlines a neurodevelopmental framework to explore the possibility that crosstalk between developing circuits regulating different modalities of food intake shapes future behavioural responses to environmental challenges.
Collapse
|
2
|
Culleré ME, Spear NE, Molina JC. Prenatal ethanol increases sucrose reinforcement, an effect strengthened by postnatal association of ethanol and sucrose. Alcohol 2014; 48:25-33. [PMID: 24398347 DOI: 10.1016/j.alcohol.2013.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 11/16/2013] [Accepted: 11/17/2013] [Indexed: 12/25/2022]
Abstract
Late prenatal exposure to ethanol recruits sensory processing of the drug and of its motivational properties, an experience that leads to heightened ethanol affinity. Recent studies indicate common sensory and neurobiological substrates between this drug and sweet tastants. Using a recently developed operant conditioning technique for infant rats, we examined the effects of prenatal ethanol history upon sucrose self-administration (postnatal days, PDs 14-17). Prior to the last conditioning session, a low (0.5 g/kg) or a high (2.5 g/kg) ethanol dose were paired with sucrose. The intention was to determine if ethanol would inflate or devalue the reinforcing capability of the tastant and if these effects are dependent upon prenatal ethanol history. Male and female pups prenatally exposed to ethanol (2.0 g/kg) responded more when reinforced with sucrose than pups lacking this antenatal experience. Independently of prenatal status, a low ethanol dose (0.5 g/kg) enhanced the reinforcing capability of sucrose while the highest dose (2.5 g/kg) seemed to ameliorate the motivational properties of the tastant. During extinction (PD 18), two factors were critical in determining persistence of responding despite reinforcement omission. Pups prenatally exposed to ethanol that subsequently experienced the low ethanol dose paired with sucrose, showed higher resistance to extinction. The effects here reported were not associated with differential blood alcohol levels across prenatal treatments. These results indicate that fetal ethanol experience promotes affinity for a natural sweet reinforcer and that low doses of ethanol are also capable of enhancing the positive motivational consequences of sucrose when ethanol and sucrose are paired during infancy.
Collapse
|
3
|
Norris JN, Pérez-Acosta AM, Ortega LA, Papini MR. Naloxone facilitates appetitive extinction and eliminates escape from frustration. Pharmacol Biochem Behav 2009; 94:81-7. [DOI: 10.1016/j.pbb.2009.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 07/15/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
|
4
|
Olszewski PK, Shaw TJ, Grace MK, Höglund CE, Fredriksson R, Schiöth HB, Levine AS. Complexity of neural mechanisms underlying overconsumption of sugar in scheduled feeding: involvement of opioids, orexin, oxytocin and NPY. Peptides 2009; 30:226-33. [PMID: 19022308 PMCID: PMC2657876 DOI: 10.1016/j.peptides.2008.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 10/19/2008] [Accepted: 10/20/2008] [Indexed: 11/23/2022]
Abstract
A regular daily meal regimen, as opposed to ad libitum consumption, enforces eating at a predefined time and within a short timeframe. Hence, it is important to study food intake regulation in animal feeding models that somewhat reflect this pattern. We investigated the effect of scheduled feeding on the intake of a palatable, high-sugar diet in rats and attempted to define central mechanisms - especially those related to opioid signaling--responsible for overeating sweet foods under such conditions. We found that scheduled access to food, even as challenging as 20 min per day, does not prevent overconsumption of a high-sucrose diet compared to a standard one. An opioid receptor antagonist, naloxone, at 0.3-1 mg/kg b. wt., decreased the intake of the sweet diet, whereas higher doses were required to reduce bland food consumption. Real-time PCR analysis revealed that expression of hypothalamic and brainstem genes encoding opioid peptides and receptors did not differ in sucrose versus regular diet-fed rats, which suggests that scheduled intake of sweet food produces only a transient change in the opioid tone. Intake of sugar was also associated with upregulation of orexin and oxytocin genes in the hypothalamus and NPY in the brainstem. We conclude that scheduled consumption of sugar diets is associated with activity of a complex network of neuroregulators involving opioids, orexin, oxytocin and NPY.
Collapse
Affiliation(s)
- Pawel K. Olszewski
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Uppsala SE 75124, Sweden
- Minnesota Obesity Center, Department of Food Science and Nutrition, Saint Paul, MN 55108, USA
| | - Timothy J. Shaw
- Minnesota Obesity Center, Department of Food Science and Nutrition, Saint Paul, MN 55108, USA
- Bethel University, Arden Hills, MN 55112, USA
| | - Martha K. Grace
- Minnesota Obesity Center, Department of Food Science and Nutrition, Saint Paul, MN 55108, USA
| | - Catherine E. Höglund
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Uppsala SE 75124, Sweden
| | - Robert Fredriksson
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Uppsala SE 75124, Sweden
| | - Helgi B. Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Uppsala SE 75124, Sweden
| | - Allen S. Levine
- Minnesota Obesity Center, Department of Food Science and Nutrition, Saint Paul, MN 55108, USA
- Department of Food Science and Nutrition, Saint Paul, MN 55108, USA
| |
Collapse
|
5
|
Olszewski PK, Levine AS. Central opioids and consumption of sweet tastants: when reward outweighs homeostasis. Physiol Behav 2007; 91:506-12. [PMID: 17316713 DOI: 10.1016/j.physbeh.2007.01.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 01/21/2007] [Accepted: 01/22/2007] [Indexed: 11/25/2022]
Abstract
Numerous reports have described opioids as peptides involved in the regulation of food intake. The role of these endogenous substances appears to be linked with reward-dependent feeding, since injection of opioid receptor ligands alters consumption of palatable foods and solutions more readily than of non-palatable ones, and intake of such tastants affects the activity of the opioid system within the brain. Among a variety of available foods, those rich in sucrose and other sweet tastants, are extremely appealing to humans and laboratory animals. In the current review, we focus on the rewarding aspects of consummator behavior driven by opioids. We attempt to delineate opioid-dependent central mechanisms responsible for overconsumption of "rewarding" palatable diets, especially foods high in sugar that can potentially jeopardize homeostasis.
Collapse
Affiliation(s)
- Pawel K Olszewski
- Minnesota Obesity Center, University of Minnesota, St Paul, MN 55108, USA
| | | |
Collapse
|
6
|
Abstract
Review of the ontogeny of the controls of independent ingestion reveals that some of the direct and indirect controls of meal size identified in adult rats function in the first three postnatal weeks. The controls appear sequentially and some of them change their potency after they emerge. Indirect controls exerted by metabolism and adiposity do not emerge until the fourth postnatal week or later in the postweaning period. Recent experiments in rats with monogenic obesities involving the leptin and cholecystokinin receptors have demonstrated the usefulness of independent ingestion in the detection of the earliest expression of hyperphagia. Although much remains to be learned about the normal controls of independent ingestion, it is clear that it provides relevant information about the development of normal and abnormal controls of meal size in rodents that is useful for translational research into the controls of meal size in normal and obese children.
Collapse
Affiliation(s)
- Gerard P Smith
- Department of Psychiatry, Weill Medical College of Cornell University, Presbyterian Hospital, 21 Bloomingdale Road, White Plains, New York, New York 10605, USA.
| |
Collapse
|
7
|
Amico JA, Vollmer RR, Cai HM, Miedlar JA, Rinaman L. Enhanced initial and sustained intake of sucrose solution in mice with an oxytocin gene deletion. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1798-806. [PMID: 16150836 DOI: 10.1152/ajpregu.00558.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Laboratory mice drink little sucrose solution on initial exposure, but later develop a strong preference for sucrose over water that plateaus after a few days. Both the initial neophobia and later plateau of sucrose intake may involve central oxytocin (OT) signaling pathways. If so, then mice that lack the gene for OT [OT knockout (KO)] should exhibit enhanced initial and sustained sucrose intake compared with wild-type (WT) cohorts. To test this hypothesis, female OT KO and WT mice (11–13 mo old) were given a two-bottle choice between 10% sucrose and water available ad libitum for 4 days. On the first day, sucrose intake was 20-fold greater in OT KO mice compared with WT cohorts. The avid sucrose consumption by OT KO mice increased further on day 2 and was sustained at significantly higher levels than intake by WT mice. Enhanced initial and sustained sucrose intake also was observed in 5- to 7-mo-old male OT KO mice. The effect of genotype was observed over a range of sucrose concentrations and was maintained over at least 8 days of continual exposure. However, there was no effect of genotype on daily intake of sucrose-enriched powdered chow. These findings indicate that the genetic absence of OT in mice is associated with enhanced initial and sustained intake of sucrose solutions. Thus central OT pathways may normally participate in limiting initial intake of novel ingesta and may also participate in limiting intake of sweet, highly palatable familiar ingesta.
Collapse
Affiliation(s)
- Janet A Amico
- Department of Medicine, Univ. of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | |
Collapse
|
8
|
Levine AS, Kotz CM, Gosnell BA. Sugars: hedonic aspects, neuroregulation, and energy balance. Am J Clin Nutr 2003; 78:834S-842S. [PMID: 14522747 DOI: 10.1093/ajcn/78.4.834s] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The prevalence of obesity has increased dramatically in recent years in the United States, with similar patterns seen in several other countries. Although there are several potential explanations for this dramatic increase in obesity, dietary influences are a contributing factor. An inverse correlation between dietary sugar intake and body mass index has been reported, suggesting beneficial effects of carbohydrate intake on body mass index. In this review we discuss how sugars interact with regulatory neurochemicals in the brain to affect both energy intake and energy expenditure. These neurochemicals appear to be involved in dietary selection, and sugars and palatable substances affect neurochemical changes in the brain. For example, rats that drink sucrose solutions for 3 wk have major changes in neuronal activity in the limbic area of the brain, a region involved in pleasure and other emotions. We also investigate the relations between sucrose (and other sweet substances), drugs of abuse, and the mesolimbic dopaminergic system. The presence of sucrose in an animal's cage can affect the animals desire to self-administer drugs of abuse. Also, an animal's level of sucrose preference can predict its desire to self-administer cocaine. Such data suggest a relation between sweet taste and drug reward, although the relevance to humans is unclear. Finally, we address the influence of sugar on body weight control. For example, sucrose feeding for 2 wk decreases the efficiency of energy utilization and increases gene expression of uncoupling protein 3 in muscle, suggesting that sucrose may influence uncoupling protein 3 activity and contribute to changes in metabolic efficiency and thus regulation of body weight.
Collapse
Affiliation(s)
- Allen S Levine
- Minnesota Obesity Center, Minneapolis VA Medical Center, Minneapolis, MN 55417, USA.
| | | | | |
Collapse
|
9
|
Abstract
The appetite for specific foods and nutrients may be under neuroregulatory control. In animal studies, fat intake is increased by both opioids and galanin and reduced by enterostatin, whereas carbohydrate intake is increased by neuropeptide Y (NPY). However, what may be affected is the consumption of preferred foods rather than macronutrients. Fat and sugars are highly preferred whether consumed separately or as mixtures in foods. Studies suggest that sustained consumption of sugars and fats may have additional metabolic consequences; among these are neurochemical changes in brain sites involved in feeding and reward, some of which are also affected by drugs of abuse. Furthermore, the consumption of fats and sugars alters tissue expression of uncoupling proteins, which are also influenced by neuroregulatory peptides and may be markers of energy expenditure. These data suggest that these palatable nutrients may influence energy expenditure through changes in central neuropeptide activity. Fats and sugars could affect central reward systems, thereby increasing food intake, and might have an additional effect on energy expenditure. Such palatable substances may contribute to the observed increase in the body weight of populations from affluent societies during the past few decades.
Collapse
Affiliation(s)
- Allen S Levine
- Minnesota Obesity Center, Minneapolis VA Medical Center, 55417, USA.
| | | | | |
Collapse
|
10
|
Pomonis JD, Jewett DC, Kotz CM, Briggs JE, Billington CJ, Levine AS. Sucrose consumption increases naloxone-induced c-Fos immunoreactivity in limbic forebrain. Am J Physiol Regul Integr Comp Physiol 2000; 278:R712-9. [PMID: 10712293 DOI: 10.1152/ajpregu.2000.278.3.r712] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Opioids have long been known to have an important role in feeding behavior, particularly related to the rewarding aspects of food. Considerable behavioral evidence suggests that sucrose consumption induces endogenous opioid release, affecting feeding behavior as well as other opioid-mediated behaviors, such as analgesia, dependence, and withdrawal. In the present study, rats were given access to a 10% sucrose solution or water for 3 wk, then they were injected with 10 mg/kg naloxone or saline. Brains were subsequently analyzed for c-Fos immunoreactivity (c-Fos-IR) in limbic and autonomic regions in the forebrain and hindbrain. Main effects of sucrose consumption or naloxone injection were seen in several areas, but a significant interaction was seen only in the central nucleus of the amygdala and in the lateral division of the periaqueductal gray. In the central nucleus of the amygdala, naloxone administration to those rats drinking water significantly increased c-Fos-IR, an effect that was significantly enhanced by sucrose consumption, suggesting an upregulation of endogenous opioid tone in this area. The data from this study indicate that the central nucleus of the amygdala has a key role in the integration of gustatory, hedonic, and autonomic signals as they relate to sucrose consumption, if not to food intake regulation in general. Furthermore, the data from this study lend further support to the hypothesis that sucrose consumption induces the release of endogenous opioids.
Collapse
Affiliation(s)
- J D Pomonis
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
11
|
Weller A, Gispan IH. A cholecystokinin receptor antagonist blocks milk-induced but not maternal-contact-induced decrease of ultrasonic vocalization in rat pups. Dev Psychobiol 2000. [DOI: 10.1002/1098-2302(200007)37:1<35::aid-dev5>3.0.co;2-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
|
13
|
|
14
|
Abstract
This paper is the nineteenth installment of our annual review of research concerning the opiate system. It summarizes papers published during 1996 reporting the behavioral effects of the opiate peptides and antagonists, excluding the purely analgesic effects, although stress-induced analgesia is included. The specific topics covered this year include stress, tolerance and dependence; eating; drinking; gastrointestinal, renal, and hepatic function; mental illness and mood; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurological disorders; electrical-related activity; general activity and locomotion; sex, pregnancy, and development; immunological responses; and other behaviors.
Collapse
Affiliation(s)
- G A Olson
- Department of Psychology, University of New Orleans, LA 70148, USA
| | | | | |
Collapse
|