1
|
Mao Y, Peng T, Shao F, Zhao Q, Peng Z. Molecular evolution of the hemoglobin gene family across vertebrates. Genetica 2023:10.1007/s10709-023-00187-9. [PMID: 37069365 DOI: 10.1007/s10709-023-00187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Adaptation to various altitudes and oxygen levels is a major aspect of vertebrate evolution. Hemoglobin is an erythrocyte protein belonging to the globin superfamily, and the α-, β-globin genes of jawed vertebrates encode tetrameric ((α2β2) hemoglobin, which contributes to aerobic metabolism by delivering oxygen from the respiratory exchange surfaces into cells. However, there are various gaps in knowledge regarding hemoglobin gene evolution, including patterns in cartilaginous fish and the roles of gene conversion in various taxa. Hence, we evaluated the evolutionary history of the vertebrate hemoglobin gene family by analyses of 97 species representing all classes of vertebrates. By genome-wide analyses, we extracted 879 hemoglobin sequences. Members of the hemoglobin gene family were conserved in birds and reptiles but variable in mammals, amphibians, and teleosts. Gene motifs, structures, and synteny were relatively well-conserved among vertebrates. Our results revealed that purifying selection contributed substantially to the evolution of all vertebrate hemoglobin genes, with mean dN/dS (ω) values ranging from 0.057 in teleosts to 0.359 in reptiles. In general, after the fish-specific genome duplication, the teleost hemoglobin genes showed variation in rates of evolution, and the β-globin genes showed relatively high ω values after a gene transposition event in amniotes. We also observed that the frequency of gene conversion was high in amniotes, with fewer hemoglobin genes and higher rates of evolution. Collectively, our findings provide detail insight into complex evolutionary processes shaping the vertebrate hemoglobin gene family, involving gene duplication, gene loss, purifying selection, and gene conversion.
Collapse
Affiliation(s)
- Yang Mao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China
- Clinical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Taotao Peng
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China
| | - Qingyuan Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China.
| |
Collapse
|
2
|
Is RNA the working genome in eukaryotes ? The 60 year evolution of a conceptual challenge. Exp Cell Res 2023; 424:113493. [PMID: 36746314 DOI: 10.1016/j.yexcr.2023.113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
About 80 years ago, in 1943, after a century of biochemical and genetic research, DNA was established as the carrier of genetic information. At the onset of Molecular Biology around 1960, the genome of living organisms embodied 3 basic, still unknown paradigms: its composition, organisation and expression. Between 1980 and 1990, its replication was understood, and ideas about its 3D-organisation were suggested and finally confirmed by 2010. The basic mechanisms of gene expression in higher organisms, the synthesis of precursor RNAs and their processing into functional RNAs, were also discovered about 60 years ago in 1961/62. However, some aspects were then, and are still now debated, although the latest results in post-genomic research have confirmed the basic principles. When my history-essay was published in 2003, describing the discovery of RNA processing 40 years earlier, the main facts were not yet generally confirmed or acknowledged. The processing of pre-rRNA to 28 S and 18 S rRNA was clearly demonstrated, confirmed by others and generally accepted as a fact. However, the "giant" size of pre-mRNA 10-100 kb-long and pervasive DNA transcription were still to be confirmed by post-genomic methods. It was found, surprisingly, that up to 90% of DNA is transcribed in the life cycle of eukaryotic organisms thus showing that pervasive transcription was the general rule. In this essay, we shall take a journey through the 60-year history of evolving paradigms of gene expression which followed the emergence of Molecular Biology, and we will also evoke some of the "folklore" in research throughout this period. Most important was the growing recognition that although the genome is encoded in DNA, the Working Genome in eukaryotic organisms is RNA.
Collapse
|
3
|
Iarovaia OV, Ulianov SV, Ioudinkova ES, Razin SV. Segregation of α- and β-Globin Gene Cluster in Vertebrate Evolution: Chance or Necessity? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1035-1049. [PMID: 36180994 DOI: 10.1134/s0006297922090140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
The review is devoted to the patterns of evolution of α- and β-globin gene domains. A hypothesis is presented according to which segregation of the ancestral cluster of α/β-globin genes in Amniota occurred due to the performance by α-globins and β-globins of non-canonical functions not related to oxygen transport.
Collapse
Affiliation(s)
- Olga V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Elena S Ioudinkova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
4
|
Razin SV, Ioudinkova ES, Kantidze OL, Iarovaia OV. Co-Regulated Genes and Gene Clusters. Genes (Basel) 2021; 12:907. [PMID: 34208174 PMCID: PMC8230824 DOI: 10.3390/genes12060907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
There are many co-regulated genes in eukaryotic cells. The coordinated activation or repression of such genes occurs at specific stages of differentiation, or under the influence of external stimuli. As a rule, co-regulated genes are dispersed in the genome. However, there are also gene clusters, which contain paralogous genes that encode proteins with similar functions. In this aspect, they differ significantly from bacterial operons containing functionally linked genes that are not paralogs. In this review, we discuss the reasons for the existence of gene clusters in vertebrate cells and propose that clustering is necessary to ensure the possibility of selective activation of one of several similar genes.
Collapse
Affiliation(s)
- Sergey V. Razin
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.I.); (O.L.K.); (O.V.I.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena S. Ioudinkova
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.I.); (O.L.K.); (O.V.I.)
| | - Omar L. Kantidze
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.I.); (O.L.K.); (O.V.I.)
| | - Olga V. Iarovaia
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.I.); (O.L.K.); (O.V.I.)
| |
Collapse
|
5
|
The rise and fall of globins in the amphibia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100759. [PMID: 33202310 DOI: 10.1016/j.cbd.2020.100759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 12/28/2022]
Abstract
The globin gene repertoire of gnathostome vertebrates is dictated by differential retention and loss of nine paralogous genes: androglobin, neuroglobin, globin X, cytoglobin, globin Y, myoglobin, globin E, and the α- and β-globins. We report the globin gene repertoire of three orders of modern amphibians: Anura, Caudata, and Gymnophiona. Combining phylogenetic and conserved synteny analysis, we show that myoglobin and globin E were lost only in the Batrachia clade, but retained in Gymnophiona. The major amphibian groups also retained different paralogous copies of globin X. None of the amphibian presented αD-globin gene. Nevertheless, two clades of β-globins are present in all amphibians, indicating that the amphibian ancestor possessed two paralogous proto β-globins. We also show that orthologs of the gene coding for the monomeric hemoglobin found in the heart of Rana catesbeiana are present in Neobatrachia and Pelobatoidea species we analyzed. We suggest that these genes might perform myoglobin- and globin E-related functions. We conclude that the repertoire of globin genes in amphibians is dictated by both retention and loss of the paralogous genes cited above and the rise of a new globin gene through co-option of an α-globin, possibly facilitated by a prior event of transposition.
Collapse
|
6
|
Philipsen S, Hardison RC. Evolution of hemoglobin loci and their regulatory elements. Blood Cells Mol Dis 2018; 70:2-12. [PMID: 28811072 PMCID: PMC5807248 DOI: 10.1016/j.bcmd.2017.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/13/2017] [Accepted: 08/03/2017] [Indexed: 11/21/2022]
Abstract
Across the expanse of vertebrate evolution, each species produces multiple forms of hemoglobin in erythroid cells at appropriate times and in the proper amounts. The multiple hemoglobins are encoded in two globin gene clusters in almost all species. One globin gene cluster, linked to the gene NPRL3, is preserved in all vertebrates, including a gene cluster encoding the highly divergent globins from jawless vertebrates. This preservation of synteny may reflect the presence of a powerful enhancer of globin gene expression in the NPRL3 gene. Despite substantial divergence in noncoding DNA sequences among mammals, several epigenetic features of the globin gene regulatory regions are preserved across vertebrates. The preserved features include multiple DNase hypersensitive sites, at least one of which is an enhancer, and binding by key lineage-restricted transcription factors such as GATA1 and TAL1, which in turn recruit coactivators such as P300 that catalyze acetylation of histones. The maps of epigenetic features are strongly correlated with activity in gene regulation, and resources for accessing and visualizing such maps are readily available to the community of researchers and students.
Collapse
Affiliation(s)
- Sjaak Philipsen
- Department of Cell Biology Ee1071b, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Huck Institute for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
7
|
Carr SM, Brothers AJ, Wilson AC. EVOLUTIONARY INFERENCES FROM RESTRICTION MAPS OF MITOCHONDRIAL DNA FROM NINE TAXA OF
XENOPUS
FROGS. Evolution 2017; 41:176-188. [DOI: 10.1111/j.1558-5646.1987.tb05780.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/1985] [Accepted: 09/30/1986] [Indexed: 10/19/2022]
Affiliation(s)
- Steven M. Carr
- Department of Biochemistry University of California Berkeley CA 94720
- Department of Genetics University of California Berkeley CA 94720
- Department of Zoology University of California Berkeley CA 94720
| | | | - Allan C. Wilson
- Department of Biochemistry University of California Berkeley CA 94720
| |
Collapse
|
8
|
Kovina AP, Petrova NV, Gushchanskaya ES, Dolgushin KV, Gerasimov ES, Galitsyna AA, Penin AA, Flyamer IM, Ioudinkova ES, Gavrilov AA, Vassetzky YS, Ulianov SV, Iarovaia OV, Razin SV. Evolution of the Genome 3D Organization: Comparison of Fused and Segregated Globin Gene Clusters. Mol Biol Evol 2017; 34:1492-1504. [DOI: 10.1093/molbev/msx100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
9
|
Rohlfing K, Stuhlmann F, Docker MF, Burmester T. Convergent evolution of hemoglobin switching in jawed and jawless vertebrates. BMC Evol Biol 2016; 16:30. [PMID: 26831729 PMCID: PMC4736134 DOI: 10.1186/s12862-016-0597-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/19/2016] [Indexed: 01/31/2023] Open
Abstract
Background During development, humans and other jawed vertebrates (Gnathostomata) express distinct hemoglobin genes, resulting in different hemoglobin tetramers. Embryonic and fetal hemoglobin have higher oxygen affinities than the adult hemoglobin, sustaining the oxygen demand of the developing organism. Little is known about the expression of hemoglobins during development of jawless vertebrates (Agnatha). Results We identified three hemoglobin switches in the life cycle of the sea lamprey. Three hemoglobin genes are specifically expressed in the embryo, four genes in the filter feeding larva (ammocoete), and nine genes correspond to the adult hemoglobin chains. During the development from the parasitic to the reproductive adult, the composition of hemoglobin changes again, with a massive increase of chain aHb1. A single hemoglobin chain is expressed constitutively in all stages. We further showed the differential expression of other globin genes: Myoglobin 1 is most highly expressed in the reproductive adult, myoglobin 2 expression peaks in the larva. Globin X1 is restricted to the embryo; globin X2 was only found in the reproductive adult. Cytoglobin is expressed at low levels throughout the life cycle. Conclusion Because the hemoglobins of jawed and jawless vertebrates evolved independently from a common globin ancestor, hemoglobin switching must also have evolved convergently in these taxa. Notably, the ontogeny of sea lamprey hemoglobins essentially recapitulates their phylogeny, with the embryonic hemoglobins emerging first, followed by the evolution of larval and adult hemoglobins. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0597-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kim Rohlfing
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, D-20146, Hamburg, Germany.
| | - Friederike Stuhlmann
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, D-20146, Hamburg, Germany.
| | - Margaret F Docker
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada.
| | - Thorsten Burmester
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, D-20146, Hamburg, Germany.
| |
Collapse
|
10
|
Suzuki H, Nikaido M, Hagino-Yamagishi K, Okada N. Distinct functions of two olfactory marker protein genes derived from teleost-specific whole genome duplication. BMC Evol Biol 2015; 15:245. [PMID: 26555542 PMCID: PMC4640105 DOI: 10.1186/s12862-015-0530-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 11/04/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Whole genome duplications (WGDs) have been proposed to have made a significant impact on vertebrate evolution. Two rounds of WGD (1R and 2R) occurred in the common ancestor of Gnathostomata and Cyclostomata, followed by the third-round WGD (3R) in a common ancestor of all modern teleosts. The 3R-derived paralogs are good models for understanding the evolution of genes after WGD, which have the potential to facilitate phenotypic diversification. However, the recent studies of 3R-derived paralogs tend to be based on in silico analyses. Here we analyzed the paralogs encoding teleost olfactory marker protein (OMP), which was shown to be specifically expressed in mature olfactory sensory neurons and is expected to be involved in olfactory transduction. RESULTS Our genome database search identified two OMPs (OMP1 and OMP2) in teleosts, whereas only one was present in other vertebrates. Phylogenetic and synteny analyses suggested that OMP1 and 2 were derived from 3R. Both OMPs showed distinct expression patterns in zebrafish; OMP1 was expressed in the deep layer of the olfactory epithelium (OE), which is consistent with previous studies of mice and zebrafish, whereas OMP2 was sporadically expressed in the superficial layer. Interestingly, OMP2 was expressed in a very restricted region of the retina as well as in the OE. In addition, the analysis of transcriptome data of spotted gar, a non-teleost fish, revealed that single OMP gene was expressed in the eyes. CONCLUSION We found distinct expression patterns of zebrafish OMP1 and 2 at the tissue and cellular level. These differences in expression patterns may be explained by subfunctionalization as the model of molecular evolution. Namely, single OMP gene was speculated to be originally expressed in the OE and the eyes in the common ancestor of all Osteichthyes (bony fish including tetrapods). Then, two OMP gene paralogs derived from 3R-WGD reduced and specialized the expression patterns. This study provides a good example for analyzing a functional subdivision of the teleost OE and eyes as revealed by 3R-derived paralogs of OMPs.
Collapse
Affiliation(s)
- Hikoyu Suzuki
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| | - Masato Nikaido
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| | - Kimiko Hagino-Yamagishi
- Department of Dementia and Higher Brain Function, Integrated Neuroscience Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| | - Norihiro Okada
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
- Foundation for Advancement of International Science, Tsukuba, 305-0821, Japan.
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
11
|
Opazo JC, Hoffmann FG, Natarajan C, Witt CC, Berenbrink M, Storz JF. Gene turnover in the avian globin gene families and evolutionary changes in hemoglobin isoform expression. Mol Biol Evol 2015; 32:871-87. [PMID: 25502940 PMCID: PMC4379397 DOI: 10.1093/molbev/msu341] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The apparent stasis in the evolution of avian chromosomes suggests that birds may have experienced relatively low rates of gene gain and loss in multigene families. To investigate this possibility and to explore the phenotypic consequences of variation in gene copy number, we examined evolutionary changes in the families of genes that encode the α- and β-type subunits of hemoglobin (Hb), the tetrameric α2β2 protein responsible for blood-O2 transport. A comparative genomic analysis of 52 bird species revealed that the size and membership composition of the α- and β-globin gene families have remained remarkably constant during approximately 100 My of avian evolution. Most interspecific variation in gene content is attributable to multiple independent inactivations of the α(D)-globin gene, which encodes the α-chain subunit of a functionally distinct Hb isoform (HbD) that is expressed in both embryonic and definitive erythrocytes. Due to consistent differences in O2-binding properties between HbD and the major adult-expressed Hb isoform, HbA (which incorporates products of the α(A)-globin gene), recurrent losses of α(D)-globin contribute to among-species variation in blood-O2 affinity. Analysis of HbA/HbD expression levels in the red blood cells of 122 bird species revealed high variability among lineages and strong phylogenetic signal. In comparison with the homologous gene clusters in mammals, the low retention rate for lineage-specific gene duplicates in the avian globin gene clusters suggests that the developmental regulation of Hb synthesis in birds may be more highly conserved, with orthologous genes having similar stage-specific expression profiles and similar functional properties in disparate taxa.
Collapse
Affiliation(s)
- Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University
| | | | - Christopher C Witt
- Department of Biology, University of New Mexico Museum of Southwestern Biology, University of New Mexico
| | - Michael Berenbrink
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln
| |
Collapse
|
12
|
Abstract
Insights into the evolution of hemoglobins and their genes are an abundant source of ideas regarding hemoglobin function and regulation of globin gene expression. This article presents the multiple genes and gene families encoding human globins, summarizes major events in the evolution of the hemoglobin gene clusters, and discusses how these studies provide insights into regulation of globin genes. Although the genes in and around the α-like globin gene complex are relatively stable, the β-like globin gene clusters are more dynamic, showing evidence of transposition to a new locus and frequent lineage-specific expansions and deletions. The cis-regulatory modules controlling levels and timing of gene expression are a mix of conserved and lineage-specific DNA, perhaps reflecting evolutionary constraint on core regulatory functions shared broadly in mammals and adaptive fine-tuning in different orders of mammals.
Collapse
Affiliation(s)
- Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Huck Institute of Genome Sciences, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
13
|
Razin SV, Ulianov SV, Ioudinkova ES, Gushchanskaya ES, Gavrilov AA, Iarovaia OV. Domains of α- and β-globin genes in the context of the structural-functional organization of the eukaryotic genome. BIOCHEMISTRY (MOSCOW) 2012; 77:1409-1423. [DOI: 10.1134/s0006297912130019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
14
|
Opazo JC, Butts GT, Nery MF, Storz JF, Hoffmann FG. Whole-genome duplication and the functional diversification of teleost fish hemoglobins. Mol Biol Evol 2012; 30:140-53. [PMID: 22949522 PMCID: PMC3525417 DOI: 10.1093/molbev/mss212] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Subsequent to the two rounds of whole-genome duplication that occurred in the common
ancestor of vertebrates, a third genome duplication occurred in the stem lineage of
teleost fishes. This teleost-specific genome duplication (TGD) is thought to have provided
genetic raw materials for the physiological, morphological, and behavioral diversification
of this highly speciose group. The extreme physiological versatility of teleost fish is
manifest in their diversity of blood–gas transport traits, which reflects the myriad
solutions that have evolved to maintain tissue O2 delivery in the face of
changing metabolic demands and environmental O2 availability during different
ontogenetic stages. During the course of development, regulatory changes in
blood–O2 transport are mediated by the expression of multiple,
functionally distinct hemoglobin (Hb) isoforms that meet the particular
O2-transport challenges encountered by the developing embryo or fetus (in
viviparous or oviparous species) and in free-swimming larvae and adults. The main
objective of the present study was to assess the relative contributions of whole-genome
duplication, large-scale segmental duplication, and small-scale gene duplication in
producing the extraordinary functional diversity of teleost Hbs. To accomplish this, we
integrated phylogenetic reconstructions with analyses of conserved synteny to characterize
the genomic organization and evolutionary history of the globin gene clusters of teleosts.
These results were then integrated with available experimental data on functional
properties and developmental patterns of stage-specific gene expression. Our results
indicate that multiple α- and β-globin genes
were present in the common ancestor of gars (order Lepisoteiformes) and teleosts. The
comparative genomic analysis revealed that teleosts possess a dual set of TGD-derived
globin gene clusters, each of which has undergone lineage-specific changes in gene content
via repeated duplication and deletion events. Phylogenetic reconstructions revealed that
paralogous genes convergently evolved similar functional properties in different teleost
lineages. Consistent with other recent studies of globin gene family evolution in
vertebrates, our results revealed evidence for repeated evolutionary transitions in the
developmental regulation of Hb synthesis.
Collapse
Affiliation(s)
- Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | | | | | | |
Collapse
|
15
|
Storz JF, Opazo JC, Hoffmann FG. Gene duplication, genome duplication, and the functional diversification of vertebrate globins. Mol Phylogenet Evol 2012; 66:469-78. [PMID: 22846683 DOI: 10.1016/j.ympev.2012.07.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 06/21/2012] [Accepted: 07/16/2012] [Indexed: 11/28/2022]
Abstract
The functional diversification of the vertebrate globin gene superfamily provides an especially vivid illustration of the role of gene duplication and whole-genome duplication in promoting evolutionary innovation. For example, key globin proteins that evolved specialized functions in various aspects of oxidative metabolism and oxygen signaling pathways (hemoglobin [Hb], myoglobin [Mb], and cytoglobin [Cygb]) trace their origins to two whole-genome duplication events in the stem lineage of vertebrates. The retention of the proto-Hb and Mb genes in the ancestor of jawed vertebrates permitted a physiological division of labor between the oxygen-carrier function of Hb and the oxygen-storage function of Mb. In the Hb gene lineage, a subsequent tandem gene duplication gave rise to the proto α- and β-globin genes, which permitted the formation of multimeric Hbs composed of unlike subunits (α(2)β(2)). The evolution of this heteromeric quaternary structure was central to the emergence of Hb as a specialized oxygen-transport protein because it provided a mechanism for cooperative oxygen-binding and allosteric regulatory control. Subsequent rounds of duplication and divergence have produced diverse repertoires of α- and β-like globin genes that are ontogenetically regulated such that functionally distinct Hb isoforms are expressed during different stages of prenatal development and postnatal life. In the ancestor of jawless fishes, the proto Mb and Hb genes appear to have been secondarily lost, and the Cygb homolog evolved a specialized respiratory function in blood-oxygen transport. Phylogenetic and comparative genomic analyses of the vertebrate globin gene superfamily have revealed numerous instances in which paralogous globins have convergently evolved similar expression patterns and/or similar functional specializations in different organismal lineages.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | | | | |
Collapse
|
16
|
Patel VS, Ezaz T, Deakin JE, Graves JAM. Globin gene structure in a reptile supports the transpositional model for amniote α- and β-globin gene evolution. Chromosome Res 2010; 18:897-907. [PMID: 21116705 DOI: 10.1007/s10577-010-9164-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 10/20/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
The haemoglobin protein, required for oxygen transportation in the body, is encoded by α- and β-globin genes that are arranged in clusters. The transpositional model for the evolution of distinct α-globin and β-globin clusters in amniotes is much simpler than the previously proposed whole genome duplication model. According to this model, all jawed vertebrates share one ancient region containing α- and β-globin genes and several flanking genes in the order MPG-C16orf35-(α-β)-GBY-LUC7L that has been conserved for more than 410 million years, whereas amniotes evolved a distinct β-globin cluster by insertion of a transposed β-globin gene from this ancient region into a cluster of olfactory receptors flanked by CCKBR and RRM1. It could not be determined whether this organisation is conserved in all amniotes because of the paucity of information from non-avian reptiles. To fill in this gap, we examined globin gene organisation in a squamate reptile, the Australian bearded dragon lizard, Pogona vitticeps (Agamidae). We report here that the α-globin cluster (HBK, HBA) is flanked by C16orf35 and GBY and is located on a pair of microchromosomes, whereas the β-globin cluster is flanked by RRM1 on the 3' end and is located on the long arm of chromosome 3. However, the CCKBR gene that flanks the β-globin cluster on the 5' end in other amniotes is located on the short arm of chromosome 5 in P. vitticeps, indicating that a chromosomal break between the β-globin cluster and CCKBR occurred at least in the agamid lineage. Our data from a reptile species provide further evidence to support the transpositional model for the evolution of β-globin gene cluster in amniotes.
Collapse
Affiliation(s)
- Vidushi S Patel
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | |
Collapse
|
17
|
Wetten OF, Nederbragt AJ, Wilson RC, Jakobsen KS, Edvardsen RB, Andersen Ø. Genomic organization and gene expression of the multiple globins in Atlantic cod: conservation of globin-flanking genes in chordates infers the origin of the vertebrate globin clusters. BMC Evol Biol 2010; 10:315. [PMID: 20961401 PMCID: PMC2975663 DOI: 10.1186/1471-2148-10-315] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/20/2010] [Indexed: 08/30/2023] Open
Abstract
Background The vertebrate globin genes encoding the α- and β-subunits of the tetrameric hemoglobins are clustered at two unlinked loci. The highly conserved linear order of the genes flanking the hemoglobins provides a strong anchor for inferring common ancestry of the globin clusters. In fish, the number of α-β-linked globin genes varies considerably between different sublineages and seems to be related to prevailing physico-chemical conditions. Draft sequences of the Atlantic cod genome enabled us to determine the genomic organization of the globin repertoire in this marine species that copes with fluctuating environments of the temperate and Arctic regions. Results The Atlantic cod genome was shown to contain 14 globin genes, including nine hemoglobin genes organized in two unlinked clusters designated β5-α1-β1-α4 and β3-β4-α2-α3-β2. The diverged cod hemoglobin genes displayed different expression levels in adult fish, and tetrameric hemoglobins with or without a Root effect were predicted. The novel finding of maternally inherited hemoglobin mRNAs is consistent with a potential role played by fish hemoglobins in the non-specific immune response. In silico analysis of the six teleost genomes available showed that the two α-β globin clusters are flanked by paralogs of five duplicated genes, in agreement with the proposed teleost-specific duplication of the ancestral vertebrate globin cluster. Screening the genome of extant urochordate and cephalochordate species for conserved globin-flanking genes revealed linkage of RHBDF1, MPG and ARHGAP17 to globin genes in the tunicate Ciona intestinalis, while these genes together with LCMT are closely positioned in amphioxus (Branchiostoma floridae), but seem to be unlinked to the multiple globin genes identified in this species. Conclusion The plasticity of Atlantic cod to variable environmental conditions probably involves the expression of multiple globins with potentially different properties. The interspecific difference in number of fish hemoglobin genes contrasts with the highly conserved synteny of the flanking genes. The proximity of globin-flanking genes in the tunicate and amphioxus genomes resembles the RHBDF1-MPG-α-globin-ARHGAP17-LCMT linked genes in man and chicken. We hypothesize that the fusion of the three chordate linkage groups 3, 15 and 17 more than 800 MYA led to the ancestral vertebrate globin cluster during a geological period of increased atmospheric oxygen content.
Collapse
Affiliation(s)
- Ola F Wetten
- Department of Animal and Aquacultural Sciences, University of Life Sciences, Aas, Norway
| | | | | | | | | | | |
Collapse
|
18
|
Quinn NL, Boroevich KA, Lubieniecki KP, Chow W, Davidson EA, Phillips RB, Koop BF, Davidson WS. Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire. BMC Genomics 2010; 11:539. [PMID: 20923558 PMCID: PMC3091688 DOI: 10.1186/1471-2164-11-539] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 10/05/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest. RESULTS We identified four bacterial artificial chromosomes (BACs) comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH) analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced. CONCLUSIONS We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon hemoglobin genes involves the loss of a single hemoglobin gene cluster after the whole genome duplication (WGD) at the base of the teleost radiation but prior to the salmonid-specific WGD, which then produced the duplicated copies seen today. We also propose that the relatively high number of hemoglobin genes as well as the presence of non-Bohr β hemoglobin genes may be due to the dynamic life history of salmon and the diverse environmental conditions that the species encounters.Data deposition: BACs S0155C07 and S0079J05 (fps135): GenBank GQ898924; BACs S0055H05 and S0014B03 (fps1046): GenBank GQ898925.
Collapse
Affiliation(s)
- Nicole L Quinn
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Keith A Boroevich
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Krzysztof P Lubieniecki
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - William Chow
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Evelyn A Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ruth B Phillips
- Department of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - William S Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
19
|
Hoffmann FG, Storz JF, Gorr TA, Opazo JC. Lineage-specific patterns of functional diversification in the alpha- and beta-globin gene families of tetrapod vertebrates. Mol Biol Evol 2010; 27:1126-38. [PMID: 20047955 DOI: 10.1093/molbev/msp325] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The alpha- and beta-globin gene families of jawed vertebrates have diversified with respect to both gene function and the developmental timing of gene expression. Phylogenetic reconstructions of globin gene family evolution have provided suggestive evidence that the developmental regulation of hemoglobin synthesis has evolved independently in multiple vertebrate lineages. For example, the embryonic beta-like globin genes of birds and placental mammals are not 1:1 orthologs. Despite the similarity in developmental expression profiles, the genes are independently derived from lineage-specific duplications of a beta-globin pro-ortholog. This suggests the possibility that other vertebrate taxa may also possess distinct repertoires of globin genes that were produced by repeated rounds of lineage-specific gene duplication and divergence. Until recently, investigations into this possibility have been hindered by the dearth of genomic sequence data from nonmammalian vertebrates. Here, we report new insights into globin gene family evolution that were provided by a phylogenetic analysis of vertebrate globins combined with a comparative genomic analysis of three key sauropsid taxa: a squamate reptile (anole lizard, Anolis carolinensis), a passeriform bird (zebra finch, Taeniopygia guttata), and a galliform bird (chicken, Gallus gallus). The main objectives of this study were 1) to characterize evolutionary changes in the size and membership composition of the alpha- and beta-globin gene families of tetrapod vertebrates and 2) to test whether functional diversification of the globin gene clusters occurred independently in different tetrapod lineages. Results of our comparative genomic analysis revealed several intriguing patterns of gene turnover in the globin gene clusters of different taxa. Lineage-specific differences in gene content were especially pronounced in the beta-globin gene family, as phylogenetic reconstructions revealed that amphibians, lepidosaurs (as represented by anole lizard), archosaurs (as represented by zebra finch and chicken), and mammals each possess a distinct independently derived repertoire of beta-like globin genes. In contrast to the ancient functional diversification of the alpha-globin gene cluster in the stem lineage of tetrapods, the physiological division of labor between early- and late-expressed genes in the beta-globin gene cluster appears to have evolved independently in several tetrapod lineages.
Collapse
|
20
|
A mathematical study on the distribution of the number of repeated genes per chromosome. Genet Res (Camb) 2009. [DOI: 10.1017/s0016672300020437] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SUMMARYI develop a mathematical model which can account for a distribution of the number of repeated genes per chromosome under the joint effects of sister chromatid exchange (SCE), inter-chromosomal crossing-over (ICC), and selection. The model can be applied not only to the cases of small gene clusters but also to multigene families. Based on this model, an appropriate mathematical formula is derived and used to obtain the equilibrium distribution. Assuming stabilizing selection and two simple schemes concerning SCE and ICC, I numerically calculate the equilibrium distribution and compare the result with observations on frequencies of single and triple α-haemoglobin genes in primates. It is also shown that if SCE and ICC occur according to the same probabilistic law, the distinction between them does not make much sense in the equilibrium distribution.
Collapse
|
21
|
Abstract
Recent data published in BMC Biology from the globin gene clusters in platypus, together with data from other species, show that β-globin genes transposed from one chromosomal location to another. This resolves some controversies about vertebrate globin gene evolution but ignites new ones.
Collapse
Affiliation(s)
- Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of Life Sciences, University Park, PA 16802, USA.
| |
Collapse
|
22
|
Diversity in the origins of sex chromosomes in anurans inferred from comparative mapping of sexual differentiation genes for three species of the Raninae and Xenopodinae. Chromosome Res 2008; 16:999-1011. [PMID: 18850318 DOI: 10.1007/s10577-008-1257-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 07/18/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
|
23
|
Patel VS, Cooper SJB, Deakin JE, Fulton B, Graves T, Warren WC, Wilson RK, Graves JAM. Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals. BMC Biol 2008; 6:34. [PMID: 18657265 PMCID: PMC2529266 DOI: 10.1186/1741-7007-6-34] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 07/25/2008] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Vertebrate alpha (alpha)- and beta (beta)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the alpha- and beta-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil beta-globin gene (omega) in the marsupial alpha-cluster, however, suggested that duplication of the alpha-beta cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous alpha- and beta-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. RESULTS The platypus alpha-globin cluster (chromosome 21) contains embryonic and adult alpha- globin genes, a beta-like omega-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-zeta-zeta'-alphaD-alpha3-alpha2-alpha1-omega-GBY-3'. The platypus beta-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-epsilon-beta-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate alpha-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal beta-globin clusters are embedded in olfactory genes. Thus, the mammalian alpha- and beta-globin clusters are orthologous to the bird alpha- and beta-globin clusters respectively. CONCLUSION We propose that alpha- and beta-globin clusters evolved from an ancient MPG-C16orf35-alpha-beta-GBY-LUC7L arrangement 410 million years ago. A copy of the original beta (represented by omega in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of beta-globin genes with different expression profiles in different lineages.
Collapse
Affiliation(s)
- Vidushi S Patel
- The ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | - Steven JB Cooper
- Australian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, Adelaide, SA 5005, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, SA 5000, Australia
| | - Janine E Deakin
- The ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | - Bob Fulton
- Genome Sequencing Center, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Tina Graves
- Genome Sequencing Center, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Wesley C Warren
- Genome Sequencing Center, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Richard K Wilson
- Genome Sequencing Center, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Jennifer AM Graves
- The ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
24
|
Musso G, Costanzo M, Huangfu M, Smith AM, Paw J, San Luis BJ, Boone C, Giaever G, Nislow C, Emili A, Zhang Z. The extensive and condition-dependent nature of epistasis among whole-genome duplicates in yeast. Genome Res 2008; 18:1092-9. [PMID: 18463300 DOI: 10.1101/gr.076174.108] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since complete redundancy between extant duplicates (paralogs) is evolutionarily unfavorable, some degree of functional congruency is eventually lost. However, in budding yeast, experimental evidence collected for duplicated metabolic enzymes and in global physical interaction surveys had suggested widespread functional overlap between paralogs. While maintained functional overlap is thought to confer robustness against genetic mutation and facilitate environmental adaptability, it has yet to be determined what properties define paralogs that can compensate for the phenotypic consequence of deleting a sister gene, how extensive this epistasis is, and how adaptable it is toward alternate environmental states. To this end, we have performed a comprehensive experimental analysis of epistasis as indicated by aggravating genetic interactions between paralogs resulting from an ancient whole-genome duplication (WGD) event occurring in the budding yeast Saccharomyces cerevisiae, and thus were able to compare properties of large numbers of epistatic and non-epistatic paralogs with identical evolutionary times since divergence. We found that more than one-third (140) of the 399 examinable WGD paralog pairs were epistatic under standard laboratory conditions and that additional cases of epistasis became obvious only under media conditions designed to induce cellular stress. Despite a significant increase in within-species sequence co-conservation, analysis of protein interactions revealed that paralogs epistatic under standard laboratory conditions were not more functionally overlapping than those non-epistatic. As experimental conditions had an impact on the functional categorization of paralogs deemed epistatic and only a fraction of potential stress conditions have been interrogated here, we hypothesize that many epistatic relationships remain unresolved.
Collapse
Affiliation(s)
- Gabriel Musso
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Aguileta G, Bielawski JP, Yang Z. Proposed standard nomenclature for the alpha- and beta-globin gene families. Genes Genet Syst 2007; 81:367-71. [PMID: 17159299 DOI: 10.1266/ggs.81.367] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The globin family of genes and proteins has been a recurrent object of study for many decades. This interest has generated a vast amount of knowledge. However it has also created an inconsistent and confusing nomenclature, due to the lack of a systematic approach to naming genes and failure to reflect the phylogenetic relationships among genes of the gene family. To alleviate the problems with the existing system, here we propose a standardized nomenclature for the alpha and beta globin family of genes, based on a phylogenetic analysis of vertebrate alpha and beta globins, and following the Guidelines for Human Gene Nomenclature.
Collapse
|
26
|
Shishikura F, Takeuchi HA, Nagai T. Axolotl hemoglobin: cDNA-derived amino acid sequences of two α globins and a β globin from an adult Ambystoma mexicanum. Comp Biochem Physiol B Biochem Mol Biol 2005; 142:258-68. [PMID: 16143550 DOI: 10.1016/j.cbpc.2005.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 07/03/2005] [Accepted: 07/05/2005] [Indexed: 10/25/2022]
Abstract
Erythrocytes of the adult axolotl, Ambystoma mexicanum, have multiple hemoglobins. We separated and purified two kinds of hemoglobin, termed major hemoglobin (Hb M) and minor hemoglobin (Hb m), from a five-year-old male by hydrophobic interaction column chromatography on Alkyl Superose. The hemoglobins have two distinct alpha type globin polypeptides (alphaM and alpham) and a common beta globin polypeptide, all of which were purified in FPLC on a reversed-phase column after S-pyridylethylation. The complete amino acid sequences of the three globin chains were determined separately using nucleotide sequencing with the assistance of protein sequencing. The mature globin molecules were composed of 141 amino acid residues for alphaM globin, 143 for alpham globin and 146 for beta globin. Comparing primary structures of the five kinds of axolotl globins, including two previously established alpha type globins from the same species, with other known globins of amphibians and representatives of other vertebrates, we constructed phylogenetic trees for amphibian hemoglobins and tetrapod hemoglobins. The molecular trees indicated that alphaM, alpham, beta and the previously known alpha major globin were adult types of globins and the other known alpha globin was a larval type. The existence of two to four more globins in the axolotl erythrocyte is predicted.
Collapse
Affiliation(s)
- Fumio Shishikura
- Department of Biology, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan.
| | | | | |
Collapse
|
27
|
Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 2005; 3:e314. [PMID: 16128622 PMCID: PMC1197285 DOI: 10.1371/journal.pbio.0030314] [Citation(s) in RCA: 1069] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 07/08/2005] [Indexed: 11/18/2022] Open
Abstract
The hypothesis that the relatively large and complex vertebrate genome was created by two ancient, whole genome duplications has been hotly debated, but remains unresolved. We reconstructed the evolutionary relationships of all gene families from the complete gene sets of a tunicate, fish, mouse, and human, and then determined when each gene duplicated relative to the evolutionary tree of the organisms. We confirmed the results of earlier studies that there remains little signal of these events in numbers of duplicated genes, gene tree topology, or the number of genes per multigene family. However, when we plotted the genomic map positions of only the subset of paralogous genes that were duplicated prior to the fish-tetrapod split, their global physical organization provides unmistakable evidence of two distinct genome duplication events early in vertebrate evolution indicated by clear patterns of four-way paralogous regions covering a large part of the human genome. Our results highlight the potential for these large-scale genomic events to have driven the evolutionary success of the vertebrate lineage.
Collapse
Affiliation(s)
- Paramvir Dehal
- Evolutionary Genomics Department, Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, California, USA.
| | | |
Collapse
|
28
|
De Leo AA, Wheeler D, Lefevre C, Cheng JF, Hope R, Kuliwaba J, Nicholas KR, Westerman M, Graves JAM. Sequencing and mapping hemoglobin gene clusters in the Australian model dasyurid marsupial Sminthopsis macroura. Cytogenet Genome Res 2004; 108:333-41. [PMID: 15627754 DOI: 10.1159/000081528] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 07/26/2004] [Indexed: 11/19/2022] Open
Abstract
Comparing globin genes and their flanking sequences across many species has allowed globin gene evolution to be reconstructed in great detail. Marsupial globin sequences have proved to be of exceptional significance. A previous finding of a beta(beta)-like omega(omega) gene in the alpha(alpha) cluster in the tammar wallaby suggested that the alpha and beta cluster evolved via genome duplication and loss rather than tandem duplication. To confirm and extend this important finding we isolated and sequenced BACs containing the alpha and beta loci from the distantly related Australian marsupial Sminthopsis macroura. We report that the alpha gene lies in the same BAC as the beta-like omega gene, implying that the alpha-omega juxtaposition is likely to be conserved in all marsupials. The LUC7L gene was found 3' of the S. macroura alpha locus, a gene order shared with humans but not mouse, chicken or fugu. Sequencing a BAC contig that contained the S. macroura beta globin and epsilon globin loci showed that the globin cluster is flanked by olfactory genes, demonstrating a gene arrangement conserved for over 180 MY. Analysis of the region 5' to the S. macroura epsilon (epsilon) globin gene revealed a region similar to the eutherian LCR, containing sequences and potential transcription factor binding sites with homology to eutherian hypersensitive sites 1 to 5. FISH mapping of BACs containing S. macroura alpha and beta globin genes located the beta globin cluster on chromosome 3q and the alpha locus close to the centromere on 1q, resolving contradictory map locations obtained by previous radioactive in situ hybridization.
Collapse
Affiliation(s)
- A A De Leo
- Department of Zoology, The University of Melbourne, Melbourne, Vic, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wheeler D, Hope RM, Cooper SJB, Gooley AA, Holland RAB. Linkage of the beta-like omega-globin gene to alpha-like globin genes in an Australian marsupial supports the chromosome duplication model for separation of globin gene clusters. J Mol Evol 2004; 58:642-52. [PMID: 15461421 DOI: 10.1007/s00239-004-2584-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The structure, function, and evolutionary history of globin genes have been the subject of extensive investigation over a period of more than 40 years, yet new globin genes with highly specialized functions are still being discovered and much remains uncertain about their evolutionary history. Here we investigate the molecular evolution of the beta-globin gene family in a marsupial species, the tammar wallaby, Macropus eugenii. We report the complete DNA sequences of two beta-like globin genes and show by phylogenetic analyses that one of these genes is orthologous to embryonically expressed epsilon-globin genes of marsupials and eutherians and the other is orthologous to adult expressed beta-globin genes of marsupials and eutherians. We show that the tammar wallaby contains a third functional beta-like globin gene, omega-globin, which forms part of the alpha-globin gene cluster. The position of omega-globin on the 3' side of the alpha-globin cluster and its ancient phylogenetic history fit the criteria, originally proposed by Jeffreys et al. (1980), of a "fossil" beta-globin gene and suggest that an ancient chromosome or genome duplication preceded the evolution of unlinked clusters of alpha- and beta-globin genes in mammals and avians. In eutherian mammals, such as humans and mice, omega-globin has been silenced or translocated away from the alpha-globin locus, while in marsupials omega-globin is coordinately expressed with the adult alpha-globin gene just prior to birth to produce a functional hemoglobin (alpha2 omega2).
Collapse
Affiliation(s)
- David Wheeler
- Department of Molecular Biosciences, The University of Adelaide, South Australia 5005, Australia
| | | | | | | | | |
Collapse
|
30
|
Brownlie A, Hersey C, Oates AC, Paw BH, Falick AM, Witkowska HE, Flint J, Higgs D, Jessen J, Bahary N, Zhu H, Lin S, Zon L. Characterization of embryonic globin genes of the zebrafish. Dev Biol 2003; 255:48-61. [PMID: 12618133 DOI: 10.1016/s0012-1606(02)00041-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemoglobin switching is a complex process by which distinct globin chains are produced during stages of development. In an effort to characterize the process of hemoglobin switching in the zebrafish model system, we have isolated and characterized several embryonic globin genes. The embryonic and adult globin genes are found in clusters in a head-to-head configuration. One cluster of embryonic and adult genes is localized to linkage group 3, whereas another embryonic cluster is localized on linkage group 12. Several embryonic globin genes demonstrate an erythroid-specific pattern of expression early during embryogenesis and later are downregulated as definitive hematopoiesis occurs. We utilized electrospray mass spectroscopy to correlate globin genes and protein expression in developing embryonic red cells. The mutation, zinfandel, has a hypochromic microcytic anemia as an embryo, but later recovers in adulthood. The zinfandel gene maps to linkage group 3 near the major globin gene locus, strongly suggesting that zinfandel represents an embryonic globin defect. Our studies are the first to systematically evaluate the embryonic globins in the zebrafish and will ultimately be useful in evaluating zebrafish mutants with defects in hemoglobin production and switching.
Collapse
Affiliation(s)
- Alison Brownlie
- Division of Hematology/Oncology, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hirsch N, Zimmerman LB, Grainger RM. Xenopus, the next generation: X. tropicalis genetics and genomics. Dev Dyn 2002; 225:422-33. [PMID: 12454920 DOI: 10.1002/dvdy.10178] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A small, fast-breeding, diploid relative of the frog Xenopus laevis, Xenopus tropicalis, has recently been adopted for research in developmental genetics and functional genomics. X. tropicalis shares advantages of X. laevis as a classic embryologic system, but its simpler genome and shorter generation time make it more convenient for multigenerational genetic, genomic, and transgenic approaches. Its embryos closely resemble those of X. laevis, except for their smaller size, and assays and molecular probes developed in X. laevis can be readily adapted for use in X. tropicalis. Genomic manipulation techniques such as gynogenesis facilitate genetic screens, because they permit the identification of recessive phenotypes after only one generation. Stable transgenic lines can be used both as in vivo reporters to streamline a variety of embryologic and molecular assays, or to experimentally manipulate gene expression through the use of binary constructs such as the GAL4/UAS system. Several mutations have been identified in wild-caught animals and during the course of generating inbred lines. A variety of strategies are discussed for conducting and managing genetic screens, obtaining mutations in specific sequences, achieving homologous recombination, and in developing and taking advantage of the genomic resources for Xenopus tropicalis.
Collapse
Affiliation(s)
- Nicolas Hirsch
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904-4328, USA
| | | | | |
Collapse
|
32
|
Kubo H, Kawano T, Tsubuki S, Kawashima S, Katagiri C, Suzuki A. A major glycoprotein of Xenopus egg vitelline envelope, gp41, is a frog homolog of mammalian ZP3. Dev Growth Differ 1997; 39:405-17. [PMID: 9352194 DOI: 10.1046/j.1440-169x.1997.t01-3-00001.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A predominant glycoprotein in the vitelline envelope (VE) of the anuran Xenopus laevis is gp41, known to be proteolytically converted from gp43 of the coelomic egg envelope concomitant with the acquisition of egg fertilizability. To characterize the protein core of gp41, purified gp41 from VE was digested with lysyl endopeptidase, and peptides isolated from the digests were sequenced for amino acids to design degenerate primers for polymerase chain reaction. By reverse transcription-polymerase chain reaction with a poly(A)+ RNA from the ovary of an ovulated female Xenopus, a specifically amplified band was obtained and sequenced. The upstream and downstream sequences of the sequenced region were completed by 5'- and 3'-rapid amplification of cDNA ends, respectively. The cDNA, referred to as gp43 cDNA, comprises 1423 base pairs and contains one open reading frame with a sequence for 460 amino acids. The predicted amino acid sequence of gp43 cDNA has a close similarity with that of mammalian ZP3. Northern blot and in situ hybridization studies indicated that gp43 mRNA is expressed in oocytes, particularly in the previtellogenic oocytes. A comparison of the N-terminal sequences of gp41 and gp43 strongly suggested that gp41 is generated at least by processing of the N-terminal portion of gp43 with oviductin.
Collapse
Affiliation(s)
- H Kubo
- Department of Membrane Biochemistry, Tokyo Metropolitan Institute of Medical Science, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Nonaka M, Namikawa C, Kato Y, Sasaki M, Salter-Cid L, Flajnik MF. Major histocompatibility complex gene mapping in the amphibian Xenopus implies a primordial organization. Proc Natl Acad Sci U S A 1997; 94:5789-91. [PMID: 9159152 PMCID: PMC20858 DOI: 10.1073/pnas.94.11.5789] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
One of the most provocative recent discoveries in immunology was the description of a genetic linkage in the major histocompatibility complex (MHC) between structurally unrelated genes whose products are involved in processing and presentation of antigens for recognition by T lymphocytes. Genes encoding MHC class I molecules, which bind and present at the cell surface proteolytic fragments of cytosolic proteins, are linked to nonhomologous genes whose products are involved in the production and subsequent transfer of such fragments into the endoplasmic reticulum. In mammals, the class I presentation and processing genes are found in different regions of the MHC. To examine the evolutionary origins of this genetic association, linkage studies were carried out with Xenopus, an amphibian last sharing an ancestor with mammals over 350 million years ago. In contrast to mammals, the single copy Xenopus class I gene is located between the class II and III regions, speculated to be in close linkage with the processing and transport genes. In addition to suggesting a primordial organization of genes involved in class I antigen presentation, these linkage studies further provide insight into the origins of the MHC class III region and the phenomenon of class I gene instability in the mammalian MHC.
Collapse
Affiliation(s)
- M Nonaka
- Department of Biochemistry, Nagoya City University Medical School, Mizuho-Ku, Nagoya 467, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Ali A, Salter-Cid L, Flajnik MJ, Heikkila JJ. Molecular cloning of a cDNA encoding a Xenopus laevis 70-kDa heat shock cognate protein, hsc70.II. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1309:174-8. [PMID: 8982250 DOI: 10.1016/s0167-4781(96)00156-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have isolated and sequenced a full-length cDNA clone encoding a Xenopus laevis 70 kDa heat shock cognate protein, hsc70.II. The protein coding region exhibited high identity with Xenopus hsc70.I (94%), suggesting that the two genes are the result of a genomic tetraploidization event which occurred in Xenopus over 30 million years ago. Also, hsc70.II displayed a high level of identity with mammalian hsc70. However, the identity of Xenopus hsc70.II cDNA with Xenopus hsp70 was only 82%. At the carboxyl end of the hsc70.II protein, the identity with hsc70.I was 85%, while the identity for hsp70 was only 58%. These data support the theory that the inducible and constitutive members of the hsp70 family diverged well before the emergence of amphibians. Also, hsc70.II contains a number of conserved elements including an ATP-binding domain, a nuclear localization signal and the carboxyl terminal motif, EEVD, which may have a role in chaperone function.
Collapse
Affiliation(s)
- A Ali
- Department of Biology, University of Waterloo, ON, Canada
| | | | | | | |
Collapse
|
35
|
McMorrow T, Wagner A, Deryckere F, Gannon F. Structural organization and sequence analysis of the globin locus in Atlantic salmon. DNA Cell Biol 1996; 15:407-14. [PMID: 8924215 DOI: 10.1089/dna.1996.15.407] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Preliminary analysis of Atlantic salmon alpha- and beta-globin genes indicated that these genes are linked in a 3' to 3' orientation, with the RNA-coding sequences located on opposite strands. In this report, we show that two different alpha-globin genes have the same orientation and are encoded on the same strand whereas two different beta-globin genes are encoded on the opposite strand and also have the same orientation. This cluster of globin genes is divided into two subclusters: one for the Bohr globin genes and one for the non-Bohr globin genes. This is the first evidence for this type of arrangement found for globin genes. DNase I footprint analysis of two of the globin promoters show erythroid-specific transcription factor binding sites that have also been found in human and other mammalian globin genes.
Collapse
Affiliation(s)
- T McMorrow
- Microbiology Department, and National Diagnostics Centre, BioResearch Ireland, University College, Galway, Ireland
| | | | | | | |
Collapse
|
36
|
Shain DH, Stone RT, Yoo J, Zuber MX. Characterization of a single-locus minisatellite DNA in Xenopus laevis. Genome 1996; 39:230-3. [PMID: 8851808 DOI: 10.1139/g96-031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have cloned a minisatellite tandem array (XTA) from Xenopus laevis that contains approximately 200 copies of the 20-bp repeat 5'-CCAACAGCCTGCCCATCCAT-3'. The XTA sequence is present only once per haploid genome and is polymorphic with respect to repeat number and location of flanking restriction endonuclease sites. Although the 20-bp repeat has not previously been described, flanking sequences suggest that it lies proximal to coding regions in the Xenopus genome.
Collapse
Affiliation(s)
- D H Shain
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523, USA
| | | | | | | |
Collapse
|
37
|
Shain DH, Haile DT, Verrastro TA, Zuber MX. Cloning and embryonic expression of Xenopus laevis GAP-43 (XGAP-43). Brain Res 1995; 697:241-6. [PMID: 8593582 DOI: 10.1016/0006-8993(95)00866-o] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Xenopus laevis GAP-43 (XGAP-43) is highly related to other vertebrate GAP-43 proteins in its N-terminal region which contains a membrane-targeting sequence, serine phosphorylation site, and calmodulin binding domain. Unlike other species examined, however, there appear to be two GAP-43-class genes in X. laevis which resulted from the genome duplication in Xenopus approximately 30 million years ago. During embryogenesis, XGAP-43 is expressed in a complex spatiotemporal pattern that is consistent with its putative role in neuronal growth and development.
Collapse
Affiliation(s)
- D H Shain
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523, USA
| | | | | | | |
Collapse
|
38
|
Howe JA, Howell M, Hunt T, Newport JW. Identification of a developmental timer regulating the stability of embryonic cyclin A and a new somatic A-type cyclin at gastrulation. Genes Dev 1995; 9:1164-76. [PMID: 7758942 DOI: 10.1101/gad.9.10.1164] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have identified a second Xenopus cyclin A, called cyclin A2. Cyclin A2 is a 46.6-kD protein that shows a greater homology to human cyclin A than to the previously identified Xenopus cyclin A1. It is present throughout embryonic development (up to stage 46 at least) and is found in adult tissues as well as in Xenopus tissue culture cell lines. In contrast, cyclin A1 is present in eggs and early embryos but cannot be detected in late embryos or in tissue culture cells. We have found that the maternally stored pools of mRNAs encoding both of these cyclin A proteins are stable until the onset of gastrulation and then are degraded abruptly. At this time, new transcription replaces cyclin A2 mRNA. Interestingly, we have also observed a dramatic change in the stability of the cyclin A proteins at this time. Prior to the onset of gastrulation, cyclin A1 protein is stable during interphase of the cell cycle. At gastrulation, however, both A1 and A2 proteins turn over rapidly during interphase of the cell cycle. Together, these results indicate that developmental programs controlling cyclin A protein and mRNA stability are activated at gastrulation. We have shown that this program is independent of new transcription beginning at the mid-blastula transition. Furthermore, treatment of early stage embryos with cycloheximide demonstrates that activation of this degradative program is independent of cell division and translation. Collectively, our observations suggest that a previously uncharacterized timing mechanism activates new degradative pathways at the onset of gastrulation, which could play an essential role in releasing cells from maternal programming.
Collapse
Affiliation(s)
- J A Howe
- Department of Biology, University of California at San Diego, La Jolla 92093-0347, USA
| | | | | | | |
Collapse
|
39
|
Wagner A, Deryckere F, McMorrow T, Gannon F. Tail-to-tail orientation of the Atlantic salmon alpha- and beta-globin genes. J Mol Evol 1994; 38:28-35. [PMID: 8151712 DOI: 10.1007/bf00175492] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report the cloning of a cDNA and two corresponding beta-globin genes of the Atlantic salmon (Salmo salar L.) as well as two genes for alpha-globins. Nucleotide sequence analysis of the cDNA shows that the predicted beta-globin peptide comprises 148 amino acids with a calculated molecular mass of 16,127 Da and an overall amino acid similarity of 40-50% to higher vertebrates and 60-90% to fish sequences. The study of the genomic organization of alpha- and beta-globin genes shows that, as is the case in Xenopus, the salmon genes are adjacent. Two sets of linked alpha- and beta-globin genes were isolated and restriction-enzyme polymorphisms indicate that they belong to two distinct loci, possibly as a result of the salmon tetraploidy. In each locus the alpha- and beta-globin genes are oriented 3' to 3' relative to each other with the RNA coding sequences located on opposite DNA strands. This is the first evidence for this type of arrangement found for globin genes. Moreover, while the linkage found in salmon and Xenopus supports the hypothesis of an initial tandem duplication of a globin ancestor gene, our results raise the question of the actual original orientation of the duplicated genes.
Collapse
Affiliation(s)
- A Wagner
- National Diagnostics Centre/BioResearch Ireland, Department of Microbiology, University College, Galway
| | | | | | | |
Collapse
|
40
|
Saint-Jacques E, Séguin C. Cloning and nucleotide sequence of a complementary DNA encoding Xenopus laevis metallothionein: mRNA accumulation in response to heavy metals. DNA Cell Biol 1993; 12:329-40. [PMID: 8494609 DOI: 10.1089/dna.1993.12.329] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A cDNA encoding Xenopus laevis metallothionein (MT) was cloned from a cDNA library constructed using liver poly(A+)RNA of X. laevis adult males treated with CdCl2. The probe used to screen the library was a MT-specific DNA fragment obtained by means of the polymerase chain reaction (PCR) and degenerate oligodeoxynucleotide primers. The cDNA clone encodes a putative protein of 62 amino acids, of which 20 are cysteine residues. The position of all the cysteine residues is conserved with respect to mammalian MT sequences. The amino acid sequence of this X. laevis MT, designated XIMT-A, shares between 60% and 67% identity with various vertebrate MTs. Overall, the structure of XIMT-A is no similar in sequence to MT-1 than it is to MT-2 isoforms of various vertebrates. Ten different X. laevis MT cDNA isolates were partially sequenced and turned out to be identical, suggesting a single species of MT mRNA. Southern blot analysis of X. laevis DNA reveals that the XlMT-A gene is present in at least two copies. This result is consistent with the suggestion that a genome duplication occurred in a X. laevis ancestor. The in vivo response to increasing doses of Cd2+, Zn2+, and Cu2+ metal salts was tested. In the liver, all three metals proved to be potent inducers, raising MT mRNA levels between 50- and 100-fold. The maximum response to Cd2+ was at 12 hr after injection and to Zn2+ at 24 hr after injection. High levels of mRNA were maintained for more than 48 hr. Cd2+ and Zn2+ induced XlMT-A mRNA in all tissues examined (kidney, spleen, heart, intestine, testes, and brain). Dexamethasone did not induce MT mRNA synthesis in the liver.
Collapse
Affiliation(s)
- E Saint-Jacques
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Canada
| | | |
Collapse
|
41
|
Moore JD, Lamb HK, Garbe T, Servos S, Dougan G, Charles IG, Hawkins AR. Inducible overproduction of the Aspergillus nidulans pentafunctional AROM protein and the type-I and -II 3-dehydroquinases from Salmonella typhi and Mycobacterium tuberculosis. Biochem J 1992; 287 ( Pt 1):173-81. [PMID: 1329726 PMCID: PMC1133140 DOI: 10.1042/bj2870173] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aroQ gene of Mycobacterium tuberculosis, encoding a type-II 3-dehydroquinase, and the aroD gene of Salmonella typhi, encoding a type-I 3-dehydroquinase, have been highly overexpressed in Escherichia coli using the powerful trc promoter contained within the expression vector pKK233-2. The M. tuberculosis type-II 3-dehydroquinase has been purified in bulk from overproducing strains of E. coli to greater than 95% homogeneity. The protein is extremely heat-stable, is active as a homododecamer and has the lowest reported Km value of any type-II 3-dehydroquinase. The pentafunctional aromA gene of Aspergillus nidulans has been overexpressed more than 120-fold in an A. nidulans aromA- qutB- double mutant from a truncated quinate-inducible qutE promoter, such that the AROM protein is visible as a significant fraction (approx. 6%) in cell-free crude extracts. The M. tuberculosis aroQ gene has been fused to the same truncated qutE promoter and shown to encode quinate-inducible 3-dehydroquinase activity that allows a qutE- mutant strain of A. nidulans to utilize quinate as sole carbon source.
Collapse
Affiliation(s)
- J D Moore
- Department of Biochemistry and Genetics, University of Newcastle upon Tyne, U.K
| | | | | | | | | | | | | |
Collapse
|
42
|
Marschal P, Herrmann J, Leffler H, Barondes S, Cooper D. Sequence and specificity of a soluble lactose-binding lectin from Xenopus laevis skin. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42365-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Lamb HK, van den Hombergh JP, Newton GH, Moore JD, Roberts CF, Hawkins AR. Differential flux through the quinate and shikimate pathways. Implications for the channelling hypothesis. Biochem J 1992; 284 ( Pt 1):181-7. [PMID: 1318019 PMCID: PMC1132714 DOI: 10.1042/bj2840181] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The qutC gene encoding dehydroshikimate dehydratase has been constitutively overexpressed in Aspergillus nidulans from a range of 1-30-fold over the normal wild-type level. This overexpression leads to impaired growth in minimal medium which can be alleviated by the addition of aromatic amino acids to the medium. Overexpression of the qutC gene in mutant strains lacking protocatechuic acid (PCA) oxygenase leads to the build up of PCA in the medium, which can be measured by a simple assay. Measuring the rate of production of PCA in strains overproducing dehydroshikimate dehydratase and correlating this with the level of overproduction and impaired ability to grow in minimal medium lacking aromatic amino acids leads to the conclusion that (a) the metabolites 3-dehydroquinate and dehydroshikimate leak from the AROM protein at a rate comparable with the extent of flux catalysed by the AROM protein, (b) the AROM protein has a low-level channelling function probably as a result of the close juxtaposition of five active sites and (c) this channelling function is only physiologically significant under non-optimal conditions of nutrient supply and oxygenation, when the organism is in situ in its natural environment.
Collapse
Affiliation(s)
- H K Lamb
- Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, U.K
| | | | | | | | | | | |
Collapse
|
44
|
Dillon N, Kollias G, Grosveld F, Williams JG. Expression of adult and tadpole specific globin genes from Xenopus laevis in transgenic mice. Nucleic Acids Res 1991; 19:6227-30. [PMID: 1720238 PMCID: PMC329131 DOI: 10.1093/nar/19.22.6227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transgenic mice were generated which carried the adult alpha and beta-globin genes and the major tadpole specific beta-globin gene of Xenopus laevis. The adult specific alpha and beta genes were found to express in erythroid tissues in adult mice, while the major tadpole specific beta gene (beta T1) was expressed in blood from 12.5 day embryos. The pattern of expression of the beta T1 gene during mouse development was consistent with its being regulated as an embryonic globin gene in the mouse. This observation suggests that some of the factors mediating globin switching have been conserved during the evolution of modern amphibia and mammals and raises interesting questions concerning the evolution of vertebrate globin gene switching.
Collapse
Affiliation(s)
- N Dillon
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire, UK
| | | | | | | |
Collapse
|
45
|
Schmid M, Steinlein C. Chromosome banding in Amphibia. XVI. High-resolution replication banding patterns in Xenopus laevis. Chromosoma 1991; 101:123-32. [PMID: 1769277 DOI: 10.1007/bf00357062] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High-resolution replication banding patterns were induced in prometaphase and prophase chromosomes of Xenopus laevis by treating kidney cell lines with 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT) in succession. Up to 650 early and late replicating bands per haploid karyotype were demonstrated in the very long prophase chromosomes. This permits an exact identification of all chromosome pairs of X. laevis. Late replicating heterochromatin was located by analysing the time sequence of replication throughout the second half of S-phase. Neither heteromorphic sex chromosomes nor sex chromosome-specific replication bands were demonstrated in the heterogametic ZW females of X. laevis. A detailed examination of the BrdU/dT-labelled prometaphases and prophases revealed that the X. laevis chromosomes can be arranged in groups of four (quartets), most of which show conspicuous similarities in length, centromere position, and replication pattern. This is interpreted as further evidence for an ancient allotetraploid origin of X. laevis.
Collapse
Affiliation(s)
- M Schmid
- Department of Human Genetics, University of Würzburg, Federal Republic of Germany
| | | |
Collapse
|
46
|
Su MW, Suzuki HR, Bieker JJ, Solursh M, Ramirez F. Expression of two nonallelic type II procollagen genes during Xenopus laevis embryogenesis is characterized by stage-specific production of alternatively spliced transcripts. J Cell Biol 1991; 115:565-75. [PMID: 1918153 PMCID: PMC2289160 DOI: 10.1083/jcb.115.2.565] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The pattern of type II collagen expression during Xenopus laevis embryogenesis has been established after isolating specific cDNA and genomic clones. Evidence is presented suggesting that in X. laevis there are two transcriptionally active copies of the type II procollagen gene. Both genes are activated at the beginning of neurula stage and steady-state mRNA levels progressively increase thereafter. Initially, the transcripts are localized to notochord, somites, and the dorsal region of the lateral plate mesoderm. At later stages of development and parallel to increased mRNA accumulation, collagen expression becomes progressively more confined to chondrogenic regions of the tadpole. During the early period of mRNA accumulation, there is also a transient pattern of expression in localized sites that will later not undergo chondrogenesis, such as the floor plate in the ventral neural tube. At later times and coincident with the appearance of chondrogenic tissues in the developing embryo, expression of the procollagen genes is characterized by the production of an additional, alternatively spliced transcript. The alternatively spliced sequences encode the cysteine-rich globular domain in the NH2-propeptide of the type II procollagen chain. Immunohistochemical analyses with a type II collagen monoclonal antibody documented the deposition of the protein in the extracellular matrix of the developing embryo. Type II collagen expression is therefore temporally regulated by tissue-specific transcription and splicing factors directing the synthesis of distinct molecular forms of the precursor protein in the developing Xenopus embryo.
Collapse
Affiliation(s)
- M W Su
- Brookdale Center for Molecular Biology, Mt. Sinai School of Medicine, New York, New York 10029
| | | | | | | | | |
Collapse
|
47
|
Gerke V, Koch W, Thiel C. Primary structure and expression of the Xenopus laevis gene encoding annexin II. Gene X 1991; 104:259-64. [PMID: 1833269 DOI: 10.1016/0378-1119(91)90259-e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Annexin II (AnxII) is one of the Ca(2+)-dependent membrane- and phospholipid-binding proteins (annexins) which are encoded by a multigene family. AnxII was originally described as a major cellular substrate for the tyrosine kinase encoded by the src oncogene, and is also phosphorylated by protein kinase C in vivo and in vitro. To obtain more information about structurally conserved regions in AnxII, which could be of structural and/or functional importance, we have identified AnxII in a nonmammalian species, the clawed toad Xenopus laevis. In a ligand overlay assay, we employed p11, the cellular protein ligand of AnxII, to show that a 36-kDa Anx capable of binding p11 is present in a cellular extract from X. laevis cells. The cDNA cloning and sequence analysis revealed that two types of AnxII mRNA are expressed in X. laevis. The transcripts are highly similar to each other, but are encoded by two different genes. The deduced amino acid sequences show a high degree of conservation when compared to the sequences of mammalian and chicken AnxII. In particular, the p11-binding domain, as well as the protein core, which harbors the binding sites for Ca2+ and phospholipid, are highly similar. However, Tyr23, which is phosphorylated by pp60src in mammalian and chicken AnxII, is replaced by a Leu residue in both X. laevis molecules. Thus, tyrosine phosphorylation is probably not a general mode of regulation of AnxII function(s).
Collapse
Affiliation(s)
- V Gerke
- Department of Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, F.R.G
| | | | | |
Collapse
|
48
|
Lamb HK, Bagshaw CR, Hawkins AR. In vivo overproduction of the pentafunctional arom polypeptide in Aspergillus nidulans affects metabolic flux in the quinate pathway. MOLECULAR & GENERAL GENETICS : MGG 1991; 227:187-96. [PMID: 1648168 DOI: 10.1007/bf00259670] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The shikimate pathway and the quinic acid utilisation (QUT) pathway of Aspergillus nidulans and other fungi share the two common metabolic intermediates, 3-dehydroquinic acid (DHQ) and dehydroshikimic acid (DHS), which are interconverted by two isoenzymes, catabolic 3-dehydroquinase, (cDHQase) and biosynthetic dehydroquinase, (bDHQase). bDHQase is one of five consecutive enzymatic activities associated with the pentafunctional arom protein encoded by the complex AROM locus, whereas cDHQase is encoded by the single-function QUTE gene, one of seven genes comprising the QUT gene cluster in A. nidulans, which is required for the catabolism of quinate to protocatechuate. We addressed the question of how much (if any) leakage there is of the two common substrates between the two pathways, by increasing the concentration of the arom protein in vivo by means of recombinant DNA technology. We demonstrated that constitutive overproduction of the arom protein by 12-fold in the presence of quinate inhibits germination of conidiospores, but showed that 12-fold quinate-inducible overproduction of arom protein does not have this effect. In addition we showed that a qutE mutant (lacking cDHQase) can grow with quinic acid as sole carbon source whtn the arom protein is overproduced fivefold. The data are most simply interpreted as simple competition for common substrates by the enzymes of the two pathways and demonstrate that any channelling function of the arom protein in vivo is relatively leaky.
Collapse
Affiliation(s)
- H K Lamb
- Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, UK
| | | | | |
Collapse
|
49
|
Hawkins AR, Smith M. Domain structure and interaction within the pentafunctional arom polypeptide. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 196:717-24. [PMID: 1849480 DOI: 10.1111/j.1432-1033.1991.tb15870.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The AROM locus of Aspergillus nidulans specifies a pentafunctional polypeptide catalysing five consecutive steps leading to the production of 5-enolpyruvylshikimate 3-phosphate in the shikimate pathway. Aided by oligonucleotide-mediated site-directed mutagenesis, the whole AROM locus and various overlapping subfragments from within it have been fused to the powerful hybrid trc promoter in the Escherichia coli plasmid pKK233-2. Expression of these subfragments in appropriate aro mutants of E. coli has (a) allowed the delineation of functional domains within the arom polypeptide, (b) shown that the arom polypeptide falls in two independently folding and functioning regions, the N-terminal half specifying 3-dehydroquinate (DHQ) synthase and EPSP synthase and the C-terminus specifying shikimate kinase, biosynthetic 3-dehydroquinase (DHQase) and shikimate dehydrogenase, and (c) strongly suggested an interaction between the DHQ synthase and EPSP synthase domains to stabilise the EPSP synthase activity. In addition an isoenzyme of biosynthetic DHQase, catabolic DHQase, encoded by the QUTE gene of A. nidulans has been transcribed from the trc promoter and upon isopropyl-thio-beta-D-galactoside induction produces up to 20% of the total soluble cell protein.
Collapse
Affiliation(s)
- A R Hawkins
- Dept. of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, England
| | | |
Collapse
|
50
|
Ramji DP, Donovan JT, Hames BD. Sequence and expression analysis of a cAMP-responsive gene regulated during late development of Dictyostelium discoideum. Mol Microbiol 1991; 5:427-32. [PMID: 1645841 DOI: 10.1111/j.1365-2958.1991.tb02125.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The 7E gene is expressed late in normal development of Dictyostelium discoideum after pseudoplasmodium formation. After disaggregation of the developing cells, transcription of this gene depends entirely on exogenous 3'5' cyclic AMP (cAMP). The 5' flanking region of the 7E gene contains two TATA box-oligo (dT) promoter motifs but analysis of 7E gene expression by primer extension shows only a single primary transcript with transcription initiating immediately after the most proximal promoter motif during development or in disaggregated cells in the presence of exogenous cAMP. Four C-rich sequences lie within 350bp upstream of the cap site, analogous to the upstream elements implicated in the cAMP regulation of several other Dictyostelium genes expressed in development.
Collapse
Affiliation(s)
- D P Ramji
- Department of Biochemistry and Molecular Biology, University of Leeds, UK
| | | | | |
Collapse
|