1
|
Mekkaoui F, Drewell RA, Dresch JM, Spratt DE. Experimental approaches to investigate biophysical interactions between homeodomain transcription factors and DNA. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195074. [PMID: 39644990 PMCID: PMC11832328 DOI: 10.1016/j.bbagrm.2024.195074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Homeodomain transcription factors (TFs) bind to specific DNA sequences to regulate the expression of target genes. Structural work has provided insight into molecular identities and aided in unraveling structural features of these TFs. However, the detailed affinity and specificity by which these TFs bind to DNA sequences is still largely unknown. Qualitative methods, such as DNA footprinting, Electrophoretic Mobility Shift Assays (EMSAs), Systematic Evolution of Ligands by Exponential Enrichment (SELEX), Bacterial One Hybrid (B1H) systems, Surface Plasmon Resonance (SPR), and Protein Binding Microarrays (PBMs) have been widely used to investigate the biochemical characteristics of TF-DNA binding events. In addition to these qualitative methods, bioinformatic approaches have also assisted in TF binding site discovery. Here we discuss the advantages and limitations of these different approaches, as well as the benefits of utilizing more quantitative approaches, such as Mechanically Induced Trapping of Molecular Interactions (MITOMI), Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC), in determining the biophysical basis of binding specificity of TF-DNA complexes and improving upon existing computational approaches aimed at affinity predictions.
Collapse
Affiliation(s)
- Fadwa Mekkaoui
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, United States of America
| | - Robert A Drewell
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, United States of America
| | - Jacqueline M Dresch
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, United States of America
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, United States of America.
| |
Collapse
|
2
|
Rosales-Vega M, Reséndez-Pérez D, Vázquez M. Antennapedia: The complexity of a master developmental transcription factor. Genesis 2024; 62:e23561. [PMID: 37830148 DOI: 10.1002/dvg.23561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Hox genes encode transcription factors that play an important role in establishing the basic body plan of animals. In Drosophila, Antennapedia is one of the five genes that make up the Antennapedia complex (ANT-C). Antennapedia determines the identity of the second thoracic segment, known as the mesothorax. Misexpression of Antennapedia at different developmental stages changes the identity of the mesothorax, including the muscles, nervous system, and cuticle. In Drosophila, Antennapedia has two distinct promoters highly regulated throughout development by several transcription factors. Antennapedia proteins are found with other transcription factors in different ANTENNAPEDIA transcriptional complexes to regulate multiple subsets of target genes. In this review, we describe the different mechanisms that regulate the expression and function of Antennapedia and the role of this Hox gene in the development of Drosophila.
Collapse
Affiliation(s)
- Marco Rosales-Vega
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Diana Reséndez-Pérez
- Facultad de Ciencias Biológicas, Departamento de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Martha Vázquez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
3
|
Mio C, Baldan F, Damante G. NK2 homeobox gene cluster: Functions and roles in human diseases. Genes Dis 2023; 10:2038-2048. [PMID: 37492711 PMCID: PMC10363584 DOI: 10.1016/j.gendis.2022.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 07/27/2023] Open
Abstract
NK2 genes (NKX2 gene cluster in humans) encode for homeodomain-containing transcription factors that are conserved along the phylogeny. According to the most detailed classifications, vertebrate NKX2 genes are classified into two distinct families, NK2.1 and NK2.2. The former is constituted by NKX2-1 and NKX2-4 genes, which are homologous to the Drosophila scro gene; the latter includes NKX2-2 and NKX2-8 genes, which are homologous to the Drosophila vnd gene. Conservation of these genes is not only related to molecular structure and expression, but also to biological functions. In Drosophila and vertebrates, NK2 genes share roles in the development of ventral regions of the central nervous system. In vertebrates, NKX2 genes have a relevant role in the development of several other organs such as the thyroid, lung, and pancreas. Loss-of-function mutations in NKX2-1 and NKX2-2 are the monogenic cause of the brain-lung-thyroid syndrome and neonatal diabetes, respectively. Alterations in NKX2-4 and NKX2-8 genes may play a role in multifactorial diseases, autism spectrum disorder, and neural tube defects, respectively. NKX2-1, NKX2-2, and NKX2-8 are expressed in various cancer types as either oncogenes or tumor suppressor genes. Several data indicate that evaluation of their expression in tumors has diagnostic and/or prognostic value.
Collapse
Affiliation(s)
- Catia Mio
- Dipartimento di Area Medica, Università degli Studi di Udine, Udine 33100, Italy
| | - Federica Baldan
- Istituto di Genetica Medica, Azienda Sanitaria Universitaria Friuli Centrale, Udine 33100, Italy
| | - Giuseppe Damante
- Dipartimento di Area Medica, Università degli Studi di Udine, Udine 33100, Italy
- Istituto di Genetica Medica, Azienda Sanitaria Universitaria Friuli Centrale, Udine 33100, Italy
| |
Collapse
|
4
|
Zou F, Liu M, Sui Y, Liu J. Comprehensive overview of the role of PBX1 in mammalian kidneys. Front Mol Biosci 2023; 10:1106370. [PMID: 37006624 PMCID: PMC10063971 DOI: 10.3389/fmolb.2023.1106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Pre-B-cell leukemia homeobox transcription factor 1 (PBX1) is a member of the TALE (three-amino acid loop extension) family and functions as a homeodomain transcription factor (TF). When dimerized with other TALE proteins, it can act as a pioneer factor and provide regulatory sequences via interaction with partners. In vertebrates, PBX1 is expressed during the blastula stage, and its germline variations in humans are interrelated with syndromic anomalies of the kidney, which plays an important role in hematopoiesis and immunity among vertebrates. Herein, we summarize the existing data on PBX1 functions and the impact of PBX1 on renal tumors, PBX1-deficient animal models, and blood vessels in mammalian kidneys. The data indicated that the interaction of PBX1 with different partners such as the HOX genes is responsible for abnormal proliferation and variation of the embryonic mesenchyme, while truncating variants were shown to cause milder phenotypes (mostly cryptorchidism and deafness). Although such interactions have been identified to be the cause of many defects in mammals, some phenotypic variations are yet to be understood. Thus, further research on the TALE family is required.
Collapse
Affiliation(s)
- Fei Zou
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
- Department of Pediatrics, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Mingsheng Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Yutong Sui
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Jinyu Liu,
| |
Collapse
|
5
|
Joliot A. Role of PI(4,5)P2 and Cholesterol in Unconventional Protein Secretion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:381-392. [PMID: 36988889 DOI: 10.1007/978-3-031-21547-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Besides its protective role in the maintenance of cell homeostasis, the plasma membrane is the site of exchanges between the cell interior and the extracellular medium. To circumvent the hydrophobic barrier formed by the acyl chains of the lipid bilayer, protein channels and transporters are key players in the exchange of small hydrophilic compounds such as ions or nutrients, but they hardly account for the transport of larger biological molecules. Exchange of proteins usually relies on membrane-fusion events between vesicles and the plasma membrane. In recent years, several alternative unconventional protein secretion (UPS) pathways across the plasma membrane have been characterised for a specific set of secreted substrates, some of them excluding any membrane-fusion events (Dimou and Nickel, Curr Biol 28:R406-R410, 2018). One of thesbe pathways, referred as type I UPS, relies on the direct translocation of the protein across the plasma membrane and not surprisingly, lipids are essential players in this process. In this chapter, we discuss the roles of phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) and cholesterol in unconventional pathways involving Engrailed-2 homeoprotein and fibroblast growth factor 2.
Collapse
Affiliation(s)
- Alain Joliot
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France.
| |
Collapse
|
6
|
Veiga RN, de Oliveira JC, Gradia DF. PBX1: a key character of the hallmarks of cancer. J Mol Med (Berl) 2021; 99:1667-1680. [PMID: 34529123 DOI: 10.1007/s00109-021-02139-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Pre-B-cell leukemia homeobox transcription factor 1 (PBX1) was first identified as part of a fusion protein resulting from the chromosomal translocation t(1;19) in pre-B cell acute lymphoblastic leukemias. Since then, PBX1 has been associated with important developmental programs, and its expression dysregulation has been related to multifactorial disorders, including cancer. As PBX1 overexpression in many cancers is correlated to poor prognosis, we sought to understand how this transcription factor contributes to carcinogenesis, and to organize PBX1's roles in the hallmarks of cancer. There is enough evidence to associate PBX1 with at least five hallmarks: sustaining proliferative signaling, activating invasion and metastasis, inducing angiogenesis, resisting cell death, and deregulating cellular energetics. The lack of studies investigating a possible role for PBX1 on the remaining hallmarks made it impossible to defend or refute its contribution on them. However, the functions of some of the PBX1's transcription targets indicate a potential engagement of PBX1 in the avoidance of immune destruction and in the tumor-promoting inflammation hallmarks. Interestingly, PBX1 might be a player in tumor suppression by activating the transcription of some DNA damage response genes. This is the first review organizing PBX1 roles into the hallmarks of cancer. Thus, we encourage future studies to uncover the PBX1's underlying mechanisms to promote carcinogenesis, for it is a promising diagnostic and prognostic biomarker, as well as a potential target in cancer treatment.
Collapse
Affiliation(s)
- Rafaela Nasser Veiga
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Jaqueline Carvalho de Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil.
| |
Collapse
|
7
|
Ge F, Tie W, Zhang J, Zhu Y, Fan Y. Expression of the HOXA gene family and its relationship to prognosis and immune infiltrates in cervical cancer. J Clin Lab Anal 2021; 35:e24015. [PMID: 34606634 PMCID: PMC8605136 DOI: 10.1002/jcla.24015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background The homeobox A cluster (HOXA) gene family is participated in multiple biological functions in human cancers. To date, little is known about the expression profile and clinical significance of HOXA genes in cervical cancer. Methods We downloaded RNASeq data of cervical cancer from The Cancer Genome Atlas (TCGA) database. The difference in HOXA family expression was analyzed using independent samples t test. Cox proportional hazard regression analysis was used to assess the effect of HOXA family expression on survival, and a nomogram predicting survival was generated. We assessed the infiltration difference in immune cells and expression difference of immunity biomarkers between two groups with different expression level of HOXA genes through Immune Cell Abundance Identifier (ImmuCellAI) and independent samples t test, respectively. Results Our results showed that the HOXA1 gene was upregulated, while the HOXA10 and HOXA11 were downregulated in cervical cancer. Downregulation of HOXA1 was related to a poor outcome for cervical cancer patient. We also identified a significantly increased abundance of T helper 2 cells (Th2) and higher expression of PD‐L1 in cervical cancer patients with lower expression of HOXA10 and HOXA11. The gene set enrichment analysis (GSEA) results indicated that HOXA1 and HOXA11 were involved in immune responses pathways and participated in the activation of a variety of classic signaling pathways related to the progression of human cancer. Conclusion This study comprehensively analyzed different HOXA genes applying public database to determine their expression patterns, potential diagnostic, prognostic, and treatment values in cervical cancer.
Collapse
Affiliation(s)
- Fenfen Ge
- Department of Gynecology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Weiwei Tie
- Department of Gynecology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Junli Zhang
- Department of Gynecology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yingying Zhu
- Department of Gynecology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yingying Fan
- Department of Gynecology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Wüthrich K. Brownian motion, spin diffusion and protein structure determination in solution. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 331:107031. [PMID: 34391647 DOI: 10.1016/j.jmr.2021.107031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
This paper presents my recollections on the development of protein structure determination by NMR in solution from 1968 to 1992. The key to success was to identify NMR-accessible parameters that unambiguously determine the spatial arrangement of polypeptide chains. Inspired by work with cyclopeptides, model considerations showed that enforcing short non-bonding interatomic distances imposes «ring closure conditions» on polypeptide chains. Given that distances are scalar parameters, this indicated an avenue for studies of proteins in solution, i.e., under the regime of stochastic rotational and translational motions at frequencies in the nanosecond range (Brownian motion), where sharp pictures could not be obtained by photography-related methods. Later-on, we used distance geometry calculations with sets of inter-atomic distances derived from protein crystal structures to confirm that measurements of short proton-proton distances could provide atomic-resolution structures of globular proteins. During the years 1976-1984 the following four lines of research then led to protein structure determination by NMR in solution. First, the development of NMR experiments enabling the use of the nuclear Overhauser effect (NOE) for measurements of interatomic distances between pairs of hydrogen atoms in proteins. Second, obtaining sequence-specific resonance assignment solved the "phase problem" for protein structure determination by NMR. Third, generating and programming novel distance geometry algorithms enabled the calculation of atomic-resolution protein structures from limited sets of distance constraints measured by NMR. Fourth, the introduction of two-dimensional NMR provided greatly improved spectral resolution of the complex spectra of proteins as well as efficient delineation of scalar and dipole-dipole 1H-1H connectivities, thus making protein structure determination in solution viable and attractive.
Collapse
Affiliation(s)
- Kurt Wüthrich
- ETH Zürich, Zürich Switzerland and Scripps Research, La Jolla, CA, USA
| |
Collapse
|
9
|
Gonçalves CS, Le Boiteux E, Arnaud P, Costa BM. HOX gene cluster (de)regulation in brain: from neurodevelopment to malignant glial tumours. Cell Mol Life Sci 2020; 77:3797-3821. [PMID: 32239260 PMCID: PMC11105007 DOI: 10.1007/s00018-020-03508-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
HOX genes encode a family of evolutionarily conserved homeodomain transcription factors that are crucial both during development and adult life. In humans, 39 HOX genes are arranged in four clusters (HOXA, B, C, and D) in chromosomes 7, 17, 12, and 2, respectively. During embryonic development, particular epigenetic states accompany their expression along the anterior-posterior body axis. This tightly regulated temporal-spatial expression pattern reflects their relative chromosomal localization, and is critical for normal embryonic brain development when HOX genes are mainly expressed in the hindbrain and mostly absent in the forebrain region. Epigenetic marks, mostly polycomb-associated, are dynamically regulated at HOX loci and regulatory regions to ensure the finely tuned HOX activation and repression, highlighting a crucial epigenetic plasticity necessary for homeostatic development. HOX genes are essentially absent in healthy adult brain, whereas they are detected in malignant brain tumours, namely gliomas, where HOX genes display critical roles by regulating several hallmarks of cancer. Here, we review the major mechanisms involved in HOX genes (de)regulation in the brain, from embryonic to adult stages, in physiological and oncologic conditions. We focus particularly on the emerging causes of HOX gene deregulation in glioma, as well as on their functional and clinical implications.
Collapse
Affiliation(s)
- Céline S Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Elisa Le Boiteux
- Université Clermont Auvergne, CNRS, INSERM-iGReD, Clermont-Ferrand, France
| | - Philippe Arnaud
- Université Clermont Auvergne, CNRS, INSERM-iGReD, Clermont-Ferrand, France
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
10
|
Abstract
Key discoveries in Drosophila have shaped our understanding of cellular "enhancers." With a special focus on the fly, this chapter surveys properties of these adaptable cis-regulatory elements, whose actions are critical for the complex spatial/temporal transcriptional regulation of gene expression in metazoa. The powerful combination of genetics, molecular biology, and genomics available in Drosophila has provided an arena in which the developmental role of enhancers can be explored. Enhancers are characterized by diverse low- or high-throughput assays, which are challenging to interpret, as not all of these methods of identifying enhancers produce concordant results. As a model metazoan, the fly offers important advantages to comprehensive analysis of the central functions that enhancers play in gene expression, and their critical role in mediating the production of phenotypes from genotype and environmental inputs. A major challenge moving forward will be obtaining a quantitative understanding of how these cis-regulatory elements operate in development and disease.
Collapse
Affiliation(s)
- Stephen Small
- Department of Biology, Developmental Systems Training Program, New York University, 10003 and
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
11
|
Dokholyan NV. Experimentally-driven protein structure modeling. J Proteomics 2020; 220:103777. [PMID: 32268219 PMCID: PMC7214187 DOI: 10.1016/j.jprot.2020.103777] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 11/25/2022]
Abstract
Revolutions in natural and exact sciences started at the dawn of last century have led to the explosion of theoretical, experimental, and computational approaches to determine structures of molecules, complexes, as well as their rich conformational dynamics. Since different experimental methods produce information that is attributed to specific time and length scales, corresponding computational methods have to be tailored to these scales and experiments. These methods can be then combined and integrated in scales, hence producing a fuller picture of molecular structure and motion from the "puzzle pieces" offered by various experiments. Here, we describe a number of computational approaches to utilize experimental data to glance into structure of proteins and understand their dynamics. We will also discuss the limitations and the resolution of the constraints-based modeling approaches. SIGNIFICANCE: Experimentally-driven computational structure modeling and determination is a rapidly evolving alternative to traditional approaches for molecular structure determination. These new hybrid experimental-computational approaches are proving to be a powerful microscope to glance into the structural features of intrinsically or partially disordered proteins, dynamics of molecules and complexes. In this review, we describe various approaches in the field of experimentally-driven computational structure modeling.
Collapse
Affiliation(s)
- Nikolay V Dokholyan
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA.; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
12
|
Yu B, Pletka CC, Iwahara J. NMR Observation of Intermolecular Hydrogen Bonds between Protein Tyrosine Side-Chain OH and DNA Phosphate Groups. J Phys Chem B 2020; 124:1065-1070. [PMID: 31958014 PMCID: PMC7021563 DOI: 10.1021/acs.jpcb.9b10987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogen bonds between protein side-chain hydroxyl (OH) and phosphate groups are one of the most common types of intermolecular hydrogen bonds in protein-DNA/RNA complexes. Using NMR spectroscopy, we identified and characterized the hydrogen bonds between tyrosine side-chain OH and DNA phosphate groups in a protein-DNA complex. These OH groups exhibited relatively slow hydrogen-exchange rates and sizable scalar couplings between hydroxyl 1H and DNA phosphate 31P nuclei across the hydrogen bonds. Information about intermolecular hydrogen bonds facilitates investigations of the DNA/RNA recognition by the protein.
Collapse
Affiliation(s)
- Binhan Yu
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Channing C. Pletka
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Junji Iwahara
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| |
Collapse
|
13
|
Gallo M, Defaus S, Andreu D. 1988-2018: Thirty years of drug smuggling at the nano scale. Challenges and opportunities of cell-penetrating peptides in biomedical research. Arch Biochem Biophys 2018; 661:74-86. [PMID: 30447207 DOI: 10.1016/j.abb.2018.11.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022]
Abstract
In 1988, two unrelated papers reported the discovery of peptide vectors with innate cell translocation properties, setting the ground for a new area of research that over the years has grown into considerable therapeutic potential. The vectors, named cell-penetrating peptides (CPPs), constitute a now large and diversified family, sharing the extraordinary ability to diffuse unaltered across cell membranes while ferrying diverse associated cargos. Such properties have made CPPs ideal tools for delivery of nucleic acids, proteins and other therapeutic/diagnostic molecules to cells and tissues via covalent conjugation or complexation. This year 2018 marks the 30th anniversary of a peptide research landmark opening new perspectives in drug delivery. Given its vastness, exhaustive coverage of the main features and accomplishments in the CPP field is virtually impossible. Hence this manuscript, after saluting the above 30th jubilee, focuses by necessity on the most recent contributions, providing a comprehensive list of recognized CPPs and their latest-reported applications over the last two years. In addition, it thoroughly reviews three areas of peptide vector research of particular interest to us, namely (i) efficient transport of low-bioavailability drugs into the brain; (ii) CPP-delivered disruptors of G protein-coupled receptor (GPCRs) heteromers related to several disorders, and (iii) CPP-mediated delivery of useful but poorly internalized drugs into parasites.
Collapse
Affiliation(s)
- Maria Gallo
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Sira Defaus
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| |
Collapse
|
14
|
Lou Y, Fallah Y, Yamane K, Berg PE. BP1, a potential biomarker for breast cancer prognosis. Biomark Med 2018; 12:535-545. [DOI: 10.2217/bmm-2017-0212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Homeobox genes are critical in tumor development. An isoform protein of DLX4 called BP1 is expressed in 80% of invasive ductal breast carcinomas. BP1 overexpression is implicated in an aggressive phenotype and poor prognosis. BP1 upregulation is associated with estrogen receptor negativity so those tumors do not respond to antiestrogens. Breast cancer is the second leading cause of death in women. BP1 could serve as both a novel prognostic biomarker for breast cancer and a therapeutic target. In this review, we address the role of BP1 protein in tumorigenesis of breast cancer and four other malignancies. A number of functions of BP1 in cancer are also discussed.
Collapse
Affiliation(s)
- Yaoxian Lou
- Department of Biochemistry & Molecular Medicine, George Washington University, Washington, DC 20037, USA
| | - Yassi Fallah
- Department of Oncology, Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| | - Kellie Yamane
- NantOmics, Diagnostic Center in Montgomery County, Rockville, MD 20850, USA
| | - Patricia E Berg
- Department of Biochemistry & Molecular Medicine, George Washington University, Washington, DC 20037, USA
| |
Collapse
|
15
|
Seifi M, Walter MA. Accurate prediction of functional, structural, and stability changes in PITX2 mutations using in silico bioinformatics algorithms. PLoS One 2018; 13:e0195971. [PMID: 29664915 PMCID: PMC5903617 DOI: 10.1371/journal.pone.0195971] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/03/2018] [Indexed: 11/24/2022] Open
Abstract
Mutations in PITX2 have been implicated in several genetic disorders, particularly Axenfeld-Rieger syndrome. In order to determine the most reliable bioinformatics tools to assess the likely pathogenicity of PITX2 variants, the results of bioinformatics predictions were compared to the impact of variants on PITX2 structure and function. The MutPred, Provean, and PMUT bioinformatic tools were found to have the highest performance in predicting the pathogenicity effects of all 18 characterized missense variants in PITX2, all with sensitivity and specificity >93%. Applying these three programs to assess the likely pathogenicity of 13 previously uncharacterized PITX2 missense variants predicted 12/13 variants as deleterious, except A30V which was predicted as benign variant for all programs. Molecular modeling of the PITX2 homoedomain predicts that of the 31 known PITX2 variants, L54Q, F58L, V83F, V83L, W86C, W86S, and R91P alter PITX2's structure. In contrast, the remaining 24 variants are not predicted to change PITX2's structure. The results of molecular modeling, performed on all the PITX2 missense mutations located in the homeodomain, were compared with the findings of eight protein stability programs. CUPSAT was found to be the most reliable in predicting the effect of missense mutations on PITX2 stability. Our results showed that for PITX2, and likely other members of this homeodomain transcription factor family, MutPred, Provean, PMUT, molecular modeling, and CUPSAT can reliably be used to predict PITX2 missense variants pathogenicity.
Collapse
Affiliation(s)
- Morteza Seifi
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael A. Walter
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Abstract
Bacterial membranes represent an attractive target for the design of new antibiotics to combat widespread bacterial resistance to traditional inhibitor-based antibiotics. Understanding how antimicrobial peptides (AMPs) and other membrane-active agents attack membranes could facilitate the design of new, effective antimicrobials. AMPs, which are small, gene-encoded host defense proteins, offer a promising basis for the study of membrane-active antimicrobial agents. These peptides are cationic and amphipathic, spontaneously binding to bacterial membranes and inducing transmembrane permeability to small molecules. Yet there are often confusions surrounding the details of the molecular mechanisms of AMPs. Following the doctrine of structure-function relationship, AMPs are often viewed as the molecular scaffolding of pores in membranes. Instead we believe that the full mechanism of AMPs is understandable if we consider the interactions of AMPs with the whole membrane domain, where interactions induce structural transformations of the entire membrane, rather than forming localized molecular structures. We believe that it is necessary to consider the entire soft matter peptide-membrane system as it evolves through several distinct states. Accordingly, we have developed experimental techniques to investigate the state and structure of the membrane as a function of the bound peptide to lipid ratio, exactly as AMPs in solution progressively bind to the membrane and induce structural changes to the entire system. The results from these studies suggest that global interactions of AMPs with the membrane domain are of fundamental importance to understanding the antimicrobial mechanisms of AMPs.
Collapse
|
17
|
Niklas KJ, Dunker AK, Yruela I. The evolutionary origins of cell type diversification and the role of intrinsically disordered proteins. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1437-1446. [PMID: 29394379 DOI: 10.1093/jxb/erx493] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 12/19/2017] [Indexed: 05/26/2023]
Abstract
The evolution of complex multicellular life forms occurred multiple times and was attended by cell type specialization. We review seven lines of evidence indicating that intrinsically disordered/ductile proteins (IDPs) played a significant role in the evolution of multicellularity and cell type specification: (i) most eukaryotic transcription factors (TFs) and multifunctional enzymes contain disproportionately long IDP sequences (≥30 residues in length), whereas highly conserved enzymes are normally IDP region poor; (ii) ~80% of the proteome involved in development are IDPs; (iii) the majority of proteins undergoing alternative splicing (AS) of pre-mRNA contain significant IDP regions; (iv) proteins encoded by DNA regions flanking crossing-over 'hot spots' are significantly enriched in IDP regions; (v) IDP regions are disproportionately subject to combinatorial post-translational modifications (PTMs) as well as AS; (vi) proteins involved in transcription and RNA processing are enriched in IDP regions; and (vii) a strong positive correlation exists between the number of different cell types and the IDP proteome fraction across a broad spectrum of uni- and multicellular algae, plants, and animals. We argue that the multifunctionalities conferred by IDPs and the disproportionate involvement of IDPs with AS and PTMs provided a IDP-AS-PTM 'motif' that significantly contributed to the evolution of multicellularity in all major eukaryotic lineages.
Collapse
Affiliation(s)
- Karl J Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - A Keith Dunker
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Inmaculada Yruela
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda. Montañana, Zaragoza, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Spain
| |
Collapse
|
18
|
Li Q, Chen C, Ren X, Sun W. DNA methylation profiling identifies the HOXA11 gene as an early diagnostic and prognostic molecular marker in human lung adenocarcinoma. Oncotarget 2018; 8:33100-33109. [PMID: 28380439 PMCID: PMC5464853 DOI: 10.18632/oncotarget.16528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/14/2017] [Indexed: 01/15/2023] Open
Abstract
DNA hypermethylation plays important roles in carcinogenesis by silencing key genes. The goal of our study was to identify pivotal genes using MethyLight and assessed their diagnostic and prognostic values in lung adenocarcinoma (AD). In the present study, we detected DNA methylation at sixteen loci promoter regions in twenty one pairs of primary human lung AD tissues and adjacent non-tumor lung (AdjNL) tissues using the real-time PCR (RT-PCR)-based method MethyLight. By comparing the sixteen analyzed loci in lung AD tissues and AdjNL and non-tumor (NL) tissues, we found that, among the six genes identified with hypermethylation, the HOXA11, CDKN2A-EX2 and EYA4 genes showed highly promising DNA hypermethylation diagnostic markers in the lung AD tissues. Moreover, comparing lung AD tissues (> 2 cm in diameter) to the AdjNL or AD in situ (AIS) tissues by RT-qPCR and immunohistochemistry revealed that HOXA11 expression was significantly increased. A further study showed that HOXA11 expression was controlled by methylation in the promoter region in human lung tumor cell lines. Aberrant hypermethylation and the methylation-induced down-regulation of HOXA11 may promote tumor progression. Our results suggested that HOXA11 might be a diagnostic and prognostic marker in patients with lung AD.
Collapse
Affiliation(s)
- Qun Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China.,The State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chang Chen
- Department of Orthodontics, The First Affiliated Hospital of Zhengzhou University, Stomatological College Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaohui Ren
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China
| | - Weihong Sun
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China
| |
Collapse
|
19
|
Wang L, Cui Y, Sheng J, Yang Y, Kuang G, Fan Y, Jin J, Zhang Q. Epigenetic inactivation of HOXA11, a novel functional tumor suppressor for renal cell carcinoma, is associated with RCC TNM classification. Oncotarget 2017; 8:21861-21870. [PMID: 28423531 PMCID: PMC5400629 DOI: 10.18632/oncotarget.15668] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/16/2017] [Indexed: 11/25/2022] Open
Abstract
Epigenetic inactivation of HOXA11, a putative tumor suppressor, is frequently observed in a number of solid tumors, but has not been described in RCC (renal cell carcinoma). In this study, we investigated the expression, epigenetic changes and the function of HOXA11 in human renal cell carcinoma (RCC). HOXA11 was silenced or down-regulated in RCC cell lines and tissues. Methylation specific PCR (MSP) and bisulfite genomic sequencing (BGS) revealed that the HOXA11 promoter was hypermethylated in 5/6 RCC cell lines. Demethylation treatment resulted in demethylation of the promoter and increased HOXA11 expression in these cell lines. HOXA11 methylation was also detected in 68/95 (70.5%) primary RCC tumors, but only rare adjacent non-malignant renal tissues (13%, 3/23) showed hypermethylation of promoter. We also found that the methylation of HOXA11 was associated with higher TNM classification of RCC (p<0.05). Ectopic expression of HOXA11 led to significant inhibition of proliferation, colony formation, migration and invasion abilities and induced RCC cells apoptosis. Moreover, HOXA11 was found to inhibit Wnt signaling. Thus, our study demonstrated that HOXA11 function as a tumor suppressor in RCC, while it is frequently silenced by promoter methylation in RCC.
Collapse
Affiliation(s)
- Lu Wang
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing 100034, China.,Department of Urology, National Urological Cancer Center, Peking University First Hospital, Beijing 100034, China
| | - Yun Cui
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing 100034, China
| | - Jindong Sheng
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing 100034, China
| | - Yang Yang
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing 100034, China
| | - Guanyu Kuang
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing 100034, China
| | - Yu Fan
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing 100034, China.,Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital, Beijing 100034, China
| | - Jie Jin
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing 100034, China
| | - Qian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing 100034, China
| |
Collapse
|
20
|
Eoh KJ, Kim HJ, Lee JY, Nam EJ, Kim S, Kim SW, Kim YT. Upregulation of homeobox gene is correlated with poor survival outcomes in cervical cancer. Oncotarget 2017; 8:84396-84402. [PMID: 29137433 PMCID: PMC5663605 DOI: 10.18632/oncotarget.21041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022] Open
Abstract
HOX family members encode transcription factors crucial for embryogenesis and may be associated with carcinogenesis. Here, we evaluated the expression of 39 HOX genes in cervical cancer by using clinicopathological information and gene expression data of 308 patients from The Cancer Genome Atlas (TCGA) database. Correlations between mRNA expression of HOX family members and clinicopathological variables were explored. Seventy-three (23.7%) patients died during the follow-up period (median, 22.0 months). Overall mortality was significantly associated with advanced FIGO stage, lymph node metastasis, lymphovascular invasion, and increased HOXA1, HOXA5, HOXA6, and HOXC11 mRNA expression. Kaplan–Meier survival analysis revealed that overall survival was significantly shorter in patients with high HOXA rather than low HOXA expression (HOXA1, P = 0.012; HOXA5, P = 0.008; and HOXA6, P = 0.006). Upregulated HOXA1, HOXA5, and HOXA6 expression are significantly correlated with unfavorable overall survival and increased mortality in cervical cancer patients. Therefore, HOXA expression is a potential cervical cancer prognostic indicator.
Collapse
Affiliation(s)
- Kyung Jin Eoh
- Institute of Women's Medical Life Science, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Hee Jung Kim
- Institute of Women's Medical Life Science, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Jung-Yun Lee
- Institute of Women's Medical Life Science, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Ji Nam
- Institute of Women's Medical Life Science, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Sunghoon Kim
- Institute of Women's Medical Life Science, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Wun Kim
- Institute of Women's Medical Life Science, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Tae Kim
- Institute of Women's Medical Life Science, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Villarese P, Lours C, Trinquand A, Le Noir S, Belhocine M, Lhermitte L, Cieslak A, Tesio M, Petit A, LeLorch M, Spicuglia S, Ifrah N, Dombret H, Langerak AW, Boissel N, Macintyre E, Asnafi V. TCRα rearrangements identify a subgroup of NKL-deregulated adult T-ALLs associated with favorable outcome. Leukemia 2017; 32:61-71. [PMID: 28592888 DOI: 10.1038/leu.2017.176] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/16/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) results from leukemic transformation of T-cell precursors arrested at specific differentiation stages, including an 'early-cortical' thymic maturation arrest characterized by expression of cytoplasmic TCRβ but no surface T-cell receptor (TCR) and frequent ectopic expression of the TLX1/3 NK-like homeotic proteins (NKL). We designed a TCRα VJC PCR to identify clonal TCRα rearrangements in 32% of 127 T-ALLs, including 0/52 immature/TCRγδ lineage cases and 41/75 (55%) TCRαβ lineage cases. Amongst the latter, TCRα rearrangements were not identified in 30/54 (56%) of IMβ/pre-αβ early-cortical T-ALLs, of which the majority (21/30) expressed TLX1/3. We reasoned that the remaining T-ALLs might express other NKL proteins, so compared transcript levels of 46 NKL in T-ALL and normal thymic subpopulations. Ectopic overexpression of 10 NKL genes, of which six are unreported in T-ALL (NKX2-3, BARHL1, BARX2, EMX2, LBX2 and MSX2), was detectable in 17/104 (16%) T-ALLs. Virtually all NKL overexpressing T-ALLs were TCRα unrearranged and ectopic NKL transcript expression strongly repressed Eα activity, suggesting that ectopic NKL expression is the major determinant in early-cortical thymic T-ALL maturation arrest. This immunogenetic T-ALL subtype, defined by TCRβ VDJ but no TCRα VJ rearrangement, is associated with a favorable outcome in GRAALL-treated adult T-ALLs.
Collapse
Affiliation(s)
- P Villarese
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France.,Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - C Lours
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France.,Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - A Trinquand
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France.,Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - S Le Noir
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France
| | - M Belhocine
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France.,Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France.,Aix Marseille Univ, INSERM, TAGC UMR1090, Marseille, France
| | - L Lhermitte
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France.,Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - A Cieslak
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France
| | - M Tesio
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France
| | - A Petit
- Department of Hematology and Oncologie Pédiatrique, Hôpital Trousseau Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - M LeLorch
- Laboratory of Cytogenetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - S Spicuglia
- Aix Marseille Univ, INSERM, TAGC UMR1090, Marseille, France
| | - N Ifrah
- Department of Hematology, Centre Hospitalier, Angers, France
| | - H Dombret
- University Paris 7, Hôpital Saint-Louis, AP-HP, Department of Hematology and Institut Universitaire d'Hématologie, Paris, France
| | - A W Langerak
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - N Boissel
- University Paris 7, Hôpital Saint-Louis, AP-HP, Department of Hematology and Institut Universitaire d'Hématologie, Paris, France
| | - E Macintyre
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France
| | - V Asnafi
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France.,Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| |
Collapse
|
22
|
Ptaschinski C, Hrycaj SM, Schaller MA, Wellik DM, Lukacs NW. Hox5 Paralogous Genes Modulate Th2 Cell Function during Chronic Allergic Inflammation via Regulation of Gata3. THE JOURNAL OF IMMUNOLOGY 2017; 199:501-509. [PMID: 28576978 DOI: 10.4049/jimmunol.1601826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
Abstract
Allergic asthma is a significant health burden in western countries, and continues to increase in prevalence. Th2 cells contribute to the development of disease through release of the cytokines IL-4, IL-5, and IL-13, resulting in increased airway eosinophils and mucus hypersecretion. The molecular mechanisms behind the disease pathology remain largely unknown. In this study we investigated a potential regulatory role for the Hox5 gene family, Hoxa5, Hoxb5, and Hoxc5, genes known to be important in lung development within mesenchymal cell populations. We found that Hox5-mutant mice show exacerbated pathology compared with wild-type controls in a chronic allergen model, with an increased Th2 response and exacerbated lung tissue pathology. Bone marrow chimera experiments indicated that the observed enhanced pathology was mediated by immune cell function independent of mesenchymal cell Hox5 family function. Examination of T cells grown in Th2 polarizing conditions showed increased proliferation, enhanced Gata3 expression, and elevated production of IL-4, IL-5, and IL-13 in Hox5-deficient T cells compared with wild-type controls. Overexpression of FLAG-tagged HOX5 proteins in Jurkat cells demonstrated HOX5 binding to the Gata3 locus and decreased Gata3 and IL-4 expression, supporting a role for HOX5 proteins in direct transcriptional control of Th2 development. These results reveal a novel role for Hox5 genes as developmental regulators of Th2 immune cell function that demonstrates a redeployment of mesenchyme-associated developmental genes.
Collapse
Affiliation(s)
| | - Steven M Hrycaj
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Matthew A Schaller
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109; and
| | - Deneen M Wellik
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109; and
| |
Collapse
|
23
|
|
24
|
Duan R, Han L, Wang Q, Wei J, Chen L, Zhang J, Kang C, Wang L. HOXA13 is a potential GBM diagnostic marker and promotes glioma invasion by activating the Wnt and TGF-β pathways. Oncotarget 2016; 6:27778-93. [PMID: 26356815 PMCID: PMC4695025 DOI: 10.18632/oncotarget.4813] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 07/20/2015] [Indexed: 12/14/2022] Open
Abstract
Homeobox (HOX) genes, including HOXA13, are involved in human cancer. We found that HOXA13 expression was associated with glioma grade and prognosis. Bioinformatics analysis revealed that most of the HOXA13-associated genes were enriched in cancer-related signaling pathways and mainly involved in the regulation of transcription. We transfected four glioma cell lines with Lenti-si HOXA13. HOXA13 increased cell proliferation and invasion and inhibited apoptosis. HOXA13 decreased β-catenin, phospho-SMAD2, and phospho-SMAD3 in the nucleus and increased phospho-β-catenin in the cytoplasm. Furthermore, downregulation of HOXA13 in orthotopic tumors decreased tumor growth. We suggest that HOXA13 promotes glioma progression in part via Wnt- and TGF-β-induced EMT and is a potential diagnostic biomarker for glioblastoma and an independent prognostic factor in high-grade glioma.
Collapse
Affiliation(s)
- Ran Duan
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Lei Han
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Qixue Wang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Jianwei Wei
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Luyue Chen
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Chunsheng Kang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Lei Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
25
|
Proudfoot A, Geralt M, Elsliger MA, Wilson IA, Wüthrich K, Serrano P. Dynamic Local Polymorphisms in the Gbx1 Homeodomain Induced by DNA Binding. Structure 2016; 24:1372-1379. [PMID: 27396829 DOI: 10.1016/j.str.2016.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/30/2016] [Accepted: 05/06/2016] [Indexed: 11/30/2022]
Abstract
The Gastrulation Brain Homeobox 1 (Gbx1) gene encodes the Gbx1 homeodomain that targets TAATTA motifs in double-stranded DNA (dsDNA). Residues Glu17 and Arg52 in Gbx1 form a salt bridge, which is preserved in crystal structures and molecular dynamics simulations of homologous homeodomain-DNA complexes. In contrast, our nuclear magnetic resonance (NMR) studies show that DNA binding to Gbx1 induces dynamic local polymorphisms, which include breaking of the Glu17-Arg52 salt bridge. To study this interaction, we produced a variant with Glu17Arg and Arg52Glu mutations, which exhibited the same fold as the wild-type protein, but a 2-fold reduction in affinity for dsDNA. Analysis of the NMR structures of the Gbx1 homeodomain in the free form, the Gbx1[E17R,R52E] variant, and a Gbx1 homeodomain-DNA complex showed that stabilizing interactions of the Arg52 side chain with the DNA backbone are facilitated by transient breakage of the Glu17-Arg52 salt bridge in the DNA-bound Gbx1.
Collapse
Affiliation(s)
- Andrew Proudfoot
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Joint Center for Structural Genomics, La Jolla, CA 92037, USA
| | - Michael Geralt
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Joint Center for Structural Genomics, La Jolla, CA 92037, USA
| | - Marc-Andre Elsliger
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Joint Center for Structural Genomics, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Joint Center for Structural Genomics, La Jolla, CA 92037, USA
| | - Kurt Wüthrich
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Joint Center for Structural Genomics, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Pedro Serrano
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
26
|
Zandarashvili L, Nguyen D, Anderson KM, White MA, Gorenstein DG, Iwahara J. Entropic Enhancement of Protein-DNA Affinity by Oxygen-to-Sulfur Substitution in DNA Phosphate. Biophys J 2016; 109:1026-37. [PMID: 26331260 DOI: 10.1016/j.bpj.2015.07.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/07/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022] Open
Abstract
Dithioation of DNA phosphate is known to enhance binding affinities, at least for some proteins. We mechanistically characterized this phenomenon for the Antennapedia homeodomain-DNA complex by integrated use of fluorescence, isothermal titration calorimetry, NMR spectroscopy, and x-ray crystallography. By fluorescence and isothermal titration calorimetry, we found that this affinity enhancement is entropy driven. By NMR, we investigated the ionic hydrogen bonds and internal motions of lysine side-chain NH3(+) groups involved in ion pairs with DNA. By x-ray crystallography, we compared the structures of the complexes with and without dithioation of the phosphate. Our NMR and x-ray data show that the lysine side chain in contact with the DNA phosphate becomes more dynamic upon dithioation. Our thermodynamic, structural, and dynamic investigations collectively suggest that the affinity enhancement by the oxygen-to-sulfur substitution in DNA phosphate is largely due to an entropic gain arising from mobilization of the intermolecular ion pair at the protein-DNA interface.
Collapse
Affiliation(s)
- Levani Zandarashvili
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Dan Nguyen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Kurtis M Anderson
- Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Mark A White
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - David G Gorenstein
- Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
27
|
Mariotto A, Pavlova O, Park HS, Huber M, Hohl D. HOPX: The Unusual Homeodomain-Containing Protein. J Invest Dermatol 2016; 136:905-911. [PMID: 27017330 DOI: 10.1016/j.jid.2016.01.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 01/15/2023]
Abstract
The homeodomain-only protein homeobox (HOPX) is the smallest known member of the homeodomain-containing protein family, atypically unable to bind DNA. HOPX is widely expressed in diverse tissues, where it is critically involved in the regulation of proliferation and differentiation. In human skin, HOPX controls epidermal formation through the regulation of late differentiation markers, and HOPX expression correlates with the level of differentiation in cutaneous pathologies. In mouse skin, Hopx was additionally identified as a lineage tracing marker of quiescent hair follicle stem cells. This review discusses current knowledge of HOPX structure and function in normal and pathological conditions.
Collapse
Affiliation(s)
- Anita Mariotto
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Olesya Pavlova
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Hyun-Sook Park
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Marcel Huber
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Daniel Hohl
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| |
Collapse
|
28
|
Proudfoot A, Axelrod HL, Geralt M, Fletterick RJ, Yumoto F, Deacon AM, Elsliger MA, Wilson IA, Wüthrich K, Serrano P. Dlx5 Homeodomain:DNA Complex: Structure, Binding and Effect of Mutations Related to Split Hand and Foot Malformation Syndrome. J Mol Biol 2016; 428:1130-1141. [PMID: 26829219 DOI: 10.1016/j.jmb.2016.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/20/2016] [Accepted: 01/24/2016] [Indexed: 12/18/2022]
Abstract
The Dlx5 homeodomain is a transcription factor related to the Drosophila distal-less gene that is associated with breast and lung cancer, lymphoma, Rett syndrome and osteoporosis in humans. Mutations in the DLX5 gene have been linked to deficiencies in craniofacial and limb development in higher eukaryotes, including split hand and foot malformation 1 in humans. Our characterization of a Dlx5 homeodomain:(CGACTAATTAGTCG)2 complex by NMR spectroscopy paved the way for determination of its crystal structure at 1.85Å resolution that enabled rationalization of the effects of disease-related mutations on the protein function. A Q186H mutation linked to split hand and foot malformation 1 likely affects affinity of DNA binding by disrupting water-mediated interactions with the DNA major groove. A more subtle effect is implicated for the Q178P mutation, which is not in direct contact with the DNA. Our data indicate that these mutations diminish the ability of the Dlx5 homeodomain to recognize and bind target DNAs, and they likely destabilize the formation of functional complexes.
Collapse
Affiliation(s)
- Andrew Proudfoot
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Herbert L Axelrod
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Michael Geralt
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert J Fletterick
- Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Fumiaki Yumoto
- Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Ashley M Deacon
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Marc-André Elsliger
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kurt Wüthrich
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Institute of Molecular Biology and Biophysics, ETH Zürich, CH 8093, Zürich, Switzerland
| | - Pedro Serrano
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Papadopoulos DK, Krmpot AJ, Nikolić SN, Krautz R, Terenius L, Tomancak P, Rigler R, Gehring WJ, Vukojević V. Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy. Mech Dev 2015; 138 Pt 2:218-225. [PMID: 26428533 DOI: 10.1016/j.mod.2015.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 11/25/2022]
Abstract
Hox genes encode transcription factors that control the formation of body structures, segment-specifically along the anterior-posterior axis of metazoans. Hox transcription factors bind nuclear DNA pervasively and regulate a plethora of target genes, deploying various molecular mechanisms that depend on the developmental and cellular context. To analyze quantitatively the dynamics of their DNA-binding behavior we have used confocal laser scanning microscopy (CLSM), single-point fluorescence correlation spectroscopy (FCS), fluorescence cross-correlation spectroscopy (FCCS) and bimolecular fluorescence complementation (BiFC). We show that the Hox transcription factor Sex combs reduced (Scr) forms dimers that strongly associate with its specific fork head binding site (fkh250) in live salivary gland cell nuclei. In contrast, dimers of a constitutively inactive, phospho-mimicking variant of Scr show weak, non-specific DNA-binding. Our studies reveal that nuclear dynamics of Scr is complex, exhibiting a changing landscape of interactions that is difficult to characterize by probing one point at a time. Therefore, we also provide mechanistic evidence using massively parallel FCS (mpFCS). We found that Scr dimers are predominantly formed on the DNA and are equally abundant at the chromosomes and an introduced multimeric fkh250 binding-site, indicating different mobilities, presumably reflecting transient binding with different affinities on the DNA. Our proof-of-principle results emphasize the advantages of mpFCS for quantitative characterization of fast dynamic processes in live cells.
Collapse
Affiliation(s)
| | - Aleksandar J Krmpot
- Department of Clinical Neuroscience (CNS), Center for Molecular Medicine (CMM), Karolinska Institutet, 17176 Stockholm, Sweden; Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia
| | - Stanko N Nikolić
- Department of Clinical Neuroscience (CNS), Center for Molecular Medicine (CMM), Karolinska Institutet, 17176 Stockholm, Sweden; Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia
| | - Robert Krautz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Lars Terenius
- Department of Clinical Neuroscience (CNS), Center for Molecular Medicine (CMM), Karolinska Institutet, 17176 Stockholm, Sweden
| | - Pavel Tomancak
- Max-Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Rudolf Rigler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; Laboratory of Biomedical Optics, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland
| | - Walter J Gehring
- Department of Cell Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Vladana Vukojević
- Department of Clinical Neuroscience (CNS), Center for Molecular Medicine (CMM), Karolinska Institutet, 17176 Stockholm, Sweden.
| |
Collapse
|
30
|
Chen C, Esadze A, Zandarashvili L, Nguyen D, Pettitt BM, Iwahara J. Dynamic Equilibria of Short-Range Electrostatic Interactions at Molecular Interfaces of Protein-DNA Complexes. J Phys Chem Lett 2015; 6:2733-2737. [PMID: 26207171 PMCID: PMC4507475 DOI: 10.1021/acs.jpclett.5b01134] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/24/2015] [Indexed: 05/21/2023]
Abstract
Intermolecular ion pairs (salt bridges) are crucial for protein-DNA association. For two protein-DNA complexes, we demonstrate that the ion pairs of protein side-chain NH3+ and DNA phosphate groups undergo dynamic transitions between distinct states in which the charged moieties are either in direct contact or separated by water. While the crystal structures of the complexes show only the solvent-separated ion pair (SIP) state for some interfacial lysine side chains, our NMR hydrogen-bond scalar coupling data clearly indicate the presence of the contact ion pair (CIP) state for the same residues. The 0.6-μs molecular dynamics (MD) simulations confirm dynamic transitions between the CIP and SIP states. This behavior is consistent with our NMR order parameters and scalar coupling data for the lysine side chains. Using the MD trajectories, we also analyze the free energies of the CIP-SIP equilibria. This work illustrates the dynamic nature of short-range electrostatic interactions in DNA recognition by proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Junji Iwahara
- J.I.: [Phone] 409-747-1403; [E-mail] ; [Fax] 409-772-6334
| |
Collapse
|
31
|
Cui Y, Gao D, Linghu E, Zhan Q, Chen R, Brock MV, Herman JG, Guo M. Epigenetic changes and functional study of HOXA11 in human gastric cancer. Epigenomics 2015; 7:201-13. [PMID: 25590359 DOI: 10.2217/epi.14.92] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIM To examine epigenetic changes and the function of HOXA11 in human gastric cancer (GC). MATERIALS & METHODS Seven GC cell lines, five cases of normal gastric mucosa and 112 cases primary GC samples were used in this study. RESULTS Expression of HOXA11 and lack of promoter region methylation were found in NCI-N87, MKN45, BGC823 and HGC27 cells. Loss of expression and complete methylation were found in AGS gastric cancer cells. Reduced expression and partial methylation were found in MGC803 and SGC7901 cells. Restoration of HOXA11 expression was induced by 5-aza-2'-deoxycytidine. HOXA11 was methylated in 81.25% (91/112) of primary GCs. The presence of methylation was associated with male gender, tumor size, tumor differentiation and lymph node metastasis (all p < 0.05). Restoration of HOXA11 expression reduced cell proliferation, invasion, migration and induced apoptosis and G2/M phase arrest. HOXA11 was found to inhibit Wnt signaling by upregulating NKD1 expression. CONCLUSION Epigenetic silencing of HOXA11 promotes GC proliferation, migration and invasion through activation of Wnt signaling.
Collapse
Affiliation(s)
- Yingying Cui
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Dunker AK, Oldfield CJ. Back to the Future: Nuclear Magnetic Resonance and Bioinformatics Studies on Intrinsically Disordered Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:1-34. [PMID: 26387098 DOI: 10.1007/978-3-319-20164-1_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
From the 1970s to the present, regions of missing electron density in protein structures determined by X-ray diffraction and the characterization of the functions of these regions have suggested that not all protein regions depend on prior 3D structure to carry out function. Motivated by these observations, in early 1996 we began to use bioinformatics approaches to study these intrinsically disordered proteins (IDPs) and IDP regions. At just about the same time, several laboratory groups began to study a collection of IDPs and IDP regions using nuclear magnetic resonance. The temporal overlap of the bioinformatics and NMR studies played a significant role in the development of our understanding of IDPs. Here the goal is to recount some of this history and to project from this experience possible directions for future work.
Collapse
Affiliation(s)
- A Keith Dunker
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 46202, Indianapolis, IN, USA.
| | - Christopher J Oldfield
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 46202, Indianapolis, IN, USA.
| |
Collapse
|
33
|
|
34
|
|
35
|
Characterization of novel MSX1 mutations identified in Japanese patients with nonsyndromic tooth agenesis. PLoS One 2014; 9:e102944. [PMID: 25101640 PMCID: PMC4125152 DOI: 10.1371/journal.pone.0102944] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/24/2014] [Indexed: 11/19/2022] Open
Abstract
Since MSX1 and PAX9 are linked to the pathogenesis of nonsyndromic tooth agenesis, we performed detailed mutational analysis of these two genes sampled from Japanese patients. We identified two novel MSX1 variants with an amino acid substitution within the homeodomain; Thr174Ile (T174I) from a sporadic hypodontia case and Leu205Arg (L205R) from a familial oligodontia case. Both the Thr174 and Leu205 residues in the MSX1 homeodomain are highly conserved among different species. To define possible roles of mutations at these amino acids in the pathogenesis of nonsyndromic tooth agenesis, we performed several functional analyses. It has been demonstrated that MSX1 plays a pivotal role in hard tissue development as a suppressor for mesenchymal cell differentiation. To evaluate the suppression activity of the variants in mesenchymal cells, we used the myoD-promoter, which is one of convenient reporter assay system for MSX1. Although the gene products of these MSX1 variants are stable and capable of normal nuclear localization, they do not suppress myoD-promoter activity in differentiated C2C12 cells. To clarify the molecular mechanisms underlying our results, we performed further analyses including electrophoretic mobility shift assays, and co-immunoprecipitation assays to survey the molecular interactions between the mutant MSX1 proteins and the oligonucleotide DNA with MSX1 consensus binding motif or EZH2 methyltransferase. Since EZH2 is reported to interact with MSX1 and regulate MSX1 mediated gene suppression, we hypothesized that the T174I and L205R substitutions would impair this interaction. We conclude from the results of our experiments that the DNA binding ability of MSX1 is abolished by these two amino acid substitutions. This illustrates a causative role of the T174I and L205R MSX1 homeodomain mutations in tooth agenesis, and suggests that they may influence cell proliferation and differentiation resulting in lesser tooth germ formation in vivo.
Collapse
|
36
|
|
37
|
Abstract
Alex Schier looks back at the life and research of his graduate mentor and friend Walter Gehring.
Collapse
Affiliation(s)
- Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
38
|
Hox transcription factors: modulators of cell-cell and cell-extracellular matrix adhesion. BIOMED RESEARCH INTERNATIONAL 2014; 2014:591374. [PMID: 25136598 PMCID: PMC4127299 DOI: 10.1155/2014/591374] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/23/2014] [Indexed: 01/14/2023]
Abstract
Hox genes encode homeodomain-containing transcription factors that determine cell and tissue identities in the embryo during development. Hox genes are also expressed in various adult tissues and cancer cells. In Drosophila, expression of cell adhesion molecules, cadherins and integrins, is regulated by Hox proteins operating in hierarchical molecular pathways and plays a crucial role in segment-specific organogenesis. A number of studies using mammalian cultured cells have revealed that cell adhesion molecules responsible for cell-cell and cell-extracellular matrix interactions are downstream targets of Hox proteins. However, whether Hox transcription factors regulate expression of cell adhesion molecules during vertebrate development is still not fully understood. In this review, the potential roles Hox proteins play in cell adhesion and migration during vertebrate body patterning are discussed.
Collapse
|
39
|
Bhatlekar S, Fields JZ, Boman BM. HOX genes and their role in the development of human cancers. J Mol Med (Berl) 2014; 92:811-23. [PMID: 24996520 DOI: 10.1007/s00109-014-1181-y] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/27/2014] [Accepted: 05/04/2014] [Indexed: 12/11/2022]
Abstract
In this review, we summarize published findings on the involvement of HOX genes in oncogenesis. HOX genes are developmental genes--they code for proteins that function as critical master regulatory transcription factors during embryogenesis. Many reports have shown that the protein products of HOX genes also play key roles in the development of cancers. Based on our review of the literature, we found that the expression of HOX genes is not only up- or downregulated in most solid tumors but also that the expression of specific HOX genes in cancers tends to differ based on tissue type and tumor site. It was also observed that HOXC family gene expression is upregulated in most solid tumor types, including colon, lung, and prostate cancer. The two HOX genes that were reported to be most commonly altered in solid tumors were HOXA9 and HOXB13. HOXA were often reported to have altered expression in breast and ovarian cancers, HOXB genes in colon cancers, HOXC genes in prostate and lung cancers, and HOXD genes in colon and breast cancers. It was found that HOX genes are also regulated at the nuclear-cytoplasmic transport level in carcinomas. Tumors arising from tissue having similar embryonic origin (endodermal), including colon, prostate, and lung, showed relatively similar HOXA and HOXB family gene expression patterns compared to breast tumors arising from mammary tissue, which originates from the ectoderm. The differential expression of HOX genes in various solid tumors thus provides an opportunity to advance our understanding of cancer development and to develop new therapeutic agents.
Collapse
Affiliation(s)
- Seema Bhatlekar
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, University of Delaware, 4701 Ogletown-Stanton Road, Newark, DE, 19713, USA
| | | | | |
Collapse
|
40
|
Prochiantz A. Signaling with homeoprotein transcription factors in development and throughout adulthood. Curr Genomics 2014; 14:361-70. [PMID: 24396269 PMCID: PMC3861887 DOI: 10.2174/1389202911314060009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/15/2013] [Accepted: 07/15/2013] [Indexed: 11/22/2022] Open
Abstract
The concept of homeoprotein transduction as a novel signaling pathway has dramatically evolved since it was first proposed in 1991. It is now well established in several biological systems from plants to mammals. In this review, the different steps that have led to this unexpected observation are recalled and the developmental and physiological models that have allowed us (and a few others) to consolidate the original hypothesis are described. Because homeoprotein signaling is active in plants and animals it is proposed that it has predated the separation between animals and plants and is thus very ancient. This may explain why the basic phenomenon of homeoprotein transduction is so minimalist, requiring no specific receptors or transduction pathways beside those offered by mitochondria, organelles present in all eukaryotic cells. Indeed complexity has been added in the course of evolution and the conservation of homeoprotein transduction is discussed in the context of its synergy with bona fide signaling mechanism that may have added robustness to this primitive cell communication device. The same synergy possibly explains why homeoprotein signaling is important both in embryonic development and in adult functions fulfilled by signaling entities (e.g. growth factors) themselves active throughout development and in the adult. The cell biological mechanism of homeoprotein transfer is also discussed. Although it is clear that many questions are still in want of precise answers, it appears that the sequences responsible both for secretion and internalization are in the DNA-binding domain and very highly conserved among most homeoproteins. On this basis, it is proposed that this signaling pathway is likely to imply as many as 200 proteins that participate in a myriad of developmental and physiological pathways.
Collapse
Affiliation(s)
- A Prochiantz
- College de France, Centre for Interdisciplinary Research in Biology (CIRB), UMR CNRS 7241/INSERM 1050, Labex Memolife, PSL Research University, Development and Neuropharmacology group, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
41
|
WINGENDER EDGAR. CRITERIA FOR AN UPDATED CLASSIFICATION OF HUMAN TRANSCRIPTION FACTOR DNA-BINDING DOMAINS. J Bioinform Comput Biol 2013; 11:1340007. [DOI: 10.1142/s0219720013400076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
By binding to cis-regulatory elements in a sequence-specific manner, transcription factors regulate the activity of nearby genes. Here, we discuss the criteria for a comprehensive classification of human TFs based on their DNA-binding domains. In particular, classification of basic leucine zipper (bZIP) and zinc finger factors is exemplarily discussed. The resulting classification can be used as a template for TFs of other biological species.
Collapse
Affiliation(s)
- EDGAR WINGENDER
- Department of Bioinformatics, University Medical Center Göttingen, Goldschmidtstr. 1, Göttingen, D-37077, Germany
- geneXplain GmbH, Am Exer 10B, Wolfenbüttel, D-38302, Germany
| |
Collapse
|
42
|
Jalili S, Karami L, Schofield J. Study of base pair mutations in proline-rich homeodomain (PRH)-DNA complexes using molecular dynamics. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:427-40. [PMID: 23385423 DOI: 10.1007/s00249-013-0892-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/11/2012] [Accepted: 01/21/2013] [Indexed: 11/26/2022]
Abstract
Proline-rich homeodomain (PRH) is a regulatory protein controlling transcription and gene expression processes by binding to the specific sequence of DNA, especially to the sequence 5'-TAATNN-3'. The impact of base pair mutations on the binding between the PRH protein and DNA is investigated using molecular dynamics and free energy simulations to identify DNA sequences that form stable complexes with PRH. Three 20-ns molecular dynamics simulations (PRH-TAATTG, PRH-TAATTA and PRH-TAATGG complexes) in explicit solvent water were performed to investigate three complexes structurally. Structural analysis shows that the native TAATTG sequence forms a complex that is more stable than complexes with base pair mutations. It is also observed that upon mutation, the number and occupancy of the direct and water-mediated hydrogen bonds decrease. Free energy calculations performed with the thermodynamic integration method predict relative binding free energies of 0.64 and 2 kcal/mol for GC to AT and TA to GC mutations, respectively, suggesting that among the three DNA sequences, the PRH-TAATTG complex is more stable than the two mutated complexes. In addition, it is demonstrated that the stability of the PRH-TAATTA complex is greater than that of the PRH-TAATGG complex.
Collapse
Affiliation(s)
- Seifollah Jalili
- Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.
| | | | | |
Collapse
|
43
|
Rajasekaran M, Chen C. Structural effect of the L16Q, K50E, and R53P mutations on homeodomain of pituitary homeobox protein 2. Int J Biol Macromol 2012; 51:305-13. [PMID: 22584078 DOI: 10.1016/j.ijbiomac.2012.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/03/2012] [Accepted: 05/05/2012] [Indexed: 10/28/2022]
Abstract
The transcription factor pituitary homeobox protein 2 (PITX2) is involved in genetic control of development. Mutations in PITX2, most in the homeodomain, cause the autosomal-dominant disorder Rieger syndrome. The mutants L16Q, K50E and R53P destabilize the structure and disrupt DNA-binding activity. The biological functions of these mutants have been characterized but not the structural basis behind the loss of DNA-binding activity. We performed multiple molecular dynamics simulations at 37°C to investigate the structural and dynamic effects of the 3 PITX2 homeodomain mutants. Compared with the wild type (WT), the L16Q mutant induces a kink in the α3 helix, which is stabilized by the hydrogen bond of Q21-R59. The disruption in backbone hydrogen bonds of V47-N51 and W48-R52 leads to a kink formation in the α3 helix of K50E. The R53P mutant alters the relative orientation of helices, which is apparently stabilized by the formation of new hydrogen bonds of T38-Q11, T38-Q12, T38-R2, N39-R2, L40-Q1, L40-R2, and T41-Q4. The hydrophobic core residues F8, L13, L40 and V45 change their positions in all mutants to break the hydrophobic core. Thus, changes in helical orientations and hydrophobic core cause rearrangement of the DNA-binding surface and disrupt DNA-binding activity in the mutants. The structural and molecular dynamics properties of 3 PITX2 homeodomain mutants differ from those of the WT, especially in formation of a kink in the recognition helix, change in the packing of helices and disruption of the hydrophobic core. This structural basis for the loss of DNA-binding activity for these polymorphisms may help in understanding the effect of mutations on other homeodomains with other diseases.
Collapse
Affiliation(s)
- M Rajasekaran
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC
| | | |
Collapse
|
44
|
Pradhan L, Genis C, Scone P, Weinberg EO, Kasahara H, Nam HJ. Crystal structure of the human NKX2.5 homeodomain in complex with DNA target. Biochemistry 2012; 51:6312-9. [PMID: 22849347 PMCID: PMC3448007 DOI: 10.1021/bi300849c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
NKX2.5 is a homeodomain containing transcription factor regulating cardiac formation and function, and its mutations are linked to congenital heart disease. Here we provide the first report of the crystal structure of the NKX2.5 homeodomain in complex with double-stranded DNA of its endogenous target, locating within the proximal promoter -242 site of the atrial natriuretic factor gene. The crystal structure, determined at 1.8 Å resolution, demonstrates that NKX2.5 homeodomains occupy both DNA binding sites separated by five nucleotides without physical interaction between themselves. The two homeodomains show identical conformation despite the differences in the DNA sequences they bind, and no significant bending of the DNA was observed. Tyr54, absolutely conserved in NK2 family proteins, mediates sequence-specific interaction with the TAAG motif. This high resolution crystal structure of NKX2.5 protein provides a detailed picture of protein and DNA interactions, which allows us to predict DNA binding of mutants identified in human patients.
Collapse
Affiliation(s)
- Lagnajeet Pradhan
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Caroli Genis
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, United States
| | - Peyton Scone
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, United States
| | - Ellen O. Weinberg
- Cardiovascular Research, Boston University Medical Center, Boston, Massachusetts 02118, United States
| | - Hideko Kasahara
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida 32610, United States
| | - Hyun-Joo Nam
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States,Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, United States,Corresponding Author: Address: University of Texas at Dallas, 800 W Campbell Road, RL10, Richardson, TX 75080. Telephone: (972) 883-5786.
| |
Collapse
|
45
|
Papadopoulos DK, Skouloudaki K, Adachi Y, Samakovlis C, Gehring WJ. Dimer formation via the homeodomain is required for function and specificity of Sex combs reduced in Drosophila. Dev Biol 2012; 367:78-89. [DOI: 10.1016/j.ydbio.2012.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
46
|
Jalili S, Karami L. Study of intermolecular contacts in the proline-rich homeodomain (PRH)–DNA complex using molecular dynamics simulations. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:329-40. [DOI: 10.1007/s00249-012-0790-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 01/03/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
|
47
|
Shoubridge C, Tan MH, Seiboth G, Gécz J. ARX homeodomain mutations abolish DNA binding and lead to a loss of transcriptional repression. Hum Mol Genet 2011; 21:1639-47. [PMID: 22194193 DOI: 10.1093/hmg/ddr601] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in the Aristaless-related homeobox (ARX) gene are one of the most frequent causes of X-linked intellectual disability (ID). Several missense mutations, clustered in the paired-type homeodomain of ARX, have been identified. These mutations lead to a range of phenotypes from X-linked lissencephaly with abnormal genitalia to seizure disorders without brain malformations including X-linked infantile spasms with ID (ISSX-ID) and X-linked myoclonic epilepsy with spasticity and ID (XMESID). The effect of these mutations on the DNA-binding and transcriptional activity has been evaluated. Luciferase reporter assays showed altered repression activity of ARX by all mutations, causing brain malformations and ISSX-ID phenotypes, but not by the P353L mutation implicated in a milder phenotype of XMESID. Similarly, transient overexpression of wild-type ARX repressed endogenous expression of known ARX targets, LMO1 and SHOX2, when measured by real-time quantitative polymerase chain reaction. Overall, the molecular consequence of missense mutations correlated well with the severity of the clinical phenotype. In all mutations tested, except P353L, the DNA binding was abolished. Electrophoretic mobility shift assay results were validated using chromatin immunoprecipitation following overexpression of normal and selected missense mutations. Unlike wild-type ARX and clinically less severe mutations, the mutations leading to severe clinical phenotypes were not able to specifically bind to DNA upstream of known, endogenous ARX-regulated genes, LMO1 and SHOX2. In conclusion, the missense mutations in the ARX homeodomain represent loss-of-function mutations, which lead to a reduced or complete loss of DNA binding and as a consequence, a loss of transcriptional repression.
Collapse
Affiliation(s)
- Cheryl Shoubridge
- Department of Genetics and Molecular Pathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, South Australia 5006, Australia.
| | | | | | | |
Collapse
|
48
|
Abstract
NK-like (NKL) homeobox genes code for transcription factors, which can act as key regulators in fundamental cellular processes. NKL genes have been implicated in divergent types of cancer. In this review, we summarize the involvement of NKL genes in cancer and leukemia in particular. NKL genes can act as tumor-suppressor genes and as oncogenes, depending on tissue type. Aberrant expression of NKL genes is especially common in T-cell acute lymphoblastic leukemia (T-ALL). In T-ALL, 8 NKL genes have been reported to be highly expressed in specific T-ALL subgroups, and in ~30% of cases, high expression is caused by chromosomal rearrangement of 1 of 5 NKL genes. Most of these NKL genes are normally not expressed in T-cell development. We hypothesize that the NKL genes might share a similar downstream effect that promotes leukemogenesis, possibly due to mimicking a NKL gene that has a physiological role in early hematopoietic development, such as HHEX. All eight NKL genes posses a conserved Eh1 repressor motif, which has an important role in regulating downstream targets in hematopoiesis and possibly in leukemogenesis as well. Identification of a potential common leukemogenic NKL downstream pathway will provide a promising subject for future studies.
Collapse
|
49
|
Wen BQ, Xing MQ, Zhang H, Dai C, Xue HW. Rice homeobox transcription factor HOX1a positively regulates gibberellin responses by directly suppressing EL1. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:869-78. [PMID: 21951842 DOI: 10.1111/j.1744-7909.2011.01075.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Homeobox transcription factors are involved in various aspects of plant development, including maintenance of the biosynthesis and signaling pathways of different hormones. However, few direct targets of homeobox proteins have been identified. We here show that overexpression of rice homeobox gene HOX1a resulted in enhanced gibberellin (GA) response, indicating a positive effect of HOX1a in GA signaling. HOX1a is induced by GA and encodes a homeobox transcription factor with transcription repression activity. In addition, HOX1a suppresses the transcription of early flowering1 (EL1), a negative regulator of GA signaling, and further electrophoretic mobility shift assay and chromatin immunoprecipitation analysis revealed that HOX1a directly bound to the promoter region of EL1 to suppress its expression and stimulate GA signaling. These results demonstrate that HOX1a functions as a positive regulator of GA signaling by suppressing EL1, providing informative hints on the study of GA signaling.
Collapse
Affiliation(s)
- Bi-Qing Wen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
50
|
Gehring WJ. How do Hox transcription factors find their target genes in the nucleus of living cells? Biol Aujourdhui 2011; 205:75-85. [PMID: 21831338 DOI: 10.1051/jbio/2011012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Indexed: 11/14/2022]
Abstract
Homeotic mutations first found in Drosophila led to the identification of Hox genes in all bilateria. These genes are exceptional in that they are arranged in an ordered cluster, in which they are positioned in the same order along the chromosome as they are expressed along the antero-posterior axis to specify the corresponding body regions. They share a highly conserved DNA sequence of 180 bp, the homeobox which encodes the homeodomain, a 60 amino acid polypeptide involved in specific DNA and RNA binding and in protein-protein interactions. The discovery of the homeobox has uncovered for the first time a universal principle of specification of the body plan along the antero-posterior axis. The structure of the homeodomain has been determined by NMR spectroscopy and by X-ray crystallography. However, the mechanism by which the Hox proteins find their target genes in the nucleus of a living cell has been enigmatic. Transcriptome analysis indicates that there are hundreds of target genes to be regulated, both positively and negatively to ensure normal development. In the following, we show by Fluorescence Correlation Spectroscopy (FCS) and single molecule imaging in live salivary gland cells, that the mechanism of recognition is purely stochastic. The homeodomain associates and dissociates rapidly (in the ms range) with chromatin all along the chromosomes. If, however, it associates with a specific binding site in a puffed chromosome region, it remains bound for seconds or minutes to exert its function, by forming a complex with co-activators or co-repressors respectively. These direct measurements solve an old enigma of how Hox transcription factors find their target genes in the nucleus of live cells.
Collapse
Affiliation(s)
- Walter J Gehring
- Growth and Development, Biozentrum University of Basel, Klingelbergstrasse, Basel, Switzerland.
| |
Collapse
|