1
|
Yu Y, Wei C, Yue M, Zhang C, Wang Y, Wang Z. From benign neurofibromas to malignant peripheral nerve sheath tumors (MPNST): a gaming among multiple factors. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01054-9. [PMID: 40172801 DOI: 10.1007/s13402-025-01054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/04/2025] [Indexed: 04/04/2025] Open
Abstract
Almost all patients of Neurofibromatosis Type I (NF1) develop benign peripheral nerve tumors called neurofibromas, which are derived from neural crest Schwann cell lineage progenitors with biallelic NF1 gene mutations. More than 90% of NF1 patients develop dermal neurofibromas (DN), and 25-50% develop plexiform neurofibromas (PN). In 8-13% of individuals with NF1, PN can transform into malignant peripheral nerve sheath tumors (MPNSTs), a type of nerve soft tissue sarcoma that is the main cause of mortality of NF1 patients. In addition to arising from benign neurofibromas (50%), MPNSTs can also occur spontaneously (~40%) or following radiation therapy (~10%). Treatment for MPNST is limited to complete resection with negative margins. Still, the high recurrence of MPNST is a major concern. However, full resection of the pre-malignant lesions can largely reduce the recurrence and mortality of patients. So, early diagnosis and distinguishing malignancy from benign and premalignant lesions are particularly important. During the progression from benign neurofibromas to malignancy, a variety of changes including tumor morphology, genetic mutations, expression of multiple signaling pathways-related proteins and genome instability gradually occur. In this review, we detail these changes with the goals of identifying the histological and/or molecular signs of malignancy initiation, and an optimal therapeutic intervention window, to inhibit tumor progression and reduce the rate of mortality.
Collapse
Affiliation(s)
- Yanan Yu
- Department of Genetics, School of Life Science, Xuzhou Medical University, Xuzhou, 221004, China.
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Chengjiang Wei
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Minghui Yue
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Cheng Zhang
- Department of Genetics, School of Life Science, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yixiao Wang
- Department of Genetics, School of Life Science, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhichao Wang
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
2
|
Zhang F, Liu Y, Zhu Y, Wang Q, Zhao X, Wang Q, Chen Y, Chen S. Molecular, clinical, and prognostic implications of RAS pathway alterations in adult acute myeloid leukemia. Leuk Lymphoma 2025; 66:753-763. [PMID: 39743890 DOI: 10.1080/10428194.2024.2441855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/28/2024] [Accepted: 12/01/2024] [Indexed: 01/04/2025]
Abstract
Alterations in the RAS pathway underscore the pathogenic complexity of acute myeloid leukemia (AML), yet the full spectrum, including CBL, NF1, PTPN11, KRAS, and NRAS, remains to be fully elucidated. In this retrospective study of 735 adult AML patients, the incidence of RAS pathway alterations was 32.4%, each with distinct clinical characteristics. Venetoclax combined with hypomethylating agents (VEN + HMA) did not significantly improve response rates compared to intensive chemotherapy (IC) group. In the IC group, PTPN11 mutations in the N-SH2 domain showed a trend toward poorer prognosis, though not statistically significant in multivariate analysis, while NRAS mutations correlated with improved outcomes. In the VEN + HMA group, PTPN11 mutations in the N-SH2 domain emerged as an independent adverse prognostic marker. NRAS or KRAS mutations showed no survival advantage compared to wild-type, aligning with their intermediate-risk classification in the 2024 ELN guidelines. These findings emphasize the need for treatment-specific risk stratification for RAS pathway mutations in AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/metabolism
- Male
- Female
- Middle Aged
- Adult
- Mutation
- Prognosis
- Aged
- Retrospective Studies
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Young Adult
- Aged, 80 and over
- Signal Transduction
- Biomarkers, Tumor/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- ras Proteins/metabolism
- ras Proteins/genetics
- Adolescent
- Proto-Oncogene Proteins p21(ras)/genetics
- GTP Phosphohydrolases/genetics
- Membrane Proteins
Collapse
Affiliation(s)
- Fenghong Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yizi Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yiyan Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qingyuan Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiangyu Zhao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qian Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yu Chen
- Department of Hematology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, People's Republic of China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
3
|
Berry D, Moldoveanu D, Rajkumar S, Lajoie M, Lin T, Tchelougou D, Sakthivel S, Sharon I, Bernard A, Pelletier S, Ripstein Y, Spatz A, Miller WH, Jamal R, Lapointe R, Mes-Masson AM, Petrecca K, Meguerditchian AN, Richardson K, Wang B, Chergui M, Guiot MC, Watters K, Stagg J, Schmeing TM, Rodier F, Turcotte S, Mihalcioiu C, Meterissian S, Watson IR. The NF1 tumor suppressor regulates PD-L1 and immune evasion in melanoma. Cell Rep 2025; 44:115365. [PMID: 40023845 DOI: 10.1016/j.celrep.2025.115365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
Hotspot BRAF, hotspot NRAS, and NF1 loss-of-function mutations are found in approximately 50%, 25%, and 15% of cutaneous melanomas, respectively. Compared to mutant BRAF and NRAS, the role of NF1 loss in melanoma remains understudied. NF1 has a RAS GTPase-activating protein (GAP) function; however, studies also support NF1 RAS-independent tumor-suppressor functions. Recent reports indicate that patients with NF1 mutant melanoma have high response rates to anti-PD-1 immune checkpoint inhibitors (ICIs) for reasons that are not entirely clear. Here, we present data demonstrating that NF1 interacts with PD-L1. Furthermore, NF1 loss in melanoma lines increases PD-L1 cell surface expression through a RAS-GAP-independent mechanism. Co-culture experiments demonstrate that NF1 depletion in melanoma increases resistance to T cell killing, which can be abrogated with anti-PD-1/PD-L1 ICIs. These results support a model whereby NF1 loss leads to immune evasion through the PD-L1/PD-1 axis, providing support for the examination of anti-PD-1 therapies in other NF1 mutant cancers.
Collapse
Affiliation(s)
- Diana Berry
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Dan Moldoveanu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Shivshankari Rajkumar
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Mathieu Lajoie
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Tiffany Lin
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Daméhan Tchelougou
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Samridhi Sakthivel
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Itai Sharon
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Antoine Bernard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Sandy Pelletier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Yael Ripstein
- Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Alan Spatz
- McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Lady Davis Institute, McGill University, Montréal, QC H3T 1E1, Canada
| | - Wilson H Miller
- Lady Davis Institute, McGill University, Montréal, QC H3T 1E1, Canada
| | - Rahima Jamal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Réjean Lapointe
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Montreal Neurological Institute and Hospital, Montréal, QC H3A 2B4, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Kevin Petrecca
- Montreal Neurological Institute and Hospital, Montréal, QC H3A 2B4, Canada
| | | | | | - Beatrice Wang
- McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - May Chergui
- McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | | | - Kevin Watters
- McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada; Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Simon Turcotte
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | | | | | - Ian R Watson
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; McGill University Health Centre, Montréal, QC H4A 3J1, Canada.
| |
Collapse
|
4
|
Yagi S, Kadota M, Bando R, Miyamoto R, Morino H, Kakutani A, Kubo Y, Ise T, Ueno R, Hara T, Kusunose K, Yamaguchi K, Yamada H, Soeki T, Wakatsuki T, Fukuda D, Sata M. Pulmonary Arterial Hypertension in Neurofibromatosis Type 1: A Case with a Novel NF1 Gene Mutation. Intern Med 2025; 64:725-728. [PMID: 38987187 PMCID: PMC11949675 DOI: 10.2169/internalmedicine.3856-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/13/2024] [Indexed: 07/12/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant multi-organ disease. The clinical manifestations include not only skin lesions and malignant tumors but also lung complications, including pulmonary arterial hypertension (PAH). However, the association between gene mutations in NF1 and the occurrence of PAH has not yet been elucidated. We herein report a case of isolated PAH in a 67-year-old woman with NF1, presumably caused by a novel heterozygous mutation, c.4485_4486delinsAT (p.Lys1496Ter), in the NF1 gene.
Collapse
Affiliation(s)
- Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Japan
- Department of Community and Family Medicine, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Muneyuki Kadota
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Ryo Bando
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Ryosuke Miyamoto
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Hiroyuki Morino
- Department of Medical Genetics, Tokushima University Graduate School of Biomedical Sciences, Japan
| | | | - Yoshiaki Kubo
- Department of Dermatology, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Takayuki Ise
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Rie Ueno
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Tomoya Hara
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Kenya Kusunose
- Department of Cardiovascular Medicine, Nephrology, and Neurology, Graduate School of Medicine, University of the Ryukyus, Japan
| | - Koji Yamaguchi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Hirotsugu Yamada
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Takeshi Soeki
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Tetsuzo Wakatsuki
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Japan
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Japan
| |
Collapse
|
5
|
Cook SJ. Second MEK Inhibitor Shows Promise in Neurofibromatosis Type 1 With Symptomatic Plexiform Neurofibromas Signaling Hope for Other RASopathies. J Clin Oncol 2025; 43:730-734. [PMID: 39661912 DOI: 10.1200/jco-24-02375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Affiliation(s)
- Simon J Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
6
|
Cox AD, Der CJ. Drugging mutant KRAS by disrupting binding to effectors and GTP. NATURE CANCER 2025; 6:228-230. [PMID: 39979666 DOI: 10.1038/s43018-025-00914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Affiliation(s)
- Adrienne D Cox
- Department of Pharmacology, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA.
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA.
| | - Channing J Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Fay CX, Zunica ERM, Awad E, Bradley W, Church C, Liu J, Liu H, Crossman DK, Mobley JA, Kirwan JP, Axelrod CL, Westin E, Kesterson RA, Wallis D. Global proteomics and affinity mass spectrometry analysis of human Schwann cells indicates that variation in and loss of neurofibromin (NF1) alters protein expression and cellular and mitochondrial metabolism. Sci Rep 2025; 15:3883. [PMID: 39890807 PMCID: PMC11785952 DOI: 10.1038/s41598-024-84493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 12/24/2024] [Indexed: 02/03/2025] Open
Abstract
In efforts to evaluate potential biomarkers and drug targets for Neurofibromatosis Type I (NF1) we utilized affinity mass spectrometry and global proteomics to investigate how variation within and loss of NF1 affect immortalized human Schwann cells. We used Strep tagged mNf1 cDNAs (both wild type (WT) and variant) to affinity purity NF1 Protein-Protein interactors (PPIs) from the Schwann cells. We were able to identify 98 PPIs and show that some of these PPIs bind differentially to variant proteins. Next, we evaluated global proteomes. We identified over 1900 proteins in immortalized human Schwann cells both with and without NF1 expression. We identified 148 proteins with differential expression levels based on genotype. Following Ingenuity Pathway analysis (IPA) we found multiple pathways were altered including decreases in "oxidative phosphorylation," increases in "mitochondrial dysfunction", and "glycolysis", as well as changes in "Myelination Signaling Pathway." When we evaluated the proteome of NF1 null cells stably transfected with tagged mNf1 cDNAs we again identified an overall trend of metabolic differences pertaining to "oxidative phosphorylation", "mitochondria dysfunction", and "glycolysis" in the variant cDNA expressing cells. We then validated differential expression of the following proteins: LAMC1, CYB5R3, and SOD2 that are observed in the altered pathways. Finally, consistent with our proteomics findings, we show that NF1 is required to maintain mitochondrial respiratory function in Schwann cells by stabilizing NADH-linked oxidative phosphorylation and electron transfer. Taken together, these data indicate that NF1 plays a significant role in mitochondrial metabolism that results in proteomic changes in Schwann cells and may serve as a future drug target.
Collapse
Affiliation(s)
- Christian X Fay
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | - Elias Awad
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - William Bradley
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Cameron Church
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jian Liu
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hui Liu
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David K Crossman
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - James A Mobley
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - John P Kirwan
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | - Erik Westin
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | - Deeann Wallis
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
8
|
Garzon JP, Patete A, Aschbacher-Smith L, Qu’d D, Kelly-Mancuso G, Raski CR, Goetsch Weisman A, Hankins M, Sawin M, Kim K, Drackley A, Zeid J, Weaver KN, Hopkin RJ, Saal HM, Charrow J, Schorry E, Listernick R, Simpson BN, Prada CE. Expanding the phenotype of neurofibromatosis type 1 microdeletion syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2024; 196:e32095. [PMID: 39022906 PMCID: PMC12064146 DOI: 10.1002/ajmg.c.32095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/19/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024]
Abstract
Neurofibromatosis type 1 (NF-1) microdeletion syndrome accounts for 5 to 11% of individuals with NF-1. The aim of our study was to characterize a large cohort of individuals with NF-1 microdeletion syndrome and expand its natural history. We conducted a retrospective chart review from 1994 to 2024 of individuals with NF-1 microdeletion syndrome followed at two large Neurofibromatosis Clinics. This cohort consists of 57 individuals with NF-1 microdeletion syndrome (28 type-1, 4 type-2, 2 type-3, 9 atypical deletions, and 14 indeterminate). We note 38/56 (67.9%) with describable facial features, 25/57 (43.8%) with plexiform neurofibromas, and 3/57 (5.2%) with malignant peripheral nerve sheath tumors within the observed period. The most reported neurodevelopmental manifestations from school-age or older individuals included 39/49 (79.6%) with developmental delays, 35/49 (71.4%) with expressive and/or receptive speech delays, 33/41 (80.5%) with learning difficulties, and 23/42 (54.8%) with attention-deficit/hyperactivity disorder. Full-scale IQ testing data was available for 22 individuals (range: 50-96). Of the 21 adults in this cohort, 14/21 (66.7%) graduated from high school, and 4/21 (19.0%) had some college experience. Many individuals received academic support (i.e., special education, individual education plan). In this cohort, neurocognitive outcomes in adults varied more than typically reported in the literature.
Collapse
Affiliation(s)
- Jenny P. Garzon
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL, USA
| | - Andrea Patete
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL, USA
| | - Lindsey Aschbacher-Smith
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Dima Qu’d
- Alabama College of Osteopathic Medicine, Dothan, AL, USA
| | - Geraldine Kelly-Mancuso
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Carolyn R. Raski
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL, USA
| | - Allison Goetsch Weisman
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL, USA
| | - Madison Hankins
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL, USA
| | - Michael Sawin
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL, USA
| | - Katherine Kim
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL, USA
| | - Andy Drackley
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL, USA
| | - Janice Zeid
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Ophthalmology, Feinberg School of Medicine of Northwestern University, Chicago, IL, USA
| | - K. Nicole Weaver
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert J. Hopkin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Howard M. Saal
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joel Charrow
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL, USA
| | - Elizabeth Schorry
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert Listernick
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL, USA
| | - Brittany N. Simpson
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
- Le Bonheur Children’s Hospital, Memphis, TN, USA
- St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Carlos E. Prada
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL, USA
| |
Collapse
|
9
|
Botero V, Tomchik SM. Unraveling neuronal and metabolic alterations in neurofibromatosis type 1. J Neurodev Disord 2024; 16:49. [PMID: 39217323 PMCID: PMC11365184 DOI: 10.1186/s11689-024-09565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Neurofibromatosis type 1 (OMIM 162200) affects ~ 1 in 3,000 individuals worldwide and is one of the most common monogenetic neurogenetic disorders that impacts brain function. The disorder affects various organ systems, including the central nervous system, resulting in a spectrum of clinical manifestations. Significant progress has been made in understanding the disorder's pathophysiology, yet gaps persist in understanding how the complex signaling and systemic interactions affect the disorder. Two features of the disorder are alterations in neuronal function and metabolism, and emerging evidence suggests a potential relationship between them. This review summarizes neurofibromatosis type 1 features and recent research findings on disease mechanisms, with an emphasis on neuronal and metabolic features.
Collapse
Affiliation(s)
- Valentina Botero
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA
- Skaggs School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
| | - Seth M Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA.
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA.
- Hawk-IDDRC, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA.
| |
Collapse
|
10
|
Uliana V, Ambrosini E, Taiani A, Cesarini S, Cannizzaro IR, Negrotti A, Serra W, Quintavalle G, Micale L, Fusco C, Castori M, Martorana D, Bortesi B, Belli L, Percesepe A, Pisani F, Barili V. Phenotypic Expansion of Autosomal Dominant LZTR1-Related Disorders with Special Emphasis on Adult-Onset Features. Genes (Basel) 2024; 15:916. [PMID: 39062695 PMCID: PMC11276570 DOI: 10.3390/genes15070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Leucine zipper-like transcription regulator 1 (LZTR1) acts as a negative factor that suppresses RAS function and MAPK signaling; mutations in this protein may dysregulate RAS ubiquitination and lead to impaired degradation of RAS superfamily proteins. Germline LZTR1 variants are reported in Noonan syndrome, either autosomal dominant or autosomal recessive, and in susceptibility to schwannomatosis. This article explores the genetic and phenotypic diversity of the autosomal dominant LZTR1-related disorders, compiling a cohort of previously published patients (51 with the Noonan phenotype and 123 with schwannomatosis) and presenting two additional adult-onset cases: a male with schwannomatosis and Parkinson's disease and a female with Noonan syndrome, generalized joint hypermobility, and breast cancer. This review confirms that autosomal dominant LZTR1-related disorders exhibit an extreme phenotypic variability, ranging from relatively mild manifestations to severe and multi-systemic involvement, and offers updated frequences of each clinical feature. The aim is to precisely define the clinical spectrum of LZTR1-related diseases, using also two new emblematic clinical cases. Gaining insight into the mechanisms underneath this variability is crucial to achieve precision diagnostics and the development of therapeutic interventions.
Collapse
Affiliation(s)
- Vera Uliana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Enrico Ambrosini
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Antonietta Taiani
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy (D.M.)
| | - Sofia Cesarini
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy (D.M.)
| | - Ilenia Rita Cannizzaro
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy (D.M.)
| | - Anna Negrotti
- Neurology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Walter Serra
- Unit of Cardiology, University Hospital of Parma, 43126 Parma, Italy
| | - Gabriele Quintavalle
- Regional Reference Centre for Inherited Bleeding Disorders, University Hospital of Parma, 43126 Parma, Italy
| | - Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Davide Martorana
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy (D.M.)
| | - Beatrice Bortesi
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Laura Belli
- Neurosurgery Unit, Head and Neck Department, University Hospital of Parma, 43126 Parma, Italy
| | - Antonio Percesepe
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy (D.M.)
| | - Francesco Pisani
- Child Neurology and Psychiatry Unit, Department of Human Neuroscience, Sapienza University, Via dei Sabelli 108, 00185 Rome, Italy
| | - Valeria Barili
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy (D.M.)
| |
Collapse
|
11
|
Chen P, Zhang J. The loci of environmental adaptation in a model eukaryote. Nat Commun 2024; 15:5672. [PMID: 38971805 PMCID: PMC11227561 DOI: 10.1038/s41467-024-50002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
While the underlying genetic changes have been uncovered in some cases of adaptive evolution, the lack of a systematic study prevents a general understanding of the genomic basis of adaptation. For example, it is unclear whether protein-coding or noncoding mutations are more important to adaptive evolution and whether adaptations to different environments are brought by genetic changes distributed in diverse genes and biological processes or concentrated in a core set. We here perform laboratory evolution of 3360 Saccharomyces cerevisiae populations in 252 environments of varying levels of stress. We find the yeast adaptations to be primarily fueled by large-effect coding mutations overrepresented in a relatively small gene set, despite prevalent antagonistic pleiotropy across environments. Populations generally adapt faster in more stressful environments, partly because of greater benefits of the same mutations in more stressful environments. These and other findings from this model eukaryote help unravel the genomic principles of environmental adaptation.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
12
|
Chen Y, Yu J, Ge S, Jia R, Song X, Wang Y, Fan X. An Overview of Optic Pathway Glioma With Neurofibromatosis Type 1: Pathogenesis, Risk Factors, and Therapeutic Strategies. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 38837168 PMCID: PMC11160950 DOI: 10.1167/iovs.65.6.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
Optic pathway gliomas (OPGs) are most predominant pilocytic astrocytomas, which are typically diagnosed within the first decade of life. The majority of affected children with OPGs also present with neurofibromatosis type 1 (NF1), the most common tumor predisposition syndrome. OPGs in individuals with NF1 primarily affect the optic pathway and lead to visual disturbance. However, it is challenging to assess risk in asymptomatic patients without valid biomarkers. On the other hand, for symptomatic patients, there is still no effective treatment to prevent or recover vision loss. Therefore, this review summarizes current knowledge regarding the pathogenesis of NF1-associated OPGs (NF1-OPGs) from preclinical studies to seek potential prognostic markers and therapeutic targets. First, the loss of the NF1 gene activates 3 distinct Ras effector pathways, including the PI3K/AKT/mTOR pathway, the MEK/ERK pathway, and the cAMP pathway, which mediate glioma tumorigenesis. Meanwhile, non-neoplastic cells from the tumor microenvironment (microglia, T cells, neurons, etc.) also contribute to gliomagenesis via various soluble factors. Subsequently, we investigated potential genetic risk factors, molecularly targeted therapies, and neuroprotective strategies for tumor prevention and vision recovery. Last, potential directions and promising preclinical models of NF1-OPGs are presented for further research. On the whole, NF1-OPGs develop as a result of the interaction between glioma cells and the tumor microenvironment. Developing effective treatments require a better understanding of tumor molecular characteristics, as well as multistage interventions targeting both neoplastic cells and non-neoplastic cells.
Collapse
Affiliation(s)
- Ying Chen
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xin Song
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Yefei Wang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
13
|
Liu Y, Jang H, Nussinov R. SHP2-EGFR States in Dephosphorylation Can Inform Selective SHP2 Inhibitors, Dampening RasGAP Action. J Phys Chem B 2024; 128:5175-5187. [PMID: 38747619 DOI: 10.1021/acs.jpcb.4c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
SHP2 is a positive regulator of the EGFR-dependent Ras/MAPK pathway. It dephosphorylates a regulatory phosphorylation site in EGFR that serves as the binding site to RasGAP (RASA1 or p120RasGAP). RASA1 is activated by binding to the EGFR phosphate group. Active RASA1 deactivates Ras by hydrolyzing Ras-bound GTP to GDP. Thus, SHP2 dephosphorylation of EGFR effectively prevents RASA1-mediated deactivation of Ras, thereby stimulating proliferation. Despite knowledge of this vital regulation in cell life, mechanistic in-depth structural understanding of the involvement of SHP2, EGFR, and RASA1 in the Ras/MAPK pathway has largely remained elusive. Here we elucidate the interactions, the factors influencing EGFR's recruitment of RASA1, and SHP2's recognition of the substrate site in EGFR. We reveal that RASA1 specifically interacts with the DEpY992LIP motif in EGFR featuring a proline residue at the +3 position C-terminal to pY primarily through its nSH2 domain. This interaction is strengthened by the robust attraction of two acidic residues, E991 and D990, of EGFR to two basic residues in the BC-loop near the pY-binding pocket of RASA1's nSH2. In the stable precatalytic state of SHP2 with EGFR (DADEpY992LIPQ), the E-loop of SHP2's active site favors the interaction with the (-2)-position D990 and (-4)-position D988 N-terminal to pY992 in EGFR, while the pY-loop constrains the (+4)-position Q996 C-terminal to pY992. These specific interactions not only provide a structural basis for identifying negative regulatory sites in other RTKs but can inform selective, high-affinity active-site SHP2 inhibitors tailored for SHP2 mutants.
Collapse
Affiliation(s)
- Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
14
|
White EE, Rhodes SD. The NF1+/- Immune Microenvironment: Dueling Roles in Neurofibroma Development and Malignant Transformation. Cancers (Basel) 2024; 16:994. [PMID: 38473354 PMCID: PMC10930863 DOI: 10.3390/cancers16050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common genetic disorder resulting in the development of both benign and malignant tumors of the peripheral nervous system. NF1 is caused by germline pathogenic variants or deletions of the NF1 tumor suppressor gene, which encodes the protein neurofibromin that functions as negative regulator of p21 RAS. Loss of NF1 heterozygosity in Schwann cells (SCs), the cells of origin for these nerve sheath-derived tumors, leads to the formation of plexiform neurofibromas (PNF)-benign yet complex neoplasms involving multiple nerve fascicles and comprised of a myriad of infiltrating stromal and immune cells. PNF development and progression are shaped by dynamic interactions between SCs and immune cells, including mast cells, macrophages, and T cells. In this review, we explore the current state of the field and critical knowledge gaps regarding the role of NF1(Nf1) haploinsufficiency on immune cell function, as well as the putative impact of Schwann cell lineage states on immune cell recruitment and function within the tumor field. Furthermore, we review emerging evidence suggesting a dueling role of Nf1+/- immune cells along the neurofibroma to MPNST continuum, on one hand propitiating PNF initiation, while on the other, potentially impeding the malignant transformation of plexiform and atypical neurofibroma precursor lesions. Finally, we underscore the potential implications of these discoveries and advocate for further research directed at illuminating the contributions of various immune cells subsets in discrete stages of tumor initiation, progression, and malignant transformation to facilitate the discovery and translation of innovative diagnostic and therapeutic approaches to transform risk-adapted care.
Collapse
Affiliation(s)
- Emily E. White
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Steven D. Rhodes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Cherra SJ, Lamb R. Interactions between Ras and Rap signaling pathways during neurodevelopment in health and disease. Front Mol Neurosci 2024; 17:1352731. [PMID: 38463630 PMCID: PMC10920261 DOI: 10.3389/fnmol.2024.1352731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
The Ras family of small GTPases coordinates tissue development by modulating cell proliferation, cell-cell adhesion, and cellular morphology. Perturbations of any of these key steps alter nervous system development and are associated with neurological disorders. While the underlying causes are not known, genetic mutations in Ras and Rap GTPase signaling pathways have been identified in numerous neurodevelopmental disorders, including autism spectrum, neurofibromatosis, intellectual disability, epilepsy, and schizophrenia. Despite diverse clinical presentations, intersections between these two signaling pathways may provide a better understanding of how deviations in neurodevelopment give rise to neurological disorders. In this review, we focus on presynaptic and postsynaptic functions of Ras and Rap GTPases. We highlight various roles of these small GTPases during synapse formation and plasticity. Based on genomic analyses, we discuss how disease-related mutations in Ras and Rap signaling proteins may underlie human disorders. Finally, we discuss how recent observations have identified molecular interactions between these pathways and how these findings may provide insights into the mechanisms that underlie neurodevelopmental disorders.
Collapse
Affiliation(s)
- Salvatore J. Cherra
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | | |
Collapse
|
16
|
Hayashi S, Bandoh N, Hayashi M, Goto T, Kato Y, Baba S, Aimono E, Nishihara H. Salivary Duct Carcinoma Arising in the Submandibular Gland in a Patient with Neurofibromatosis Type 1. EAR, NOSE & THROAT JOURNAL 2024:1455613241231146. [PMID: 38369960 DOI: 10.1177/01455613241231146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
A 71-year-old man with neurofibromatosis type 1 (NF1) presented to our department with a 1-week history of a painful mass in the left submandibular area. Computed tomography (CT) and magnetic resonance imaging revealed an irregular-shaped tumor with a diameter of 2.0 cm in the left submandibular gland and a metastatic lymph node with a diameter of 1.0 cm adjacent to the tumor. Fluorodeoxyglucose-positron emission tomography/CT revealed increased uptake in the tumor. Fine-needle aspiration cytology revealed atypical cells, suggesting salivary duct carcinoma (SDC). Left neck dissection with resection of the tumor and submandibular gland was performed under general anesthesia. Histologic examination revealed ductal formation with a solid, cystic, cribriform, and papillary structure with intraductal comedonecrosis, diagnosing as SDC originating in the submandibular gland (pT3N1M0 pStage III). Mutational analysis of 160 cancer-related genes by next-generation sequencing (NGS) revealed a germline and frameshift mutation in the NF1 gene (p.R2408Kfs*14) and a somatic and frameshift mutation in the TP53 gene (p.C176Wfs*22). The patient received postoperative radiotherapy to the left neck area at 66 Gy. No evidence of recurrence or metastasis has been observed as of 10 months postoperatively. This is the first reported case of SDC in the submandibular gland in a patient with NF1. The mutational data by NGS may contribute to a better understanding of the oncogenesis of SDC in patients with NF1.
Collapse
Affiliation(s)
- Shuto Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Hokuto Hospital, Obihiro, Hokkaido, Japan
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Nobuyuki Bandoh
- Department of Otolaryngology-Head and Neck Surgery, Hokuto Hospital, Obihiro, Hokkaido, Japan
| | - Misaki Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Hokuto Hospital, Obihiro, Hokkaido, Japan
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takashi Goto
- Department of Otolaryngology-Head and Neck Surgery, Hokuto Hospital, Obihiro, Hokkaido, Japan
| | - Yasutaka Kato
- Department of Biology and Genetics, Laboratory of Cancer Medical Science, Hokuto Hospital, Obihiro, Hokkaido, Japan
| | - Shogo Baba
- Department of Biology and Genetics, Laboratory of Cancer Medical Science, Hokuto Hospital, Obihiro, Hokkaido, Japan
| | - Eriko Aimono
- Keio Cancer Center, Keio University School of Medicine, Shinjukuku, Tokyo, Japan
| | - Hiroshi Nishihara
- Keio Cancer Center, Keio University School of Medicine, Shinjukuku, Tokyo, Japan
| |
Collapse
|
17
|
Yvone GM, Breunig JJ. Pediatric low-grade glioma models: advances and ongoing challenges. Front Oncol 2024; 13:1346949. [PMID: 38318325 PMCID: PMC10839015 DOI: 10.3389/fonc.2023.1346949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Pediatric low-grade gliomas represent the most common childhood brain tumor class. While often curable, some tumors fail to respond and even successful treatments can have life-long side effects. Many clinical trials are underway for pediatric low-grade gliomas. However, these trials are expensive and challenging to organize due to the heterogeneity of patients and subtypes. Advances in sequencing technologies are helping to mitigate this by revealing the molecular landscapes of mutations in pediatric low-grade glioma. Functionalizing these mutations in the form of preclinical models is the next step in both understanding the disease mechanisms as well as for testing therapeutics. However, such models are often more difficult to generate due to their less proliferative nature, and the heterogeneity of tumor microenvironments, cell(s)-of-origin, and genetic alterations. In this review, we discuss the molecular and genetic alterations and the various preclinical models generated for the different types of pediatric low-grade gliomas. We examined the different preclinical models for pediatric low-grade gliomas, summarizing the scientific advances made to the field and therapeutic implications. We also discuss the advantages and limitations of the various models. This review highlights the importance of preclinical models for pediatric low-grade gliomas while noting the challenges and future directions of these models to improve therapeutic outcomes of pediatric low-grade gliomas.
Collapse
Affiliation(s)
- Griselda Metta Yvone
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Joshua J. Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
Vasudevan HN, Payne E, Delley CL, John Liu S, Mirchia K, Sale MJ, Lastella S, Nunez MS, Lucas CHG, Eaton CD, Casey-Clyde T, Magill ST, Chen WC, Braunstein SE, Perry A, Jacques L, Reddy AT, Pekmezci M, Abate AR, McCormick F, Raleigh DR. Functional interactions between neurofibromatosis tumor suppressors underlie Schwann cell tumor de-differentiation and treatment resistance. Nat Commun 2024; 15:477. [PMID: 38216572 PMCID: PMC10786885 DOI: 10.1038/s41467-024-44755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Schwann cell tumors are the most common cancers of the peripheral nervous system and can arise in patients with neurofibromatosis type-1 (NF-1) or neurofibromatosis type-2 (NF-2). Functional interactions between NF1 and NF2 and broader mechanisms underlying malignant transformation of the Schwann lineage are unclear. Here we integrate bulk and single-cell genomics, biochemistry, and pharmacology across human samples, cell lines, and mouse allografts to identify cellular de-differentiation mechanisms driving malignant transformation and treatment resistance. We find DNA methylation groups of Schwann cell tumors can be distinguished by differentiation programs that correlate with response to the MEK inhibitor selumetinib. Functional genomic screening in NF1-mutant tumor cells reveals NF2 loss and PAK activation underlie selumetinib resistance, and we find that concurrent MEK and PAK inhibition is effective in vivo. These data support a de-differentiation paradigm underlying malignant transformation and treatment resistance of Schwann cell tumors and elucidate a functional link between NF1 and NF2.
Collapse
Affiliation(s)
- Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Emily Payne
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Cyrille L Delley
- Department of Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - S John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Kanish Mirchia
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew J Sale
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Sydney Lastella
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Maria Sacconi Nunez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Charlotte D Eaton
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Tim Casey-Clyde
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Stephen T Magill
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - William C Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Steve E Braunstein
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Arie Perry
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Line Jacques
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Alyssa T Reddy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Melike Pekmezci
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Adam R Abate
- Department of Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Reiners JJ, Mathieu PA, Gargano M, George I, Shen Y, Callaghan JF, Borch RF, Mattingly RR. Synergistic Suppression of NF1 Malignant Peripheral Nerve Sheath Tumor Cell Growth in Culture and Orthotopic Xenografts by Combinational Treatment with Statin and Prodrug Farnesyltransferase Inhibitor PAMAM G4 Dendrimers. Cancers (Basel) 2023; 16:89. [PMID: 38201517 PMCID: PMC10778372 DOI: 10.3390/cancers16010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a disorder in which RAS is constitutively activated due to the loss of the Ras-GTPase-activating activity of neurofibromin. RAS must be prenylated (i.e., farnesylated or geranylgeranylated) to traffic and function properly. Previous studies showed that the anti-growth properties of farnesyl monophosphate prodrug farnesyltransferase inhibitors (FTIs) on human NF1 malignant peripheral nerve sheath tumor (MPNST) cells are potentiated by co-treatment with lovastatin. Unfortunately, such prodrug FTIs have poor aqueous solubility. In this study, we synthesized a series of prodrug FTI polyamidoamine generation 4 (PAMAM G4) dendrimers that compete with farnesyl pyrophosphate for farnesyltransferase (Ftase) and assessed their effects on human NF1 MPNST S462TY cells. The prodrug 3-tert-butylfarnesyl monophosphate FTI-dendrimer (i.e., IG 2) exhibited improved aqueous solubility. Concentrations of IG 2 and lovastatin (as low as 0.1 μM) having little to no effect when used singularly synergistically suppressed cell proliferation, colony formation, and induced N-RAS, RAP1A, and RAB5A deprenylation when used in combination. Combinational treatment had no additive or synergistic effects on the proliferation/viability of immortalized normal rat Schwann cells, primary rat hepatocytes, or normal human mammary epithelial MCF10A cells. Combinational, but not singular, in vivo treatment markedly suppressed the growth of S462TY xenografts established in the sciatic nerves of immune-deficient mice. Hence, prodrug farnesyl monophosphate FTIs can be rendered water-soluble by conjugation to PAMAM G4 dendrimers and exhibit potent anti-tumor activity when combined with clinically achievable statin concentrations.
Collapse
Affiliation(s)
- John J. Reiners
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA; (J.J.R.J.); (P.A.M.); (M.G.)
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Patricia A. Mathieu
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA; (J.J.R.J.); (P.A.M.); (M.G.)
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mary Gargano
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA; (J.J.R.J.); (P.A.M.); (M.G.)
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Irene George
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; (I.G.); (R.F.B.)
- Currently College of Arts and Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Yimin Shen
- Department of Radiology, Wayne State University, Detroit, MI 48201, USA;
| | - John F. Callaghan
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC 27834, USA;
| | - Richard F. Borch
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; (I.G.); (R.F.B.)
| | - Raymond R. Mattingly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC 27834, USA;
| |
Collapse
|
20
|
Zamora PO, Altay G, Santamaria U, Dwarshuis N, Donthi H, Moon CI, Bakalar D, Zamora M. Drug Responses in Plexiform Neurofibroma Type I (PNF1) Cell Lines Using High-Throughput Data and Combined Effectiveness and Potency. Cancers (Basel) 2023; 15:5811. [PMID: 38136356 PMCID: PMC10742026 DOI: 10.3390/cancers15245811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Background: Neurofibromatosis type 1 (NF1) is a genetic disorder characterized by heterozygous germline NF1 gene mutations that predispose patients to developing plexiform neurofibromas, which are benign but often disfiguring tumors of the peripheral nerve sheath induced by loss of heterozygosity at the NF1 locus. These can progress to malignant peripheral nerve sheath tumors (MPNSTs). There are no approved drug treatments for adults with NF1-related inoperable plexiform neurofibromas, and only one drug (selumetinib), which is an FDA-approved targeted therapy for the treatment of symptomatic pediatric plexiform neurofibromas, highlighting the need for additional drug screening and development. In high-throughput screening, the effectiveness of drugs against cell lines is often assessed by measuring in vitro potency (AC50) or the area under the curve (AUC). However, the variability of dose-response curves across drugs and cell lines and the frequency of partial effectiveness suggest that these measures alone fail to provide a full picture of overall efficacy. Methods: Using concentration-response data, we combined response effectiveness (EFF) and potency (AC50) into (a) a score characterizing the effect of a compound on a single cell line, S = log[EFF/AC50], and (b) a relative score, ΔS, characterizing the relative difference between a reference (e.g., non-tumor) and test (tumor) cell line. ΔS was applied to data from high-throughput screening (HTS) of a drug panel tested on NF1-/- tumor cells, using immortalized non-tumor NF1+/- cells as a reference. Results: We identified drugs with sensitivity, targeting expected pathways, such as MAPK-ERK and PI3K-AKT, as well as serotonin-related targets, among others. The ΔS technique used here, in tandem with a supplemental ΔS web tool, simplifies HTS analysis and may provide a springboard for further investigations into drug response in NF1-related cancers. The tool may also prove useful for drug development in a variety of other cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Chang In Moon
- Dan L. Duncan Comprehensive Cancer Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dana Bakalar
- National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
21
|
Bildirici Y, Kocaaga A, Karademir-Arslan CN, Yimenicioglu S. Evaluation of Molecular and Clinical Findings in Children With Neurofibromatosis Type 1: Identification of 15 Novel Variants. Pediatr Neurol 2023; 149:69-74. [PMID: 37806041 DOI: 10.1016/j.pediatrneurol.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is the most common neurocutaneous disease and is caused by mutations in the NF1 gene. The most common clinical features of NF1 are pigmentary abnormalities such as café-au-lait spots and inguinal or axillary freckling, cutaneous and plexiform neurofibromas, hamartomas of the iris, optic gliomas, and bone lesions. The aim of this retrospective study was to define the clinical and molecular characteristics of a pediatric sample of NF1, as well as the mutational spectrum and genotype-phenotype correlation. METHODS The study included 40 children with clinically suspected NF1. The patients were screened for NF1 mutations by DNA-based sequencing. In addition, all the patients were studied by multiplex ligation-dependent probe amplification (MLPA) to identify any duplications or deletions in NF1. The demographic, clinical, and genetic features of the children were characterized. RESULTS A total of 40 children with NF1 were included. Of those, 28 were female and 12 were male. The mean age was 8.91 years. An NF1 variant was discovered in 28 of 40 patients (70%). Among these mutations, intronic mutations were the most frequently detected mutations; 15 of these variants had not been previously reported. Only one patient had a whole NF1 gene deletion. CONCLUSIONS This study expands the spectrum of mutations in the NF1 gene. This study also showed that genetic screening using both next-generation sequencing and MLPA had a positive effect on diagnosis and genetic counseling in patients with suspected NF1.
Collapse
Affiliation(s)
- Yasar Bildirici
- Department of Pediatrics, Eskişehir City Hospital, Eskişehir, Turkey
| | - Ayca Kocaaga
- Department of Medical Genetics, Eskişehir City Hospital, Eskişehir, Turkey.
| | | | - Sevgi Yimenicioglu
- Department of Pediatric Neurology, Eskişehir City Hospital, Eskişehir, Turkey
| |
Collapse
|
22
|
Irshad K, Huang YK, Rodriguez P, Lo J, Aghoghovwia BE, Pan Y, Chang KC. The Neuroimmune Regulation and Potential Therapeutic Strategies of Optic Pathway Glioma. Brain Sci 2023; 13:1424. [PMID: 37891793 PMCID: PMC10605541 DOI: 10.3390/brainsci13101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Optic pathway glioma (OPG) is one of the causes of pediatric visual impairment. Unfortunately, there is as yet no cure for such a disease. Understanding the underlying mechanisms and the potential therapeutic strategies may help to delay the progression of OPG and rescue the visual morbidities. Here, we provide an overview of preclinical OPG studies and the regulatory pathways controlling OPG pathophysiology. We next discuss the role of microenvironmental cells (neurons, T cells, and tumor-associated microglia and macrophages) in OPG development. Last, we provide insight into potential therapeutic strategies for treating OPG and promoting axon regeneration.
Collapse
Affiliation(s)
- Khushboo Irshad
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.I.); (B.E.A.)
| | - Yu-Kai Huang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Paul Rodriguez
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Jung Lo
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Benjamin E. Aghoghovwia
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.I.); (B.E.A.)
| | - Yuan Pan
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.I.); (B.E.A.)
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kun-Che Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
23
|
Wang D, Wen X, Xu LL, Chen QX, Yan TX, Xiao HT, Xu XW. Nf1 in heart development: a potential causative gene for congenital heart disease: a narrative review. Physiol Genomics 2023; 55:415-426. [PMID: 37519249 DOI: 10.1152/physiolgenomics.00024.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 08/01/2023] Open
Abstract
Congenital heart disease is the most frequent congenital disorder, affecting a significant number of live births. Gaining insights into its genetic etiology could lead to a deeper understanding of this condition. Although the Nf1 gene has been identified as a potential causative gene, its role in congenital heart disease has not been thoroughly clarified. We searched and summarized evidence from cohort-based and experimental studies on the issue of Nf1 and heart development in congenital heart diseases from various databases. Available evidence demonstrates a correlation between Nf1 and congenital heart diseases, mainly pulmonary valvar stenosis. The mechanism underlying this correlation may involve dysregulation of epithelial-mesenchymal transition (EMT). The Nf1 gene affects the EMT process via multiple pathways, including directly regulating the expression of EMT-related transcription factors and indirectly regulating the EMT process by regulating the MAPK pathway. This narrative review provides a comprehensive account of the Nf1 involvement in heart development and congenital cardiovascular diseases in terms of epidemiology and potential mechanisms. RAS signaling may contribute to congenital heart disease independently or in cooperation with other signaling pathways. Efficient management of both NF1 and cardiovascular disease patients would benefit from further research into these issues.
Collapse
Affiliation(s)
- Dun Wang
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Xue Wen
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Li-Li Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, People's Republic of China
| | - Qing-Xing Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, People's Republic of China
| | - Tian-Xing Yan
- Central Laboratory, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Hai-Tao Xiao
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Xue-Wen Xu
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
24
|
Weiss JB, Raber J. Inhibition of Anaplastic Lymphoma Kinase (Alk) as Therapeutic Target to Improve Brain Function in Neurofibromatosis Type 1 (Nf1). Cancers (Basel) 2023; 15:4579. [PMID: 37760547 PMCID: PMC10526845 DOI: 10.3390/cancers15184579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/17/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Neurofibromatosis type 1 (Nf1) is a neurodevelopmental disorder and tumor syndrome caused by loss of function mutations in the neurofibromin gene (Nf1) and is estimated to affect 100,000 people in the US. Behavioral alterations and cognitive deficits have been found in 50-70% of children with Nf1 and include specific problems with attention, visual perception, language, learning, attention, and executive function. These behavioral alterations and cognitive deficits are observed in the absence of tumors or macroscopic structural abnormalities in the central nervous system. No effective treatments for the behavioral and cognitive disabilities of Nf1 exist. Inhibition of the anaplastic lymphoma kinase (Alk), a kinase which is negatively regulated by neurofibromin, allows for testing the hypothesis that this inhibition may be therapeutically beneficial in Nf1. In this review, we discuss this area of research and directions for the development of alternative therapeutic strategies to inhibit Alk. Even if the incidence of adverse reactions of currently available Alk inhibitors was reduced to half the dose, we anticipate that a long-term treatment would pose challenges for efficacy, safety, and tolerability. Therefore, future efforts are warranted to investigate alternative, potentially less toxic and more specific strategies to inhibit Alk function.
Collapse
Affiliation(s)
- Joseph B. Weiss
- Cardiovascular Institute and Warren Alpert School of Medicine at Brown University, Providence, RI 02840, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
25
|
Flint AC, Mitchell DK, Angus SP, Smith AE, Bessler W, Jiang L, Mang H, Li X, Lu Q, Rodriguez B, Sandusky GE, Masters AR, Zhang C, Dang P, Koenig J, Johnson GL, Shen W, Liu J, Aggarwal A, Donoho GP, Willard MD, Bhagwat SV, Wade Clapp D, Rhodes SD. Combined CDK4/6 and ERK1/2 Inhibition Enhances Antitumor Activity in NF1-Associated Plexiform Neurofibroma. Clin Cancer Res 2023; 29:3438-3456. [PMID: 37406085 PMCID: PMC11060649 DOI: 10.1158/1078-0432.ccr-22-2854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/06/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE Plexiform neurofibromas (PNF) are peripheral nerve sheath tumors that cause significant morbidity in persons with neurofibromatosis type 1 (NF1), yet treatment options remain limited. To identify novel therapeutic targets for PNF, we applied an integrated multi-omic approach to quantitatively profile kinome enrichment in a mouse model that has predicted therapeutic responses in clinical trials for NF1-associated PNF with high fidelity. EXPERIMENTAL DESIGN Utilizing RNA sequencing combined with chemical proteomic profiling of the functionally enriched kinome using multiplexed inhibitor beads coupled with mass spectrometry, we identified molecular signatures predictive of response to CDK4/6 and RAS/MAPK pathway inhibition in PNF. Informed by these results, we evaluated the efficacy of the CDK4/6 inhibitor, abemaciclib, and the ERK1/2 inhibitor, LY3214996, alone and in combination in reducing PNF tumor burden in Nf1flox/flox;PostnCre mice. RESULTS Converging signatures of CDK4/6 and RAS/MAPK pathway activation were identified within the transcriptome and kinome that were conserved in both murine and human PNF. We observed robust additivity of the CDK4/6 inhibitor, abemaciclib, in combination with the ERK1/2 inhibitor, LY3214996, in murine and human NF1(Nf1) mutant Schwann cells. Consistent with these findings, the combination of abemaciclib (CDK4/6i) and LY3214996 (ERK1/2i) synergized to suppress molecular signatures of MAPK activation and exhibited enhanced antitumor activity in Nf1flox/flox;PostnCre mice in vivo. CONCLUSIONS These findings provide rationale for the clinical translation of CDK4/6 inhibitors alone and in combination with therapies targeting the RAS/MAPK pathway for the treatment of PNF and other peripheral nerve sheath tumors in persons with NF1.
Collapse
Affiliation(s)
- Alyssa C. Flint
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dana K. Mitchell
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Steven P. Angus
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
| | - Abbi E. Smith
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Waylan Bessler
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Li Jiang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Henry Mang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaohong Li
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qingbo Lu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brooke Rodriguez
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George E. Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andi R. Masters
- Clinical Pharmacology Analytical Core, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chi Zhang
- Center for Computational Biology and Bioinformatics and Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - Pengtao Dang
- Center for Computational Biology and Bioinformatics and Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - Jenna Koenig
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN USA
| | - Gary L. Johnson
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Weihua Shen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jiangang Liu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Amit Aggarwal
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Gregory P. Donoho
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Melinda D. Willard
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Shripad V. Bhagwat
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - D. Wade Clapp
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
| | - Steven D. Rhodes
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
26
|
Tang Y, Gutmann DH. Neurofibromatosis Type 1-Associated Optic Pathway Gliomas: Current Challenges and Future Prospects. Cancer Manag Res 2023; 15:667-681. [PMID: 37465080 PMCID: PMC10351533 DOI: 10.2147/cmar.s362678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023] Open
Abstract
Optic pathway glioma (OPG) occurs in as many as one-fifth of individuals with the neurofibromatosis type 1 (NF1) cancer predisposition syndrome. Generally considered low-grade and slow growing, many children with NF1-OPGs remain asymptomatic. However, due to their location within the optic pathway, ~20-30% of those harboring NF1-OPGs will experience symptoms, including progressive vision loss, proptosis, diplopia, and precocious puberty. While treatment with conventional chemotherapy is largely effective at attenuating tumor growth, it is not clear whether there is much long-term recovery of visual function. Additionally, because these tumors predominantly affect young children, there are unique challenges to NF1-OPG diagnosis, monitoring, and longitudinal management. Over the past two decades, the employment of authenticated genetically engineered Nf1-OPG mouse models have provided key insights into the function of the NF1 protein, neurofibromin, as well as the molecular and cellular pathways that contribute to optic gliomagenesis. Findings from these studies have resulted in the identification of new molecular targets whose inhibition blocks murine Nf1-OPG growth in preclinical studies. Some of these promising compounds have now entered into early clinical trials. Future research focused on defining the determinants that underlie optic glioma initiation, expansion, and tumor-induced optic nerve injury will pave the way to personalized risk assessment strategies, improved tumor monitoring, and optimized treatment plans for children with NF1-OPG.
Collapse
Affiliation(s)
- Yunshuo Tang
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
27
|
Koczkowska M, Chen Y, Xie J, Callens T, Gomes A, Wimmer K, Messiaen LM. Analysis of 200 unrelated individuals with a constitutional NF1 deep intronic pathogenic variant reveals that variants flanking the alternatively spliced NF1 exon 31 [23a] cause a classical neurofibromatosis type 1 phenotype while altering predominantly NF1 isoform type II. Hum Genet 2023; 142:849-861. [PMID: 37186028 PMCID: PMC10329576 DOI: 10.1007/s00439-023-02555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023]
Abstract
Neurofibromatosis type 1 results from loss-of-function NF1 pathogenic variants (PVs). Up to 30% of all NF1 PVs disrupt mRNA splicing, including deep intronic variants. Here, we retrospectively investigated the spectrum of NF1 deep intronic PVs in a cohort of 8,090 unrelated individuals from the University of Alabama at Birmingham (UAB) dataset with a molecularly confirmed neurofibromatosis type 1. All variants were identified through their effect on the NF1 transcript, followed by variant characterization at the DNA-level. A total of 68 distinct variants, which were ≥ 20 nucleotides away from the closest exon-intron junction, were identified in 2.5% unrelated individuals with NF1 (200/8,090). Nine different pathogenic splice variants, identified in 20 probands, led to exonization of different parts of intron 30 [23.2] or 31 [23a]. The two major NF1 transcript isoforms, distinguished by the absence (type I) or presence (type II) of the alternatively spliced cassette exon 31 [23a], are equally expressed in blood in control individuals without NF1 or NF1-affected individuals carrying their PV not in the introns flanking exon 31 [23a]. By fragment and cloning analysis we demonstrated that the exonization of intron 31 [23a] sequences due to deep intronic PV predominantly affects the NF1 isoform II. Seven additional (likely) pathogenic NF1 deep intronic variants not observed in the UAB dataset were found by classification of 36 variants identified by a literature search. Hence, the unique list of these 75 deep intronic (likely) PVs should be included in any comprehensive NF1 testing strategy.
Collapse
Affiliation(s)
- Magdalena Koczkowska
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- 3P-Medicine Laboratory, Medical University of Gdansk, 80-211, Gdansk, Poland.
| | - Yunjia Chen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jing Xie
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Natera, Inc., San Carlos, CA, USA
| | - Tom Callens
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Alicia Gomes
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Katharina Wimmer
- Institute of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Ludwine M Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
28
|
Doherty AC, Huddleston DA, Horn PS, Ratner N, Simpson BN, Schorry EK, Aschbacher-Smith L, Prada CE, Gilbert DL. Motor Function and Physiology in Youth With Neurofibromatosis Type 1. Pediatr Neurol 2023; 143:34-43. [PMID: 36996759 PMCID: PMC10228140 DOI: 10.1016/j.pediatrneurol.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/24/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a genetic neurocutaneous disorder commonly associated with motor and cognitive symptoms that greatly impact quality of life. Transcranial magnetic stimulation (TMS) can quantify motor cortex physiology, reflecting the basis for impaired motor function as well as, possibly, clues for mechanisms of effective treatment. We hypothesized that children with NF1 have impaired motor function and altered motor cortex physiology compared to typically developing (TD) control children and children with attention-deficit/hyperactivity disorder (ADHD). METHODS Children aged 8-17 years with NF1 (n = 21) were compared to children aged 8-12 years with ADHD (n = 59) and TD controls (n = 88). Motor development was assessed using the Physical and Neurological Examination for Subtle Signs (PANESS) scale. The balance of inhibition and excitation in motor cortex was assessed using the TMS measures short-interval cortical inhibition (SICI) and intracortical facilitation (ICF). Measures were compared by diagnosis and tested using bivariate correlations and regression for association with clinical characteristics. RESULTS In NF1, ADHD severity scores were intermediate between the ADHD and TD cohorts, but total PANESS scores were markedly elevated (worse) compared to both (P < 0.001). Motor cortex ICF (excitatory) was significantly lower in NF1 than in TD and ADHD (P < 0.001), but SICI (inhibitory) did not differ. However, in NF1, better PANESS scores correlated with lower SICI ratios (more inhibition; ρ = 0.62, P = 0.003) and lower ICF ratios (less excitation; ρ = 0.38, P = 0.06). CONCLUSIONS TMS-evoked SICI and ICF may reflect processes underlying abnormal motor function in children with NF1.
Collapse
Affiliation(s)
- Alexander C Doherty
- University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| | - David A Huddleston
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Paul S Horn
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Nancy Ratner
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Experimental Hematology and Cancer Biology - Rasopathy Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Brittany N Simpson
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Elizabeth K Schorry
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Carlos E Prada
- Division of Genetics, Ann & Robert Lurie Children's Hospital of Chicago, Chicago, Illinois; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
29
|
Zhang L, Jiang L, Zeng L, Jin Z, Dong X, Zhang Y, Chen L, Shu Y, Liu Y, Huang Y. The oncogenic role of NF1 in gallbladder cancer through regulation of YAP1 stability by direct interaction with YAP1. J Transl Med 2023; 21:306. [PMID: 37147639 PMCID: PMC10163693 DOI: 10.1186/s12967-023-04157-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Gallbladder cancer (GBC) is the most prevalent and invasive biliary tract malignancy. As a GTPase-activating protein, Neurofibromin 1 (NF1) is a tumor suppressor that negatively regulates the RAS signaling pathway, and its abnormality leads to neurofibromatosis type 1 (NF-1) disease. However, the role of NF1 playing in GBC and the underlying molecular mechanism has not been defined yet. METHODS A combination of NOZ and EH-GB1 cell lines as well as nude mice, were utilized in this study. mRNA expression and protein levels of NF1 and YAP1 were evaluated by quantitative real-time PCR (qRT-PCR), western blot (WB), and immunohistochemistry (IHC). In vitro and in vivo assays were performed to explore the biological effects of NF1 in NOZ and EH-GB1 cells via siRNA or lv-shRNA mediated knockdown. Direct interaction between NF1 and YAP1 was detected by confocal microscopy and co-immunoprecipitation (Co-IP), and further confirmed by GST pull-down assay and isothermal titration calorimetry assay (ITC). The stability of proteins was measured by western blot (WB) in the presence of cycloheximide. RESULTS This study showed that a higher level of NF1 and YAP1 was found in GBC samples than in normal tissues and associated with worse prognoses. The NF1 knockdown impaired the proliferation and migration of NOZ in vivo and in vitro by downregulating YAP1 expression. Moreover, NF1 co-localized with YAP1 in NOZ and EH-GB1 cells, and the WW domains of YAP1 specifically recognized the PPQY motif of NF1. The structural modeling also indicated the hydrophobic interactions between YAP1 and NF1. On the other hand, YAP1 knockdown also impaired the proliferation of NOZ in vitro, phenocopying the effects of NF1 knockdown. Overexpression of YAP1 can partially rescue the impaired proliferation in NF1 stably knockdown cells. In mechanism, NF1 interacted with YAP1 and increased the stability of YAP1 by preventing ubiquitination. CONCLUSIONS Our findings discovered a novel oncogenic function of NF1 by directly interacting with YAP1 protein and stabilizing YAP1 to protect it from proteasome degradation in NOZ cells. NF1 may serve as a potential therapeutic target in GBC.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
- Department of Biliary-Pancreatic Surgery, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Lin Jiang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ling Zeng
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Zhaohui Jin
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Xuanjia Dong
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yuhan Zhang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Litian Chen
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yijun Shu
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Ying Huang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
30
|
Fareez F, Wang BH, Brain I, Lu JQ. Lymphomas in patients with neurofibromatosis type 1 (NF1): another malignancy in the NF1 syndrome? Pathology 2023; 55:302-314. [PMID: 36774237 DOI: 10.1016/j.pathol.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant multisystem syndrome caused by mutations in the neurofibromin 1 (NF1) gene that encodes for the protein neurofibromin acting as a tumour suppressor. Neurofibromin functions primarily as a GTPase-activating protein for the Ras family of oncogenes, which activates many signalling pathways for cell proliferation and differentiation; without neurofibromin, Ras is constitutively activated, thereby turning on many downstream signalling pathways related to oncogenesis. Patients with NF1 have a well known predisposition for certain types of malignancies including malignant peripheral nerve sheath tumours, gliomas, and breast cancers, as well as a potential association of NF1 with lymphoproliferative disorders such as lymphomas. In this article, we review the pathophysiology and tumourigenesis of NF1, previously reported cases of cutaneous lymphomas in NF1 patients along with our case demonstration of a NF1-associated scalp B-cell lymphoma, and NF1-associated extra cutaneous lymphomas. The diagnosis of lymphomas particularly cutaneous lymphomas may be difficult in NF1 patients as they often have skin lesions and/or cutaneous/subcutaneous nodules or tumours like neurofibromas, which raises the possibility of underdiagnosed cutaneous lymphomas in NF1 patients. We also comprehensively discuss the association between NF1 and lymphomas. In summary, most studies support a potential association between NF1 and lymphomas. Further investigation is needed to clarify the association between NF1 and lymphomas in order to bring clinical awareness of possibly underdiagnosed NF1-associated lymphomas and individualised management of NF1 patients to practice.
Collapse
Affiliation(s)
- Faiha Fareez
- Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada
| | - Bill H Wang
- Department of Surgery/Neurosurgery, McMaster University, Hamilton, Ontario, Canada
| | - Ian Brain
- Department of Laboratory Medicine and Pathobiology/Hematopathology, University of Toronto, Toronto, Ontario, Canada
| | - Jian-Qiang Lu
- Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine/Neuropathology, Hamilton General Hospital, Hamilton, Ontario, Canada.
| |
Collapse
|
31
|
Cacchione A, Fabozzi F, Carai A, Colafati GS, del Baldo G, Rossi S, Diana M, Megaro G, Milano GM, Macchiaiolo M, Crocoli A, De Ioris MA, Boccuto L, Secco DE, Zama M, Agolini E, Tomà P, Mastronuzzi A. Safety and Efficacy of Mek Inhibitors in the Treatment of Plexiform Neurofibromas: A Retrospective Study. Cancer Control 2023; 30:10732748221144930. [PMID: 36598023 PMCID: PMC9830579 DOI: 10.1177/10732748221144930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Plexiform neurofibromas (PN) represent the main cause of morbidity in patients affected by Neurofibromatosis Type 1 (NF1). Until recently, surgery has been the main treatment option in these patients, but it is burdened with a low efficacy rate and a high incidence of side effects as well as recurrence. In recent years, MEK inhibitors (MEKi) such as selumetinib and trametinib have shown great promise. METHODS We retrospectively describe a single center cohort of NF1 patients affected by PN1 and treated with MEKi since 2019 to 2021. Patients recruited in the study were affected by PN that were not eligible to complete surgical excision, symptomatic or with major cosmetic deformation or functional neurological deficits. RESULTS Most patients experienced improvement in clinical symptoms and quality of life, with reduction or stabilization of lesions. However, no complete response was achieved. The most common adverse effects involved the skin, affecting every patient. Importantly, no life-threatening adverse effects occurred. CONCLUSIONS In our experience, MEKi treatment has been shown to be both safe and effective in improving symptomatology and quality of life.
Collapse
Affiliation(s)
- Antonella Cacchione
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Francesco Fabozzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Rome, Italy,Department of Pediatrics, University of Tor Vergata, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, Rome, Italy
| | | | - Giada del Baldo
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Martino Diana
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Giacomina Megaro
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Giuseppe Maria Milano
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Marina Macchiaiolo
- Rare Diseases and Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, Rome, Italy
| | | | - Maria Antonietta De Ioris
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, USA
| | - Domitilla Elena Secco
- PsD of Department of Paediatric Haematology/Oncology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Mario Zama
- Surgery Department, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Paolo Tomà
- Department of Imaging, Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Rome, Italy,Unicamillus, Saint Camillus International University of Health Sciences, Rome, Italy,Angela Mastronuzzi, MD, PhD, Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Rome 00165, Italy.
| |
Collapse
|
32
|
Douben HCW, Nellist M, van Unen L, Elfferich P, Kasteleijn E, Hoogeveen-Westerveld M, Louwen J, van Veghel-Plandsoen M, de Valk W, Saris JJ, Hendriks F, Korpershoek E, Hoefsloot LH, van Vliet M, van Bever Y, van de Laar I, Aten E, Lachmeijer AMA, Taal W, van den Bersselaar L, Schuurmans J, Oostenbrink R, van Minkelen R, van Ierland Y, van Ham TJ. High-yield identification of pathogenic NF1 variants by skin fibroblast transcriptome screening after apparently normal diagnostic DNA testing. Hum Mutat 2022; 43:2130-2140. [PMID: 36251260 PMCID: PMC10099955 DOI: 10.1002/humu.24487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/29/2022] [Accepted: 09/26/2022] [Indexed: 01/25/2023]
Abstract
Neurofibromatosis type 1 (NF1) is caused by inactivating mutations in NF1. Due to the size, complexity, and high mutation rate at the NF1 locus, the identification of causative variants can be challenging. To obtain a molecular diagnosis in 15 individuals meeting diagnostic criteria for NF1, we performed transcriptome analysis (RNA-seq) on RNA obtained from cultured skin fibroblasts. In each case, routine molecular DNA diagnostics had failed to identify a disease-causing variant in NF1. A pathogenic variant or abnormal mRNA splicing was identified in 13 cases: 6 deep intronic variants and 2 transposon insertions causing noncanonical splicing, 3 postzygotic changes, 1 branch point mutation and, in 1 case, abnormal splicing for which the responsible DNA change remains to be identified. These findings helped resolve the molecular findings for an additional 17 individuals in multiple families with NF1, demonstrating the utility of skin-fibroblast-based transcriptome analysis for molecular diagnostics. RNA-seq improves mutation detection in NF1 and provides a powerful complementary approach to DNA-based methods. Importantly, our approach is applicable to other genetic disorders, particularly those caused by a wide variety of variants in a limited number of genes and specifically for individuals in whom routine molecular DNA diagnostics did not identify the causative variant.
Collapse
Affiliation(s)
- Hannie C W Douben
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mark Nellist
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leontine van Unen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter Elfferich
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Esmee Kasteleijn
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Jesse Louwen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Walter de Valk
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jasper J Saris
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Femke Hendriks
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Esther Korpershoek
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lies H Hoefsloot
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Margreethe van Vliet
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ingrid van de Laar
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Emmelien Aten
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Augusta M A Lachmeijer
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Walter Taal
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands.,Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lisa van den Bersselaar
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Juliette Schuurmans
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rianne Oostenbrink
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands.,Department of General Pediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Rick van Minkelen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
| | - Yvette van Ierland
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Bonsang B, Maksimovic L, Maille P, Martin N, Laurendeau I, Pasmant E, Bièche I, Deschamps J, Wolkenstein P, Ortonne N. VEGF and VEGFR family members are expressed by neoplastic cells of NF1-associated tumors and may play an oncogenic role in malignant peripheral nerve sheath tumor growth through an autocrine loop. Ann Diagn Pathol 2022; 60:151997. [DOI: 10.1016/j.anndiagpath.2022.151997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/01/2022]
|
34
|
Functional restoration of mouse Nf1 nonsense alleles in differentiated cultured neurons. J Hum Genet 2022; 67:661-668. [PMID: 35945271 DOI: 10.1038/s10038-022-01072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022]
Abstract
Neurofibromatosis type 1 (NF1), one of the most common autosomal dominant genetic disorders, is caused by mutations in the NF1 gene. NF1 patients have a wide variety of manifestations with a subset at high risk for the development of tumors in the central nervous system (CNS). Nonsense mutations that result in the synthesis of truncated NF1 protein (neurofibromin) are strongly associated with CNS tumors. Therapeutic nonsense suppression with small molecule drugs is a potentially powerful approach to restore the expression of genes harboring nonsense mutations. Ataluren is one such drug that has been shown to restore full-length functional protein in several models of nonsense mutation diseases, as well as in patients with nonsense mutation Duchenne muscular dystrophy. To test ataluren's potential applicability to NF1 nonsense mutations associated with CNS tumors, we generated a homozygous Nf1R683X/R683X-3X-FLAG mouse embryonic stem (mES) cell line which recapitulates an NF1 patient nonsense mutation (c.2041 C > T; p.Arg681X). We differentiated Nf1R683X/R683X-3X-FLAG mES cells into cortical neurons in vitro, treated the cells with ataluren, and demonstrated that ataluren can promote readthrough of the nonsense mutation at codon 683 of Nf1 mRNA in neural cells. The resulting full-length protein is able to reduce the cellular level of hyperactive phosphorylated ERK (pERK), a RAS effector normally suppressed by the NF1 protein.
Collapse
|
35
|
Miller AH, Halloran MC. Mechanistic insights from animal models of neurofibromatosis type 1 cognitive impairment. Dis Model Mech 2022; 15:276464. [PMID: 36037004 PMCID: PMC9459395 DOI: 10.1242/dmm.049422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal-dominant neurogenetic disorder caused by mutations in the gene neurofibromin 1 (NF1). NF1 predisposes individuals to a variety of symptoms, including peripheral nerve tumors, brain tumors and cognitive dysfunction. Cognitive deficits can negatively impact patient quality of life, especially the social and academic development of children. The neurofibromin protein influences neural circuits via diverse cellular signaling pathways, including through RAS, cAMP and dopamine signaling. Although animal models have been useful in identifying cellular and molecular mechanisms that regulate NF1-dependent behaviors, translating these discoveries into effective treatments has proven difficult. Clinical trials measuring cognitive outcomes in patients with NF1 have mainly targeted RAS signaling but, unfortunately, resulted in limited success. In this Review, we provide an overview of the structure and function of neurofibromin, and evaluate several cellular and molecular mechanisms underlying neurofibromin-dependent cognitive function, which have recently been delineated in animal models. A better understanding of neurofibromin roles in the development and function of the nervous system will be crucial for identifying new therapeutic targets for the various cognitive domains affected by NF1. Summary: Neurofibromin influences neural circuits through RAS, cAMP and dopamine signaling. Exploring the mechanisms underlying neurofibromin-dependent behaviors in animal models might enable future treatment of the various cognitive deficits that are associated with neurofibromatosis type 1.
Collapse
Affiliation(s)
- Andrew H Miller
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
36
|
Santos MR, Pereira AM. Neurofibromatosis type 1 and pulmonary arterial hypertension: A case report. Rev Port Cardiol 2022; 41:511.e1-511.e5. [DOI: 10.1016/j.repc.2019.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/11/2019] [Indexed: 10/18/2022] Open
|
37
|
Hallan DR, Messner C, Daggubati LC, Sakya S, Thomas S, Rizk E. Evaluating the Evidence: Scientometric Analysis of Highly Cited Neurofibromatosis 1 Publications. Cureus 2022; 14:e23466. [PMID: 35481324 PMCID: PMC9034899 DOI: 10.7759/cureus.23466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
The study of Neurofibromatosis 1 (NF1) is progressing rapidly. This study aimed to identify historical trends in publications focusing on NF1, to find the top 100 most cited publications on this topic, and to evaluate their level of evidence. This study identifies historical trends in publication regarding NF1 with the aim of providing readers useful information about the areas of research being performed, an educational guide to facilitate novice researchers in conducting effective evidence-based medical research, and unique insight into developments and trends of NF 1 research. This study also evaluates the evidence of highly cited papers on NF1. A search of all databases and journals accessible within Elsevier's Scopus was performed on June 27th, 2020, using combinations of the Boolean queries "Neurofibromatosis 1," "Von Recklinghausen," and "NF1," which yielded 13,599 documents. The top 100 most-cited papers were identified, analyzed, and evaluated for level of evidence. Evidence was assessed using the GRADE guidelines. The top 100 most-cited articles span years 1963-2010 and are published in 50 different journals. The average number of citations per publication was 366.5 (range 189-1527). The most cited article is "Neurofibromatosis: Conference Statement" (Stumpf et al., 1988). In this study, the top 100 most-cited works in NF1 are identified, characterized, and analyzed. This study will serve as a historical point of reference for future research, a jumping point for those unfamiliar with the topic, and an educational foundation for future NF1 specialists and researchers.
Collapse
|
38
|
Patritti Cram J, Wu J, Coover RA, Rizvi TA, Chaney KE, Ravindran R, Cancelas JA, Spinner RJ, Ratner N. P2RY14 cAMP signaling regulates Schwann cell precursor self-renewal, proliferation, and nerve tumor initiation in a mouse model of neurofibromatosis. eLife 2022; 11:73511. [PMID: 35311647 PMCID: PMC8959601 DOI: 10.7554/elife.73511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/19/2022] [Indexed: 01/05/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is characterized by nerve tumors called neurofibromas, in which Schwann cells (SCs) show deregulated RAS signaling. NF1 is also implicated in regulation of cAMP. We identified the G-protein-coupled receptor (GPCR) P2ry14 in human neurofibromas, neurofibroma-derived SC precursors (SCPs), mature SCs, and mouse SCPs. Mouse Nf1-/- SCP self-renewal was reduced by genetic or pharmacological inhibition of P2ry14. In a mouse model of NF1, genetic deletion of P2ry14 rescued low cAMP signaling, increased mouse survival, delayed neurofibroma initiation, and improved SC Remak bundles. P2ry14 signals via Gi to increase intracellular cAMP, implicating P2ry14 as a key upstream regulator of cAMP. We found that elevation of cAMP by either blocking the degradation of cAMP or by using a P2ry14 inhibitor diminished NF1-/- SCP self-renewal in vitro and neurofibroma SC proliferation in in vivo. These studies identify P2ry14 as a critical regulator of SCP self-renewal, SC proliferation, and neurofibroma initiation.
Collapse
Affiliation(s)
- Jennifer Patritti Cram
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Robert A Coover
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Tilat A Rizvi
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Katherine E Chaney
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Ramya Ravindran
- Molecular and Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Hoxworth Blood Center, College of Medicine, University of Cincinnati, Cincinnati, United States
| | - Robert J Spinner
- Department of Neurosurgery, Mayo Clinic, Rochester, United States
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| |
Collapse
|
39
|
Abstract
In this review, I provide a brief history of the discovery of RAS and the GAPs and GEFs that regulate its activity from a personal perspective. Much of this history has been driven by technological breakthroughs that occurred concurrently, such as molecular cloning, cDNA expression to analyze RAS proteins and their structures, and application of PCR to detect mutations. I discuss the RAS superfamily and RAS proteins as therapeutic targets, including recent advances in developing RAS inhibitors. I also describe the role of the RAS Initiative at Frederick National Laboratory for Cancer Research in advancing development of RAS inhibitors and providing new insights into signaling complexes and interaction of RAS proteins with the plasma membrane.
Collapse
Affiliation(s)
- Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States; Frederick National Laboratory for Cancer Research, Frederick, MD, United States.
| |
Collapse
|
40
|
Mo J, Moye SL, McKay RM, Le LQ. Neurofibromin and suppression of tumorigenesis: beyond the GAP. Oncogene 2022; 41:1235-1251. [PMID: 35066574 PMCID: PMC9063229 DOI: 10.1038/s41388-021-02156-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disease and one of the most common inherited tumor predisposition syndromes, affecting 1 in 3000 individuals worldwide. The NF1 gene encodes neurofibromin, a large protein with RAS GTP-ase activating (RAS-GAP) activity, and loss of NF1 results in increased RAS signaling. Neurofibromin contains many other domains, and there is considerable evidence that these domains play a role in some manifestations of NF1. Investigating the role of these domains as well as the various signaling pathways that neurofibromin regulates and interacts with will provide a better understanding of how neurofibromin acts to suppress tumor development and potentially open new therapeutic avenues. In this review, we discuss what is known about the structure of neurofibromin, its interactions with other proteins and signaling pathways, its role in development and differentiation, and its function as a tumor suppressor. Finally, we discuss the latest research on potential therapeutics for neurofibromin-deficient neoplasms.
Collapse
Affiliation(s)
- Juan Mo
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Stefanie L Moye
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Renee M McKay
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
| |
Collapse
|
41
|
Anastasaki C, Orozco P, Gutmann DH. RAS and beyond: the many faces of the neurofibromatosis type 1 protein. Dis Model Mech 2022; 15:274437. [PMID: 35188187 PMCID: PMC8891636 DOI: 10.1242/dmm.049362] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurofibromatosis type 1 is a rare neurogenetic syndrome, characterized by pigmentary abnormalities, learning and social deficits, and a predisposition for benign and malignant tumor formation caused by germline mutations in the NF1 gene. With the cloning of the NF1 gene and the recognition that the encoded protein, neurofibromin, largely functions as a negative regulator of RAS activity, attention has mainly focused on RAS and canonical RAS effector pathway signaling relevant to disease pathogenesis and treatment. However, as neurofibromin is a large cytoplasmic protein the RAS regulatory domain of which occupies only 10% of its entire coding sequence, both canonical and non-canonical RAS pathway modulation, as well as the existence of potential non-RAS functions, are becoming apparent. In this Special article, we discuss our current understanding of neurofibromin function.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Paola Orozco
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
42
|
Abstract
Activating mutations in RAS genes are the most common genetic driver of human cancers. Yet, drugging this small GTPase has proven extremely challenging and therapeutic strategies targeting these recurrent alterations have long had limited success. To circumvent this difficulty, research has focused on the molecular dissection of the RAS pathway to gain a more-precise mechanistic understanding of its regulation, with the hope to identify new pharmacological approaches. Here, we review the current knowledge on the (dys)regulation of the RAS pathway, using melanoma as a paradigm. We first present a map of the main proteins involved in the RAS pathway, highlighting recent insights into their molecular roles and diverse mechanisms of regulation. We then overview genetic data pertaining to RAS pathway alterations in melanoma, along with insight into other cancers, that inform the biological function of members of the pathway. Finally, we describe the clinical implications of RAS pathway dysregulation in melanoma, discuss past and current approaches aimed at drugging the RAS pathway, and outline future opportunities for therapeutic development. Summary: This Review describes the molecular regulation of the RAS pathway, presents the clinical consequences of its pathological activation in human cancer, and highlights recent advances towards its therapeutic inhibition, using melanoma as an example.
Collapse
Affiliation(s)
- Amira Al Mahi
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM U1052 CNRS UMR5286, Tumor Escape, Resistance and Immunity Department, 69008 Lyon, France
| | - Julien Ablain
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM U1052 CNRS UMR5286, Tumor Escape, Resistance and Immunity Department, 69008 Lyon, France
| |
Collapse
|
43
|
Kang E, Kim YM, Choi Y, Lee Y, Kim J, Choi IH, Yoo HW, Yoon HM, Lee BH. Whole-body MRI evaluation in neurofibromatosis type 1 patients younger than 3 years old and the genetic contribution to disease progression. Orphanet J Rare Dis 2022; 17:24. [PMID: 35093157 PMCID: PMC8800361 DOI: 10.1186/s13023-022-02174-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/16/2022] [Indexed: 11/14/2022] Open
Abstract
Background Neurofibromatosis type 1 (NF1) is a common human genetic disease with age-dependent phenotype progression. The overview of clinical and radiological findings evaluated by whole-body magnetic resonance imaging (WBMRI) in NF1 patients < 3 years old assessed with a genetic contribution to disease progression is presented herein.
Methods This study included 70 clinically or genetically diagnosed NF1 patients who received WBMRI before 3 years old. Clinical, genetic, and radiologic features were collected by retrospective chart review. In NF1+, widely spread diffuse cutaneous neurofibromas, developmental delay, autism, seizure, cardiac abnormalities, hearing defect, optic pathway glioma, severe plexiform neurofibromas (> 3 cm in diameter, disfigurement, accompanying pain, bony destruction, or located para-aortic area), brain tumors, nerve root tumors, malignant peripheral nerve sheath tumors, moyamoya disease, and bony dysplasia were included. Results The age at WBMRI was 1.6 ± 0.7 years old, and NF1 mutations were found in 66 patients (94.3%). Focal areas of signal intensity (FASI) were the most common WBMRI finding (66.1%), followed by optic pathway glioma (15.7%), spine dural ectasia (12.9%), and plexiform neurofibromas (10.0%). Plexiform neurofibromas and NF1+ were more prevalent in familial case (28.7% vs 5.7%, p = 0.030; 71.4% vs 30.2%, p = 0.011). Follow-up WBMRI was conducted in 42 patients (23 girls and 19 boys) after 1.21 ± 0.50 years. FASI and radiologic progression were more frequent in patients with mutations involving GTPase activating protein-related domain (77.8% vs 52.4%, p = 0.047; 46.2% vs 7.7%, p = 0.029). Conclusions WBMRI provides important information for the clinical care for young pediatric NF1 patients. As NF1 progresses in even these young patients, and is related to family history and the affected NF1 domains, serial evaluation with WBMRI should be assessed based on the clinical and genetic features for the patients’ best care. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02174-3.
Collapse
|
44
|
Genetics of Pheochromocytomas and Paragangliomas Determine the Therapeutical Approach. Int J Mol Sci 2022; 23:ijms23031450. [PMID: 35163370 PMCID: PMC8836037 DOI: 10.3390/ijms23031450] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Pheochromocytomas and paragangliomas are the most heritable endocrine tumors. In addition to the inherited mutation other driver mutations have also been identified in tumor tissues. All these genetic alterations are clustered in distinct groups which determine the pathomechanisms. Most of these tumors are benign and their surgical removal will resolve patient management. However, 5–15% of them are malignant and therapeutical possibilities for them are limited. This review provides a brief insight about the tumorigenesis associated with pheochromocytomas/paragangliomas in order to present them as potential therapeutical targets.
Collapse
|
45
|
Case series of congenital pseudarthrosis of the tibia unfulfilling neurofibromatosis type 1 diagnosis: 21% with somatic NF1 haploinsufficiency in the periosteum. Hum Genet 2022; 141:1371-1383. [DOI: 10.1007/s00439-021-02429-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022]
|
46
|
Lutz S, Van Dyke K, Feraru MA, Albert FW. Multiple epistatic DNA variants in a single gene affect gene expression in trans. Genetics 2022; 220:iyab208. [PMID: 34791209 PMCID: PMC8733636 DOI: 10.1093/genetics/iyab208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 01/08/2023] Open
Abstract
DNA variants that alter gene expression in trans are important sources of phenotypic variation. Nevertheless, the identity of trans-acting variants remains poorly understood. Single causal variants in several genes have been reported to affect the expression of numerous distant genes in trans. Whether these simple molecular architectures are representative of trans-acting variation is unknown. Here, we studied the large RAS signaling regulator gene IRA2, which contains variants with extensive trans-acting effects on gene expression in the yeast Saccharomyces cerevisiae. We used systematic CRISPR-based genome engineering and a sensitive phenotyping strategy to dissect causal variants to the nucleotide level. In contrast to the simple molecular architectures known so far, IRA2 contained at least seven causal nonsynonymous variants. The effects of these variants were modulated by nonadditive, epistatic interactions. Two variants at the 5'-end affected gene expression and growth only when combined with a third variant that also had no effect in isolation. Our findings indicate that the molecular basis of trans-acting genetic variation may be considerably more complex than previously appreciated.
Collapse
Affiliation(s)
- Sheila Lutz
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Krisna Van Dyke
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew A Feraru
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Frank W Albert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
47
|
Long-term effects of pharmacological inhibition of Anaplastic lymphoma kinase in Neurofibromatosis 1 mutant mice. Behav Brain Res 2022; 423:113767. [DOI: 10.1016/j.bbr.2022.113767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/13/2021] [Accepted: 01/18/2022] [Indexed: 11/21/2022]
|
48
|
Sanchez LD, Bui A, Klesse LJ. Targeted Therapies for the Neurofibromatoses. Cancers (Basel) 2021; 13:cancers13236032. [PMID: 34885143 PMCID: PMC8657309 DOI: 10.3390/cancers13236032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Over the past several years, management of the tumors associated with the neurofibromatoses has been recognized to often require approaches that are distinct from their spontaneous counterparts. Focus has shifted to therapy aimed at minimizing symptoms given the risks of persistent, multiple tumors and new tumor growth. In this review, we will highlight the translation of preclinical data to therapeutic trials for patients with neurofibromatosis, particularly neurofibromatosis type 1 and neurofibromatosis type 2. Successful inhibition of MEK for patients with neurofibromatosis type 1 and progressive optic pathway gliomas or plexiform neurofibromas has been a significant advancement in patient care. Similar success for the malignant NF1 tumors, such as high-grade gliomas and malignant peripheral nerve sheath tumors, has not yet been achieved; nor has significant progress been made for patients with either neurofibromatosis type 2 or schwannomatosis, although efforts are ongoing.
Collapse
Affiliation(s)
- Lauren D. Sanchez
- Department of Pediatrics, Division of Neurology, UT Southwestern Medical Center, Dallas, TX 75235, USA;
| | - Ashley Bui
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX 75235, USA;
| | - Laura J. Klesse
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX 75235, USA;
- Correspondence:
| |
Collapse
|
49
|
Ramkumar S. Reviewing Schwannoma-Hemangioma Composite Tumors With Their Tumorigenetic Molecular Pathways and Associated Syndromic Manifestations. Cureus 2021; 13:e19839. [PMID: 34824953 PMCID: PMC8610103 DOI: 10.7759/cureus.19839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Schwannomas are common peripheral nerve sheath tumors. Cavernous hemangiomas are vascular tumors that can affect any organ system. The coexistence of cavernous hemangioma with peripheral nervous system neoplasms is a rare occurrence. So far, 37 cases have been documented, and they have been divided into two categories: conjoined association (neoplasms discovered within the tumor tissue) and discrete association (neoplasms discovered outside the tumor tissue, thus placing neoplasms and tumors in close proximity but in different locations). Schwannomas and neurofibromas are the most prevalent tumors linked to cavernous hemangiomas that have been documented. The author provides a comprehensive review of all such cases published in the past with an emphasis on the implications of their tumorigenetic molecular pathways and syndromic manifestations.
Collapse
|
50
|
Wang S, Mautner VF, Buchert R, Flibotte S, Suppa P, Friedman JM, Heran MKS. Alterations in brain morphology by MRI in adults with neurofibromatosis 1. Orphanet J Rare Dis 2021; 16:462. [PMID: 34727946 PMCID: PMC8561988 DOI: 10.1186/s13023-021-02097-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/24/2021] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE Neurofibromatosis 1 (NF1) is a rare autosomal dominant disease that causes the dysregulated growth of Schwann cells. Most reported studies of brain morphology in NF1 patients have included only children, and clinical implications of the observed changes later in life remain unclear. In this study, we used MRI to characterize brain morphology in adults with NF1. METHODS Planar (2D) MRI measurements of 29 intracranial structures were compared in 389 adults with NF1 and 112 age- and sex-matched unaffected control subjects. The 2D measurements were correlated with volumetric (3D) brain measurements in 99 of the adults with NF1 to help interpret the 2D findings. A subset (n = 70) of these NF1 patients also received psychometric testing for attention deficits and IQ and was assessed for clinical severity of NF1 features and neurological problems. Correlation analysis was performed between the MRI measurements and clinical and psychometric features of these patients. RESULTS Four of nine corpus callosum measurements were significantly greater in adults with NF1 than in sex- and age-matched controls. All seven brainstem measurements were significantly greater in adults with NF1 than in controls. Increased corpus callosum and brainstem 2D morphology were correlated with increased total white matter volume among the NF1 patients. No robust correlations were observed between the 2D size of these structures and clinical or neuropsychometric assessments. CONCLUSION Our findings are consistent with the hypothesis that dysregulation of brain myelin production is an important manifestation of NF1 in adults.
Collapse
Affiliation(s)
- Su Wang
- Department of Medical Genetics, University of British Columbia, Children's and Women's Hospital, 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ralph Buchert
- Department of Nuclear Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Stephane Flibotte
- UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, BC, Canada
| | - Per Suppa
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Children's and Women's Hospital, 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada.
| | - Manraj K S Heran
- Diagnostic and Therapeutic Neuroradiology, University of British Columbia, Vancouver, Canada
| |
Collapse
|