1
|
Tang P, Chen Y, Chen D, Zhu H, Dai S, Zhou J, Zhang X, Huang X, Ouyang P, Geng Y, Li Z. Transcriptome analysis reveals the mechanism of cortisol through GR regulating the expression of inflammatory cytokines in Siberian sturgeon (Acipenser baerii) after LPS treatment in vitro. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110262. [PMID: 40058676 DOI: 10.1016/j.fsi.2025.110262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Cortisol can impact the transcription of downstream inflammation and immune-related genes via the glucocorticoid receptor (GR), thereby influencing the immune response and maintaining the homeostatic balance of the host. However, there is a lack of research on the mechanisms by which cortisol affects the immune response of Siberian sturgeon (Acipenser baerii) through GR. In this study, an anti-inflammatory state of Siberian sturgeon was established by the combined treatment of head kidney (HK) leukocytes with LPS + cortisol. Subsequently, the inflammation-related genes of the AbGR antagonistic group (LPS + cortisol + RU-486) and the AbGR non-antagonistic group (LPS + cortisol) were compared by qRT-PCR and high-throughput sequencing methods. Furthermore, an AP-1 agonist ASLAN003 was used to detect the regulatory effect of the AP-1 gene on inflammatory cytokines. The results showed that cortisol downregulated the expressions of il-1β, il-6, il-8, tnf-α, and il-17c that were induced by LPS, while simultaneously promoting the expressions of tgf-β1. Moreover, this pattern was reversed by adding RU486. When analyzing the differentially expressed genes in the transcriptome sequencing of HK leukocytes in AbGR antagonistic group, 261 significantly down-regulated genes and 194 significantly up-regulated genes were annotated. Furthermore, 26 differentially expressed genes related to inflammation in AbGR antagonistic group were enriched, and the key nuclear transcription factor AP-1 for regulating inflammation function of AbGR was selected based on the enrichment factor and p-value for subsequent research. In the HK leukocytes after cortisol + ASLAN003 treatment, the expressions of fosl1 and jund that were induced by ASLAN003 were significantly down-regulated after cortisol treatment. In this situation, the expression of tgf-β1 was significantly increased, and the expression of tnf-α was significantly decreased after cortisol treatment. Therefore, this study demonstrated that cortisol inhibits the expression of AP-1 through GR in Siberian sturgeon, and then regulates the generation of the inflammatory response.
Collapse
Affiliation(s)
- Peng Tang
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yinqiu Chen
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Defang Chen
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Hao Zhu
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shaotong Dai
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiawen Zhou
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin Zhang
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Huang
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiqiong Li
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
2
|
Eiers AK, Vettorazzi S, Tuckermann JP. Journey through discovery of 75 years glucocorticoids: evolution of our knowledge of glucocorticoid receptor mechanisms in rheumatic diseases. Ann Rheum Dis 2024; 83:1603-1613. [PMID: 39107081 DOI: 10.1136/ard-2023-225371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/20/2024] [Indexed: 08/09/2024]
Abstract
For three-quarters of a century, glucocorticoids (GCs) have been used to treat rheumatic and autoimmune diseases. Over these 75 years, our understanding of GCs binding to nuclear receptors, mainly the glucocorticoid receptor (GR) and their molecular mechanisms has changed dramatically. Initially, in the late 1950s, GCs were considered important regulators of energy metabolism. By the 1970s/1980s, they were characterised as ligands for hormone-inducible transcription factors that regulate many aspects of cell biology and physiology. More recently, their impact on cellular metabolism has been rediscovered. Our understanding of cell-type-specific GC actions and the crosstalk between various immune and stromal cells in arthritis models has evolved by investigating conditional GR mutant mice using the Cre/LoxP system. A major achievement in studying the complex, cell-type-specific interplay is the recent advent of omics technologies at single-cell resolution, which will provide further unprecedented insights into the cell types and factors mediating GC responses. Alongside gene-encoded factors, anti-inflammatory metabolites that participate in resolving inflammation by GCs during arthritis are just being uncovered. The translation of this knowledge into therapeutic concepts will help tackle inflammatory diseases and reduce side effects. In this review, we describe major milestones in preclinical research that led to our current understanding of GC and GR action 75 years after the first use of GCs in arthritis.
Collapse
Affiliation(s)
- Ann-Kathrin Eiers
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| |
Collapse
|
3
|
Mukund AX, Tycko J, Allen SJ, Robinson SA, Andrews C, Sinha J, Ludwig CH, Spees K, Bassik MC, Bintu L. High-throughput functional characterization of combinations of transcriptional activators and repressors. Cell Syst 2023; 14:746-763.e5. [PMID: 37543039 PMCID: PMC10642976 DOI: 10.1016/j.cels.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 08/07/2023]
Abstract
Despite growing knowledge of the functions of individual human transcriptional effector domains, much less is understood about how multiple effector domains within the same protein combine to regulate gene expression. Here, we measure transcriptional activity for 8,400 effector domain combinations by recruiting them to reporter genes in human cells. In our assay, weak and moderate activation domains synergize to drive strong gene expression, whereas combining strong activators often results in weaker activation. In contrast, repressors combine linearly and produce full gene silencing, and repressor domains often overpower activation domains. We use this information to build a synthetic transcription factor whose function can be tuned between repression and activation independent of recruitment to target genes by using a small-molecule drug. Altogether, we outline the basic principles of how effector domains combine to regulate gene expression and demonstrate their value in building precise and flexible synthetic biology tools. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Adi X Mukund
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Sage J Allen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | - Cecelia Andrews
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Joydeb Sinha
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Connor H Ludwig
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Zhang J, Ge P, Liu J, Luo Y, Guo H, Zhang G, Xu C, Chen H. Glucocorticoid Treatment in Acute Respiratory Distress Syndrome: An Overview on Mechanistic Insights and Clinical Benefit. Int J Mol Sci 2023; 24:12138. [PMID: 37569514 PMCID: PMC10418884 DOI: 10.3390/ijms241512138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), triggered by various pathogenic factors inside and outside the lungs, leads to diffuse lung injury and can result in respiratory failure and death, which are typical clinical critical emergencies. Severe acute pancreatitis (SAP), which has a poor clinical prognosis, is one of the most common diseases that induces ARDS. When SAP causes the body to produce a storm of inflammatory factors and even causes sepsis, clinicians will face a two-way choice between anti-inflammatory and anti-infection objectives while considering the damaged intestinal barrier and respiratory failure, which undoubtedly increases the difficulty of the diagnosis and treatment of SAP-ALI/ARDS. For a long time, many studies have been devoted to applying glucocorticoids (GCs) to control the inflammatory response and prevent and treat sepsis and ALI/ARDS. However, the specific mechanism is not precise, the clinical efficacy is uneven, and the corresponding side effects are endless. This review discusses the mechanism of action, current clinical application status, effectiveness assessment, and side effects of GCs in the treatment of ALI/ARDS (especially the subtype caused by SAP).
Collapse
Affiliation(s)
- Jinquan Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jie Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Comprehensive Cancer Center, Monrovia, CA 91016, USA
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
5
|
Liver group 2 innate lymphoid cells regulate blood glucose levels through IL-13 signaling and suppression of gluconeogenesis. Nat Commun 2022; 13:5408. [PMID: 36109558 PMCID: PMC9478157 DOI: 10.1038/s41467-022-33171-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 09/04/2022] [Indexed: 12/12/2022] Open
Abstract
The liver stores glycogen and releases glucose into the blood upon increased energy demand. Group 2 innate lymphoid cells (ILC2) in adipose and pancreatic tissues are known for their involvement in glucose homeostasis, but the metabolic contribution of liver ILC2s has not been studied in detail. Here we show that liver ILC2s are directly involved in the regulation of blood glucose levels. Mechanistically, interleukin (IL)-33 treatment induces IL-13 production in liver ILC2s, while directly suppressing gluconeogenesis in a specific Hnf4a/G6pc-high primary hepatocyte cluster via Stat3. These hepatocytes significantly interact with liver ILC2s via IL-13/IL-13 receptor signaling. The results of transcriptional complex analysis and GATA3-ChIP-seq, ATAC-seq, and scRNA-seq trajectory analyses establish a positive regulatory role for the transcription factor GATA3 in IL-13 production by liver ILC2s, while AP-1 family members are shown to suppress IL-13 release. Thus, we identify a regulatory role and molecular mechanism by which liver ILC2s contribute to glucose homeostasis. Besides hepatocytes, resident immune cells of the liver are also contributing to the body’s energy homeostasis. Here authors show that group 2 innate lymphoid cells interact with a specific set of hepatocytes in suppressing gluconeogenesis and regulate blood glucose levels via Interleukin-13 signalling.
Collapse
|
6
|
Michalek S, Goj T, Plazzo AP, Marovca B, Bornhauser B, Brunner T. LRH
‐1/
NR5A2
interacts with the glucocorticoid receptor to regulate glucocorticoid resistance. EMBO Rep 2022; 23:e54195. [PMID: 35801407 PMCID: PMC9442305 DOI: 10.15252/embr.202154195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Svenja Michalek
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
- Konstanz Research School Chemical Biology KORS‐CB University of Konstanz Konstanz Germany
| | - Thomas Goj
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
| | - Anna Pia Plazzo
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
| | - Blerim Marovca
- Division of Oncology and Children's Research Centre University Children's Hospital Zurich Zurich Switzerland
| | - Beat Bornhauser
- Division of Oncology and Children's Research Centre University Children's Hospital Zurich Zurich Switzerland
| | - Thomas Brunner
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
- Konstanz Research School Chemical Biology KORS‐CB University of Konstanz Konstanz Germany
| |
Collapse
|
7
|
Hasegawa Y, Iwata Y, Fukushima H, Tanaka Y, Watanabe S, Saito K, Ito H, Sugiura M, Akiyama M, Sugiura K. Neutrophil extracellular traps are involved in enhanced contact hypersensitivity response in IL-36 receptor antagonist-deficient mice. Sci Rep 2022; 12:13384. [PMID: 35927298 PMCID: PMC9352770 DOI: 10.1038/s41598-022-16449-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Loss-of-function homozygous or compound heterozygous mutations in IL36RN, which encodes interleukin-36 receptor antagonist (IL-36Ra), have been implicated in the pathogenesis of skin disorders. We previously reported that Il36rn−/− mice exhibit an enhanced contact hypersensitivity (CHS) response through increased neutrophil recruitment. In addition, Il36rn−/− mice show severe imiquimod-induced psoriatic skin lesions and enhanced neutrophil extracellular trap (NET) formation. We hypothesized that NETs may play an important role in the CHS response. To confirm this, we examined the CHS response and NET formation in Il36rn−/− mice. Il36rn−/− mice showed enhanced CHS responses, increased infiltration of inflammatory cells, including neutrophils, CD4+ T cells, and CD8+ T cells, NET formation, and enhanced mRNA expression of cytokines and chemokines, including IL-1β, C-X-C motif chemokine ligand (CXCL)1, CXCL2, and IL-36γ. Furthermore, NET formation blockade improved the CHS response, which consequently decreased inflammatory cell infiltration and NET formation. Consistently, we observed decreased expression of these cytokines and chemokines. These findings indicate that IL-36Ra deficiency aggravates the CHS response caused by excessive inflammatory cell recruitment, NET formation, and cytokine and chemokine production, and that NET formation blockade alleviates the CHS response. Thus, NET formation may play a prominent role in the CHS response.
Collapse
Affiliation(s)
- Yurie Hasegawa
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yohei Iwata
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hidehiko Fukushima
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yoshihito Tanaka
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Soichiro Watanabe
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kenta Saito
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hiroyuki Ito
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Mizuki Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
8
|
Jiang Z, Elsarrag SZ, Duan Q, LaGory EL, Wang Z, Alexanian M, McMahon S, Rulifson IC, Winchester S, Wang Y, Vaisse C, Brown JD, Quattrocelli M, Lin CY, Haldar SM. KLF15 cistromes reveal a hepatocyte pathway governing plasma corticosteroid transport and systemic inflammation. SCIENCE ADVANCES 2022; 8:eabj2917. [PMID: 35263131 PMCID: PMC8906731 DOI: 10.1126/sciadv.abj2917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 01/13/2022] [Indexed: 05/15/2023]
Abstract
Circulating corticosteroids orchestrate stress adaptation, including inhibition of inflammation. While pathways governing corticosteroid biosynthesis and intracellular signaling are well understood, less is known about mechanisms controlling plasma corticosteroid transport. Here, we show that hepatocyte KLF15 (Kruppel-like factor 15) controls plasma corticosteroid transport and inflammatory responses through direct transcriptional activation of Serpina6, which encodes corticosteroid-binding globulin (CBG). Klf15-deficient mice have profoundly low CBG, reduced plasma corticosteroid binding capacity, and heightened mortality during inflammatory stress. These defects are completely rescued by reconstituting CBG, supporting that KLF15 works primarily through CBG to control plasma corticosterone homeostasis. To understand transcriptional mechanisms, we generated the first KLF15 cistromes using newly engineered Klf153xFLAG mice. Unexpectedly, liver KLF15 is predominantly promoter enriched, including Serpina6, where it binds a palindromic GC-rich motif, opens chromatin, and transactivates genes with minimal associated direct gene repression. Overall, we provide critical mechanistic insight into KLF15 function and identify a hepatocyte-intrinsic transcriptional module that potently regulates systemic corticosteroid transport and inflammation.
Collapse
Affiliation(s)
- Zhen Jiang
- Amgen Research, South San Francisco, CA 94080, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Selma Z. Elsarrag
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Medical Scientist Training Program and Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qiming Duan
- Gladstone Institutes, San Francisco, CA 94158, USA
| | | | - Zhe Wang
- Amgen Research, South San Francisco, CA 94080, USA
| | | | - Sarah McMahon
- Gladstone Institutes, San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, UCSF School of Medicine, San Francisco, CA 94143, USA
| | | | | | - Yi Wang
- UCSF Diabetes Center and Department of Medicine, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Christian Vaisse
- UCSF Diabetes Center and Department of Medicine, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Jonathan D. Brown
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology Division, Heart Institute, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Charles Y. Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Kronos Bio Inc., Cambridge, MA 02142, USA
| | - Saptarsi M. Haldar
- Amgen Research, South San Francisco, CA 94080, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Cardiology Division, Department of Medicine, UCSF School of Medicine, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Su Y, Chen X, Zhou H, Shaw S, Chen J, Isales CM, Zhao J, Shi X. Expression of long noncoding RNA Xist is induced by glucocorticoids. Front Endocrinol (Lausanne) 2022; 13:1005944. [PMID: 36187119 PMCID: PMC9516292 DOI: 10.3389/fendo.2022.1005944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressive agents. However, their clinical usage is limited by severe multisystemic side effects. Glucocorticoid induced osteoporosis results in significant morbidity and mortality but the cellular and molecular mechanisms underlying GC-induced bone loss are not clear. GC use results in decreased osteoblast differentiation with increased marrow adiposity through effects on bone marrow stem cells. GC effects are transduced through its receptor (GR). To identify novel GR regulated genes, we performed RNA sequencing (RNA-Seq) analysis comparing conditional GR knockout mouse made by crossing the floxed GR animal with the Col I promoter-Cre, versus normal floxed GR without Cre, and that testing was specific for Col I promoter active cells, such as bone marrow mesenchymal stem/osteoprogenitor cells (MSCs) and osteoblasts. Results showed 15 upregulated genes (3- to 10-fold) and 70 downregulated genes (-2.7- to -10-fold), with the long noncoding RNA X-inactive specific transcript (Xist) downregulated the most. The differential expression of genes measured by RNA-Seq was validated by qRT-PCR analysis of selected genes and the GC/GR signaling-dependent expression of Xist was further demonstrated by GC (dexamethasone) treatment of GR-deficient MSCs in vitro and by GC injection of C57BL/6 mice (wild-type males and females) in vivo. Our data revealed that the long noncoding RNA Xist is a GR regulated gene and its expression is induced by GC both in vitro and in vivo. To our knowledge, this is the first evidence showing that Xist is transcriptionally regulated by GC/GR signaling.
Collapse
Affiliation(s)
- Yun Su
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Xing Chen
- Department of Mathematics, Logistical Engineering University, Chongqing, China
| | - Hongyan Zhou
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Sean Shaw
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Jie Chen
- Division of Biostatistics and Data Science, Department of Population Health Sciences, Augusta University, Augusta, GA, United States
| | - Carlos M. Isales
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, United States
| | - Jing Zhao
- Institute of Interdisciplinary Complex Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingming Shi
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, United States
- *Correspondence: Xingming Shi,
| |
Collapse
|
10
|
Vettorazzi S, Nalbantoglu D, Gebhardt JCM, Tuckermann J. A guide to changing paradigms of glucocorticoid receptor function-a model system for genome regulation and physiology. FEBS J 2021; 289:5718-5743. [PMID: 34213830 DOI: 10.1111/febs.16100] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
The glucocorticoid receptor (GR) is a bona fide ligand-regulated transcription factor. Cloned in the 80s, the GR has become one of the best-studied and clinically most relevant members of the nuclear receptor superfamily. Cooperative activity of GR with other transcription factors and a plethora of coregulators contribute to the tissue- and context-specific response toward the endogenous and pharmacological glucocorticoids (GCs). Furthermore, nontranscriptional activities in the cytoplasm are emerging as an additional function of GR. Over the past 40 years, the concepts of GR mechanisms of action had been constantly changing. Different methodologies in the pregenomic and genomic era of molecular biological research and recent cutting-edge technology in single-cell and single-molecule analysis are steadily evolving the views, how the GR in particular and transcriptional regulation in general act in physiological and pathological processes. In addition to the development of technologies for GR analysis, the use of model organisms provides insights how the GR in vivo executes GC action in tissue homeostasis, inflammation, and energy metabolism. The model organisms, namely the mouse, but also rats, zebrafish, and recently fruit flies carrying mutations of the GR became a major driving force to analyze the molecular function of GR in disease models. This guide provides an overview of the exciting research and paradigm shifts in the GR field from past to present with a focus on GR transcription factor networks, GR DNA-binding and single-cell analysis, and model systems.
Collapse
Affiliation(s)
- Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| | - Denis Nalbantoglu
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| | | | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| |
Collapse
|
11
|
Prognostic Significance of Glucocorticoid Receptor Expression in Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2021; 13:cancers13071649. [PMID: 33916028 PMCID: PMC8037088 DOI: 10.3390/cancers13071649] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 01/30/2023] Open
Abstract
Simple Summary In solid tumours, emerging evidence indicates that signalling through the glucocorticoid receptor (GR) can encourage the growth and spread of tumours and so drugs targeting this receptor are in development for use in cancer treatment. For these reasons, GR may be useful in anticipating a patient’s outcome upon their cancer diagnosis or to predict their tumours response to drugs targeting this receptor. In this review we aim to ascertain whether GR expression in tumours affects cancer patient survival. Overall, GR expression did not affect patient survival when assessing all cancer types. However, we found that in certain cancer subtypes such as gynaecological cancers (endometrial and ovarian) and early stage, untreated triple negative breast cancers, high GR expression is linked with cancer progression and therefore a poorer patient prognosis. Further studies are needed to uncover the exact role of GR in specific tumour (sub)types in order to provide the correct patients with GR targeting therapies. Abstract In solid malignancies, the glucocorticoid receptor (GR) signalling axis is associated with tumour progression and GR antagonists are in clinical development. Therefore, GR expression may be a useful potential prognostic or predictive biomarker for GR antagonist therapy in cancer. The aim of this review is to investigate if GR expression in tumours is predictive of overall survival or progression free survival. Twenty-five studies were identified through systematic searches of three databases and a meta-analysis conducted using a random effects model, quantifying statistical heterogeneity. Subgroup analysis was conducted for cancer types and publication bias was assessed via funnel plots. There was high heterogeneity in meta-analysis of the studies in all cancer types, which found no association between high GR expression with overall survival (pooled unadjusted HR 1.16, 95% CI (0.89–1.50), n = 2814; pooled adjusted HR 1.02, 95% CI (0.77–1.37), n = 2355) or progression-free survival (pooled unadjusted HR 1.12, 95% CI (0.88–1.42), n = 3365; pooled adjusted HR 1.04, 95% CI (0.6–1.81), n = 582) across all cancer types. However, subgroup meta-analyses showed that high GR expression in gynaecological cancers (endometrial and ovarian) (unadjusted HR 1.83, 95% CI (1.31–2.56), n = 664) and early stage, untreated triple negative breast cancers (TNBCs) (unadjusted HR 1.73, 95% CI (1.35–2.23), n = 687) is associated with disease progression. GR expression in late stage, chemotherapy treated TNBC was not prognostic (unadjusted HR 0.76, 95% CI (0.44, 1.32), n = 287). In conclusion, high GR expression is associated with an increased risk of disease progression in gynaecological and early stage, untreated TNBC. Additional studies are required to elucidate the tumour specific function of the GR receptor in order to ensure GR antagonists target the correct patient groups.
Collapse
|
12
|
Iftikhar A, Islam M, Shepherd S, Jones S, Ellis I. Cancer and Stress: Does It Make a Difference to the Patient When These Two Challenges Collide? Cancers (Basel) 2021; 13:cancers13020163. [PMID: 33418900 PMCID: PMC7825104 DOI: 10.3390/cancers13020163] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Head and neck cancers are the sixth most common cancer in the world. The burden of the disease has remained challenging over recent years despite the advances in treatments of other malignancies. The very use of the word malignancy brings about a stress response in almost all adult patients. Being told you have a tumour is not a word anyone wants to hear. We have embarked on a study which will investigate the effect of stress pathways on head and neck cancer patients and which signalling pathways may be involved. In the future, this will allow clinicians to better manage patients with head and neck cancer and reduce the patients’ stress so that this does not add to their tumour burden. Abstract A single head and neck Cancer (HNC) is a globally growing challenge associated with significant morbidity and mortality. The diagnosis itself can affect the patients profoundly let alone the complex and disfiguring treatment. The highly important functions of structures of the head and neck such as mastication, speech, aesthetics, identity and social interactions make a cancer diagnosis in this region even more psychologically traumatic. The emotional distress engendered as a result of functional and social disruption is certain to negatively affect health-related quality of life (HRQoL). The key biological responses to stressful events are moderated through the combined action of two systems, the hypothalamus–pituitary–adrenal axis (HPA) which releases glucocorticoids and the sympathetic nervous system (SNS) which releases catecholamines. In acute stress, these hormones help the body to regain homeostasis; however, in chronic stress their increased levels and activation of their receptors may aid in the progression of cancer. Despite ample evidence on the existence of stress in patients diagnosed with HNC, studies looking at the effect of stress on the progression of disease are scarce, compared to other cancers. This review summarises the challenges associated with HNC that make it stressful and describes how stress signalling aids in the progression of cancer. Growing evidence on the relationship between stress and HNC makes it paramount to focus future research towards a better understanding of stress and its effect on head and neck cancer.
Collapse
|
13
|
A gene expression atlas for different kinds of stress in the mouse brain. Sci Data 2020; 7:437. [PMID: 33328476 PMCID: PMC7744580 DOI: 10.1038/s41597-020-00772-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
Stressful experiences are part of everyday life and animals have evolved physiological and behavioral responses aimed at coping with stress and maintaining homeostasis. However, repeated or intense stress can induce maladaptive reactions leading to behavioral disorders. Adaptations in the brain, mediated by changes in gene expression, have a crucial role in the stress response. Recent years have seen a tremendous increase in studies on the transcriptional effects of stress. The input raw data are freely available from public repositories and represent a wealth of information for further global and integrative retrospective analyses. We downloaded from the Sequence Read Archive 751 samples (SRA-experiments), from 18 independent BioProjects studying the effects of different stressors on the brain transcriptome in mice. We performed a massive bioinformatics re-analysis applying a single, standardized pipeline for computing differential gene expression. This data mining allowed the identification of novel candidate stress-related genes and specific signatures associated with different stress conditions. The large amount of computational results produced was systematized in the interactive “Stress Mice Portal”.
Collapse
|
14
|
Escoter-Torres L, Greulich F, Quagliarini F, Wierer M, Uhlenhaut NH. Anti-inflammatory functions of the glucocorticoid receptor require DNA binding. Nucleic Acids Res 2020; 48:8393-8407. [PMID: 32619221 PMCID: PMC7470971 DOI: 10.1093/nar/gkaa565] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The glucocorticoid receptor is an important immunosuppressive drug target and metabolic regulator that acts as a ligand-gated transcription factor. Generally, GR’s anti-inflammatory effects are attributed to the silencing of inflammatory genes, while its adverse effects are ascribed to the upregulation of metabolic targets. GR binding directly to DNA is proposed to activate, whereas GR tethering to pro-inflammatory transcription factors is thought to repress transcription. Using mice with a point mutation in GR’s zinc finger, that still tether via protein–protein interactions while being unable to recognize DNA, we demonstrate that DNA binding is essential for both transcriptional activation and repression. Performing ChIP-Seq, RNA-Seq and proteomics under inflammatory conditions, we show that DNA recognition is required for the assembly of a functional co-regulator complex to mediate glucocorticoid responses. Our findings may contribute to the development of safer immunomodulators with fewer side effects.
Collapse
Affiliation(s)
- Laura Escoter-Torres
- Molecular Endocrinology, Institutes for Diabetes and Obesity & Diabetes and Cancer IDO & IDC, Helmholtz Zentrum Muenchen (HMGU) and German Center for Diabetes Research (DZD), Munich 85764, Germany
| | - Franziska Greulich
- Molecular Endocrinology, Institutes for Diabetes and Obesity & Diabetes and Cancer IDO & IDC, Helmholtz Zentrum Muenchen (HMGU) and German Center for Diabetes Research (DZD), Munich 85764, Germany.,Metabolic Programming, TUM School of Life Sciences Weihenstephan and ZIEL Institute for Food & Health, Munich 85354, Germany
| | - Fabiana Quagliarini
- Molecular Endocrinology, Institutes for Diabetes and Obesity & Diabetes and Cancer IDO & IDC, Helmholtz Zentrum Muenchen (HMGU) and German Center for Diabetes Research (DZD), Munich 85764, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Munich 82152, Germany
| | - Nina Henriette Uhlenhaut
- Molecular Endocrinology, Institutes for Diabetes and Obesity & Diabetes and Cancer IDO & IDC, Helmholtz Zentrum Muenchen (HMGU) and German Center for Diabetes Research (DZD), Munich 85764, Germany.,Metabolic Programming, TUM School of Life Sciences Weihenstephan and ZIEL Institute for Food & Health, Munich 85354, Germany
| |
Collapse
|
15
|
Kullmann MK, Podmirseg SR, Roilo M, Hengst L. The CDK inhibitor p57 Kip2 enhances the activity of the transcriptional coactivator FHL2. Sci Rep 2020; 10:7140. [PMID: 32346031 PMCID: PMC7188849 DOI: 10.1038/s41598-020-62641-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/19/2019] [Indexed: 01/29/2023] Open
Abstract
The eukaryotic cell cycle is negatively regulated by cyclin-dependent kinase inhibitors (CKIs). p57Kip2 is a member of the Cip/Kip family of CKIs and frequently inactivated by genomic mutations associated with human overgrowth disorders. There is increasing evidence for p57 to control cellular processes in addition to cell cycle and CDK regulation including transcription, apoptosis, migration or development. In order to obtain molecular insights to unknown functions of p57, we performed a protein interaction screen. We identified the transcription regulator four-and-a-half LIM-only protein 2 (FHL2) as a novel p57-binding protein. Co-immunoprecipitation and reporter gene assays were used to elucidate the physiological and functional relevance of p57/FHL2 interaction. We found in cancer cells that endogenous p57 and FHL2 are in a complex. We observed a substantial induction of established FHL2-regulated gene promoters by p57 in reporter gene experiments and detected strong induction of the intrinsic transactivation activity of FHL2. Treatment of cells with histone deacetylase (HDAC) inhibitors and binding of exogenous FHL2 to HDACs indicated repression of FHL2 transcription activity by HDACs. In the presence of the HDAC inhibitor sodium butyrate activation of FHL2 by p57 is abrogated suggesting that p57 shares a common pathway with HDAC inhibitors. p57 competes with HDACs for FHL2 binding which might partly explain the mechanism of FHL2 activation by p57. These results suggest a novel function of p57 in transcription regulation.
Collapse
Affiliation(s)
- Michael Keith Kullmann
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria.
| | - Silvio Roland Podmirseg
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Martina Roilo
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Ludger Hengst
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| |
Collapse
|
16
|
van der Sluis RJ, Hoekstra M. Glucocorticoids are active players and therapeutic targets in atherosclerotic cardiovascular disease. Mol Cell Endocrinol 2020; 504:110728. [PMID: 31968221 DOI: 10.1016/j.mce.2020.110728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Adrenal-derived glucocorticoids mediate the physiological response to stress. Chronic disturbances in glucocorticoid homeostasis, i.e. in Addison's and Cushing's disease patients, predispose to the development of atherosclerotic cardiovascular disease. Here we review preclinical and clinical findings regarding the relation between changes in plasma glucocorticoid levels and the atherosclerosis extent. It appears that, although the altered glucocorticoid function can in most cases be restored in the different patient groups, current therapies do not necessarily reverse the associated risk for atherosclerotic cardiovascular disease. In our opinion much attention should therefore be given to the development of a Cushing's disease mouse model that can (1) effectively replicate the effect of hypercortisolemia on atherosclerosis outcome observed in humans and (2) be used to investigate, in a preclinical setting, the relative impact on atherosclerosis susceptibility of already available (e.g. metyrapone) and potentially novel (i.e. SR-BI activity modulators) therapeutic agents that target the adrenal glucocorticoid output.
Collapse
Affiliation(s)
- Ronald J van der Sluis
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands.
| |
Collapse
|
17
|
Wepler M, Preuss JM, Merz T, Hartmann C, Wachter U, McCook O, Vogt J, Kress S, Gröger M, Fink M, Scheuerle A, Möller P, Calzia E, Burret U, Radermacher P, Tuckermann JP, Vettorazzi S. Impaired Glucocorticoid Receptor Dimerization Aggravates LPS-Induced Circulatory and Pulmonary Dysfunction. Front Immunol 2020; 10:3152. [PMID: 32038649 PMCID: PMC6990631 DOI: 10.3389/fimmu.2019.03152] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 01/04/2023] Open
Abstract
Background: Sepsis, that can be modeled by LPS injections, as an acute systemic inflammation syndrome is the most common cause for acute lung injury (ALI). ALI induces acute respiratory failure leading to hypoxemia, which is often associated with multiple organ failure (MOF). During systemic inflammation, the hypothalamus-pituitary-adrenal axis (HPA) is activated and anti-inflammatory acting glucocorticoids (GCs) are released to overcome the inflammation. GCs activate the GC receptor (GR), which mediates its effects via a GR monomer or GR dimer. The detailed molecular mechanism of the GR in different inflammatory models and target genes that might be crucial for resolving inflammation is not completely identified. We previously observed that mice with attenuated GR dimerization (GRdim/dim) had a higher mortality in a non-resuscitated lipopolysaccharide (LPS)- and cecal ligation and puncture (CLP)-induced inflammation model and are refractory to exogenous GCs to ameliorate ALI during inflammation. Therefore, we hypothesized that impaired murine GR dimerization (GRdim/dim) would further impair organ function in LPS-induced systemic inflammation under human like intensive care management and investigated genes that are crucial for lung function in this setup. Methods: Anesthetized GRdim/dim and wildtype (GR+/+) mice were challenged with LPS (10 mg·kg−1, intraperitoneal) and underwent intensive care management (“lung-protective” mechanical ventilation, crystalloids, and norepinephrine) for 6 h. Lung mechanics and gas exchange were assessed together with systemic hemodynamics, acid-base status, and mitochondrial oxygen consumption (JO2). Western blots, immunohistochemistry, and real time quantitative polymerase chain reaction were performed to analyze lung tissue and inflammatory mediators were analyzed in plasma and lung tissue. Results: When animals were challenged with LPS and subsequently resuscitated under intensive care treatment, GRdim/dim mice had a higher mortality compared to GR+/+ mice, induced by an increased need of norepinephrine to achieve hemodynamic targets. After challenge with LPS, GRdim/dim mice also displayed an aggravated ALI shown by a more pronounced impairment of gas exchange, lung mechanics and increased osteopontin (Opn) expression in lung tissue. Conclusion: Impairment of GR dimerization aggravates systemic hypotension and impairs lung function during LPS-induced endotoxic shock in mice. We demonstrate that the GR dimer is an important mediator of hemodynamic stability and lung function, possibly through regulation of Opn, during LPS-induced systemic inflammation.
Collapse
Affiliation(s)
- Martin Wepler
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany.,Department of Anesthesiology, University Hospital, Ulm, Germany
| | - Jonathan M Preuss
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Tamara Merz
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Clair Hartmann
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany.,Department of Anesthesiology, University Hospital, Ulm, Germany
| | - Ulrich Wachter
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Oscar McCook
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Josef Vogt
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Sandra Kress
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Michael Gröger
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Marina Fink
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | | | - Peter Möller
- Institute of Pathology, University Hospital, Ulm, Germany
| | - Enrico Calzia
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Ute Burret
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| |
Collapse
|
18
|
Rençber S, Aydın Köse F, Karavana SY. Dexamethasone loaded PLGA nanoparticles for potential local treatment of oral precancerous lesions. Pharm Dev Technol 2019; 25:149-158. [DOI: 10.1080/10837450.2019.1673407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Seda Rençber
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ege University, Izmir, Turkey
| | - Fadime Aydın Köse
- Faculty of Pharmacy, Department of Biochemistry, Ege University, Izmir, Turkey
| | - Sinem Yaprak Karavana
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ege University, Izmir, Turkey
| |
Collapse
|
19
|
Lee C. CRY arrests Cop1 to regulate circadian rhythms in mammals. Cell Div 2019; 14:12. [PMID: 31700528 PMCID: PMC6825355 DOI: 10.1186/s13008-019-0055-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
Cryptochromes (CRYs) are UVA and blue light photoreceptors present in all major evolutionary lineages ranging from cyanobacteria to plants and animals, including mammals. In plants, blue light activates CRYs to induce photomorphogenesis by inhibiting the CRL4Cop1 E3 ligase complex which regulates the degradation of critical transcription factors involved in plant development and growth. However, in mammals, CRYs do not physically interact with Cop1, and of course mammals are not photomorphogenic, leading to the belief that the CRY-Cop1 axis is not conserved in mammals. This belief was recently overturned by Rizzini et al., who showed that although mammalian CRYs do not inhibit Cop1 activity in a light-dependent manner, they antagonize Cop1 activity by displacing Cop1 from CRL4 E3 ligase complex. Because CRYs oscillate, they act in a circadian manner resulting in daily oscillations in Cop1 substrates and the downstream pathways that they regulate. The conserved antagonism of Cop1 by CRY indicates that the CRY-Cop1 axis has an ancient origin, and was repurposed by evolution to regulate photomorphogenesis in plants and circadian rhythms in mammals.
Collapse
Affiliation(s)
- Choogon Lee
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306 USA
| |
Collapse
|
20
|
Li G, Han L, Ma R, Saeed K, Xiong H, Klaassen CD, Lu Y, Zhang Y. Glucocorticoids Increase Renal Excretion of Urate in Mice by Downregulating Urate Transporter 1. Drug Metab Dispos 2019; 47:1343-1351. [PMID: 31519697 DOI: 10.1124/dmd.119.087700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/20/2019] [Indexed: 01/10/2023] Open
Abstract
Both nonsteroidal anti-inflammatory drugs (NSAIDs) and glucocorticoids have been widely used for the treatment of gout, a disease promoted by an excess body burden of uric acid (UA); however, their effects on the homeostasis of UA remain poorly understood. The present study showed that 1-week treatments with three NSAIDs (ibuprofen, diclofenac, and indomethacin) had little effect on UA homeostasis in mice, whereas 1-week low doses (1 and 5 mg/kg) of dexamethasone (DEX) significantly decreased serum UA by about 15%. Additionally, low doses of DEX also resulted in increases in hepatic UA concentration and urinary UA excretion, which were associated with an induction of xanthine oxidoreductase (XOR) in the liver and a downregulation of urate transporter 1 (URAT1) in the kidney, respectively. Neither 75 mg/kg DEX nor 100 mg/kg pregnenolone-16α-carbonitrile altered UA concentrations in serum and livers of mice, suggesting that the effect of DEX on UA homeostasis was not due to the pregnane X receptor pathway. Further in vitro studies demonstrated that glucocorticoid receptor (GR) was involved in DEX-mediated downregulation of URAT1. Knockdown of both p65 and c-Jun completely blocked the effect of DEX on URAT1, suggesting that GR regulates URAT1 via its interaction with both nuclear factor κB and activator protein 1 signaling pathways. To conclude, the present study identifies, for the first time, a critical role of glucocorticoids in regulating UA homeostasis and elucidates the mechanism for GR-mediated regulation of URAT1 in mice. SIGNIFICANCE STATEMENT: This study demonstrates, for the first time, a critical role of glucocorticoid receptor in regulating urate transporter 1 in mouse kidney.
Collapse
Affiliation(s)
- Gentao Li
- School of Pharmaceutical Science and Technology, Tianjin University (G.L., R.M., K.S., H.X., Y.Z.), and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Nankai District (L.H.), Tianjin, China; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.D.K.); and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China (Y.L.)
| | - Lifeng Han
- School of Pharmaceutical Science and Technology, Tianjin University (G.L., R.M., K.S., H.X., Y.Z.), and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Nankai District (L.H.), Tianjin, China; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.D.K.); and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China (Y.L.)
| | - Ruicong Ma
- School of Pharmaceutical Science and Technology, Tianjin University (G.L., R.M., K.S., H.X., Y.Z.), and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Nankai District (L.H.), Tianjin, China; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.D.K.); and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China (Y.L.)
| | - Khawar Saeed
- School of Pharmaceutical Science and Technology, Tianjin University (G.L., R.M., K.S., H.X., Y.Z.), and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Nankai District (L.H.), Tianjin, China; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.D.K.); and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China (Y.L.)
| | - Hui Xiong
- School of Pharmaceutical Science and Technology, Tianjin University (G.L., R.M., K.S., H.X., Y.Z.), and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Nankai District (L.H.), Tianjin, China; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.D.K.); and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China (Y.L.)
| | - Curtis D Klaassen
- School of Pharmaceutical Science and Technology, Tianjin University (G.L., R.M., K.S., H.X., Y.Z.), and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Nankai District (L.H.), Tianjin, China; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.D.K.); and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China (Y.L.)
| | - Yuanfu Lu
- School of Pharmaceutical Science and Technology, Tianjin University (G.L., R.M., K.S., H.X., Y.Z.), and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Nankai District (L.H.), Tianjin, China; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.D.K.); and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China (Y.L.)
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University (G.L., R.M., K.S., H.X., Y.Z.), and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Nankai District (L.H.), Tianjin, China; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.D.K.); and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China (Y.L.)
| |
Collapse
|
21
|
Flynn JK, Dankers W, Morand EF. Could GILZ Be the Answer to Glucocorticoid Toxicity in Lupus? Front Immunol 2019; 10:1684. [PMID: 31379872 PMCID: PMC6652235 DOI: 10.3389/fimmu.2019.01684] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GC) are used globally to treat autoimmune and inflammatory disorders. Their anti-inflammatory actions are mainly mediated via binding to the glucocorticoid receptor (GR), creating a GC/GR complex, which acts in both the cytoplasm and nucleus to regulate the transcription of a host of target genes. As a result, signaling pathways such as NF-κB and AP-1 are inhibited, and cell activation, differentiation and survival and cytokine and chemokine production are suppressed. However, the gene regulation by GC can also cause severe side effects in patients. Systemic lupus erythematosus (SLE or lupus) is a multisystem autoimmune disease, characterized by a poorly regulated immune response leading to chronic inflammation and dysfunction of multiple organs, for which GC is the major current therapy. Long-term GC use, however, can cause debilitating adverse consequences for patients including diabetes, cardiovascular disease and osteoporosis and contributes to irreversible organ damage. To date, there is no alternative treatment which can replicate the rapid effects of GC across multiple immune cell functions, effecting disease control during disease flares. Research efforts have focused on finding alternatives to GC, which display similar immunoregulatory actions, without the devastating adverse metabolic effects. One potential candidate is the glucocorticoid-induced leucine zipper (GILZ). GILZ is induced by low concentrations of GC and is shown to mimic the action of GC in several inflammatory processes, reducing immunity and inflammation in in vitro and in vivo studies. Additionally, GILZ has, similar to the GC-GR complex, the ability to bind to both NF-κB and AP-1 as well as DNA directly, to regulate immune cell function, while potentially lacking the GC-related side effects. Importantly, in SLE patients GILZ is under-expressed and correlates negatively with disease activity, suggesting an important regulatory role of GILZ in SLE. Here we provide an overview of the actions and use of GC in lupus, and discuss whether the regulatory mechanisms of GILZ could lead to the development of a novel therapeutic for lupus. Increased understanding of the mechanisms of action of GILZ, and its ability to regulate immune events leading to lupus disease activity has important clinical implications for the development of safer anti-inflammatory therapies.
Collapse
Affiliation(s)
- Jacqueline K Flynn
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Wendy Dankers
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Eric F Morand
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Cryptochromes-Mediated Inhibition of the CRL4 Cop1-Complex Assembly Defines an Evolutionary Conserved Signaling Mechanism. Curr Biol 2019; 29:1954-1962.e4. [PMID: 31155351 DOI: 10.1016/j.cub.2019.04.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/04/2019] [Accepted: 04/30/2019] [Indexed: 11/24/2022]
Abstract
In plants, cryptochromes are photoreceptors that negatively regulate the ubiquitin ligase CRL4Cop1. In mammals, cryptochromes are core components of the circadian clock and repressors of the glucocorticoid receptor (GR). Moreover, mammalian cryptochromes lost their ability to interact with Cop1, suggesting that they are unable to inhibit CRL4Cop1. Contrary to this assumption, we found that mammalian cryptochromes are also negative regulators of CRL4Cop1, and through this mechanism, they repress the GR transcriptional network both in cultured cells and in the mouse liver. Mechanistically, cryptochromes inactivate Cop1 by interacting with Det1, a subunit of the mammalian CRL4Cop1 complex that is not present in other CRL4s. Through this interaction, the ability of Cop1 to join the CRL4 complex is inhibited; therefore, its substrates accumulate. Thus, the interaction between cryptochromes and Det1 in mammals mirrors the interaction between cryptochromes and Cop1 in planta, pointing to a common ancestor in which the cryptochromes-Cop1 axis originated.
Collapse
|
23
|
Hopkin SJ, Lewis JW, Krautter F, Chimen M, McGettrick HM. Triggering the Resolution of Immune Mediated Inflammatory Diseases: Can Targeting Leukocyte Migration Be the Answer? Front Pharmacol 2019; 10:184. [PMID: 30881306 PMCID: PMC6407428 DOI: 10.3389/fphar.2019.00184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
Leukocyte recruitment is a pivotal process in the regulation and resolution of an inflammatory episode. It is vital for the protective responses to microbial infection and tissue damage, but is the unwanted reaction contributing to pathology in many immune mediated inflammatory diseases (IMIDs). Indeed, it is now recognized that patients with IMIDs have defects in at least one, if not multiple, check-points regulating the entry and exit of leukocytes from the inflamed site. In this review, we will explore our understanding of the imbalance in recruitment that permits the accumulation and persistence of leukocytes in IMIDs. We will highlight old and novel pharmacological tools targeting these processes in an attempt to trigger resolution of the inflammatory response. In this context, we will focus on cytokines, chemokines, known pro-resolving lipid mediators and potential novel lipids (e.g., sphingosine-1-phosphate), along with the actions of glucocorticoids mediated by 11-beta hydroxysteroid dehydrogenase 1 and 2.
Collapse
Affiliation(s)
- Sophie J. Hopkin
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jonathan W. Lewis
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Franziska Krautter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Myriam Chimen
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helen M. McGettrick
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
24
|
Wang C, Nanni L, Novakovic B, Megchelenbrink W, Kuznetsova T, Stunnenberg HG, Ceri S, Logie C. Extensive epigenomic integration of the glucocorticoid response in primary human monocytes and in vitro derived macrophages. Sci Rep 2019; 9:2772. [PMID: 30809020 PMCID: PMC6391480 DOI: 10.1038/s41598-019-39395-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoid receptor is a transcription factor that is ubiquitously expressed. Glucocorticoids are circadian steroids that regulate a wide range of bodily functions, including immunity. Here we report that synthetic glucocorticoids affect 1035 mRNAs in isolated healthy human blood monocytes but only 165 in the respective six day-old monocyte-derived macrophages. The majority of the glucocorticoid response in monocytes concerns genes that are dynamic upon monocyte to macrophage differentiation, whereby macrophage-like mRNA levels are often reached in monocytes within four hours of treatment. Concomitantly, over 5000 chromosomal H3K27ac regions undergo remodelling, of which 60% involve increased H3K27ac signal. We find that chromosomal glucocorticoid receptor binding sites correlate with positive but not with negative local epigenomic effects. To investigate further we assigned our data to topologically associating domains (TADs). This shows that about 10% of macrophage TADs harbour at least one GR binding site and that half of all the glucocorticoid-induced H3K27ac regions are confined to these TADs. Our analyses are therefore consistent with the notion that TADs naturally accommodate information from sets of distal glucocorticoid response elements.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science Radboud University, PO box 9101, 6500 HG, Nijmegen, The Netherlands
| | - Luca Nanni
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Boris Novakovic
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science Radboud University, PO box 9101, 6500 HG, Nijmegen, The Netherlands
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Australia
| | - Wout Megchelenbrink
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science Radboud University, PO box 9101, 6500 HG, Nijmegen, The Netherlands
| | - Tatyana Kuznetsova
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science Radboud University, PO box 9101, 6500 HG, Nijmegen, The Netherlands
- Department of Medical Biochemistry, Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science Radboud University, PO box 9101, 6500 HG, Nijmegen, The Netherlands
| | - Stefano Ceri
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Colin Logie
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science Radboud University, PO box 9101, 6500 HG, Nijmegen, The Netherlands.
| |
Collapse
|
25
|
Novel role for receptor dimerization in post-translational processing and turnover of the GRα. Sci Rep 2018; 8:14266. [PMID: 30250038 PMCID: PMC6155283 DOI: 10.1038/s41598-018-32440-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/07/2018] [Indexed: 01/06/2023] Open
Abstract
Glucocorticoids (GCs), acting via the glucocorticoid receptor (GRα), remain the mainstay therapeutic choice for the treatment of inflammation. However, chronic GC use, aside from generating undesirable side-effects, results in GRα down-regulation, often coupled to a decrease in GC-responsiveness, which may culminate in acquired GC resistance. The current study presents evidence for a novel role of the dimerization state of the GRα in mediating GC-mediated GRα turnover. Through comparing the effects of dimerization promoting GCs on down-regulation of a transfected human wild type GRα (hGRwt) or a dimerization deficient GRα mutant (hGRdim), we established that a loss of receptor dimerization restricts GRα turnover, which was supported by the use of the dimerization abrogating Compound A (CpdA), in cells containing endogenous GRα. Moreover, we showed that the dimerization state of the GRα influenced the post-translational processing of the receptor, specifically hyper-phosphorylation at Ser404, which influenced the interaction of GRα with the E3 ligase, FBXW7α, thus hampering receptor turnover via the proteasome. Lastly, the restorative effects of CpdA on the GRα pool, in the presence of Dex, were demonstrated in a combinatorial treatment protocol. These results expand our understanding of factors that contribute to GC-resistance and may be exploited clinically.
Collapse
|
26
|
Byrne CJ, Khurana S, Kumar A, Tai TC. Inflammatory Signaling in Hypertension: Regulation of Adrenal Catecholamine Biosynthesis. Front Endocrinol (Lausanne) 2018; 9:343. [PMID: 30013513 PMCID: PMC6036303 DOI: 10.3389/fendo.2018.00343] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/07/2018] [Indexed: 12/24/2022] Open
Abstract
The immune system is increasingly recognized for its role in the genesis and progression of hypertension. The adrenal gland is a major site that coordinates the stress response via the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal system. Catecholamines released from the adrenal medulla function in the neuro-hormonal regulation of blood pressure and have a well-established link to hypertension. The immune system has an active role in the progression of hypertension and cytokines are powerful modulators of adrenal cell function. Adrenal medullary cells integrate neural, hormonal, and immune signals. Changes in adrenal cytokines during the progression of hypertension may promote blood pressure elevation by influencing catecholamine biosynthesis. This review highlights the potential interactions of cytokine signaling networks with those of catecholamine biosynthesis within the adrenal, and discusses the role of cytokines in the coordination of blood pressure regulation and the stress response.
Collapse
Affiliation(s)
- Collin J. Byrne
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Sandhya Khurana
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada
| | - Aseem Kumar
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - T. C. Tai
- Department of Biology, Laurentian University, Sudbury, ON, Canada
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
27
|
Hudson WH, Vera IMSD, Nwachukwu JC, Weikum ER, Herbst AG, Yang Q, Bain DL, Nettles KW, Kojetin DJ, Ortlund EA. Cryptic glucocorticoid receptor-binding sites pervade genomic NF-κB response elements. Nat Commun 2018; 9:1337. [PMID: 29626214 PMCID: PMC5889392 DOI: 10.1038/s41467-018-03780-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
Glucocorticoids (GCs) are potent repressors of NF-κB activity, making them a preferred choice for treatment of inflammation-driven conditions. Despite the widespread use of GCs in the clinic, current models are inadequate to explain the role of the glucocorticoid receptor (GR) within this critical signaling pathway. GR binding directly to NF-κB itself-tethering in a DNA binding-independent manner-represents the standing model of how GCs inhibit NF-κB-driven transcription. We demonstrate that direct binding of GR to genomic NF-κB response elements (κBREs) mediates GR-driven repression of inflammatory gene expression. We report five crystal structures and solution NMR data of GR DBD-κBRE complexes, which reveal that GR recognizes a cryptic response element between the binding footprints of NF-κB subunits within κBREs. These cryptic sequences exhibit high sequence and functional conservation, suggesting that GR binding to κBREs is an evolutionarily conserved mechanism of controlling the inflammatory response.
Collapse
Affiliation(s)
- William H Hudson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
- Discovery and Developmental Therapeutics, Winship Cancer Institute, Atlanta, Georgia, 30322, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Ian Mitchelle S de Vera
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, 33458, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jerome C Nwachukwu
- Department of Integrated Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida, 33458, USA
| | - Emily R Weikum
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
- Discovery and Developmental Therapeutics, Winship Cancer Institute, Atlanta, Georgia, 30322, USA
| | - Austin G Herbst
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Qin Yang
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - David L Bain
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Kendall W Nettles
- Department of Integrated Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida, 33458, USA
| | - Douglas J Kojetin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, 33458, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322, USA.
- Discovery and Developmental Therapeutics, Winship Cancer Institute, Atlanta, Georgia, 30322, USA.
| |
Collapse
|
28
|
de Kloet ER, Meijer OC, de Nicola AF, de Rijk RH, Joëls M. Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Front Neuroendocrinol 2018; 49:124-145. [PMID: 29428549 DOI: 10.1016/j.yfrne.2018.02.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 01/14/2023]
Abstract
Bruce McEwen's discovery of receptors for corticosterone in the rat hippocampus introduced higher brain circuits in the neuroendocrinology of stress. Subsequently, these receptors were identified as mineralocorticoid receptors (MRs) that are involved in appraisal processes, choice of coping style, encoding and retrieval. The MR-mediated actions on cognition are complemented by slower actions via glucocorticoid receptors (GRs) on contextualization, rationalization and memory storage of the experience. These sequential phases in cognitive performance depend on synaptic metaplasticity that is regulated by coordinate MR- and GR activation. The receptor activation includes recruitment of coregulators and transcription factors as determinants of context-dependent specificity in steroid action; they can be modulated by genetic variation and (early) experience. Interestingly, inflammatory responses to damage seem to be governed by a similarly balanced MR:GR-mediated action as the initiating, terminating and priming mechanisms involved in stress-adaptation. We conclude with five questions challenging the MR:GR balance hypothesis.
Collapse
Affiliation(s)
- E R de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - O C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - A F de Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina.
| | - R H de Rijk
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands & Department of Clinical Psychology, Leiden University, The Netherlands.
| | - M Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; University of Groningen, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
29
|
Weikum ER, de Vera IMS, Nwachukwu JC, Hudson WH, Nettles KW, Kojetin DJ, Ortlund EA. Tethering not required: the glucocorticoid receptor binds directly to activator protein-1 recognition motifs to repress inflammatory genes. Nucleic Acids Res 2017; 45:8596-8608. [PMID: 28591827 PMCID: PMC5737878 DOI: 10.1093/nar/gkx509] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/05/2017] [Indexed: 12/22/2022] Open
Abstract
The glucocorticoid receptor (GR) is a ligand-regulated transcription factor that controls the expression of extensive gene networks, driving both up- and down-regulation. GR utilizes multiple DNA-binding-dependent and -independent mechanisms to achieve context-specific transcriptional outcomes. The DNA-binding-independent mechanism involves tethering of GR to the pro-inflammatory transcription factor activator protein-1 (AP-1) through protein-protein interactions. This mechanism has served as the predominant model of GR-mediated transrepression of inflammatory genes. However, ChIP-seq data have consistently shown GR to occupy AP-1 response elements (TREs), even in the absence of AP-1. Therefore, the current model is insufficient to explain GR action at these sites. Here, we show that GR regulates a subset of inflammatory genes in a DNA-binding-dependent manner. Using structural biology and biochemical approaches, we show that GR binds directly to TREs via sequence-specific contacts to a GR-binding sequence (GBS) half-site found embedded within the TRE motif. Furthermore, we show that GR-mediated transrepression observed at TRE sites to be DNA-binding-dependent. This represents a paradigm shift in the field, showing that GR uses multiple mechanisms to suppress inflammatory gene expression. This work further expands our understanding of this complex multifaceted transcription factor.
Collapse
Affiliation(s)
- Emily R Weikum
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ian Mitchelle S de Vera
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jerome C Nwachukwu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - William H Hudson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kendall W Nettles
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
30
|
Suprachoroidal Triamcinolone Acetonide for Retinal Vein Occlusion: Results of the Tanzanite Study. Ophthalmol Retina 2017; 2:320-328. [PMID: 31047241 DOI: 10.1016/j.oret.2017.07.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE To compare the safety and efficacy of treatment with suprachoroidal triamcinolone acetonide (CLS-TA) plus intravitreal aflibercept vs. treatment with aflibercept alone in patients with macular edema due to retinal vein occlusion (RVO). DESIGN Randomized masked controlled clinical trial. SUBJECTS Forty-six patients with RVO. METHODS Subjects were randomized 1:1 to suprachoroidal injection of CLS-TA plus intravitreal aflibercept (combination arm) or sham suprachoroidal injection plus aflibercept (aflibercept arm), followed by aflibercept as needed at months 1, 2, and 3 in each arm. MAIN OUTCOME MEASURES The primary efficacy end point was the number of protocol-required aflibercept re-treatments through month 3. Secondary outcomes included mean improvement from baseline best-corrected visual acuity (BCVA), central subfield thickness (CST), and the percentage of participants with CST ≤310 μm at each time point. RESULTS The number of re-treatments were reduced in the combination arm compared with that in the aflibercept arm (23 vs. 9; -61%; P = 0.013) and the percentage of participants requiring no re-treatments was increased (78% vs. 30%; P = 0.003). The mean improvement from baseline BCVA letter score in combination vs. that in the aflibercept arms was 16.1 vs. 11.4 (P = 0.20) at month 1, 20.4 vs. 11.9 (P = 0.04) at month 2, and 18.9 vs. 11.3 (P = 0.09) at month 3. The mean baseline CST in the combination arm (731.1 μm) decreased into the normal range at month 1 (284.7 μm) and remained there at months 2 and 3 (272.4 μm and 285.4 μm). The mean baseline CST (727.5 μm) in the aflibercept arm decreased to 322.8 μm at month 1 and increased at months 2 and 3 (383.4 μm and 384.6 μm). Edema resolution (CST ≤ 310 μm) occurred in 87.0%, 87.0%, and 78.3% of participants in the combination arm at months 1, 2, and 3, respectively, vs. 56.5%, 47.8%, and 47.8% of participants in the aflibercept arm. In the combination arm, 1 participant had cataract progression and 4 (2 with preexistent glaucoma) had increased intraocular pressure that was controlled with topical medication. CONCLUSIONS Combination intravitreal aflibercept and suprachoroidal CLS-TA is well tolerated and significantly reduces the need for additional intravitreal aflibercept injections over a 3-month period in patients with RVO. Preliminary evidence suggests that combination therapy may sustain edema resolution and improve visual outcomes.
Collapse
|
31
|
Weikum ER, Okafor CD, D'Agostino EH, Colucci JK, Ortlund EA. Structural Analysis of the Glucocorticoid Receptor Ligand-Binding Domain in Complex with Triamcinolone Acetonide and a Fragment of the Atypical Coregulator, Small Heterodimer Partner. Mol Pharmacol 2017; 92:12-21. [PMID: 28396564 PMCID: PMC5452056 DOI: 10.1124/mol.117.108506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/06/2017] [Indexed: 12/13/2022] Open
Abstract
The synthetic glucocorticoids (GCs) dexamethasone, mometasone furoate, and triamcinolone acetonide are pharmaceutical mainstays to treat chronic inflammatory diseases. These drugs bind to the glucocorticoid receptor (GR), a ligand-activated transcription factor and member of the nuclear receptor superfamily. The GR is widely recognized as a therapeutic target for its ability to counter proinflammatory signaling. Despite the popularity of GCs in the clinic, long-term use leads to numerous side effects, driving the need for new and improved drugs with less off-target pharmacology. X-ray crystal structures have played an important role in the drug-design process, permitting the characterization of robust structure-function relationships. However, steroid receptor ligand-binding domains (LBDs) are inherently unstable, and their crystallization requires extensive mutagenesis to enhance expression and crystallization. Here, we use an ancestral variant of GR as a tool to generate a high-resolution crystal structure of GR in complex with the potent glucocorticoid triamcinolone acetonide (TA) and a fragment of the small heterodimer partner (SHP). Using structural analysis, molecular dynamics, and biochemistry, we show that TA increases intramolecular contacts within the LBD to drive affinity and enhance stability of the receptor-ligand complex. These data support the emerging theme that ligand-induced receptor conformational dynamics at the mouth of the pocket play a major role in steroid receptor activation. This work also represents the first GR structure in complex with SHP, which has been suggested to play a role in modulating hepatic GR function.
Collapse
Affiliation(s)
- Emily R Weikum
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia
| | - C Denise Okafor
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia
| | - Emma H D'Agostino
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer K Colucci
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
32
|
Suske G. NF-Y and SP transcription factors — New insights in a long-standing liaison. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:590-597. [DOI: 10.1016/j.bbagrm.2016.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022]
|
33
|
Luo Y, Zheng SG. Hall of Fame among Pro-inflammatory Cytokines: Interleukin-6 Gene and Its Transcriptional Regulation Mechanisms. Front Immunol 2016; 7:604. [PMID: 28066415 PMCID: PMC5165036 DOI: 10.3389/fimmu.2016.00604] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/01/2016] [Indexed: 12/27/2022] Open
Abstract
Pro-inflammatory cytokines that are generated by immune system cells and mediate many kinds of immune responses are kinds of endogenous polypeptides. They are also the effectors of the autoimmune system. It is generally accepted that interleukin (IL)-4, IL-6, IL-9, IL-17, and tumor necrosis factor-α are pro-inflammatory cytokines; however, IL-6 becomes a protagonist among them since it predominately induces pro-inflammatory signaling and regulates massive cellular processes. It has been ascertained that IL-6 is associated with a large number of diseases with inflammatory background, such as anemia of chronic diseases, angiogenesis acute-phase response, bone metabolism, cartilage metabolism, and multiple cancers. Despite great progress in the relative field, the targeted regulation of IL-6 response for therapeutic benefits remains incompletely to be understood. Therefore, it is conceivable that understanding mechanisms of IL-6 from the perspective of gene regulation can better facilitate to determine the pathogenesis of the disease, providing more solid scientific basis for clinical treatment translation. In this review, we summarize the candidate genes that have been implicated in clinical target therapy from the perspective of gene transcription regulation.
Collapse
Affiliation(s)
- Yang Luo
- Department of Clinical Immunology of the Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou, China; Division of Rheumatology, Department of Medicine at Penn State Hershey College of Medicine, Hershey, PA, USA
| | - Song Guo Zheng
- Department of Clinical Immunology of the Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou, China; Division of Rheumatology, Department of Medicine at Penn State Hershey College of Medicine, Hershey, PA, USA
| |
Collapse
|
34
|
Campochiaro PA, Hafiz G, Mir TA, Scott AW, Zimmer-Galler I, Shah SM, Wenick AS, Brady CJ, Han I, He L, Channa R, Poon D, Meyerle C, Aronow MB, Sodhi A, Handa JT, Kherani S, Han Y, Sophie R, Wang G, Qian J. Pro-permeability Factors in Diabetic Macular Edema; the Diabetic Macular Edema Treated With Ozurdex Trial. Am J Ophthalmol 2016; 168:13-23. [PMID: 27130369 PMCID: PMC5482180 DOI: 10.1016/j.ajo.2016.04.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 01/14/2023]
Abstract
PURPOSE The Diabetic Macular Edema Treated with Ozurdex (DMEO) Trial measured aqueous pro-permeability factors (PPFs) in diabetic macular edema (DME) patients before and after injection of dexamethasone implant or vascular endothelial growth factor (VEGF)-neutralizing protein and correlated changes in levels with changes in excess foveal thickness (EFT) to identify potential PPFs contributing to DME. DESIGN Prospective, randomized crossover clinical trial. METHODS Twenty DME patients randomized to dexamethasone implant or VEGF-neutralizing protein had aqueous taps and spectral-domain optical coherence tomography (SDOCT) at baseline and every 4 weeks for 28 weeks. Aqueous levels of 55 vasoactive proteins were measured with protein array. Crossover at week 16 provided changes in protein levels after each intervention in all 20 patients. RESULTS After dexamethasone implant there was significant correlation between changes in levels of 13 vasoactive proteins with changes in EFT, including 3 known PPFs: angiopoietin-2 (r = 0.40, P = .001), hepatocyte growth factor (HGF; r = 0.31, P = .02), and endocrine gland-VEGF (EG-VEGF, r = 0.43, P < .001). Reduction of prolactin, insulin-like growth factor binding protein-3, and matrix metalloproteinase-9 correlated with edema reduction after injection of a VEGF-neutralizing protein as well as dexamethasone implant, suggesting their modulation is likely secondary to changes in edema rather than causative. CONCLUSIONS Correlation of edema reduction with reduction in the PPFs angiopoietin-2, HGF, and EG-VEGF provides potential insight into the multifactorial molecular mechanism by which dexamethasone implants reduce edema and suggest that additional study is needed to investigate the contributions of these 3 factors to chronic DME.
Collapse
Affiliation(s)
- Peter A Campochiaro
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Gulnar Hafiz
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tahreem A Mir
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Adrienne W Scott
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ingrid Zimmer-Galler
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Syed M Shah
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Adam S Wenick
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher J Brady
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ian Han
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lingmin He
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Roomasa Channa
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Poon
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Catherine Meyerle
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mary Beth Aronow
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Saleema Kherani
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yong Han
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Raafay Sophie
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guohua Wang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
35
|
Kemler D, Dahley O, Roßwag S, Litfin M, Kassel O. The LIM domain protein nTRIP6 acts as a co-repressor for the transcription factor MEF2C in myoblasts. Sci Rep 2016; 6:27746. [PMID: 27292777 PMCID: PMC4904203 DOI: 10.1038/srep27746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/23/2016] [Indexed: 12/17/2022] Open
Abstract
The transcription factor Myocyte enhancer factor 2C (MEF2C) plays a key role in the late differentiation of skeletal muscle progenitor cells, the so-called myoblasts. During myoblast differentiation, both MEF2C expression and transcriptional activity are regulated. We have reported that nTRIP6, the nuclear isoform of the focal adhesion LIM domain protein TRIP6, acts as an adaptor transcriptional co-activator for several transcription factors. It interacts with the promoter-bound transcription factors and consequently mediates the recruitment of other co-activators. Based on a described interaction between MEF2C and TRIP6 in a yeast-two-hybrid screen, we hypothesised a co-regulatory function of nTRIP6 for MEF2C. In proliferating myoblasts, nTRIP6 interacted with MEF2C and was recruited together with MEF2C to the MEF2-binding regions of the MEF2C target genes Myom2, Mb, Tnni2 and Des. Silencing nTRIP6 or preventing its interaction with MEF2C increased MEF2C transcriptional activity and increased the expression of these MEF2C target genes. Thus, nTRIP6 acts as a co-repressor for MEF2C. Mechanistically, nTRIP6 mediated the recruitment of the class IIa histone deacetylase HDAC5 to the MEF2C-bound promoters. In conclusion, our results unravel a transcriptional co-repressor function for nTRIP6. This adaptor co-regulator can thus exert either co-activator or co-repressor functions, depending on the transcription factor it interacts with.
Collapse
Affiliation(s)
- Denise Kemler
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - Oliver Dahley
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - Sven Roßwag
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - Margarethe Litfin
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - Olivier Kassel
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Karlsruhe, Germany
| |
Collapse
|
36
|
Bivol S, Owen SJ, Rose'Meyer RB. Glucocorticoid-induced changes in glucocorticoid receptor mRNA and protein expression in the human placenta as a potential factor for altering fetal growth and development. Reprod Fertil Dev 2016; 29:RD15356. [PMID: 26844822 DOI: 10.1071/rd15356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 12/21/2015] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoids (GCs) control essential metabolic processes in virtually every cell in the body and play a vital role in the development of fetal tissues and organ systems. The biological actions of GCs are mediated via glucocorticoid receptors (GRs), the cytoplasmic transcription factors that regulate the transcription of genes involved in placental and fetal growth and development. Several experimental studies have demonstrated that fetal exposure to high maternal GC levels early in gestation is associated with adverse fetal outcomes, including low birthweight, intrauterine growth restriction and anatomical and structural abnormalities that may increase the risk of cardiovascular, metabolic and neuroendocrine disorders in adulthood. The response of the fetus to GCs is dependent on gender, with female fetuses becoming hypersensitive to changes in GC levels whereas male fetuses develop GC resistance in the environment of high maternal GCs. In this paper we review GR function and the physiological and pathological effects of GCs on fetal development. We propose that GC-induced changes in the placental structure and function, including alterations in the expression of GR mRNA and protein levels, may play role in inhibiting in utero fetal growth.
Collapse
|
37
|
Khor YM, Soga T, Parhar IS. Early-life stress changes expression of GnRH and kisspeptin genes and DNA methylation of GnRH3 promoter in the adult zebrafish brain. Gen Comp Endocrinol 2016; 227:84-93. [PMID: 26686318 DOI: 10.1016/j.ygcen.2015.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/25/2015] [Accepted: 12/04/2015] [Indexed: 01/05/2023]
Abstract
Early-life stress can cause long-term effects in the adulthood such as alterations in behaviour, brain functions and reproduction. DNA methylation is a mechanism of epigenetic change caused by early-life stress. Dexamethasone (DEX) was administered to zebrafish larvae to study its effect on reproductive dysfunction. The level of GnRH2, GnRH3, Kiss1 and Kiss2 mRNAs were measured between different doses of DEX treatment groups in adult zebrafish. Kiss1 and GnRH2 expression were increased in the 200mg/L DEX treated while Kiss2 and GnRH3 mRNA levels were up-regulated in the 2mg/L DEX-treated zebrafish. The up-regulation may be related to programming effect of DEX in the zebrafish larvae, causing overcompensation mechanism to increase the mRNA levels. Furthermore, DEX treatment caused negative impact on the development and maturation of the testes, in particular spermatogenesis. Therefore, immature gonadal development may cause positive feedback by increasing GnRH and Kiss. This indicates that DEX can alter the regulation of GnRH2, GnRH3, Kiss1 and Kiss2 in adult zebrafish, which affects maturation of gonads. Computer analysis of 1.5 kb region upstream of the 5' UTR of Kiss1, Kiss2, GnRH2 and GnRH3 promoter showed that there are putative binding sites of glucocorticoid response element and transcription factors involved in stress response. GnRH3 promoter analysed from pre-optic area, ventral telencephalon and ventral olfactory bulb showed higher methylation at CpG residues located on -1410, -1377 and -1355 between control and 2mg/L DEX-treated groups. Hence, early-life DEX treatment can alter methylation of GnRH3 gene promoter, which subsequently affects gene regulation and reproductive functions.
Collapse
Affiliation(s)
- Yee Min Khor
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Malaysia
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Malaysia.
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Malaysia
| |
Collapse
|
38
|
De Bosscher K, Beck IM, Ratman D, Berghe WV, Libert C. Activation of the Glucocorticoid Receptor in Acute Inflammation: the SEDIGRAM Concept. Trends Pharmacol Sci 2016; 37:4-16. [DOI: 10.1016/j.tips.2015.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022]
|
39
|
Distal substitutions drive divergent DNA specificity among paralogous transcription factors through subdivision of conformational space. Proc Natl Acad Sci U S A 2015; 113:326-31. [PMID: 26715749 DOI: 10.1073/pnas.1518960113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many genomes contain families of paralogs--proteins with divergent function that evolved from a common ancestral gene after a duplication event. To understand how paralogous transcription factors evolve divergent DNA specificities, we examined how the glucocorticoid receptor and its paralogs evolved to bind activating response elements [(+)GREs] and negative glucocorticoid response elements (nGREs). We show that binding to nGREs is a property of the glucocorticoid receptor (GR) DNA-binding domain (DBD) not shared by other members of the steroid receptor family. Using phylogenetic, structural, biochemical, and molecular dynamics techniques, we show that the ancestral DBD from which GR and its paralogs evolved was capable of binding both nGRE and (+)GRE sequences because of the ancestral DBD's ability to assume multiple DNA-bound conformations. Subsequent amino acid substitutions in duplicated daughter genes selectively restricted protein conformational space, causing this dual DNA-binding specificity to be selectively enhanced in the GR lineage and lost in all others. Key substitutions that determined the receptors' response element-binding specificity were far from the proteins' DNA-binding interface and interacted epistatically to change the DBD's function through DNA-induced allosteric mechanisms. These amino acid substitutions subdivided both the conformational and functional space of the ancestral DBD among the present-day receptors, allowing a paralogous family of transcription factors to control disparate transcriptional programs despite high sequence identity.
Collapse
|
40
|
D'Uva G, Lauriola M. Towards the emerging crosstalk: ERBB family and steroid hormones. Semin Cell Dev Biol 2015; 50:143-52. [PMID: 26582250 DOI: 10.1016/j.semcdb.2015.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 10/28/2015] [Accepted: 11/09/2015] [Indexed: 01/05/2023]
Abstract
Growth factors acting through receptor tyrosine kinases (RTKs) of ERBB family, along with steroid hormones (SH) acting through nuclear receptors (NRs), are critical signalling mediators of cellular processes. Deregulations of ERBB and steroid hormone receptors are responsible for several diseases, including cancer, thus demonstrating the central role played by both systems. This review will summarize and shed light on an emerging crosstalk between these two important receptor families. How this mutual crosstalk is attained, such as through extensive genomic and non-genomic interactions, will be addressed. In light of recent studies, we will describe how steroid hormones are able to fine-tune ERBB feedback loops, thus impacting on cellular output and providing a new key for understanding the complexity of biological processes in physiological or pathological conditions. In our understanding, the interactions between steroid hormones and RTKs deserve further attention. A system biology approach and advanced technologies for the analysis of RTK-SH crosstalk could lead to major advancements in molecular medicine, providing the basis for new routes of pharmacological intervention in several diseases, including cancer.
Collapse
Affiliation(s)
- Gabriele D'Uva
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Mattia Lauriola
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna 40138, Italy.
| |
Collapse
|
41
|
Tran L, Schulkin J, Ligon CO, Greenwood-Van Meerveld B. Epigenetic modulation of chronic anxiety and pain by histone deacetylation. Mol Psychiatry 2015; 20:1219-31. [PMID: 25288139 DOI: 10.1038/mp.2014.122] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/01/2014] [Accepted: 08/21/2014] [Indexed: 12/17/2022]
Abstract
Prolonged exposure of the central amygdala (CeA) to elevated corticosteroids (CORT) facilitates long-term anxiety and pain through activation of glucocorticoid receptors (GRs) and corticotropin-releasing factor (CRF). However, the mechanisms maintaining these responses are unknown. Since chronic phenotypes can be sustained by epigenetic mechanisms, including histone modifications such as deacetylation, we tested the hypothesis that histone deacetylation contributes to the maintenance of chronic anxiety and pain induced by prolonged exposure of the CeA to CORT. We found that bilateral infusions of a histone deacetylase inhibitor into the CeA attenuated anxiety-like behavior as well as somatic and visceral hypersensitivity resulting from elevated CORT exposure. Moreover, we delineated a novel pathway through which histone deacetylation could contribute to CORT regulation of GR and subsequent CRF expression in the CeA. Specifically, deacetylation of histone 3 at lysine 9 (H3K9), through the coordinated action of the NAD+-dependent protein deacetylase sirtuin-6 (SIRT6) and nuclear factor kappa B (NFκB), sequesters GR expression leading to disinhibition of CRF. Our results indicate that epigenetic programming in the amygdala, specifically histone modifications, is important in the maintenance of chronic anxiety and pain.
Collapse
Affiliation(s)
- L Tran
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - J Schulkin
- Department of Neuroscience, Georgetown University, Washington, DC, USA
| | - C O Ligon
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - B Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.,V.A. Medical Center, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
42
|
Campochiaro PA, Hafiz G, Mir TA, Scott AW, Sophie R, Shah SM, Ying HS, Lu L, Chen C, Campbell JP, Kherani S, Zimmer-Galler I, Wenick A, Han I, Paulus Y, Sodhi A, Wang G, Qian J. Pro-Permeability Factors After Dexamethasone Implant in Retinal Vein Occlusion; the Ozurdex for Retinal Vein Occlusion (ORVO) Study. Am J Ophthalmol 2015; 160:313-321.e19. [PMID: 25908486 PMCID: PMC6600806 DOI: 10.1016/j.ajo.2015.04.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/14/2023]
Abstract
PURPOSE To correlate aqueous vasoactive protein changes with macular edema after dexamethasone implant in retinal vein occlusion (RVO). DESIGN Prospective, interventional case series. METHODS Twenty-three central RVO (CRVO) and 17 branch RVO (BRVO) subjects with edema despite prior anti-vascular endothelial growth factor (VEGF) treatment had aqueous taps at baseline and 4 and 16 weeks after dexamethasone implant. Best-corrected visual acuity (BCVA) and center subfield thickness were measured every 4 weeks. Aqueous vasoactive protein levels were measured by protein array or enzyme-linked immunosorbent assay. RESULTS Thirty-two vasoactive proteins were detected in aqueous in untreated eyes with macular edema due to RVO. Reduction in excess foveal thickness after dexamethasone implant correlated with reduction in persephin and pentraxin 3 (Pearson correlation coefficients = 0.682 and 0.638, P = .014 and P = .003). Other protein changes differed among RVO patients as edema decreased, but ≥50% of patients showed reductions in hepatocyte growth factor, endocrine gland VEGF, insulin-like growth factor binding proteins, or endostatin by ≥30%. Enzyme-linked immunosorbent assay in 18 eyes (12 CRVO, 6 BRVO) showed baseline levels of hepatocyte growth factor and VEGF of 168.2 ± 20.1 pg/mL and 78.7 ± 10.0 pg/mL, and each was reduced in 12 eyes after dexamethasone implant. CONCLUSIONS Dexamethasone implants reduce several pro-permeability proteins providing a multitargeted approach in RVO. No single protein in addition to VEGF can be implicated as a contributor in all patients. Candidates for contribution to chronic edema in subgroups of patients that deserve further study include persephin, hepatocyte growth factor, and endocrine gland VEGF.
Collapse
|
43
|
Banuelos J, Shin SC, Lu NZ. A hotspot in the glucocorticoid receptor DNA-binding domain susceptible to loss of function mutation. Steroids 2015; 96:115-20. [PMID: 25676786 PMCID: PMC4355178 DOI: 10.1016/j.steroids.2015.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/03/2015] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
Abstract
Glucocorticoids (GCs) are used to treat a variety of inflammatory disorders and certain cancers. However, GC resistance occurs in subsets of patients. We found that EL4 cells, a GC-resistant mouse thymoma cell line, harbored a point mutation in their GC receptor (GR) gene, resulting in the substitution of arginine 493 by a cysteine in the second zinc finger of the DNA-binding domain. Allelic discrimination analyses revealed that the R493C mutation occurred on both alleles. In the absence of GCs, the GR in EL4 cells localized predominantly in the cytoplasm and upon dexamethasone treatment underwent nuclear translocation, suggesting that the ligand binding ability of the GR in EL4 cells was intact. In transient transfection assays, the R493C mutant could not transactivate the MMTV-luciferase reporter. Site-directed mutagenesis to revert the R493C mutation restored the transactivation activity. Cotransfection experiments showed that the R493C mutant did not inhibit the transcriptional activities of the wild-type GR. In addition, the R493C mutant did not repress either the AP-1 or NF-κB reporters as effectively as WT GR. Furthermore, stable expression of the WT GR in the EL4 cells enabled GC-mediated gene regulation, specifically upregulation of IκBα and downregulation of interferon γ and interleukin 17A. Arginine 493 is conserved among multiple species and all human nuclear receptors and its mutation has also been found in the human GR, androgen receptor, and mineralocorticoid receptor. Thus, R493 is necessary for the transcriptional activity of the GR and a hotspot for mutations that result in GC resistance.
Collapse
Affiliation(s)
- Jesus Banuelos
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Soon Cheon Shin
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Nick Z Lu
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States.
| |
Collapse
|
44
|
Zinc finger independent genome-wide binding of Sp2 potentiates recruitment of histone-fold protein Nf-y distinguishing it from Sp1 and Sp3. PLoS Genet 2015; 11:e1005102. [PMID: 25793500 PMCID: PMC4368557 DOI: 10.1371/journal.pgen.1005102] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/25/2015] [Indexed: 11/19/2022] Open
Abstract
Transcription factors are grouped into families based on sequence similarity within functional domains, particularly DNA-binding domains. The Specificity proteins Sp1, Sp2 and Sp3 are paradigmatic of closely related transcription factors. They share amino-terminal glutamine-rich regions and a conserved carboxy-terminal zinc finger domain that can bind to GC rich motifs in vitro. All three Sp proteins are ubiquitously expressed; yet they carry out unique functions in vivo raising the question of how specificity is achieved. Crucially, it is unknown whether they bind to distinct genomic sites and, if so, how binding site selection is accomplished. In this study, we have examined the genomic binding patterns of Sp1, Sp2 and Sp3 in mouse embryonic fibroblasts by ChIP-seq. Sp1 and Sp3 essentially occupy the same promoters and localize to GC boxes. The genomic binding pattern of Sp2 is different; Sp2 primarily localizes at CCAAT motifs. Consistently, re-expression of Sp2 and Sp3 mutants in corresponding knockout MEFs revealed strikingly different modes of genomic binding site selection. Most significantly, while the zinc fingers dictate genomic binding of Sp3, they are completely dispensable for binding of Sp2. Instead, the glutamine-rich amino-terminal region is sufficient for recruitment of Sp2 to its target promoters in vivo. We have identified the trimeric histone-fold CCAAT box binding transcription factor Nf-y as the major partner for Sp2-chromatin interaction. Nf-y is critical for recruitment of Sp2 to co-occupied regulatory elements. Equally, Sp2 potentiates binding of Nf-y to shared sites indicating the existence of an extensive Sp2-Nf-y interaction network. Our results unveil strikingly different recruitment mechanisms of Sp1/Sp2/Sp3 transcription factor members uncovering an unexpected layer of complexity in their binding to chromatin in vivo. A major question in eukaryotic gene regulation is how transcription factors with similar structural features elicit specific biological responses. We used the three transcription factors Sp1, Sp2 and Sp3 as a paradigm for investigating this question. All three proteins are ubiquitously expressed, and they share glutamine-rich domains as well as a conserved bona fide zinc finger DNA binding domain. Yet, each of the three proteins carries out unique functions in vivo, and each is absolutely essential for mouse development. By genome-wide binding analysis, we found that Sp1 and Sp3 on the one hand, and Sp2 on the other hand engage completely different protein domains for their genomic binding site selection. Most strikingly, the zinc finger domain of Sp2 is dispensable for recruitment to its target sites in vivo. Moreover, we provide strong evidence that the histone-fold protein Nf-y is necessary for recruitment of Sp2. Conversely, Sp2 potentiates Nf-y binding showing that binding of Sp2 and Nf-y to shared sites is mutually dependent. Our findings uncover an unexpected mechanistic diversity in promoter recognition by seemingly similar transcription factors. This work has broader implications for our understanding of how members of other multi-protein transcription factor families could achieve specificity.
Collapse
|
45
|
Starick SR, Ibn-Salem J, Jurk M, Hernandez C, Love MI, Chung HR, Vingron M, Thomas-Chollier M, Meijsing SH. ChIP-exo signal associated with DNA-binding motifs provides insight into the genomic binding of the glucocorticoid receptor and cooperating transcription factors. Genome Res 2015; 25:825-35. [PMID: 25720775 PMCID: PMC4448679 DOI: 10.1101/gr.185157.114] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/23/2015] [Indexed: 12/22/2022]
Abstract
The classical DNA recognition sequence of the glucocorticoid receptor (GR) appears to be present at only a fraction of bound genomic regions. To identify sequences responsible for recruitment of this transcription factor (TF) to individual loci, we turned to the high-resolution ChIP-exo approach. We exploited this signal by determining footprint profiles of TF binding at single-base-pair resolution using ExoProfiler, a computational pipeline based on DNA binding motifs. When applied to our GR and the few available public ChIP-exo data sets, we find that ChIP-exo footprints are protein- and recognition sequence-specific signatures of genomic TF association. Furthermore, we show that ChIP-exo captures information about TFs other than the one directly targeted by the antibody in the ChIP procedure. Consequently, the shape of the ChIP-exo footprint can be used to discriminate between direct and indirect (tethering to other DNA-bound proteins) DNA association of GR. Together, our findings indicate that the absence of classical recognition sequences can be explained by direct GR binding to a broader spectrum of sequences than previously known, either as a homodimer or as a heterodimer binding together with a member of the ETS or TEAD families of TFs, or alternatively by indirect recruitment via FOX or STAT proteins. ChIP-exo footprints also bring structural insights and locate DNA:protein cross-link points that are compatible with crystal structures of the studied TFs. Overall, our generically applicable footprint-based approach uncovers new structural and functional insights into the diverse ways of genomic cooperation and association of TFs.
Collapse
Affiliation(s)
- Stephan R Starick
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Jonas Ibn-Salem
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institut de Biologie de l'Ecole Normale Supérieure, Institut National de la Santé et de la Recherche Médicale, U1024, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, F-75005 Paris, France
| | - Marcel Jurk
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Céline Hernandez
- Institut de Biologie de l'Ecole Normale Supérieure, Institut National de la Santé et de la Recherche Médicale, U1024, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, F-75005 Paris, France
| | - Michael I Love
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Ho-Ryun Chung
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Morgane Thomas-Chollier
- Institut de Biologie de l'Ecole Normale Supérieure, Institut National de la Santé et de la Recherche Médicale, U1024, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, F-75005 Paris, France
| | - Sebastiaan H Meijsing
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
46
|
Meijsing SH. Mechanisms of Glucocorticoid-Regulated Gene Transcription. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26215990 DOI: 10.1007/978-1-4939-2895-8_3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One fascinating aspect of glucocorticoid signaling is their broad range of physiological and pharmacological effects. These effects are at least in part a consequence of transcriptional regulation by the glucocorticoid receptor (GR). Activation of GR by glucocorticoids results in tissue-specific changes in gene expression levels with some genes being activated whereas others are repressed. This raises two questions: First, how does GR regulate different subsets of target genes in different tissues? And second, how can GR both activate and repress the expression of genes?To answer these questions, this chapter will describe the function of the various "components" and how they cooperate to mediate the transcriptional responses to glucocorticoids. The first "component" is GR itself. The second "component" is the chromatin and its role in specifying where in the genome GR binds. Binding to the genome however is just the first step in regulating the expression of genes and transcriptional regulation by GR depends on the recruitment of coregulator proteins that either directly or indirectly influence the recruitment and or activity of RNA polymerase II. Ultimately, the integration of inputs including GR isoform, DNA sequence, chromatin and cooperation with coregulators determines which genes are regulated and the direction of their regulation.
Collapse
Affiliation(s)
- Sebastiaan H Meijsing
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Biology, Ihnestrasse 63-73, Berlin, 14195, Germany,
| |
Collapse
|
47
|
Yang N, Caratti G, Ince LM, Poolman TM, Trebble PJ, Holt CM, Ray DW, Matthews LC. Serum cholesterol selectively regulates glucocorticoid sensitivity through activation of JNK. J Endocrinol 2014; 223:155-66. [PMID: 25161081 PMCID: PMC4191185 DOI: 10.1530/joe-14-0456] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glucocorticoids (Gc) are potent anti-inflammatory agents with wide clinical application. We have previously shown that increased serum concentration significantly attenuates regulation of a simple Gc-responsive reporter. We now find that glucocorticoid receptor (GR) regulation of some endogenous transactivated but not transrepressed genes is impaired, suggesting template specificity. Serum did not directly affect GR expression, activity or trafficking, implicating GR crosstalk with other signalling pathways. Indeed, a JNK inhibitor completely abolished the serum effect. We identified the Gc modulating serum component as cholesterol. Cholesterol loading mimicked the serum effect, which was readily reversed by JNK inhibition. Chelation of serum cholesterol with methyl-β-cyclodextrin or inhibition of cellular cholesterol synthesis with simvastatin potentiated the Gc response. To explore the effect in vivo we used ApoE(-/-) mice, a model of hypercholesterolaemia. Consistent with our in vitro studies, we find no impact of elevated cholesterol on the expression of GR, or on the hypothalamic-pituitary-adrenal axis, measured by dexamethasone suppression test. Instead we find selective Gc resistance on some hepatic target genes in ApoE(-/-) mice. Therefore, we have discovered an unexpected role for cholesterol as a selective modulator of Gc action in vivo. Taken together these findings reveal a new environmental constraint on Gc action with relevance to both inflammation and cancer.
Collapse
Affiliation(s)
- Nan Yang
- Manchester Centre for Nuclear Hormone Research in Disease and Institute of Human DevelopmentFaculty of Medical and Human Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UKInstitute of Cardiovascular SciencesFaculty of Medical and Human Sciences, University of Manchester, CTF Building, Grafton Street, Manchester, M13 9PT, UK
| | - Giorgio Caratti
- Manchester Centre for Nuclear Hormone Research in Disease and Institute of Human DevelopmentFaculty of Medical and Human Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UKInstitute of Cardiovascular SciencesFaculty of Medical and Human Sciences, University of Manchester, CTF Building, Grafton Street, Manchester, M13 9PT, UK
| | - Louise M Ince
- Manchester Centre for Nuclear Hormone Research in Disease and Institute of Human DevelopmentFaculty of Medical and Human Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UKInstitute of Cardiovascular SciencesFaculty of Medical and Human Sciences, University of Manchester, CTF Building, Grafton Street, Manchester, M13 9PT, UK
| | - Toryn M Poolman
- Manchester Centre for Nuclear Hormone Research in Disease and Institute of Human DevelopmentFaculty of Medical and Human Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UKInstitute of Cardiovascular SciencesFaculty of Medical and Human Sciences, University of Manchester, CTF Building, Grafton Street, Manchester, M13 9PT, UK
| | - Peter J Trebble
- Manchester Centre for Nuclear Hormone Research in Disease and Institute of Human DevelopmentFaculty of Medical and Human Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UKInstitute of Cardiovascular SciencesFaculty of Medical and Human Sciences, University of Manchester, CTF Building, Grafton Street, Manchester, M13 9PT, UK
| | - Cathy M Holt
- Manchester Centre for Nuclear Hormone Research in Disease and Institute of Human DevelopmentFaculty of Medical and Human Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UKInstitute of Cardiovascular SciencesFaculty of Medical and Human Sciences, University of Manchester, CTF Building, Grafton Street, Manchester, M13 9PT, UK
| | - David W Ray
- Manchester Centre for Nuclear Hormone Research in Disease and Institute of Human DevelopmentFaculty of Medical and Human Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UKInstitute of Cardiovascular SciencesFaculty of Medical and Human Sciences, University of Manchester, CTF Building, Grafton Street, Manchester, M13 9PT, UK
| | - Laura C Matthews
- Manchester Centre for Nuclear Hormone Research in Disease and Institute of Human DevelopmentFaculty of Medical and Human Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UKInstitute of Cardiovascular SciencesFaculty of Medical and Human Sciences, University of Manchester, CTF Building, Grafton Street, Manchester, M13 9PT, UK
| |
Collapse
|
48
|
Nakatani Y, Tsuji M, Amano T, Miyagawa K, Miyagishi H, Saito A, Imai T, Takeda K, Ishii D, Takeda H. Neuroprotective effect of yokukansan against cytotoxicity induced by corticosterone on mouse hippocampal neurons. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1458-65. [PMID: 25022209 DOI: 10.1016/j.phymed.2014.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/17/2014] [Accepted: 06/09/2014] [Indexed: 05/26/2023]
Abstract
Yokukansan, a traditional Japanese herbal medicine, has been used for the management of neurodegenerative disorders and for the treatment of neurosis, insomnia, and behavioral and psychological symptoms of dementia. Recently, several studies have shown that yokukansan has a neuroprotective effect. The aim of this study was to examine the neuroprotective effect of yokukansan on hippocampal neurons from embryonic mouse brain against the effects of corticosterone, which is considered to be a stress hormone and to be cytotoxic toward neurons. The cell survival rates were measured by the WST-8 assay and LDH assay. Twenty-four hours after treatment with corticosterone, cell numbers were significantly decreased compared with the control or treatment with vehicle in a dose-dependent manner. When cells were treated with 30 μM corticosterone, the decrease in the number of cells was significantly recovered by treatment with yokukansan (100-1,000 μg/ml) in a dose-dependent manner. However, yokukansan did not suppress the decrease in cell numbers that was induced by treatment with 100 μM corticosterone. In the LDH assay, treatment with yokukansan at a high concentration (500-1,000 μg/ml) suppressed the LDH concentration induced by treatment with both 30 μM and 100 μM corticosterone compared to treatment with corticosterone alone, respectively. These results suggest that yokukansan protects against the cytotoxic effect of a low concentration of corticosterone on hippocampal neurons.
Collapse
Affiliation(s)
- Yoshihiko Nakatani
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan; Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan; Advanced Education and Research Center for Kampo Medicine, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan.
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan; Advanced Education and Research Center for Kampo Medicine, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Taku Amano
- Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Hiroko Miyagishi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Atsumi Saito
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Taro Imai
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kotaro Takeda
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Daisuke Ishii
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan; Advanced Education and Research Center for Kampo Medicine, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| |
Collapse
|
49
|
Guertin MJ, Zhang X, Coonrod SA, Hager GL. Transient estrogen receptor binding and p300 redistribution support a squelching mechanism for estradiol-repressed genes. Mol Endocrinol 2014; 28:1522-33. [PMID: 25051172 DOI: 10.1210/me.2014-1130] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proper gene regulation is essential for proper organismal development and appropriate responses to external stimuli. Specialized factors, termed master regulators, are often responsible for orchestrating the molecular events that result from signaling cascades. Master regulators coordinate the activation and repression of specific gene classes. Estrogen receptor α (ER) precipitates the signaling cascade that results from endogenous or exogenous estrogen hormones. ER is a classic transcriptional activator and the mechanisms by which ER coordinates gene activation are well characterized. However, it remains unclear how ER coordinates the immediate repression of genes. We integrated genomic transcription, chromosome looping, transcription factor binding, and chromatin structure data to analyze the molecular cascade that results from estradiol (E2)-induced signaling in human MCF-7 breast cancer cells and addressed the context-specific nature of gene regulation. We defined a class of genes that are immediately repressed upon estrogen stimulation, and we compared and contrasted the molecular characteristics of these repressed genes vs activated and unregulated genes. The most striking and unique feature of the repressed gene class is transient binding of ER at early time points after estrogen stimulation. We also found that p300, a coactivator and acetyltransferase, quantitatively redistributes from non-ER enhancers to ER enhancers after E2 treatment. These data support an extension of the classic physiological squelching model, whereby ER hijacks coactivators from repressed genes and redistributes the coactivators to ER enhancers that activate transcription.
Collapse
Affiliation(s)
- Michael J Guertin
- Laboratory of Receptor Biology and Gene Expression (M.J.G., G.L.H.), National Cancer Institute, Bethesda, Maryland 20892; State Key Laboratory of Reproductive Medicine (X.Z.), Nanjing Medical University, Nanjing 210029, China; and Baker Institute for Animal Health (X.Z., S.A.C.), College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | | | | | | |
Collapse
|
50
|
The LIM domain protein nTRIP6 recruits the mediator complex to AP-1-regulated promoters. PLoS One 2014; 9:e97549. [PMID: 24819052 PMCID: PMC4018362 DOI: 10.1371/journal.pone.0097549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/18/2014] [Indexed: 01/25/2023] Open
Abstract
Several LIM domain proteins regulate transcription. They are thought to act through their LIM protein-protein interaction domains as adaptors for the recruitment of transcriptional co-regulators. An intriguing example is nTRIP6, the nuclear isoform of the focal adhesion protein TRIP6. nTRIP6 interacts with AP-1 and enhances its transcriptional activity. nTRIP6 is also essential for the transrepression of AP-1 by the glucocorticoid receptor (GR), by mediating GR tethering to promoter-bound AP-1. Here we report on the molecular mechanism by which nTRIP6 exerts these effects. Both the LIM domains and the pre-LIM region of nTRIP6 are necessary for its co-activator function for AP-1. Discrete domains within the pre-LIM region mediate the dimerization of nTRIP6 at the promoter, which enables the recruitment of the Mediator complex subunits THRAP3 and Med1. This recruitment is blocked by GR, through a competition between GR and THRAP3 for the interaction with the LIM domains of nTRIP6. Thus, nTRIP6 both positively and negatively regulates transcription by orchestrating the recruitment of the Mediator complex to AP-1-regulated promoters.
Collapse
|