1
|
Sica M, Roussel M, Legembre P. CD95/Fas stoichiometry in future precision medicine. Cell Death Differ 2025:10.1038/s41418-025-01493-9. [PMID: 40234610 DOI: 10.1038/s41418-025-01493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/04/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
CD95, also known as Fas, belongs to the tumor necrosis factor (TNF) receptor superfamily. The main biological function of this receptor is to orchestrate and control the immune response since mutations in CD95 or deregulation of its downstream signaling pathways lead to auto-immunity and inflammation. Interestingly, more than twenty years ago, pioneer studies highlighted that like TNFR1, TRAILR1 or CD40, CD95 pre-associates at the plasma membrane in a ligand-independent fashion. This self-association occurs through a domain designated pre-ligand assembly domain or PLAD. Although the disruption of this pre-association prevents CD95 signaling, no drugs targeting this region have been generated because many questions remain on the stoichiometry and conformation of this receptor. Despite more than 40.000 publications, no crystal structure of CD95 alone or in combination with its ligand, CD95L, exists. Based on other TNFR members, we herein discuss the predicted conformation of CD95 at the plasma membrane and how these putative structures might account for the induction of the cell signaling pathways.
Collapse
Affiliation(s)
- Mauricio Sica
- CONICET, Instituto Balseiro (UNCuyo), Departamento de Física Médica (GAANS-CNEA), Bariloche Atomic Center, Av. Bustillo 9500, Bariloche, Río Negro, Argentina.
| | - Murielle Roussel
- UMR CNRS 7276, INSERM U1262, CRIBL, Université de Limoges, 2, Rue Marcland, Limoges, France
- Clinical Hematology and Cellular Therapy Department, CHU Dupuytren, Limoges, France
| | - Patrick Legembre
- UMR CNRS 7276, INSERM U1262, CRIBL, Université de Limoges, 2, Rue Marcland, Limoges, France.
| |
Collapse
|
2
|
Hong Y, He J, Deng D, Liu Q, Zu X, Shen Y. Targeting kinases that regulate programmed cell death: a new therapeutic strategy for breast cancer. J Transl Med 2025; 23:439. [PMID: 40229646 PMCID: PMC11995514 DOI: 10.1186/s12967-025-06367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/08/2025] [Indexed: 04/16/2025] Open
Abstract
Breast cancer is one of the most prevalent malignant tumors among women and ranks as the second leading cause of cancer-related deaths in females, primarily due to delays in diagnosis and shortcomings in treatment strategies. Consequently, there is a pressing need to identify reliable therapeutic targets and strategies. In recent years, the identification of effective biomarkers-particularly novel molecular therapeutic targets-has become a focal point in breast cancer research, aimed at predicting disease aggressiveness and monitoring treatment responses. Simultaneously, advancements in understanding the molecular mechanisms underlying cellular programmed death have opened new avenues for targeting kinase-regulated programmed cell death as a viable therapeutic strategy. This review summarizes the latest research progress regarding kinase-regulated programmed death (including apoptosis, pyroptosis, autophagy, necroptosis, and ferroptosis) in breast cancer treatment. It covers the key kinases involved in this mechanism, their roles in the onset and progression of breast cancer, and strategies for modulating these kinases through pharmacological interventions.
Collapse
Affiliation(s)
- Yun Hong
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-Incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, China
| | - Dan Deng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-Incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qinyue Liu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-Incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
- Hunan Provincial Clinical Medical Research Center for Drug Evaluation of major chronic diseases, Hengyang, China.
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
- Hunan Provincial Clinical Medical Research Center for Drug Evaluation of major chronic diseases, Hengyang, China.
| |
Collapse
|
3
|
Xie Q, Liu J, Yu P, Qiu T, Jiang S, Yu R. Unlocking the power of probiotics, postbiotics: targeting apoptosis for the treatment and prevention of digestive diseases. Front Nutr 2025; 12:1570268. [PMID: 40230717 PMCID: PMC11994438 DOI: 10.3389/fnut.2025.1570268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Digestive diseases are becoming an increasingly serious health burden, creating an urgent need to develop more effective treatment strategies. Probiotics and postbiotics have been extensively studied for their potential to prevent and treat digestive diseases. Growing evidence suggests that programmed cell death, especially apoptosis, is a critical mechanism influencing the molecular and biological aspects of digestive diseases, contributing to disease progression. Understanding the mechanisms and signaling pathways by which probiotics and postbiotics regulate apoptosis could reveal new therapeutic targets for treating digestive diseases. This review focuses on the beneficial effects of probiotics and postbiotics in regulating apoptosis across a range of liver diseases, including non-alcoholic fatty liver disease, liver injury, cirrhosis, and liver cancer. It also explores their effects on gastrointestinal diseases, such as colorectal cancer, colitis, gastrointestinal injury, and infectious diarrhea. Furthermore, some probiotics help balance the gut microbiota, enhance intestinal barrier function, and regulate the immune system, all of which are closely associated with apoptosis. Moreover, emerging technologies, such as encapsulation methods, have been developed to stabilize probiotics, primarily based on experimental findings from rodent and human studies.
Collapse
Affiliation(s)
- Qiuyan Xie
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Ji Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Yu
- Reproductive Medicine Centre, Affiliated Women’s Hospital of Jiangnan University, Wuxi, China
| | - Ting Qiu
- Department of Child Health Care, Affiliated Women’s Hospital of Jiangnan University, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
4
|
Wang W, Li T, Wu K. Cell death in tumor microenvironment: an insight for exploiting novel therapeutic approaches. Cell Death Discov 2025; 11:93. [PMID: 40064873 PMCID: PMC11894105 DOI: 10.1038/s41420-025-02376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Cell death is critical in tumor biology. The common cancer therapies can cause cell death and alleviate tumor, while the cancer cells can develop a resistance to cell death and survive from the therapies. Thus, not only observing the alternative mechanisms of tumor cells resistant to cell death, but also understanding the intricate dynamics of cell death processes within the tumor microenvironment (TME), are essential for tailoring effective therapeutic strategies. High-throughput sequencing technologies have revolutionized cancer research by enabling comprehensive molecular profiling. Recent advances in single cell sequencing have unraveled the heterogeneity of TME components, shedding light on their complex interactions. In this review, we explored the interplay between cell death signaling and the TME, summarised the potential drugs inducing cell death in pre-clinical stage, reviewed some studies applying next-generation sequencing technologies in cancer death research, and discussed the future utilization of updated sequencing platforms in screening novel treatment methods targeted cell death. In conclusion, leveraging multi-omics technologies to dissect cell death signaling in the context of the TME holds great promise for advancing cancer research and therapy development.
Collapse
Affiliation(s)
- Wenxin Wang
- BGI Genomics, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310030, China
| | - Tong Li
- BGI Genomics, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310030, China
| | - Kui Wu
- BGI Genomics, Shenzhen, 518083, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China.
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310030, China.
| |
Collapse
|
5
|
Yang LK, Ma WJ, Wang X, Chen HR, Jiang YN, Sun H. Apoptosis in polycystic ovary syndrome: Mechanisms and therapeutic implications. Life Sci 2025; 363:123394. [PMID: 39809382 DOI: 10.1016/j.lfs.2025.123394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a common disorder that affects the female reproductive system, with an incidence of 8 % to 15 %. It is characterized by irregular menstruation, hyperandrogenemia, and polycystic abnormalities in the ovaries. Nevertheless, there is still much to learn about the molecular pathways underlying PCOS. Apoptosis is the process by which cells actively destroy themselves, and it is vital to an organism's ability to develop normally and maintain homeostasis. In recent years, a growing body of research has indicated a connection between the pathophysiology of PCOS and apoptosis. Therefore, it is critical to comprehend the relationship between PCOS and apoptosis in greater detail, identify the pathophysiological underpinnings of PCOS, and provide fresh perspectives and targets for its treatment. This review aims to summarize the relationship between PCOS and apoptosis, discuss how apoptosis affects normal ovarian function and how it becomes dysfunctional in the ovaries of PCOS patients, and investigate the signaling pathways associated with apoptosis in PCOS, including PI3K-Akt, TNF, NF-κB, and p53. Additionally, potential therapeutic approaches for PCOS treatment are provided by summarizing the role of apoptosis in PCOS therapy.
Collapse
Affiliation(s)
- Ling-Kun Yang
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Wan-Jing Ma
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Xiao Wang
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Huan-Ran Chen
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Ya-Nan Jiang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, PR China.
| | - Hui Sun
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
6
|
Cai L, Fan Q, Pang R, Chen C, Zhang Y, Xie H, Huang J, Wang Y, Li P, Huang D, Jin X, Zhou Y, Li Y. Microglia programmed cell death in neurodegenerative diseases and CNS injury. Apoptosis 2025; 30:446-465. [PMID: 39656359 PMCID: PMC11799081 DOI: 10.1007/s10495-024-02041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2024] [Indexed: 02/06/2025]
Abstract
Programmed cell death (PCD) has emerged as a critical regulatory mechanism in the initiation and progression of various pathological conditions. PCD in microglia, including necroptosis, pyroptosis, apoptosis, ferroptosis, and autophagy, occurs in a variety of central nervous system (CNS) diseases. Dysregulation of microglia can lead to excessive tissue damage or neuronal death in CNS injury. Various injury stimuli trigger aberrant activation of the PCD pathway of microglia, which then further leads to inflammatory cascades that exacerbates CNS pathology in a vicious cycle. Therefore, targeting PCD in microglia is considered an important avenue for the treatment of various neurodegenerative diseases and CNS injury. In this review, we summarize the major and recent findings focusing on the mechanisms of PCD in microglia modulating functions in neurodegenerative diseases and CNS injury and provide a systematic overview of the current inhibitors targeting various PCD pathways, which may provide important therapeutic targets that merit further investigation.
Collapse
Affiliation(s)
- Ling Cai
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyue Fan
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Pang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueman Zhang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyi Xie
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Huang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Huang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Jin
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuxi Zhou
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Li
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Hosseinkhani S, Amandadi M, Ghanavatian P, Zarein F, Ataei F, Nikkhah M, Vandenabeele P. Harnessing luciferase chemistry in regulated cell death modalities and autophagy: overview and perspectives. Chem Soc Rev 2024; 53:11557-11589. [PMID: 39417351 DOI: 10.1039/d3cs00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Regulated cell death is a fate of cells in (patho)physiological conditions during which extrinsic or intrinsic signals or redox equilibrium pathways following infection, cellular stress or injury are coupled to cell death modalities like apoptosis, necroptosis, pyroptosis or ferroptosis. An immediate survival response to cellular stress is often induction of autophagy, a process that deals with removal of aggregated proteins and damaged organelles by a lysosomal recycling process. These cellular processes and their regulation are crucial in several human diseases. Exploiting high-throughput assays which discriminate distinct cell death modalities and autophagy are critical to identify potential therapeutic agents that modulate these cellular responses. In the past few years, luciferase-based assays have been widely developed for assessing regulated cell death and autophagy pathways due to their simplicity, sensitivity, known chemistry, different spectral properties and high-throughput potential. Here, we review basic principles of bioluminescent reactions from a mechanistic perspective, along with their implication in vitro and in vivo for probing cell death and autophagy pathways. These include applying luciferase-, luciferin-, and ATP-based biosensors for investigating regulated cell death modalities. We discuss multiplex bioluminescence platforms which simultaneously distinguish between the various cell death phenomena and cellular stress recovery processes such as autophagy. We also highlight the recent technological achievements of bioluminescent tools for the prediction of drug effectiveness in pathways associated with regulated cell death.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parisa Ghanavatian
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
8
|
Sun Y, Liu K. Mechanistic Insights into Influenza A Virus-Induced Cell Death and Emerging Treatment Strategies. Vet Sci 2024; 11:555. [PMID: 39591329 PMCID: PMC11598850 DOI: 10.3390/vetsci11110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Influenza A virus (IAV) infection initiates a complex interplay of cell death modalities, including apoptosis, necroptosis, pyroptosis, and their integration, known as PANoptosis, which significantly impacts host immune responses and tissue integrity. These pathways are intricately regulated by viral proteins and host factors, contributing to both viral clearance and pathogenesis-related tissue damage. This review comprehensively explores the molecular mechanisms underlying these cell death processes in influenza infection. We highlight the roles of key regulatory proteins, such as ZBP1 (Z-DNA binding protein 1) and RIPK3 (receptor-interacting protein kinase 3), in orchestrating these responses, emphasizing the dual roles of cell death in both antiviral defense and tissue injury. Furthermore, we discuss emerging therapeutic strategies targeting these pathways, aiming to enhance antiviral efficacy while minimizing collateral tissue damage. Future research should focus on targeted approaches to modulate cell death mechanisms, aiming to reduce tissue damage and improve clinical outcomes for patients with severe influenza.
Collapse
Affiliation(s)
- Yuling Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Kaituo Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Seyrek K, Espe J, Reiss E, Lavrik IN. The Crosstalk of Apoptotic and Non-Apoptotic Signaling in CD95 System. Cells 2024; 13:1814. [PMID: 39513921 PMCID: PMC11545656 DOI: 10.3390/cells13211814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The mechanisms of CD95 (Fas/APO-1)-mediated extrinsic apoptotic pathway in cancer cells have been extensively studied. The majority of human cells express CD95, but not all these cells can induce extrinsic apoptosis. Accumulating evidence has shown that CD95 is a multifunctional protein, and its stimulation can also elicit non-apoptotic or even survival signals. It has become clear that under certain cellular contexts, due to the various checkpoints, CD95 activation can trigger both apoptotic and non-apoptotic signals. The crosstalk of death and survival signals may occur at different levels of signal transduction. The strength of the CD95 stimulation, initial levels of anti-apoptotic proteins, and posttranslational modifications of the core DISC components have been proposed to be the most important factors in the life/death decisions at CD95. Successful therapeutic targeting of CD95 signaling pathways will require a better understanding of the crosstalk between CD95-induced apoptotic and cell survival pathways. In this review, in order to gain a systematic understanding of the crosstalk between CD95-mediated apoptosis and non-apoptotic signaling, we will discuss these issues in a step-by-step way.
Collapse
Affiliation(s)
| | | | | | - Inna N. Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; (K.S.); (J.E.); (E.R.)
| |
Collapse
|
10
|
Vimalkumar PS, Sivadas N, Murali VP, Sherin DR, Murali M, Joseph AG, Radhakrishnan KV, Maiti KK. Exploring apoptotic induction of malabaricone A in triple-negative breast cancer cells: an acylphenol phyto-entity isolated from the fruit rind of Myristica malabarica Lam. RSC Med Chem 2024:d4md00391h. [PMID: 39263684 PMCID: PMC11382570 DOI: 10.1039/d4md00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Myristica malabarica Lam., commonly known as Malabar nutmeg or false nutmeg, is used in traditional medicine and as a spice. Our exploration focuses on malabaricones, a distinct group of secondary metabolites isolated from the fruit rind of M. malabarica. We investigated the selective cytotoxicity of malabaricones against the triple-negative breast cancer (TNBC) cell line. In particular, malabaricone A (Mal-A) displays heightened toxicity towards TNBC cells (MDA-MB-231), with an IC50 of 8.81 ± 0.03 μM. In vitro fluorimetric assays confirmed the apoptotic capability of Mal-A and its capacity to induce nuclear fragmentation. Additionally, ultrasensitive surface-enhanced Raman spectroscopy confirms DNA fragmentation during cellular apoptosis. Cell cycle analysis indicates arrest during the sub-G0 phase by downregulating key regulatory proteins involved in cell cycle progression. Increased expression levels of caspase 3, 9, and 8 suggest involvement of both extrinsic and intrinsic apoptotic pathways. Finally, assessment of protein expression patterns within apoptotic pathways reveals upregulation of key apoptotic proteins like Fas/FasL, TNF/TNFR1, and p53, coupled with downregulation of several inhibitors of apoptosis proteins such as XIAP, cIAP-2, and Livin. These findings are further verified with in silico molecular docking. Mal-A reveals a strong affinity towards apoptotic proteins, including TNF, Fas, HTRA, Smac, and XIAP, with docking scores ranging from -5.1 to -7.2 kcal mol-1. Subsequently, molecular dynamics simulation confirms the binding stability. This conclusive in vitro evaluation validates Mal-A as a potent phyto-entity against TNBC. To the best of our knowledge, this study represents the first comprehensive anticancer evaluation of Mal-A in TNBC cells.
Collapse
Affiliation(s)
- Pothiyil S Vimalkumar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Neethu Sivadas
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Vishnu Priya Murali
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
| | - Daisy R Sherin
- School of Digital Sciences, Kerala University of Digital Sciences, Innovation and Technology, Digital University Kerala Thiruvananthapuram-695317 India
| | - Madhukrishnan Murali
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Anuja Gracy Joseph
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Kokkuvayil Vasu Radhakrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
11
|
Krzyzowska M, Patrycy M, Chodkowski M, Janicka M, Kowalczyk A, Skulska K, Thörn K, Eriksson K. Fas/FasL-Mediated Apoptosis and Inflammation Contribute to Recovery from HSV-2-Mediated Spinal Cord Infection. Viruses 2024; 16:1363. [PMID: 39339840 PMCID: PMC11436029 DOI: 10.3390/v16091363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is a sexually transmitted pathogen that causes a persistent infection in sensory ganglia. The infection manifests itself as genital herpes but in rare cases it can cause meningitis. In this study, we used a murine model of HSV-2 meningitis to show that Fas and FasL are induced within the CNS upon HSV-2 infection, both on resident microglia and astrocytes and on infiltrating monocytes and lymphocytes. Mice lacking Fas or FasL had a more severe disease development with significantly higher morbidity, mortality, and an overall higher CNS viral load. In parallel, these Fas/FasL-deficient mice showed a severely impaired infection-induced CNS inflammatory response with lower levels of infiltrating CD4+ T-cells, lower levels of Th1 cytokines and chemokines, and a shift in the balance between M1 and M2 microglia/monocytes. In vitro, we confirmed that Fas and FasL is required for the induction of leucocyte apoptosis, but also show that the Fas/FasL pathway is required for adequate cytokine and chemokine production by glial cells. In summary, our data show that the Fas/FasL cell death receptor pathway is an important defense mechanism in the spinal cord as it down-regulates HSV-2-induced inflammation while at the same time promoting adequate anti-viral immune responses against infection.
Collapse
Affiliation(s)
- Malgorzata Krzyzowska
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (M.P.); (M.C.); (M.J.)
| | - Magdalena Patrycy
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (M.P.); (M.C.); (M.J.)
| | - Marcin Chodkowski
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (M.P.); (M.C.); (M.J.)
| | - Martyna Janicka
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (M.P.); (M.C.); (M.J.)
| | - Andrzej Kowalczyk
- PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland; (A.K.); (K.S.)
| | - Katarzyna Skulska
- PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland; (A.K.); (K.S.)
| | - Karolina Thörn
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (K.T.); (K.E.)
| | - Kristina Eriksson
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (K.T.); (K.E.)
| |
Collapse
|
12
|
Duan P, Li B, Zhou Y, Cao H, Chen S, Xing Y. ZBTB20 suppresses tumor growth in glioblastoma through activating the TET1/FAS/caspase‑3 pathway. Oncol Lett 2024; 28:358. [PMID: 38881713 PMCID: PMC11176889 DOI: 10.3892/ol.2024.14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/16/2024] [Indexed: 06/18/2024] Open
Abstract
Zinc finger and BTB domain containing 20 (ZBTB20) is a key transcription repressor that regulates multiple physiological and pathophysiological processes. Thus far, the role of ZBTB20 in glioblastoma (GBM), a World Health Organization grade IV glioma, remains unclear. In the present study, the expression profile data of ZBTB20 in GBM tissues from public databases was analyzed. It was found that ZBTB20 expression in GBM tissues was significantly lower than that measured in lower grade glioma tissues. Furthermore, patients with GBM with lower ZBTB20 expression were associated with a shorter overall survival time. Gain- and loss-of-function experiments in GBM cells were also performed. The results demonstrated that ZBTB20 overexpression decreased GBM cell proliferation, while ZBTB20 knockdown significantly enhanced it. Cell cycle analysis showed the ZBTB20 overexpression may have inhibited proliferation through cell cycle arrest at the G2/M phase, while ZBTB20 knockdown increased the percentages of cells in both the S phase and G2/M phase. Ten-eleven translocation 1 (TET1) is an important tumor suppressor involved in the formation of various types of tumor, and it was upregulated in ZBTB20-overexpressing GBM cells. It was further demonstrated that ZBTB20 activated the TET1/FAS/caspase-3 pathway. The results of the present study therefore indicated the potential role of ZBTB20 as a tumor suppressor and therapeutic target for GBM.
Collapse
Affiliation(s)
- Ping Duan
- Department of Physiology and Neurobiology, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Bo Li
- Department of Physiology and Neurobiology, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yifan Zhou
- Department of Physiology and Neurobiology, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Huanhuan Cao
- Department of Physiology and Neurobiology, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Shiyue Chen
- Department of Physiology and Neurobiology, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Ying Xing
- Department of Physiology and Neurobiology, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
13
|
Akanyibah FA, Zhu Y, Jin T, Ocansey DKW, Mao F, Qiu W. The Function of Necroptosis and Its Treatment Target in IBD. Mediators Inflamm 2024; 2024:7275309. [PMID: 39118979 PMCID: PMC11306684 DOI: 10.1155/2024/7275309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/22/2024] [Accepted: 07/13/2024] [Indexed: 08/10/2024] Open
Abstract
Inflammatory bowel disease (IBD), which encompasses Crohn's disease (CD) and ulcerative colitis (UC), is a complicated illness whose exact cause is yet unknown. Necroptosis is associated with IBD pathogenesis, leading to intestinal barrier abnormalities and uncontrolled inflammation. Molecules involved in necroptosis, however, exhibit different expression levels in IBD and its associated colorectal cancer. Multiple studies have shown that inhibiting these molecules alleviates necroptosis-induced IBD. Moreover, due to the severe scarcity of clinical medications for treating IBD caused by necroptosis, we review the various functions of crucial necroptosis molecules in IBD, the stimuli regulating necroptosis, and the current emerging therapeutic strategies for treating IBD-associated necroptosis. Eventually, understanding the pathogenesis of necroptosis in IBD will enable the development of additional therapeutic approaches for the illness.
Collapse
Affiliation(s)
- Francis Atim Akanyibah
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu ProvinceDepartment of Laboratory MedicineSchool of MedicineJiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yi Zhu
- The People's Hospital of DanyangAffiliated Danyang Hospital of Nantong University, Zhenjiang 212300, Jiangsu, China
| | - Tao Jin
- Department of Gastrointestinal and EndoscopyThe Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu ProvinceDepartment of Laboratory MedicineSchool of MedicineJiangsu University, Zhenjiang 212013, Jiangsu, China
- Directorate of University Health ServicesUniversity of Cape Coast, Cape Coast CC0959347, Ghana
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu ProvinceDepartment of Laboratory MedicineSchool of MedicineJiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Wei Qiu
- Nanjing Jiangning Hospital, Nanjing 211100, Jiangsu, China
| |
Collapse
|
14
|
Shimada H, Powell TL, Jansson T. Regulation of placental amino acid transport in health and disease. Acta Physiol (Oxf) 2024; 240:e14157. [PMID: 38711335 PMCID: PMC11162343 DOI: 10.1111/apha.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Abnormal fetal growth, i.e., intrauterine growth restriction (IUGR) or fetal growth restriction (FGR) and fetal overgrowth, is associated with increased perinatal morbidity and mortality and is strongly linked to the development of metabolic and cardiovascular disease in childhood and later in life. Emerging evidence suggests that changes in placental amino acid transport may contribute to abnormal fetal growth. This review is focused on amino acid transport in the human placenta, however, relevant animal models will be discussed to add mechanistic insights. At least 25 distinct amino acid transporters with different characteristics and substrate preferences have been identified in the human placenta. Of these, System A, transporting neutral nonessential amino acids, and System L, mediating the transport of essential amino acids, have been studied in some detail. Importantly, decreased placental Systems A and L transporter activity is strongly associated with IUGR and increased placental activity of these two amino acid transporters has been linked to fetal overgrowth in human pregnancy. An array of factors in the maternal circulation, including insulin, IGF-1, and adiponectin, and placental signaling pathways such as mTOR, have been identified as key regulators of placental Systems A and L. Studies using trophoblast-specific gene targeting in mice have provided compelling evidence that changes in placental Systems A and L are mechanistically linked to altered fetal growth. It is possible that targeting specific placental amino acid transporters or their upstream regulators represents a novel intervention to alleviate the short- and long-term consequences of abnormal fetal growth in the future.
Collapse
Affiliation(s)
- Hiroshi Shimada
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
- Departments of Obstetrics & Gynecology, Sapporo Medical University, Sapporo, Japan
| | - Theresa L Powell
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, US
| | - Thomas Jansson
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
| |
Collapse
|
15
|
Castellón JO, Ofori S, Burton NR, Julio AR, Turmon AC, Armenta E, Sandoval C, Boatner LM, Takayoshi EE, Faragalla M, Taylor C, Zhou AL, Tran K, Shek J, Yan T, Desai HS, Fregoso OI, Damoiseaux R, Backus KM. Chemoproteomics Identifies State-Dependent and Proteoform-Selective Caspase-2 Inhibitors. J Am Chem Soc 2024; 146:14972-14988. [PMID: 38787738 PMCID: PMC11832190 DOI: 10.1021/jacs.3c12240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Caspases are a highly conserved family of cysteine-aspartyl proteases known for their essential roles in regulating apoptosis, inflammation, cell differentiation, and proliferation. Complementary to genetic approaches, small-molecule probes have emerged as useful tools for modulating caspase activity. However, due to the high sequence and structure homology of all 12 human caspases, achieving selectivity remains a central challenge for caspase-directed small-molecule inhibitor development efforts. Here, using mass spectrometry-based chemoproteomics, we first identify a highly reactive noncatalytic cysteine that is unique to caspase-2. By combining both gel-based activity-based protein profiling (ABPP) and a tobacco etch virus (TEV) protease activation assay, we then identify covalent lead compounds that react preferentially with this cysteine and afford a complete blockade of caspase-2 activity. Inhibitory activity is restricted to the zymogen or precursor form of monomeric caspase-2. Focused analogue synthesis combined with chemoproteomic target engagement analysis in cellular lysates and in cells yielded both pan-caspase-reactive molecules and caspase-2 selective lead compounds together with a structurally matched inactive control. Application of this focused set of tool compounds to stratify the functions of the zymogen and partially processed (p32) forms of caspase-2 provide evidence to support that caspase-2-mediated response to DNA damage is largely driven by the partially processed p32 form of the enzyme. More broadly, our study highlights future opportunities for the development of proteoform-selective caspase inhibitors that target nonconserved and noncatalytic cysteine residues.
Collapse
Affiliation(s)
- José O Castellón
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| | - Samuel Ofori
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| | - Nikolas R Burton
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Ashley R Julio
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Alexandra C Turmon
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Ernest Armenta
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Carina Sandoval
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Evan E Takayoshi
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Marina Faragalla
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Cameron Taylor
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, California 90095, United States
| | - Ann L Zhou
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Ky Tran
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Jeremy Shek
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Heta S Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| | - Oliver I Fregoso
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
| | - Robert Damoiseaux
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, California 90095, United States
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California 90095, United States
- Department of Bioengineering, Samueli School of Engineering, UCLA, Los Angeles, California 90095, United States
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
16
|
Li L, Jin M, Tan J, Xiao B. NcRNAs: A synergistically antiapoptosis therapeutic tool in Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14476. [PMID: 37735992 PMCID: PMC11017435 DOI: 10.1111/cns.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
AIMS The aim of this review is to systematically summarize and analyze the noncoding RNAs (ncRNAs), especially microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), in the cell apoptosis among Alzheimer's disease (AD) in recent years to demonstrate their value in the diagnosis and treatment of AD. METHODS We systematically summarized in vitro and in vivo studies focusing on the ncRNAs in the regulation of cell apoptosis among AD in PubMed, ScienceDirect, and Google Scholar. RESULTS We discover three patterns of ncRNAs (including 'miRNA-mRNA', 'lncRNA-miRNA-mRNA', and 'circRNA-miRNA-mRNA') form the ncRNA-based regulatory networks in regulating cell apoptosis in AD. CONCLUSIONS This review provides a future diagnosis and treatment strategy for AD patients based on ncRNAs.
Collapse
Affiliation(s)
- Liangxian Li
- Laboratory of Respiratory DiseaseAffiliated Hospital of Guilin Medical UniversityGuilinChina
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
| | - Mingyue Jin
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
| | - Bo Xiao
- Laboratory of Respiratory DiseaseAffiliated Hospital of Guilin Medical UniversityGuilinChina
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
- Key Laboratory of Respiratory DiseasesEducation Department of Guangxi Zhuang Autonomous RegionGuilinChina
| |
Collapse
|
17
|
Guerrache A, Micheau O. TNF-Related Apoptosis-Inducing Ligand: Non-Apoptotic Signalling. Cells 2024; 13:521. [PMID: 38534365 PMCID: PMC10968836 DOI: 10.3390/cells13060521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, while sparing healthy cells. Over the last three decades, this tumour selectivity has prompted many studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most of these attempts have failed, so far, novel formulations are still being evaluated. However, emerging evidence indicates that TRAIL can also trigger a non-canonical signal transduction pathway that is likely to be detrimental for its use in oncology. Likewise, an increasing number of studies suggest that in some circumstances TRAIL can induce, via Death receptor 5 (DR5), tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, that of the non-canonical pathway is less understood. In this study, we the current state of knowledge of TRAIL non-canonical signalling.
Collapse
Affiliation(s)
- Abderrahmane Guerrache
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
| | - Olivier Micheau
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
- Laboratoire d’Excellence LipSTIC, 21000 Dijon, France
| |
Collapse
|
18
|
Lin Z, Long F, Kang R, Klionsky DJ, Yang M, Tang D. The lipid basis of cell death and autophagy. Autophagy 2024; 20:469-488. [PMID: 37768124 PMCID: PMC10936693 DOI: 10.1080/15548627.2023.2259732] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
ABBREVIATIONS ACSL: acyl-CoA synthetase long chain family; DISC: death-inducing signaling complex; DAMPs: danger/damage-associated molecular patterns; Dtgn: dispersed trans-Golgi network; FAR1: fatty acyl-CoA reductase 1; GPX4: glutathione peroxidase 4; LPCAT3: lysophosphatidylcholine acyltransferase 3; LPS: lipopolysaccharide; MUFAs: monounsaturated fatty acids; MOMP: mitochondrial outer membrane permeabilization; MLKL, mixed lineage kinase domain like pseudokinase; oxPAPC: oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine; OxPCs: oxidized phosphatidylcholines; PUFAs: polyunsaturated fatty acids; POR: cytochrome p450 oxidoreductase; PUFAs: polyunsaturated fatty acids; RCD: regulated cell death; RIPK1: receptor interacting serine/threonine kinase 1; SPHK1: sphingosine kinase 1; SOAT1: sterol O-acyltransferase 1; SCP2: sterol carrier protein 2; SFAs: saturated fatty acids; SLC47A1: solute carrier family 47 member 1; SCD: stearoyl-CoA desaturase; VLCFA: very long chain fatty acids.
Collapse
Affiliation(s)
- Zhi Lin
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha, Hunan, China
| | - Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Postdoctoral Research Station of Basic Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha, Hunan, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
19
|
Skalka GL, Tsakovska M, Murphy DJ. Kinase signalling adaptation supports dysfunctional mitochondria in disease. Front Mol Biosci 2024; 11:1354682. [PMID: 38434478 PMCID: PMC10906720 DOI: 10.3389/fmolb.2024.1354682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Mitochondria form a critical control nexus which are essential for maintaining correct tissue homeostasis. An increasing number of studies have identified dysregulation of mitochondria as a driver in cancer. However, which pathways support and promote this adapted mitochondrial function? A key hallmark of cancer is perturbation of kinase signalling pathways. These pathways include mitogen activated protein kinases (MAPK), lipid secondary messenger networks, cyclic-AMP-activated (cAMP)/AMP-activated kinases (AMPK), and Ca2+/calmodulin-dependent protein kinase (CaMK) networks. These signalling pathways have multiple substrates which support initiation and persistence of cancer. Many of these are involved in the regulation of mitochondrial morphology, mitochondrial apoptosis, mitochondrial calcium homeostasis, mitochondrial associated membranes (MAMs), and retrograde ROS signalling. This review will aim to both explore how kinase signalling integrates with these critical mitochondrial pathways and highlight how these systems can be usurped to support the development of disease. In addition, we will identify areas which require further investigation to fully understand the complexities of these regulatory interactions. Overall, this review will emphasize how studying the interaction between kinase signalling and mitochondria improves our understanding of mitochondrial homeostasis and can yield novel therapeutic targets to treat disease.
Collapse
Affiliation(s)
- George L. Skalka
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mina Tsakovska
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel J. Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Scotland Institute, Glasgow, United Kingdom
| |
Collapse
|
20
|
Haymour L, Jean M, Smulski C, Legembre P. CD95 (Fas) and CD95L (FasL)-mediated non-canonical signaling pathways. Biochim Biophys Acta Rev Cancer 2023; 1878:189004. [PMID: 37865305 DOI: 10.1016/j.bbcan.2023.189004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Although the interaction of CD95L (also known as FasL) with its so-called death receptor CD95 (Fas) induces an apoptotic signal responsible for the elimination of infected and cancer cells and maintenance of tissue homeostasis, this receptor can also implement non apoptotic signaling pathways. This latter signaling is involved in metastatic dissemination in certain cancers and the severity of auto-immune disorders. The signaling complexity of this pair is increased by the fact that CD95 expression itself seems to contribute to oncogenesis via a CD95L-independent manner and, that both ligand and receptor might interact with other partners modulating their pathophysiological functions. Finally, CD95L itself can trigger cell signaling in immune cells rendering complex the interpretation of mouse models in which CD95 or CD95L are knocked out. Herein, we discuss these non-canonical responses and their biological functions.
Collapse
Affiliation(s)
- Layla Haymour
- UMR CNRS 7276, INSERM U1262, CRIBL, Université Limoges, Limoges, France
| | - Mickael Jean
- Université de Rennes, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes F-35000, France
| | - Cristian Smulski
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Negro, Argentina
| | - Patrick Legembre
- UMR CNRS 7276, INSERM U1262, CRIBL, Université Limoges, Limoges, France.
| |
Collapse
|
21
|
Castellón JO, Ofori S, Armenta E, Burton N, Boatner LM, Takayoshi EE, Faragalla M, Zhou A, Tran K, Shek J, Yan T, Desai HS, Backus KM. Chemoproteomics identifies proteoform-selective caspase-2 inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.563785. [PMID: 37961563 PMCID: PMC10634807 DOI: 10.1101/2023.10.25.563785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Caspases are a highly conserved family of cysteine-aspartyl proteases known for their essential roles in regulating apoptosis, inflammation, cell differentiation, and proliferation. Complementary to genetic approaches, small-molecule probes have emerged as useful tools for modulating caspase activity. However, due to the high sequence and structure homology of all twelve human caspases, achieving selectivity remains a central challenge for caspase-directed small-molecule inhibitor development efforts. Here, using mass spectrometry-based chemoproteomics, we first identify a highly reactive non-catalytic cysteine that is unique to caspase-2. By combining both gel-based activity-based protein profiling (ABPP) and a tobacco etch virus (TEV) protease activation assay, we then identify covalent lead compounds that react preferentially with this cysteine and afford a complete blockade of caspase-2 activity. Inhibitory activity is restricted to the zymogen or precursor form of monomeric caspase-2. Focused analogue synthesis combined with chemoproteomic target engagement analysis in cellular lysates and in cells yielded both pan-caspase reactive molecules and caspase-2 selective lead compounds together with a structurally matched inactive control. Application of this focused set of tool compounds to stratify caspase contributions to initiation of intrinsic apoptosis, supports compensatory caspase-9 activity in the context of caspase-2 inactivation. More broadly, our study highlights future opportunities for the development of proteoform-selective caspase inhibitors that target non-conserved and non-catalytic cysteine residues.
Collapse
|
22
|
Wang H, Wang Z, Zhang Z, Liu J, Hong L. β-Sitosterol as a Promising Anticancer Agent for Chemoprevention and Chemotherapy: Mechanisms of Action and Future Prospects. Adv Nutr 2023; 14:1085-1110. [PMID: 37247842 PMCID: PMC10509430 DOI: 10.1016/j.advnut.2023.05.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Cancer is one of the primary causes of death worldwide, and its incidence continues to increase yearly. Despite significant advances in research, the search for effective and nontoxic preventive and therapeutic agents remains greatly important. Cancer is a multimodal disease, where various mechanisms play significant roles in its occurrence and progression. This highlights the need for multitargeted approaches that are not only safe and inexpensive but also provide effective alternatives for current therapeutic regimens. β-Sitosterol (SIT), the most abundant phytosterol found in various plant foods, represents such an option. Preclinical evidence over the past few decades has overwhelmingly shown that SIT exhibits multiple anticancer activities against varied cancers, such as liver, cervical, colon, stomach, breast, lung, pancreatic, and prostate cancers, in addition to leukemia, multiple myeloma, melanoma, and fibrosarcoma. In this article, we present the latest advances and perspectives on SIT-systematically summarizing its antitumor mechanisms of action into 7 main sections and combining current challenges and prospects-for its use as a promising agent for cancer prevention and treatment. In particular, SIT plays a role in cancer prevention and treatment mainly by enhancing apoptosis, inducing cell cycle arrest, bidirectionally regulating oxidative stress, improving metabolic reprogramming, inhibiting invasion and metastasis, modulating immunity and inflammation, and combating drug resistance. Although SIT holds such great promise, the poor aqueous solubility and bioavailability coupled with low targeting efficacy limit its therapeutic efficacy and clinical application. Further research on novel drug delivery systems may improve these deficiencies. Overall, through complex and pleiotropic mechanisms, SIT has good potential for tumor chemoprevention and chemotherapy. However, no clinical trials have yet proven this potential. This review provides theoretical basis and rationality for the further design and conduct of clinical trials to confirm the anticancer activity of SIT.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zihui Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingchun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
23
|
Wang J, Parajuli N, Wang Q, Khalasawi N, Peng H, Zhang J, Yin C, Mi QS, Zhou L. MiR-23a Regulates Skin Langerhans Cell Phagocytosis and Inflammation-Induced Langerhans Cell Repopulation. BIOLOGY 2023; 12:925. [PMID: 37508356 PMCID: PMC10376168 DOI: 10.3390/biology12070925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023]
Abstract
Langerhans cells (LCs) are skin-resident macrophage that act similarly to dendritic cells for controlling adaptive immunity and immune tolerance in the skin, and they are key players in the development of numerous skin diseases. While TGF-β and related downstream signaling pathways are known to control numerous aspects of LC biology, little is known about the epigenetic signals that coordinate cell signaling during LC ontogeny, maintenance, and function. Our previous studies in a total miRNA deletion mouse model showed that miRNAs are critically involved in embryonic LC development and postnatal LC homeostasis; however, the specific miRNA(s) that regulate LCs remain unknown. miR-23a is the first member of the miR-23a-27a-24-2 cluster, a direct downstream target of PU.1 and TGF-b, which regulate the determination of myeloid versus lymphoid fates. Therefore, we used a myeloid-specific miR-23a deletion mouse model to explore whether and how miR-23a affects LC ontogeny and function in the skin. We observed the indispensable role of miR-23a in LC antigen uptake and inflammation-induced LC epidermal repopulation; however, embryonic LC development and postnatal homeostasis were not affected by cells lacking miR23a. Our results suggest that miR-23a controls LC phagocytosis by targeting molecules that regulate efferocytosis and endocytosis, whereas miR-23a promotes homeostasis in bone marrow-derived LCs that repopulate the skin after inflammatory insult by targeting Fas and Bcl-2 family proapoptotic molecules. Collectively, the context-dependent regulatory role of miR-23a in LCs represents an extra-epigenetic layer that incorporates TGF-b- and PU.1-mediated regulation during steady-state and inflammation-induced repopulation.
Collapse
Affiliation(s)
- Jie Wang
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Nirmal Parajuli
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Qiyan Wang
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Namir Khalasawi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Hongmei Peng
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Jun Zhang
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Congcong Yin
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry, Microbiology and Immunology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
- Department of Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry, Microbiology and Immunology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
- Department of Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| |
Collapse
|
24
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
25
|
Morawietz J, Körber H, Packeiser EM, Beineke A, Goericke-Pesch S. Insights into Canine Infertility: Apoptosis in Chronic Asymptomatic Orchitis. Int J Mol Sci 2023; 24:ijms24076083. [PMID: 37047053 PMCID: PMC10094104 DOI: 10.3390/ijms24076083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic asymptomatic orchitis (CAO) is a common cause of acquired non-obstructive azoospermia in dogs. To understand the impact and mode of action of apoptosis, we investigated TUNEL, Bax, Bcl-2, Fas/Fas ligand, and caspase 3/8/9 in testicular biopsies of CAO-affected dogs and compared the results to undisturbed spermatogenesis in healthy males (CG). TUNEL+ cells were significantly increased in CAO, correlating with the disturbance of spermatogenesis. Bcl-2, Bax (p < 0.01 each), caspase 9 (p < 0.05), Fas, caspase 8 (p < 0.01 each), and caspase 3 (p < 0.05) were significantly increased at the mRNA level, whereas FasL expression was downregulated. Cleaved caspase 3 staining was sporadic in CAO but not in CG. Sertoli cells, some peritubular (CAO/CG) and interstitial immune cells (CAO) stained Bcl-2+, with significantly more immunopositive cells in both compartments in CAO compared to CG. Bcl-2 and CD20 co-expressing B lymphocytes were encountered interstitially and in CAO occasionally also found intratubally, underlining their contribution to the maintenance of CAO. Our results support the crucial role of the intrinsic and extrinsic apoptotic pathways in the pathophysiology of canine CAO. Autoprotective Bcl-2 expression in Sertoli cells and B lymphocytes seems to be functional, however, thereby also maintaining and promoting the disease by immune cell activation.
Collapse
Affiliation(s)
- Judith Morawietz
- Reproductive Unit-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Hanna Körber
- Reproductive Unit-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Eva-Maria Packeiser
- Reproductive Unit-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Sandra Goericke-Pesch
- Reproductive Unit-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| |
Collapse
|
26
|
He Q, Ding H. Bioinformatics analysis of rheumatoid arthritis tissues identifies genes and potential drugs that are expressed specifically. Sci Rep 2023; 13:4508. [PMID: 36934132 PMCID: PMC10024744 DOI: 10.1038/s41598-023-31438-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/11/2023] [Indexed: 03/20/2023] Open
Abstract
Studies have implicated necroptosis mechanisms in orthopaedic-related diseases, since necroptosis is a unique regulatory cell death pattern. However, the role of Necroptosis-related genes in rheumatoid arthritis (RA) has not been well described. We downloaded RA-related data information and Necroptosis-related genes from the Gene Expression Omnibus (GEO), Kyoto Gene and Genome Encyclopedia (KEGG) database, and Genome Enrichment Analysis (GSEA), respectively. We identified 113 genes associated with RA-related necroptosis, which was closely associated with the cytokine-mediated signaling pathway, necroptosis and programmed necrosis. Subsequently, FAS, MAPK8 and TNFSF10 were identified as key genes among 48 Necroptosis-associated differential genes by three machine learning algorithms (LASSO, RF and SVM-RFE), and the key genes had good diagnostic power in distinguishing RA patients from healthy controls. According to functional enrichment analysis, these genes may regulate multiple pathways, such as B-cell receptor signaling, T-cell receptor signaling pathways, chemokine signaling pathways and cytokine-cytokine receptor interactions, and play corresponding roles in RA. Furthermore, we predicted 48 targeted drugs against key genes and 31 chemical structural formulae based on targeted drug prediction. Moreover, key genes were associated with complex regulatory relationships in the ceRNA network. According to CIBERSORT analysis, FAS, MAPK8 and TNFSF10 may be associated with changes in the immune microenvironment of RA patients. Our study developed a diagnostic validity and provided insight to the mechanisms of RA. Further studies will be required to test its diagnostic value for RA before it can be implemented in clinical practice.
Collapse
Affiliation(s)
- Qingshan He
- Nanyang Medical College, Henan, 473000, China
| | | |
Collapse
|
27
|
Development of a 5-FU modified miR-129 mimic as a therapeutic for non-small cell lung cancer. Mol Ther Oncolytics 2023; 28:277-292. [PMID: 36911069 PMCID: PMC9995506 DOI: 10.1016/j.omto.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths in the United States with non-small cell lung cancer (NSCLC) accounting for most cases. Despite advances in cancer therapeutics, the 5-year survival rate has remained poor due to several contributing factors, including its resistance to therapeutics. Therefore, there is a pressing need to develop therapeutics that can overcome resistance. Non-coding RNAs, including microRNAs (miRNAs), have been found to contribute to cancer resistance and therapeutics by modulating the expression of several targets involving multiple key mechanisms. In this study, we investigated the therapeutic potential of miR-129 modified with 5-fluorouracil (5-FU) in NSCLC. Our results show that 5-FU modified miR-129 (5-FU-miR-129) inhibits proliferation, induces apoptosis, and retains function as an miRNA in NSCLC cell lines A549 and Calu-1. Notably, we observed that 5-FU-miR-129 was able to overcome resistance to tyrosine kinase inhibitors and chemotherapy in cell lines resistant to erlotinib or 5-FU. Furthermore, we observed that the inhibitory effect of 5-FU-miR-129 can also be achieved in NSCLC cells under vehicle-free conditions. Finally, 5-FU-miR-129 inhibited NSCLC tumor growth and extended survival in vivo without toxic side effects. Altogether, our results demonstrate the potential of 5-FU-miR-129 as a highly potent cancer therapeutic in NSCLC.
Collapse
|
28
|
Leak L, Dixon SJ. Surveying the landscape of emerging and understudied cell death mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119432. [PMID: 36690038 PMCID: PMC9969746 DOI: 10.1016/j.bbamcr.2023.119432] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
Cell death can be a highly regulated process. A large and growing number of mammalian cell death mechanisms have been described over the past few decades. Major pathways with established roles in normal or disease biology include apoptosis, necroptosis, pyroptosis and ferroptosis. However, additional non-apoptotic cell death mechanisms with unique morphological, genetic, and biochemical features have also been described. These mechanisms may play highly specialized physiological roles or only become activated in response to specific lethal stimuli or conditions. Understanding the nature of these emerging and understudied mechanisms may provide new insight into cell death biology and suggest new treatments for diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Logan Leak
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
Mukherjee AG, Valsala Gopalakrishnan A. The interplay of arsenic, silymarin, and NF-ĸB pathway in male reproductive toxicity: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114614. [PMID: 36753973 DOI: 10.1016/j.ecoenv.2023.114614] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Arsenic toxicity is one of the most trending reasons for several malfunctions, particularly reproductive toxicity. The exact mechanism of arsenic poisoning is a big question mark. Exposure to arsenic reduces sperm count, impairs fertilization, and causes inflammation and genotoxicity through interfering with autophagy, epigenetics, ROS generation, downregulation of essential protein expression, metabolite changes, and hampering several signaling cascades, particularly by the alteration of NF-ĸB pathway. This work tries to give a clear idea about the different aspects of arsenic resulting in male reproductive complications, often leading to infertility. The first part of this article explains the implications of arsenic poisoning and the crosstalk of the NF-ĸB pathway in male reproductive toxicity. Silymarin is a bioactive compound that exerts anti-cancer and anti-inflammatory properties and has demonstrated hopeful outcomes in several cancers, including colon cancer, breast cancer, and skin cancer, by downregulating the hyperactive NF-ĸB pathway. The next half of this article thus sheds light on silymarin's therapeutic potential in inhibiting the NF-ĸB signaling cascade, thus offering protection against arsenic-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
30
|
Khalil MI, Yang C, Vu L, Chadha S, Nabors H, Welbon C, James CD, Morgan IM, Spanos WC, Pyeon D. HPV upregulates MARCHF8 ubiquitin ligase and inhibits apoptosis by degrading the death receptors in head and neck cancer. PLoS Pathog 2023; 19:e1011171. [PMID: 36867660 PMCID: PMC10016708 DOI: 10.1371/journal.ppat.1011171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/15/2023] [Accepted: 02/01/2023] [Indexed: 03/04/2023] Open
Abstract
The membrane-associated RING-CH-type finger ubiquitin ligase MARCHF8 is a human homolog of the viral ubiquitin ligases Kaposi's sarcoma herpesvirus K3 and K5 that promote host immune evasion. Previous studies have shown that MARCHF8 ubiquitinates several immune receptors, such as the major histocompatibility complex II and CD86. While human papillomavirus (HPV) does not encode any ubiquitin ligase, the viral oncoproteins E6 and E7 are known to regulate host ubiquitin ligases. Here, we report that MARCHF8 expression is upregulated in HPV-positive head and neck cancer (HNC) patients but not in HPV-negative HNC patients compared to normal individuals. The MARCHF8 promoter is highly activated by HPV oncoprotein E6-induced MYC/MAX transcriptional activation. The knockdown of MARCHF8 expression in human HPV-positive HNC cells restores cell surface expression of the tumor necrosis factor receptor superfamily (TNFRSF) death receptors, FAS, TRAIL-R1, and TRAIL-R2, and enhances apoptosis. MARCHF8 protein directly interacts with and ubiquitinates the TNFRSF death receptors. Further, MARCHF8 knockout in mouse oral cancer cells expressing HPV16 E6 and E7 augments cancer cell apoptosis and suppresses tumor growth in vivo. Our findings suggest that HPV inhibits host cell apoptosis by upregulating MARCHF8 and degrading TNFRSF death receptors in HPV-positive HNC cells.
Collapse
Affiliation(s)
- Mohamed I. Khalil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo, Egypt
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Smriti Chadha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Harrison Nabors
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Craig Welbon
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - William C. Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
31
|
Taheriazam A, Abad GGY, Hajimazdarany S, Imani MH, Ziaolhagh S, Zandieh MA, Bayanzadeh SD, Mirzaei S, Hamblin MR, Entezari M, Aref AR, Zarrabi A, Ertas YN, Ren J, Rajabi R, Paskeh MDA, Hashemi M, Hushmandi K. Graphene oxide nanoarchitectures in cancer biology: Nano-modulators of autophagy and apoptosis. J Control Release 2023; 354:503-522. [PMID: 36641122 DOI: 10.1016/j.jconrel.2023.01.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/16/2023]
Abstract
Nanotechnology is a growing field, with many potential biomedical applications of nanomedicine for the treatment of different diseases, particularly cancer, on the horizon. Graphene oxide (GO) nanoparticles can act as carbon-based nanocarriers with advantages such as a large surface area, good mechanical strength, and the capacity for surface modification. These nanostructures have been extensively used in cancer therapy for drug and gene delivery, photothermal therapy, overcoming chemotherapy resistance, and for imaging procedures. In the current review, we focus on the biological functions of GO nanoparticles as regulators of apoptosis and autophagy, the two major forms of programmed cell death. GO nanoparticles can either induce or inhibit autophagy in cancer cells, depending on the conditions. By stimulating autophagy, GO nanocarriers can promote the sensitivity of cancer cells to chemotherapy. However, by impairing autophagy flux, GO nanoparticles can reduce cell survival and enhance inflammation. Similarly, GO nanomaterials can increase ROS production and induce DNA damage, thereby sensitizing cancer cells to apoptosis. In vitro and in vivo experiments have investigated whether GO nanomaterials show any toxicity in major body organs, such as the brain, liver, spleen, and heart. Molecular pathways, such as ATG, MAPK, JNK, and Akt, can be regulated by GO nanomaterials, leading to effects on autophagy and apoptosis. These topics are discussed in this review to shed some lights towards the biomedical potential of GO nanoparticles and their biocompatibility, paving the way for their future application in clinical trials.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ghazaleh Gholamiyan Yousef Abad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA, 02210, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
32
|
Devel L, Guedeney N, Bregant S, Chowdhury A, Jean M, Legembre P. Role of metalloproteases in the CD95 signaling pathways. Front Immunol 2022; 13:1074099. [PMID: 36544756 PMCID: PMC9760969 DOI: 10.3389/fimmu.2022.1074099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
CD95L (also known as FasL or CD178) is a member of the tumor necrosis family (TNF) superfamily. Although this transmembrane ligand has been mainly considered as a potent apoptotic inducer in CD95 (Fas)-expressing cells, more recent studies pointed out its role in the implementation of non-apoptotic signals. Accordingly, this ligand has been associated with the aggravation of inflammation in different auto-immune disorders and in the metastatic occurrence in different cancers. Although it remains to decipher all key factors involved in the ambivalent role of this ligand, accumulating clues suggest that while the membrane bound CD95L triggers apoptosis, its soluble counterpart generated by metalloprotease-driven cleavage is responsible for its non-apoptotic functions. Nonetheless, the metalloproteases (MMPs and ADAMs) involved in the CD95L shedding, the cleavage sites and the different stoichiometries and functions of the soluble CD95L remain to be elucidated. To better understand how soluble CD95L triggers signaling pathways from apoptosis to inflammation or cell migration, we propose herein to summarize the different metalloproteases that have been described to be able to shed CD95L, their cleavage sites and the biological functions associated with the released ligands. Based on these new findings, the development of CD95/CD95L-targeting therapeutics is also discussed.
Collapse
Affiliation(s)
- Laurent Devel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Nicolas Guedeney
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes, France
| | - Sarah Bregant
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Animesh Chowdhury
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Mickael Jean
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes, France
| | - Patrick Legembre
- CRIBL UMR CNRS 7276 INSERM 1262, Université de Limoges, Rue Marcland, Limoges, France
| |
Collapse
|
33
|
Kenji SF, Kurma K, Collet B, Oblet C, Debure L, Di Primo C, Minder L, Vérité F, Danger Y, Jean M, Penna A, Levoin N, Legembre P. MMP7 cleavage of amino-terminal CD95 death receptor switches signaling toward non-apoptotic pathways. Cell Death Dis 2022; 13:895. [PMID: 36274061 PMCID: PMC9588774 DOI: 10.1038/s41419-022-05352-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
CD95 is a death receptor that can promote oncogenesis through molecular mechanisms that are not fully elucidated. Although the mature CD95 membrane receptor is considered to start with the arginine at position 17 after elimination of the signal peptide, this receptor can also be cleaved by MMP7 upstream of its leucine at position 37. This post-translational modification occurs in cancer cells but also in normal cells such as peripheral blood leukocytes. The non-cleaved CD95 amino-terminal region consists in a disordered domain and its in silico reconstitution suggests that it might contribute to receptor aggregation and thereby, regulate the downstream death signaling pathways. In agreement with this molecular modeling analysis, the comparison of CD95-deficient cells reconstituted with full-length or N-terminally truncated CD95 reveals that the loss of the amino-terminal region of CD95 impairs the initial steps of the apoptotic signal while favoring the induction of pro-survival signals, including the PI3K and MAPK pathways.
Collapse
Affiliation(s)
- Shoji F Kenji
- IRSET, INSERM U1085, Université de Rennes 1, 36043, Rennes, France
| | - Keerthi Kurma
- INSERM U1262, Université de Limoges, 2, Rue Marcland, 87025, Limoges, France
| | - Brigitte Collet
- Centre Eugène Marquis, rue bataille Flandres Dunkerque, 35042, Rennes, France
| | - Christelle Oblet
- INSERM U1262, Université de Limoges, 2, Rue Marcland, 87025, Limoges, France
| | - Laure Debure
- Centre Eugène Marquis, rue bataille Flandres Dunkerque, 35042, Rennes, France
- Université de Rennes-1, INSERM U1242, rue bataille Flandres Dunkerque, 35042, Rennes, France
| | - Carmelo Di Primo
- University Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33000, Bordeaux, France
| | - Laëtitia Minder
- University Bordeaux, CNRS, INSERM, UAR 3033, US001, IECB, F-33000, Bordeaux, France
| | - Franck Vérité
- EFS Rennes, Rue Pierre Jean Gineste, 35016, Rennes Cedex, France
| | - Yannic Danger
- EFS Rennes, Rue Pierre Jean Gineste, 35016, Rennes Cedex, France
| | - Mickael Jean
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, F-35000, Rennes, France
| | - Aubin Penna
- IRSET, INSERM U1085, Université de Rennes 1, 36043, Rennes, France
- 4CS, CNRS UMR6041, Université de Poitiers, 86073, Poitiers, France
| | - Nicolas Levoin
- Bioprojet Biotech, rue du Chesnay Beauregard, 35760, Saint-Grégoire, France
| | - Patrick Legembre
- INSERM U1262, Université de Limoges, 2, Rue Marcland, 87025, Limoges, France.
| |
Collapse
|
34
|
Role of AMPK in Myocardial Ischemia-Reperfusion Injury-Induced Cell Death in the Presence and Absence of Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7346699. [PMID: 36267813 PMCID: PMC9578802 DOI: 10.1155/2022/7346699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2022]
Abstract
Recent studies indicate cell death is the hallmark of cardiac pathology in myocardial infarction and diabetes. The AMP-activated protein kinase (AMPK) signalling pathway is considered a putative salvaging phenomenon, plays a decisive role in almost all cellular, metabolic, and survival functions, and therefore entails precise regulation of its activity. AMPK regulates various programmed cell death depending on the stimuli and context, including autophagy, apoptosis, necroptosis, and ferroptosis. There is substantial evidence suggesting that AMPK is down-regulated in cardiac tissues of animals and humans with type 2 diabetes or metabolic syndrome compared to non-diabetic control and that stimulation of AMPK (physiological or pharmacological) can ameliorate diabetes-associated cardiovascular complications, such as myocardial ischemia-reperfusion injury. Furthermore, AMPK is an exciting therapeutic target for developing novel drug candidates to treat cell death in diabetes-associated myocardial ischemia-reperfusion injury. Therefore, in this review, we summarized how AMPK regulates autophagic, apoptotic, necroptotic, and ferroptosis pathways in the context of myocardial ischemia-reperfusion injury in the presence and absence of diabetes.
Collapse
|
35
|
Kharaeva Z, Trakhtman P, Trakhtman I, De Luca C, Mayer W, Chung J, Ibragimova G, Korkina L. Fermented Mangosteen (Garcinia mangostana L.) Supplementation in the Prevention of HPV-Induced Cervical Cancer: From Mechanisms to Clinical Outcomes. Cancers (Basel) 2022; 14:cancers14194707. [PMID: 36230630 PMCID: PMC9564137 DOI: 10.3390/cancers14194707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Human papillomavirus (HPV) is connected with virtually all cases of cervical cancer. The viral infection-associated chronic inflammation, oxidative stress, and alterations in apoptosis have been considered as leading risk factors for carcinogenesis in humans. In an observational clinical study, we identified oxidative markers and the cervical/circulating ligands of TNF-alpha-induced apoptosis involved in HPV-associated cervical carcinogenesis. In the following clinical trial, 250 females infected with high-cancer-risk HPV16/18 (healthy and pre-cancerous) were recruited into a placebo-controlled clinical study of supplementation with fermented mangosteen (FM, 28g/day, daily) for three months. Our findings indicate that FM, and not a placebo, in combination with routine anti-viral therapy, could prevent, slow down, or even interrupt HPV-associated cervical carcinogenesis, mainly through the suppression of leukocyte recruitment into infected tissue, through anti-inflammatory effects, and through the restoration of nitric oxide metabolite-initiated TRAIL-dependent apoptosis. Abstract In the observational clinical study, we identified the oxidative markers of HPV-associated cervical carcinogenesis and the local/circulating ligands of TNF-alpha-induced apoptosis. Cervical biopsies of 196 females infected with low-cancer-risk HPV10/13 or high-cancer-risk HPV16/18 (healthy, pre-cancerous CIN I and CIN II, and CIN III carcinoma) were analysed for OH radical scavenging, catalase, GSH-peroxidase, myeloperoxidase (MPO), nitrate/nitrite, nitrotyrosine, and isoprostane. Ligands of TNF-alpha-dependent apoptosis (TNF-alpha, TRAIL, IL-2, and sFAS) were determined in cervical fluid, biopsies, and serum. Cervical MPO was highly enhanced, while nitrotyrosine decreased in CIN III. Local/circulating TRAIL was remarkably decreased, and higher-than-control serum TNF-alpha and IL-2 levels were found in the CIN I and CIN III groups. Then, 250 females infected with HPV16/18 (healthy and with CIN I and CIN II) were recruited into a placebo-controlled clinical study of supplementation with fermented mangosteen (FM, 28g/day, daily) for three months. Post-trial colposcopy revealed normal patterns in 100% of the FM group versus 62% of the placebo group. Inflammatory cells in cervical fluid were found in 21% of the FM group versus 40% of the placebo group. Locally, FM drastically diminished MPO and NO2/NO3, while it remarkably increased TRAIL. Additionally, FM supplementation normalised serum TRAIL, TNF-alpha, and IL-2.
Collapse
Affiliation(s)
- Zaira Kharaeva
- Microbiology, Immunology, and Virology Department, Berbekov’s Kabardino-Balkar State Medical University, Chernishevskiy Str. 176, 360000 Nalchik, Russia
| | - Pavel Trakhtman
- Blood Bank, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Mashela Str. 1, 117988 Moscow, Russia
| | - Ilya Trakhtman
- R&D Department, Swiss Dekotra GmbH, Badenerstrasse 549, CH-8048 Zurich, Switzerland
| | - Chiara De Luca
- R&D Department, Medena AG, Industriestrasse 16, CH-8910 Affoltern-am-Albis, Switzerland
| | - Wolfgang Mayer
- R&D Department, Medena AG, Industriestrasse 16, CH-8910 Affoltern-am-Albis, Switzerland
| | - Jessie Chung
- Natural Health Farm Ltd., 39 Jalan Pengacara U1/48, Temasya Industrial Park, Shah Alam 40150, Selangor, Malaysia
| | - Galina Ibragimova
- Centre for Innovative Biotechnological Investigations Nanolab (CIBI-NANOLAB), Vernadskiy Pr. 97, 117437 Moscow, Russia
| | - Liudmila Korkina
- R&D Department, Swiss Dekotra GmbH, Badenerstrasse 549, CH-8048 Zurich, Switzerland
- Centre for Innovative Biotechnological Investigations Nanolab (CIBI-NANOLAB), Vernadskiy Pr. 97, 117437 Moscow, Russia
- Correspondence: or ; Tel.: +39-3497364787
| |
Collapse
|
36
|
Kholodenko IV, Gisina AM, Manukyan GV, Majouga AG, Svirshchevskaya EV, Kholodenko RV, Yarygin KN. Resistance of Human Liver Mesenchymal Stem Cells to FAS-Induced Cell Death. Curr Issues Mol Biol 2022; 44:3428-3443. [PMID: 36005132 PMCID: PMC9406952 DOI: 10.3390/cimb44080236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/05/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have a pronounced therapeutic potential in various pathological conditions. Though therapeutic effects of MSC transplantation have been studied for a long time, the underlying mechanisms are still not clear. It has been shown that transplanted MSCs are rapidly eliminated, presumably by apoptosis. As the mechanisms of MSC apoptosis are not fully understood, in the present work we analyzed MSC sensitivity to Fas-induced apoptosis using MSCs isolated from the biopsies of liver fibrosis patients (L-MSCs). The level of cell death was analyzed by flow cytometry in the propidium iodide test. The luminescent ATP assay was used to measure cellular ATP levels; and the mitochondrial membrane potential was assessed using the potential-dependent dye JC-1. We found that human L-MSCs were resistant to Fas-induced cell death over a wide range of FasL and anti-Fas mAb concentrations. At the same time, intrinsic death signal inducers CoCl2 and staurosporine caused apoptosis of L-MSCs in a dose-dependent manner. Despite the absence of Fas-induced cell death treatment of L-MSCs with low concentrations of FasL or anti-Fas mAb resulted in a cellular ATP level decrease, while high concentrations of the inducers caused a decline of the mitochondrial membrane potential. Pre-incubation of L-MSCs with the pro-inflammatory cytokine TNF-α did not promote L-MSC cell death. Our data indicate that human L-MSCs have increased resistance to receptor-mediated cell death even under inflammatory conditions.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.M.G.); (K.N.Y.)
- Correspondence: ; Tel.: +7-(905)7765062; Fax: +7-(499)2450857
| | - Alisa M. Gisina
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.M.G.); (K.N.Y.)
| | - Garik V. Manukyan
- Petrovsky Russian Research Center of Surgery, 119991 Moscow, Russia;
| | - Alexander G. Majouga
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Elena V. Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (R.V.K.)
| | - Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (R.V.K.)
| | - Konstantin N. Yarygin
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.M.G.); (K.N.Y.)
| |
Collapse
|
37
|
Stefanowicz-Hajduk J, Hering A, Gucwa M, Sztormowska-Achranowicz K, Kowalczyk M, Soluch A, Ochocka JR. An In Vitro Anticancer, Antioxidant, and Phytochemical Study on Water Extract of Kalanchoe daigremontiana Raym.-Hamet and H. Perrier. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072280. [PMID: 35408681 PMCID: PMC9000682 DOI: 10.3390/molecules27072280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
Abstract
Kalanchoe species are succulents with anti-inflammatory, antioxidant, and analgesic properties, as well as cytotoxic activity. One of the most popular species cultivated in Europe is Kalanchoe daigremontiana Raym.-Hamet and H. Perrier. In our study, we analyzed the phytochemical composition of K. daigremontiana water extract using UHPLC-QTOF-MS and estimated the cytotoxic activity of the extract on human ovarian cancer SKOV-3 cells by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, flow cytometry, luminometric, and fluorescent microscopy techniques. The expression levels of 92 genes associated with cell death were estimated via real-time PCR. The antioxidant activity was assessed via flow cytometry on human keratinocyte HaCaT cell line. The DPPH (2,2-diphenyl-1-picrylhydrazyl) radical and FRAP (ferric-reducing antioxidant power) assays were also applied. We identified twenty bufadienolide compounds in the water extract and quantified eleven. Bersaldegenin-1,3,5-orthoacetate and bryophyllin A were present in the highest amounts (757.4 ± 18.7 and 573.5 ± 27.2 ng/mg dry weight, respectively). The extract showed significant antiproliferative and cytotoxic activity, induced depolarization of the mitochondrial membrane, and significantly arrested cell cycle in the S and G2/M phases of SKOV-3 cells. Caspases-3, 7, 8, and 9 were not activated during the treatment, which indicated non-apoptotic cell death triggered by the extract. Additionally, the extract increased the level of oxidative stress in the cancer cell line. In keratinocytes treated with menadione, the extract moderately reduced the level of oxidative stress. This antioxidant activity was confirmed by the DPPH and FRAP assays, where the obtained IC50 values were 1750 ± 140 and 1271.82 ± 53.25 μg/mL, respectively. The real-time PCR analysis revealed that the extract may induce cell death via TNF receptor (tumor necrosis factor receptor) superfamily members 6 and 10.
Collapse
Affiliation(s)
- Justyna Stefanowicz-Hajduk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (A.H.); (M.G.); (J.R.O.)
- Department of Pharmacology, Medical University of Gdańsk, 80-204 Gdańsk, Poland;
- Correspondence:
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (A.H.); (M.G.); (J.R.O.)
| | - Magdalena Gucwa
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (A.H.); (M.G.); (J.R.O.)
| | | | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (M.K.); (A.S.)
| | - Agata Soluch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (M.K.); (A.S.)
| | - J. Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (A.H.); (M.G.); (J.R.O.)
| |
Collapse
|
38
|
Hou J, He Z, Liu T, Chen D, Wang B, Wen Q, Zheng X. Evolution of Molecular Targeted Cancer Therapy: Mechanisms of Drug Resistance and Novel Opportunities Identified by CRISPR-Cas9 Screening. Front Oncol 2022; 12:755053. [PMID: 35372044 PMCID: PMC8970599 DOI: 10.3389/fonc.2022.755053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Molecular targeted therapy has revolutionized the landscape of cancer treatment due to better therapeutic responses and less systemic toxicity. However, therapeutic resistance is a major challenge in clinical settings that hinders continuous clinical benefits for cancer patients. In this regard, unraveling the mechanisms of drug resistance may identify new druggable genetic alterations for molecularly targeted therapies, thus contributing to improved therapeutic efficacies. The recent rapid development of novel methodologies including CRISPR-Cas9 screening technology and patient-derived models provides powerful tools to dissect the underlying mechanisms of resistance to targeted cancer therapies. In this review, we updated therapeutic targets undergoing preclinical and clinical evaluation for various cancer types. More importantly, we provided comprehensive elaboration of high throughput CRISPR-Cas9 screening in deciphering potential mechanisms of unresponsiveness to molecularly targeted therapies, which will shed light on the discovery of novel opportunities for designing next-generation anti-cancer drugs.
Collapse
Affiliation(s)
- Jue Hou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zongsheng He
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tian Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dongfeng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bin Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi Zheng
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
39
|
Risso V, Lafont E, Le Gallo M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death Dis 2022; 13:248. [PMID: 35301281 PMCID: PMC8931059 DOI: 10.1038/s41419-022-04688-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Cell death plays a pivotal role in the maintenance of tissue homeostasis. Key players in the controlled induction of cell death are the Death Receptors (DR). CD95 is a prototypic DR activated by its cognate ligand CD95L triggering programmed cell death. As a consequence, alterations in the CD95/CD95L pathway have been involved in several disease conditions ranging from autoimmune diseases to inflammation and cancer. CD95L-induced cell death has multiple roles in the immune response since it constitutes one of the mechanisms by which cytotoxic lymphocytes kill their targets, but it is also involved in the process of turning off the immune response. Furthermore, beyond the canonical pro-death signals, CD95L, which can be membrane-bound or soluble, also induces non-apoptotic signaling that contributes to its tumor-promoting and pro-inflammatory roles. The intent of this review is to describe the role of CD95/CD95L in the pathophysiology of cancers, autoimmune diseases and chronic inflammation and to discuss recently patented and emerging therapeutic strategies that exploit/block the CD95/CD95L system in these diseases.
Collapse
Affiliation(s)
- Vesna Risso
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Elodie Lafont
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Matthieu Le Gallo
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France.
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
40
|
Bellinger DL, Lorton D. Sympathetic Nerves and Innate Immune System in the Spleen: Implications of Impairment in HIV-1 and Relevant Models. Cells 2022; 11:cells11040673. [PMID: 35203323 PMCID: PMC8870141 DOI: 10.3390/cells11040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
The immune and sympathetic nervous systems are major targets of human, murine and simian immunodeficiency viruses (HIV-1, MAIDS, and SIV, respectively). The spleen is a major reservoir for these retroviruses, providing a sanctuary for persistent infection of myeloid cells in the white and red pulps. This is despite the fact that circulating HIV-1 levels remain undetectable in infected patients receiving combined antiretroviral therapy. These viruses sequester in immune organs, preventing effective cures. The spleen remains understudied in its role in HIV-1 pathogenesis, despite it hosting a quarter of the body’s lymphocytes and diverse macrophage populations targeted by HIV-1. HIV-1 infection reduces the white pulp, and induces perivascular hyalinization, vascular dysfunction, tissue infarction, and chronic inflammation characterized by activated epithelial-like macrophages. LP-BM5, the retrovirus that induces MAIDS, is a well-established model of AIDS. Immune pathology in MAIDs is similar to SIV and HIV-1 infection. As in SIV and HIV, MAIDS markedly changes splenic architecture, and causes sympathetic dysfunction, contributing to inflammation and immune dysfunction. In MAIDs, SIV, and HIV, the viruses commandeer splenic macrophages for their replication, and shift macrophages to an M2 phenotype. Additionally, in plasmacytoid dendritic cells, HIV-1 blocks sympathetic augmentation of interferon-β (IFN-β) transcription, which promotes viral replication. Here, we review viral–sympathetic interactions in innate immunity and pathophysiology in the spleen in HIV-1 and relevant models. The situation remains that research in this area is still sparse and original hypotheses proposed largely remain unanswered.
Collapse
|
41
|
Merting AD, Poschel DB, Lu C, Klement JD, Yang D, Li H, Shi H, Chapdelaine E, Montgomery M, Redman MT, Savage NM, Nayak-Kapoor A, Liu K. Restoring FAS Expression via Lipid-Encapsulated FAS DNA Nanoparticle Delivery Is Sufficient to Suppress Colon Tumor Growth In Vivo. Cancers (Basel) 2022; 14:cancers14020361. [PMID: 35053524 PMCID: PMC8773494 DOI: 10.3390/cancers14020361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary A key feature of human colorectal tumor is loss of FAS expression. FAS is the death receptor for FASL of activated T cells. Loss of FAS expression therefore may promote tumor cell immune escape. We aimed at determining whether restoring FAS expression is sufficient to suppress colorectal tumor growth. Mouse and human FAS cDNA was synthesized and encapsulated into cationic lipid nanoparticle DOTAP-Cholesterol to formulate DOTAP-Chol-mFAS and DOTAP-Chol-hFAS, respectively. Restoring FAS expression in metastatic mouse colon-tumor cells enabled FASL-induced elimination of FAS+ tumor cells in vitro and suppressed colon-tumor growth and progression in tumor-bearing mice in vivo. Restoring FAS expression induced FAS receptor auto-oligomerization and tumor cell auto-apoptosis in metastatic human colon-tumor cells in vitro. DOTAP-Chol-hFAS therapy is also sufficient to suppress metastatic human colon tumor xenograft growth in athymic mice. Tumor-selective delivery of FAS DNA nanoparticle is potentially an effective therapy for human colorectal cancer. Abstract A hallmark of human colorectal cancer is lost expression of FAS, the death receptor for FASL of cytotoxic T lymphocytes (CTLs). However, it is unknown whether restoring FAS expression alone is sufficient to suppress csolorectal-cancer development. The FAS promoter is hypermethylated and inversely correlated with FAS mRNA level in human colorectal carcinomas. Analysis of single-cell RNA-Seq datasets revealed that FAS is highly expressed in epithelial cells and immune cells but down-regulated in colon-tumor cells in human colorectal-cancer patients. Codon usage-optimized mouse and human FAS cDNA was designed, synthesized, and encapsulated into cationic lipid to formulate nanoparticle DOTAP-Chol-mFAS and DOTAP-Chol-hFAS, respectively. Overexpression of codon usage-optimized FAS in metastatic mouse colon-tumor cells enabled FASL-induced elimination of FAS+ tumor cells in vitro, suppressed colon tumor growth, and increased the survival of tumor-bearing mice in vivo. Overexpression of codon-optimized FAS-induced FAS receptor auto-oligomerization and tumor cell auto-apoptosis in metastatic human colon-tumor cells. DOTAP-Chol-hFAS therapy is also sufficient to suppress metastatic human colon tumor xenograft growth in athymic mice. DOTAP-Chol-mFAS therapy exhibited no significant liver toxicity. Our data determined that tumor-selective delivery of FAS DNA nanoparticles is sufficient for suppression of human colon tumor growth in vivo.
Collapse
Affiliation(s)
- Alyssa D. Merting
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (A.D.M.); (D.B.P.); (C.L.); (J.D.K.); (D.Y.); (H.L.)
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; (H.S.); (A.N.-K.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dakota B. Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (A.D.M.); (D.B.P.); (C.L.); (J.D.K.); (D.Y.); (H.L.)
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; (H.S.); (A.N.-K.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (A.D.M.); (D.B.P.); (C.L.); (J.D.K.); (D.Y.); (H.L.)
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; (H.S.); (A.N.-K.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - John D. Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (A.D.M.); (D.B.P.); (C.L.); (J.D.K.); (D.Y.); (H.L.)
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; (H.S.); (A.N.-K.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (A.D.M.); (D.B.P.); (C.L.); (J.D.K.); (D.Y.); (H.L.)
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; (H.S.); (A.N.-K.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (A.D.M.); (D.B.P.); (C.L.); (J.D.K.); (D.Y.); (H.L.)
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; (H.S.); (A.N.-K.)
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; (H.S.); (A.N.-K.)
| | | | | | | | - Natasha M. Savage
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA;
| | - Asha Nayak-Kapoor
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; (H.S.); (A.N.-K.)
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (A.D.M.); (D.B.P.); (C.L.); (J.D.K.); (D.Y.); (H.L.)
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; (H.S.); (A.N.-K.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Correspondence: ; Tel.: +1-706-721-9483
| |
Collapse
|
42
|
Agnihotri SK, Kumar B, Jain A, Anjali A, Negi MPS, Sachan R, Bhatt MLB, Tripathi RK, Sachdev M. Clinical Significance of Circulating Serum Levels of sCD95 and TNF-α in Cytoprotection of Cervical Cancer. Rep Biochem Mol Biol 2022; 10:711-721. [PMID: 35291617 PMCID: PMC8903371 DOI: 10.52547/rbmb.10.4.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/01/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND This study correlates the serum levels of sCD95 & TNF-α with a simple cell-based assay to evaluate the capacity of the serum sample to induce apoptosis in Jurkat cells. Interlinking of these parameters can be explored to design a minimum invasive diagnostic strategy for cervical cancer (CC). METHODS Sera samples were assessed to induce apoptosis in Jurkat cells through FACS. Serum levels of sCD95 and TNF-α were measured by ELISA. JNK phosphorylation was evaluated in sera incubated Jurkat cells. Data was scrutinized through statistical analysis. RESULTS Significantly higher serum levels of sCD95 and lower TNF-α levels were observed in CC patients; their sera samples inhibited induction of apoptosis in Jurkat cells through reduced JNK phosphorylation. Statistical analysis linked these three parameters for the early screening of CC. CONCLUSION Distinct sera levels of sCD95 & TNF-α in CC patients showed an anti-apoptotic effect, which can be considered for early detection of CC.
Collapse
Affiliation(s)
- Saurabh Kumar Agnihotri
- Department of Radiotherapy, King George’s Medical University, Lucknow 226 003, India.
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
- The first and the second authors contributed equally to this work.
| | - Balawant Kumar
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
- The first and the second authors contributed equally to this work.
| | - Ankita Jain
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
| | - Anjali Anjali
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
- Department of Obstetrics & Gynaecology, King George’s Medical University, Lucknow 226 003, India.
| | - Mahendra Pal Singh Negi
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
| | - Rekha Sachan
- Department of Obstetrics & Gynaecology, King George’s Medical University, Lucknow 226 003, India.
| | | | - Raj Kamal Tripathi
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
- Department of Obstetrics & Gynaecology, King George’s Medical University, Lucknow 226 003, India.
| | - Monika Sachdev
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
43
|
Seyrek K, Ivanisenko NV, Wohlfromm F, Espe J, Lavrik IN. Impact of human CD95 mutations on cell death and autoimmunity: a model. Trends Immunol 2021; 43:22-40. [PMID: 34872845 DOI: 10.1016/j.it.2021.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 01/06/2023]
Abstract
CD95/Fas/APO-1 can trigger apoptotic as well as nonapoptotic pathways in immune cells. CD95 signaling in humans can be inhibited by several mechanisms, including mutations in the gene encoding CD95. CD95 mutations lead to autoimmune disorders, such as autoimmune lymphoproliferative syndrome (ALPS). Gaining further insight into the reported mutations of CD95 and resulting alterations of its signaling networks may provide further understanding of their presumed role in certain autoimmune diseases. For illustrative purposes and to better understand the potential outcomes of CD95 mutations, here we assign their positions to the recently determined 3D structures of human CD95. Based on this, we make certain predictions and speculate on the putative role of CD95 mutation defects in CD95-mediated signaling for certain autoimmune diseases.
Collapse
Affiliation(s)
- Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Nikita V Ivanisenko
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Artificial Intelligence Research Institute, Moscow, Russia
| | - Fabian Wohlfromm
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Johannes Espe
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
| |
Collapse
|
44
|
Jhaveri AV, Zhou L, Ralff MD, Lee YS, Navaraj A, Carneiro BA, Safran H, Prabhu VV, Ross EA, Lee S, El-Deiry WS. Combination of ONC201 and TLY012 induces selective, synergistic apoptosis in vitro and significantly delays PDAC xenograft growth in vivo. Cancer Biol Ther 2021; 22:607-618. [PMID: 34856854 PMCID: PMC8726623 DOI: 10.1080/15384047.2021.1976567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The five-year survival rate for pancreatic ductal adenocarcinoma (PDAC) has remained a dismal 9% for approximately 40 years with an urgent need for novel therapeutic interventions. ONC201 is the founding member of the imipridone class, comprised of orally bioavailable small molecules that have shown efficacy in multiple tumor types both in animal models and in Phase I/II clinical trials. ONC201 is a potent inducer of the tumor necrosis factor related apoptosis inducing ligand (TRAIL) pathway. TRAIL is an innate immune mechanism which induces programmed cell death of cancer cells. We observed that PDAC cells upregulated ATF4, CHOP, and DR5 after treatment with ONC201. This occurred in cell lines that are susceptible to ONC201-induced apoptosis and in ones that are not. In response to ONC201, PDAC cells downregulated anti-apoptotic proteins including c-FLIP, BclXL, XIAP, cIAP1, and survivin. We hypothesized that TRAIL receptor agonists might induce selective, synergistic apoptosis in pancreatic cancer cell lines treated with ONC201. We screened 7 pancreatic cancer cell lines and found synergy with ONC201 and rhTRAIL or the novel TRAIL receptor agonist TLY012 in 6 of the 7 cell lines tested. In vivo experiments using BxPC3 and HPAFII xenograft models showed that the combination of ONC201 plus TLY012 significantly delays tumor growth as compared to controls. Immunohistochemical analysis of the tumors after three doses of the combination showed significantly increased cleavage of caspase 3 in vivo as compared to controls. Taken together, the preclinical efficacy of ONC201 and TLY012 represents a novel therapeutic option for further testing in pancreatic cancer patients. This combination showed marked efficacy in tumor cells that are both sensitive and resistant to the pro-apoptotic effects of ONC201, providing rationale to further investigate the combination of ONC201 plus TLY012 in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Aakash V Jhaveri
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States (US).,Master of Science in Biotechnology Program, the Warren Alpert Medical School, Brown University, Providence, Ri, United States (US)
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States (US).,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States (US).,Brown University and the Lifespan Health System, Providence, Ri, United States (US).,Cancer Center at Brown University, the Warren Alpert Medical School, Brown University, Providence, Ri, United States (US)
| | - Marie D Ralff
- MD/PhD Program, The Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States (US)
| | - Young S Lee
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States (US).,Brown University and the Lifespan Health System, Providence, Ri, United States (US).,Cancer Center at Brown University, the Warren Alpert Medical School, Brown University, Providence, Ri, United States (US)
| | - Arunasalam Navaraj
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States (US).,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States (US).,Brown University and the Lifespan Health System, Providence, Ri, United States (US).,Cancer Center at Brown University, the Warren Alpert Medical School, Brown University, Providence, Ri, United States (US)
| | - Benedito A Carneiro
- Brown University and the Lifespan Health System, Providence, Ri, United States (US).,Cancer Center at Brown University, the Warren Alpert Medical School, Brown University, Providence, Ri, United States (US).,Brown University and the Lifespan Cancer Institute, Providence, Ri, United States (US)
| | - Howard Safran
- Brown University and the Lifespan Health System, Providence, Ri, United States (US).,Cancer Center at Brown University, the Warren Alpert Medical School, Brown University, Providence, Ri, United States (US).,Brown University and the Lifespan Cancer Institute, Providence, Ri, United States (US)
| | | | - Eric A Ross
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, United States (US)
| | - Seulki Lee
- Theraly Pharmaceutics, Inc, Baltimore, MD, United States (US)
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States (US).,Master of Science in Biotechnology Program, the Warren Alpert Medical School, Brown University, Providence, Ri, United States (US).,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States (US).,Brown University and the Lifespan Health System, Providence, Ri, United States (US).,Cancer Center at Brown University, the Warren Alpert Medical School, Brown University, Providence, Ri, United States (US).,Brown University and the Lifespan Cancer Institute, Providence, Ri, United States (US)
| |
Collapse
|
45
|
Apoptosis, Pyroptosis, and Necroptosis-Oh My! The Many Ways a Cell Can Die. J Mol Biol 2021; 434:167378. [PMID: 34838807 DOI: 10.1016/j.jmb.2021.167378] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/12/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022]
Abstract
Cell death is an essential process in all living organisms and occurs through different mechanisms. The three main types of programmed cell death are apoptosis, pyroptosis, and necroptosis, and each of these pathways employs complex molecular and cellular mechanisms. Although there are mechanisms and outcomes specific to each pathway, they share common components and features. In this review, we discuss recent discoveries in these three best understood modes of cell death, highlighting their singularities, and examining the intriguing notion that common players shape different individual pathways in this highly interconnected and coordinated cell death system. Understanding the similarities and differences of these cell death processes is crucial to enable targeted strategies to manipulate these pathways for therapeutic benefit.
Collapse
|
46
|
Over Fifty Years of Life, Death, and Cannibalism: A Historical Recollection of Apoptosis and Autophagy. Int J Mol Sci 2021; 22:ijms222212466. [PMID: 34830349 PMCID: PMC8618802 DOI: 10.3390/ijms222212466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/18/2023] Open
Abstract
Research in biomedical sciences has changed dramatically over the past fifty years. There is no doubt that the discovery of apoptosis and autophagy as two highly synchronized and regulated mechanisms in cellular homeostasis are among the most important discoveries in these decades. Along with the advancement in molecular biology, identifying the genetic players in apoptosis and autophagy has shed light on our understanding of their function in physiological and pathological conditions. In this review, we first describe the history of key discoveries in apoptosis with a molecular insight and continue with apoptosis pathways and their regulation. We touch upon the role of apoptosis in human health and its malfunction in several diseases. We discuss the path to the morphological and molecular discovery of autophagy. Moreover, we dive deep into the precise regulation of autophagy and recent findings from basic research to clinical applications of autophagy modulation in human health and illnesses and the available therapies for many diseases caused by impaired autophagy. We conclude with the exciting crosstalk between apoptosis and autophagy, from the early discoveries to recent findings.
Collapse
|
47
|
Screening of host genes regulated by ID1 and ID3 proteins during foot-and-mouth disease virus infection. Virus Res 2021; 306:198597. [PMID: 34648884 DOI: 10.1016/j.virusres.2021.198597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 11/20/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is an important pathogen that harms cloven-hoofed animals and has caused serious losses to livestock production since its discovery. Furthermore, inhibitor of DNA binding (ID) proteins have been thoroughly studied in tumorigenesis, differentiation and metastasis, but its role in viral infection is rarely known. In this study, three gene knockout cell lines ID1 KO, ID3 KO, ID1/3 KO were obtained based on BHK-21 cells. We found that ID1 and ID3 genes single or double knockout promote the replication of FMDV. Moreover, compared with negative control cells during virus infection, there were 551 up-regulated genes and 1222 down-regulated genes in the ID1 KO cell line; 916 up-regulated genes and 1845 down-regulated genes in the ID3 KO cell line; 810 up-regulated genes and 1566 down-regulated genes in ID1/3 KO cell line. Further genes expression patterns verification results also showed a good correlation between the data of RT-qRCR and RNA-seq. These findings provide a basis for studying the relevant mechanisms between host genes and ID genes during FMDV infection.
Collapse
|
48
|
Aki T, Uemura K. Cell Death and Survival Pathways Involving ATM Protein Kinase. Genes (Basel) 2021; 12:1581. [PMID: 34680975 PMCID: PMC8535589 DOI: 10.3390/genes12101581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cell death is the ultimate form of cellular dysfunction, and is induced by a wide range of stresses including genotoxic stresses. During genotoxic stress, two opposite cellular reactions, cellular protection through DNA repair and elimination of damaged cells by the induction of cell death, can occur in both separate and simultaneous manners. ATM (ataxia telangiectasia mutated) kinase (hereafter referred to as ATM) is a protein kinase that plays central roles in the induction of cell death during genotoxic stresses. It has long been considered that ATM mediates DNA damage-induced cell death through inducing apoptosis. However, recent research progress in cell death modality is now revealing ATM-dependent cell death pathways that consist of not only apoptosis but also necroptosis, ferroptosis, and dysfunction of autophagy, a cellular survival mechanism. In this short review, we intend to provide a brief outline of cell death mechanisms in which ATM is involved, with emphasis on pathways other than apoptosis.
Collapse
Affiliation(s)
- Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan;
| | | |
Collapse
|
49
|
Soluble CD95L in cancers and chronic inflammatory disorders, a new therapeutic target? Biochim Biophys Acta Rev Cancer 2021; 1876:188596. [PMID: 34324950 DOI: 10.1016/j.bbcan.2021.188596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022]
Abstract
Although CD95L (also known as FasL) is still predominantly considered as a death ligand that induces apoptosis in infected and transformed cells, substantial evidence indicate that it can also trigger non-apoptotic signaling pathways whose pathophysiological roles remain to be fully elucidated. The transmembrane ligand CD95L belongs to the tumor necrosis factor (TNF) superfamily. After cleavage by metalloprotease, its soluble form (s-CD95L) fails to trigger the apoptotic program but instead induces signaling pathways promoting the aggressiveness of certain inflammatory disorders such as autoimmune diseases and cancers. We propose to evaluate the various pathologies in which the metalloprotease-cleaved CD95L is accumulated and analyze whether this soluble ligand may play a significant role in the pathology progression. Based on the TNFα-targeting therapeutics, we envision that targeting the soluble form of CD95L may represent a very attractive therapeutic option in the pathologies depicted herein.
Collapse
|
50
|
Kajikawa O, Herrero R, Chow YH, Hung CF, Matute-Bello G. The bioactivity of soluble Fas ligand is modulated by key amino acids of its stalk region. PLoS One 2021; 16:e0253260. [PMID: 34138914 PMCID: PMC8211282 DOI: 10.1371/journal.pone.0253260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 06/01/2021] [Indexed: 01/09/2023] Open
Abstract
We have previously reported that the 26-amino acid N-terminus stalk region of soluble Fas ligand (sFasL), which is separate from its binding site, is required for its biological function. Here we investigate the mechanisms that link the structure of the sFasL stalk region with its function. Using site-directed mutagenesis we cloned a mutant form of sFasL in which all the charged amino acids of the stalk region were changed to neutral alanines (mut-sFasL). We used the Fas-sensitive Jurkat T-cell line and mouse and human alveolar epithelial cells to test the bioactivity of sFasL complexes, using caspase-3 activity and Annexin-V externalization as readouts. Finally, we tested the effects of mut-sFasL on lipopolysaccharide-induced lung injury in mice. We found that mutation of all the 8 charged amino acids of the stalk region into the non-charged amino acid alanine (mut-sFasL) resulted in reduced apoptotic activity compared to wild type sFasL (WT-sFasL). The mut-sFasL attenuated WT-sFasL function on the Fas-sensitive human T-cell line Jurkat and on primary human small airway epithelial cells. The inhibitory mechanism was associated with the formation of complexes of mut-sFasL with the WT protein. Intratracheal administration of the mut-sFasL to mice 24 hours after intratracheal Escherichia coli lipopolysaccharide resulted in attenuation of the inflammatory response 24 hours later. Therefore, the stalk region of sFasL has a critical role on bioactivity, and changes in the structure of the stalk region can result in mutant variants that interfere with the wild type protein function in vitro and in vivo.
Collapse
Affiliation(s)
- Osamu Kajikawa
- Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Medical Research Service, VA Puget Sound Healthcare System, Seattle, Washington, United States of America
| | - Raquel Herrero
- Instituto de Salud Carlos III, Hospital Universitario de Getafe and CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Yu-Hua Chow
- Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Chi F. Hung
- Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Gustavo Matute-Bello
- Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Medical Research Service, VA Puget Sound Healthcare System, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|