1
|
Pisani A, Rolesi R, Mohamed-Hizam V, Montuoro R, Paludetti G, Giorgio C, Cocchiaro P, Brandolini L, Detta N, Sirico A, Amendola PG, Novelli R, Aramini A, Allegretti M, Paciello F, Grassi C, Fetoni AR. Early transtympanic administration of rhBDNF exerts a multifaceted neuroprotective effect against cisplatin-induced hearing loss. Br J Pharmacol 2025; 182:546-563. [PMID: 39390645 DOI: 10.1111/bph.17359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Cisplatin-induced sensorineural hearing loss is a significant clinical challenge. Although the potential effects of brain-derived neurotrophic factor (BDNF) have previously been investigated in some ototoxicity models, its efficacy in cisplatin-induced hearing loss remains uncertain. This study aimed to investigate the therapeutic potential of recombinant human BDNF (rhBDNF) in protecting cells against cisplatin-induced ototoxicity. EXPERIMENTAL APPROACH Using an in vivo model of cisplatin-induced hearing loss, we investigated the beneficial effects of transtympanic administration of rhBDNF in a thermogel solution on hearing function and cochlear injury, using electrophysiological, morphological, immunofluorescence and molecular analyses. KEY RESULTS Our data showed that local rhBDNF treatment counteracted hearing loss in rats receiving cisplatin by preserving synaptic connections in the cochlear epithelium and protecting hair cells (HCs) and spiral ganglion neurons (SGNs) against cisplatin-induced cell death. Specifically, rhBDNF maintains the balance of its receptor levels (pTrkB and p75), boosting TrkB-CREB pro-survival signalling and reducing caspase 3-dependent apoptosis in the cochlea. Additionally, it activates antioxidant mechanisms while inhibiting inflammation and promoting vascular repair. CONCLUSION AND IMPLICATIONS Collectively, we demonstrated that early transtympanic treatment with rhBDNF plays a multifaceted protective role against cisplatin-induced ototoxicity, thus holding promise as a novel potential approach to preserve hearing in adult and paediatric patients undergoing cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Anna Pisani
- Department of Neuroscience, Unit of Audiology, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Rolando Rolesi
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Raffaele Montuoro
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristina Giorgio
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | - Pasquale Cocchiaro
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | - Laura Brandolini
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | | | - Anna Sirico
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | | | - Rubina Novelli
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | - Andrea Aramini
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | | | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Unit of Audiology, Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
2
|
Schubert T, Schaaf CP. MAGEL2 (patho-)physiology and Schaaf-Yang syndrome. Dev Med Child Neurol 2025; 67:35-48. [PMID: 38950199 PMCID: PMC11625468 DOI: 10.1111/dmcn.16018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/19/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
Schaaf-Yang syndrome (SYS) is a complex neurodevelopmental disorder characterized by autism spectrum disorder, joint contractures, and profound hypothalamic dysfunction. SYS is caused by variants in MAGEL2, a gene within the Prader-Willi syndrome (PWS) locus on chromosome 15. In this review, we consolidate decades of research on MAGEL2 to elucidate its physiological functions. Moreover, we synthesize current knowledge on SYS, suggesting that while MAGEL2 loss-of-function seems to underlie several SYS and PWS phenotypes, additional pathomechanisms probably contribute to the distinct and severe phenotype observed in SYS. In addition, we highlight recent therapeutic advances and identify promising avenues for future investigation.
Collapse
Affiliation(s)
- Tim Schubert
- Institute of Human GeneticsHeidelberg UniversityHeidelbergGermany
| | | |
Collapse
|
3
|
Kroeff GPH, de Castro JM, Braga HB, Bosco TD, de Oliveira TC, de Sousa Morais IT, Medeiros LF, Caumo W, Stein DJ, Torres ILS. Hormone replacement therapy did not alleviate temporomandibular joint inflammatory pain in ovariectomized rats. Odontology 2025; 113:232-244. [PMID: 38954152 DOI: 10.1007/s10266-024-00964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
This study had the aim of examining the relationships between variations in estrogen levels resulting from ovariectomy, and estrogen hormone replacement therapy (HRT) in rats subjected to an orofacial inflammatory pain model. Eighty adult female Wistar rats were initially divided into 2 groups: Sham or ovariectomy (OVX-D1). Seven days later (D7), the rats were subjected to an unilateral infiltration of Freund's Complete Adjuvant (CFA) or saline solution into the right temporomandibular joint (TMJ). Then, rats received 17β-estradiol (28 µg/kg/day) or placebo for 21 days (D10-D31). Nociception was evaluated by the von Frey (VF) and the Hot Plate (HP) tests, and depressive-like behavior by the Forced Swimming (FS) test. On D32 all rats were euthanized and serum, hippocampus and brainstem were collected. The CFA groups presented a mechanical hyperalgesia until day 21 (p ≤ 0.05). No differences were observed among groups in the HP (p = 0.735), and in the immobility and swimming time of the FS (p = 0.800; p = 0.998, respectively). In the brainstem, there was a significant difference in the TNF-ɑ levels (p = 0.043), and a marginal significant difference in BDNF levels (p = 0.054), without differences among groups in the hippocampal BDNF and TNF-ɑ levels (p = 0.232; p = 0.081, respectively). In conclusion, the hormone replacement therapy did not alleviate orofacial pain in ovariectomized rats. However, there is a decrease in brainstem TNF-ɑ levels in the animals submitted to both models, which was partially reverted by HRT.
Collapse
Affiliation(s)
- Giovana Paola Heck Kroeff
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences (ICBS), Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90050-170, Brazil
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil
| | - Josimar Macedo de Castro
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil
- Postgraduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, RS, 90050-170, Brazil
| | - Hemily Barbosa Braga
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil
| | - Tenille Dal Bosco
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil
- Postgraduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, RS, 90050-170, Brazil
| | - Thais Collioni de Oliveira
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil
| | - Iala Thais de Sousa Morais
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences (ICBS), Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90050-170, Brazil
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil
| | - Liciane Fernandes Medeiros
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil
- Postgraduate Program in Health and Human Development, Universidade La Salle, Canoas, RS, 92010-000, Brazil
| | - Wolnei Caumo
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil
- Postgraduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, RS, 90050-170, Brazil
| | - Dirson J Stein
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil
- Postgraduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, RS, 90050-170, Brazil
| | - Iraci L S Torres
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences (ICBS), Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90050-170, Brazil.
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil.
- Postgraduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
4
|
Mercati F, Guelfi G, Bufalari A, Dall’Aglio C, Suvieri C, Cocci P, Palermo FA, Anipchenko P, Capaccia C, Cenci-Goga B, Zerani M, Maranesi M. From Gene to Protein: Unraveling the Reproductive Blueprint of Male Grey Squirrels via Nerve Growth Factor (NGF) and Cognate Receptors. Animals (Basel) 2024; 14:3318. [PMID: 39595370 PMCID: PMC11591181 DOI: 10.3390/ani14223318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
The grey squirrel, an invasive species, threatens the Eurasian red squirrel's conservation, particularly in Umbria, Italy. Understanding its reproductive biology is essential to limiting its reproductive success. This study investigates the NGF system and its receptors (NTRK1 and p75NTR) in the testes of male grey squirrels, following prior research on female reproductive biology. NGF plays a role in testicular morphogenesis and spermiogenesis in animals and humans. As part of the LIFE Project U-SAVEREDS, eighteen squirrels were captured and classified into three morphotypes (immature, pubertal, and active spermatogenesis). NGF and its receptors were analyzed using real-time PCR, western blotting, immunohistochemistry, and plasma levels measured via ELISA. NGF qPCR expression levels were significantly higher during puberty compared to the immature and spermatogenesis stages (p < 0.01). Immunohistochemistry revealed NGF in Leydig cells, with stronger staining in pubertal and mature squirrels, while NTRK1 was found in Leydig cells in immature squirrels and germ cells in pubertal and mature ones. NGF receptors were observed in Sertoli cells in pubertal and mature squirrels. Plasma NGF levels showed a significant upregulation in pubertal squirrels (135.80 ± 12 pg/mL) compared to those in the immature (25.60 ± 9.32 pg/mL) and spermatogenesis stages (34.20 ± 6.06 pg/mL), with a p value < 0.01. The co-localization of NGF and its receptors suggests that NGF, produced by Leydig cells, regulates testis development and reproductive success through autocrine or paracrine mechanisms, potentially involving an unidentified pathway.
Collapse
Affiliation(s)
- Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (F.M.); (G.G.); (P.A.); (C.C.); (B.C.-G.); (M.Z.); (M.M.)
| | - Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (F.M.); (G.G.); (P.A.); (C.C.); (B.C.-G.); (M.Z.); (M.M.)
| | - Antonello Bufalari
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (F.M.); (G.G.); (P.A.); (C.C.); (B.C.-G.); (M.Z.); (M.M.)
| | - Cecilia Dall’Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (F.M.); (G.G.); (P.A.); (C.C.); (B.C.-G.); (M.Z.); (M.M.)
| | - Chiara Suvieri
- Department of Medicine and Surgery, University of Perugia, Piazzale Settimio Gambuli, 1, 06129 Perugia, Italy;
| | - Paolo Cocci
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, Italy; (P.C.); (F.A.P.)
| | - Francesco Alessandro Palermo
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, Italy; (P.C.); (F.A.P.)
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (F.M.); (G.G.); (P.A.); (C.C.); (B.C.-G.); (M.Z.); (M.M.)
| | - Camilla Capaccia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (F.M.); (G.G.); (P.A.); (C.C.); (B.C.-G.); (M.Z.); (M.M.)
| | - Beniamino Cenci-Goga
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (F.M.); (G.G.); (P.A.); (C.C.); (B.C.-G.); (M.Z.); (M.M.)
| | - Massimo Zerani
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (F.M.); (G.G.); (P.A.); (C.C.); (B.C.-G.); (M.Z.); (M.M.)
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (F.M.); (G.G.); (P.A.); (C.C.); (B.C.-G.); (M.Z.); (M.M.)
| |
Collapse
|
5
|
Martínez-Moreno CG, Calderón-Vallejo D, Díaz-Galindo C, Hernández-Jasso I, Olivares-Hernández JD, Ávila-Mendoza J, Epardo D, Balderas-Márquez JE, Urban-Sosa VA, Baltazar-Lara R, Carranza M, Luna M, Arámburo C, Quintanar JL. Neurotrophic and synaptic effects of GnRH and/or GH upon motor function after spinal cord injury in rats. Sci Rep 2024; 14:26420. [PMID: 39488642 PMCID: PMC11531546 DOI: 10.1038/s41598-024-78073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
Thoracic spinal cord injury (SCI) profoundly impairs motor and sensory functions, significantly reducing life quality without currently available effective treatments for neuroprotection or full functional regeneration. This study investigated the neurotrophic and synaptic recovery potential of gonadotropin-releasing hormone (GnRH) and growth hormone (GH) treatments in ovariectomized rats subjected to thoracic SCI. Employing a multidisciplinary approach, we evaluated the effects of these hormones upon gene expression of classical neurotrophins (NGF, BDNF, and NT3) as well as indicative markers of synaptic function (Nlgn1, Nxn1, SNAP25, SYP, and syntaxin-1), together with morphological assessments of myelin sheath integrity (Klüver-Barrera staining and MBP immunoreactivity) and synaptogenic proteins (PSD95, SYP) by immunohystochemistry (IHC) , and also on the neuromotor functional recovery of hindlimbs in the lesioned animals. Results demonstrated that chronic administration of GnRH and GH induced notable upregulation in the expression of several neurotrophic and synaptogenic activity genes. Additionally, the treatment showed a significant impact on the restoration of functional synaptic markers and myelin integrity. Intriguingly, while individual GnRH application induced certain recovery benefits, the combined treatment with GH appeared to inhibit neuromotor recovery, suggesting a complex interplay in hormonal regulation post-SCI. GnRH and GH are bioactive and participate in modulating neurotrophic responses and synaptic restoration under neural damage conditions, offering insights into novel therapeutic approaches for SCI. However, the intricate effects of combined hormonal treatment accentuate the necessity for further investigation that conduce to optimal and novel therapeutic strategies for patients with spinal cord lesions.
Collapse
Affiliation(s)
- C G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - D Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - C Díaz-Galindo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - I Hernández-Jasso
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - J D Olivares-Hernández
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - J Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - D Epardo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - J E Balderas-Márquez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - V A Urban-Sosa
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - R Baltazar-Lara
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - M Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - M Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - C Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México.
| | - J L Quintanar
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
| |
Collapse
|
6
|
Nagashima D, Mizukami N, Ogawa N, Suzuki S, Ohno M, Aoki R, Furukawa M, Izumo N. Bovine Lactoferrin Promotes Neurite Outgrowth in PC12 Cells via the TrkA Receptor. Int J Mol Sci 2024; 25:11249. [PMID: 39457031 PMCID: PMC11508191 DOI: 10.3390/ijms252011249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Lactoferrin (LF) is a multifunctional protein abundant in breast milk that modulates the functions of neural stem cells. Recent studies have demonstrated the efficacy of bovine LF (bLF) in mitigating behavioral changes; however, the molecular mechanisms on the nervous system have not yet been elucidated. The presented study aimed to characterize the molecular mechanisms of bLF on nerve extension in PC12 cells. PC12 cells were treated with 0.01-1000 µg/mL of bLF, and cell viability was determined using the cell counting kit-8 assay after treatment for 24 h. Morphometric evaluation was performed after 24 or 72 h of treatment with 50 ng/mL nerve growth factor (NGF) or 100-500 µg/mL bLF. The molecular mechanisms were investigated using Western blotting and real-time quantitative PCR. Cell viability was significantly decreased after treatment with 600-1000 µg/mL bLF for 24 h compared with the control group. Morphometric evaluation revealed neurite outgrowth after 72 h of NGF treatment, with a significant increase in neurite outgrowth after treatment with 250 µg/mL bLF. The phosphorylated p44/42 expression ratio peaked at 5 min and persisted for up to 10 min. Quantitative real-time PCR revealed a significant decrease in MAP2 expression. Our findings suggested that bLF enhanced PC12 cell neurite outgrowth to a similar extent as NGF. These effects are thought to be mediated via the TrkA receptor and activated by the phosphorylated ERK signaling pathway. Therefore, this study demonstrates that bLF promotes neurite outgrowth via a pathway similar to that of NGF.
Collapse
Affiliation(s)
- Daichi Nagashima
- Laboratory of Clinical Pharmaceutics, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan;
- General Health Medical Research Center, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
| | - Noa Mizukami
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
| | - Nana Ogawa
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
| | - Sayaka Suzuki
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
| | - Megumi Ohno
- NRL Pharma Inc., Kawasaki 213-0012, Kanagawa, Japan
| | - Ryoken Aoki
- Center for Pharmaceutical Education, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
| | - Megumi Furukawa
- Center for Pharmaceutical Education, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
| | - Nobuo Izumo
- General Health Medical Research Center, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
| |
Collapse
|
7
|
Mercati F, Guelfi G, Martì MJI, Dall'Aglio C, Calleja L, Caivano D, Marenzoni ML, Capaccia C, Anipchenko P, Palermo FA, Cocci P, Rende M, Zerani M, Maranesi M. Seasonal variation of NGF in seminal plasma and expression of NGF and its cognate receptors NTRK1 and p75NTR in the sex organs of rams. Domest Anim Endocrinol 2024; 89:106877. [PMID: 39068905 DOI: 10.1016/j.domaniend.2024.106877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Nerve growth factor (NGF) has long been known as the main ovulation-inducing factor in induced ovulation species, however, recent studies suggested the NGF role also in those with spontaneous ovulation. The first aim of this study was to evaluate the presence and gene expression of NGF and its cognate receptors, high-affinity neurotrophic tyrosine kinase 1 receptor (NTRK1) and low-affinity p75 nerve growth factor receptor (p75NTR), in the ram genital tract. Moreover, the annual trend of NGF seminal plasma values was investigated to evaluate the possible relationship between the NGF production variations and the ram reproductive seasonality. The presence and expression of the NGF/receptors system was evaluated in the testis, epididymis, vas deferens ampullae, seminal vesicles, prostate, and bulbourethral glands through immunohistochemistry and real-time PCR (qPCR), respectively. Genital tract samples were collected from 5 adult rams, regularly slaughtered at a local abattoir. Semen was collected during the whole year weekly, from 5 different adult rams, reared in a breeding facility, with an artificial vagina. NGF seminal plasma values were assessed through the ELISA method. NGF, NTRK1 and p75NTR immunoreactivity was detected in all male organs examined. NGF-positive immunostaining was observed in the spermatozoa of the germinal epithelium, in the epididymis and the cells of the secretory epithelium of annexed glands, NTRK1 receptor showed a localization pattern like that of NGF, whereas p75NTR immunopositivity was localized in the nerve fibers and ganglia. NGF gene transcript was highest (p < 0.01) in the seminal vesicles and lowest (p < 0.01) in the testis than in the other tissues. NTRK1 gene transcript was highest (p < 0.01) in the seminal vesicles and lowest (p < 0.05) in all the other tissues examined. Gene expression of p75NTR was highest (p < 0.01) in the seminal vesicles and lowest (p < 0.01) in the testis and bulbourethral glands. NGF seminal plasma concentration was greater from January to May (p < 0.01) than in the other months. This study highlighted that the NGF system was expressed in the tissues of all the different genital tracts examined, confirming the role of NGF in ram reproduction. Sheep are short-day breeders, with an anestrus that corresponds to the highest seminal plasma NGF levels, thus suggesting the intriguing idea that this factor could participate in an inhibitory mechanism of male reproductive activity, activated during the female anestrus.
Collapse
Affiliation(s)
- Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | | | - Cecilia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy.
| | - Lucía Calleja
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Spain
| | - Domenico Caivano
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Maria Luisa Marenzoni
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Camilla Capaccia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Francesco Alessandro Palermo
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, Camerino, MC I-62032, Italy
| | - Paolo Cocci
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, Camerino, MC I-62032, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, Perugia 06132, Italy
| | - Massimo Zerani
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| |
Collapse
|
8
|
Wolf D, Ayon-Olivas M, Sendtner M. BDNF-Regulated Modulation of Striatal Circuits and Implications for Parkinson's Disease and Dystonia. Biomedicines 2024; 12:1761. [PMID: 39200225 PMCID: PMC11351984 DOI: 10.3390/biomedicines12081761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Neurotrophins, particularly brain-derived neurotrophic factor (BDNF), act as key regulators of neuronal development, survival, and plasticity. BDNF is necessary for neuronal and functional maintenance in the striatum and the substantia nigra, both structures involved in the pathogenesis of Parkinson's Disease (PD). Depletion of BDNF leads to striatal degeneration and defects in the dendritic arborization of striatal neurons. Activation of tropomyosin receptor kinase B (TrkB) by BDNF is necessary for the induction of long-term potentiation (LTP), a form of synaptic plasticity, in the hippocampus and striatum. PD is characterized by the degeneration of nigrostriatal neurons and altered striatal plasticity has been implicated in the pathophysiology of PD motor symptoms, leading to imbalances in the basal ganglia motor pathways. Given its essential role in promoting neuronal survival and meditating synaptic plasticity in the motor system, BDNF might have an important impact on the pathophysiology of neurodegenerative diseases, such as PD. In this review, we focus on the role of BDNF in corticostriatal plasticity in movement disorders, including PD and dystonia. We discuss the mechanisms of how dopaminergic input modulates BDNF/TrkB signaling at corticostriatal synapses and the involvement of these mechanisms in neuronal function and synaptic plasticity. Evidence for alterations of BDNF and TrkB in PD patients and animal models are reviewed, and the potential of BDNF to act as a therapeutic agent is highlighted. Advancing our understanding of these mechanisms could pave the way toward innovative therapeutic strategies aiming at restoring neuroplasticity and enhancing motor function in these diseases.
Collapse
Affiliation(s)
| | | | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany (M.A.-O.)
| |
Collapse
|
9
|
Hernández-del Caño C, Varela-Andrés N, Cebrián-León A, Deogracias R. Neurotrophins and Their Receptors: BDNF's Role in GABAergic Neurodevelopment and Disease. Int J Mol Sci 2024; 25:8312. [PMID: 39125882 PMCID: PMC11311851 DOI: 10.3390/ijms25158312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Neurotrophins and their receptors are distinctly expressed during brain development and play crucial roles in the formation, survival, and function of neurons in the nervous system. Among these molecules, brain-derived neurotrophic factor (BDNF) has garnered significant attention due to its involvement in regulating GABAergic system development and function. In this review, we summarize and compare the expression patterns and roles of neurotrophins and their receptors in both the developing and adult brains of rodents, macaques, and humans. Then, we focus on the implications of BDNF in the development and function of GABAergic neurons from the cortex and the striatum, as both the presence of BDNF single nucleotide polymorphisms and disruptions in BDNF levels alter the excitatory/inhibitory balance in the brain. This imbalance has different implications in the pathogenesis of neurodevelopmental diseases like autism spectrum disorder (ASD), Rett syndrome (RTT), and schizophrenia (SCZ). Altogether, evidence shows that neurotrophins, especially BDNF, are essential for the development, maintenance, and function of the brain, and disruptions in their expression or signaling are common mechanisms in the pathophysiology of brain diseases.
Collapse
Affiliation(s)
- Carlos Hernández-del Caño
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natalia Varela-Andrés
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alejandro Cebrián-León
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Rubén Deogracias
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
10
|
Dell’Oste V, Palego L, Betti L, Fantasia S, Gravina D, Bordacchini A, Pedrinelli V, Giannaccini G, Carmassi C. Plasma and Platelet Brain-Derived Neurotrophic Factor (BDNF) Levels in Bipolar Disorder Patients with Post-Traumatic Stress Disorder (PTSD) or in a Major Depressive Episode Compared to Healthy Controls. Int J Mol Sci 2024; 25:3529. [PMID: 38542503 PMCID: PMC10970837 DOI: 10.3390/ijms25063529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a highly disabling mental disorder arising after traumatism exposure, often revealing critical and complex courses when comorbidity with bipolar disorder (BD) occurs. To search for PTSD or depression biomarkers that would help clinicians define BD presentations, this study aimed at preliminarily evaluating circulating brain-derived-neurotrophic factor (BDNF) levels in BD subjects with PTSD or experiencing a major depressive episode versus controls. Two bloodstream BDNF components were specifically investigated, the storage (intraplatelet) and the released (plasma) ones, both as adaptogenic/repair signals during neuroendocrine stress response dynamics. Bipolar patients with PTSD (n = 20) or in a major depressive episode (n = 20) were rigorously recruited together with unrelated healthy controls (n = 24) and subsequently examined by psychiatric questionnaires and blood samplings. Platelet-poor plasma (PPP) and intraplatelet (PLT) BDNF were measured by ELISA assays. The results showed markedly higher intraplatelet vs. plasma BDNF, confirming platelets' role in neurotrophin transport/storage. No between-group PPP-BDNF difference was reported, whereas PLT-BDNF was significantly reduced in depressed BD patients. PLT-BDNF negatively correlated with mood scores but not with PTSD items like PPP-BDNF, which instead displayed opposite correlation trends with depression and manic severity. Present findings highlight PLT-BDNF as more reliable at detecting depression than PTSD in BD, encouraging further study into BDNF variability contextually with immune-inflammatory parameters in wider cohorts of differentially symptomatic bipolar patients.
Collapse
Affiliation(s)
- Valerio Dell’Oste
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- UFCSMA Zona Valdinievole, Azienda USL Toscana Centro, 51016 Montecatini Terme, Italy
| | - Lionella Palego
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
- Department of Pharmacy, Section of Biochemistry, University of Pisa, 56126 Pisa, Italy; (L.B.); (G.G.)
| | - Laura Betti
- Department of Pharmacy, Section of Biochemistry, University of Pisa, 56126 Pisa, Italy; (L.B.); (G.G.)
| | - Sara Fantasia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| | - Davide Gravina
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| | - Andrea Bordacchini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| | - Virginia Pedrinelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- UFSMA Zona Apuana, Azienda USL Toscana Nord Ovest, 54100 Massa, Italy
| | - Gino Giannaccini
- Department of Pharmacy, Section of Biochemistry, University of Pisa, 56126 Pisa, Italy; (L.B.); (G.G.)
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| |
Collapse
|
11
|
Xie W, Gao Q, Artigas Ramirez MD, Zhang H, Liu Y, Weng Q. Seasonal expressions of nerve growth factor (NGF), and its receptor TrkA and p75 in the scent glands of muskrats (Ondatra zibethicus). Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110905. [PMID: 37769961 DOI: 10.1016/j.cbpb.2023.110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
NGF, also known as nerve growth factor, is crucial for the survival and differentiation of the nervous system, in addition to being involved in a number of non-neuronal systems. The aim of this work was to investigate the immunolocalization and expression patterns of NGF, its receptor, tyrosine kinase receptor A (TrkA), and p75 in the scent glands of muskrats (Ondatra zibethicus) throughout the breeding and non-breeding seasons. The scent gland mass showed considerable seasonal variations, with higher values during the breeding season and comparatively lower levels during the non-breeding season. While no immunostaining was observed in the interstitial cells, NGF, TrkA, and p75 were immunolocalized in the scent glandular cells and epithelial cells during both breeding and non-breeding seasons. NGF, TrkA, and p75 protein and mRNA expression levels were higher in the scent glands during breeding season compared to the non-breeding season. Circulating levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), and T in the scent gland were all significantly higher throughout the breeding season. The relative levels of the hormones in the plasma and the scent glands as well as NGF, TrkA, and p75 were positively associated with each other. Additionally, transcriptome analysis of the scent glands revealed that differentially expressed genes may be linked to steroid biosynthesis, the estrogen signaling pathway, and neurotransmitter transmembrane transporter function. These results suggest a potential role for NGF, TrkA, and p75 in controlling seasonal variations in the muskrats' scent gland functioning.
Collapse
Affiliation(s)
- Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qingjing Gao
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Maria Daniela Artigas Ramirez
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuning Liu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
12
|
Fan Y, Zhang B, Du X, Wang B, Yan Q, Guo L, Yao W. Regulating Tumorigenicity and Cancer Metastasis through TRKA Signaling. Curr Cancer Drug Targets 2024; 24:271-287. [PMID: 37670705 DOI: 10.2174/1568009623666230904150957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023]
Abstract
Tropomyosin receptor kinase (TRK) A, TRKA, is a specific binding receptor of nerve growth factor (NGF), which plays an essential role in the occurrence and progression of human cancers. TRKA overexpression has been proven to be a powerful carcinogenic driver and has been verified in many tumors. The TRKA receptor kinase domain is over-activated in an NGF-dependent manner, accompanied by activation of downstream signal pathways, such as RAS-MAPK, PI3K-AKT, JAK2-STAT3 pathway, PLC γ pathway, and Hippo pathway, which participate in tumor cell proliferation, invasion, epithelial-mesenchymal transition (EMT), perineural invasion (PNI), drug resistance, and cancer pain. In addition, chimeric oncogenes produced by the fusion of NTRK1 and other genes are also the direct cause of tumorigenesis and cancer development. The newly developed TRK inhibitors can improve symptoms and tumor regression in cancer patients with overexpression of TRKA or NTRK1 fusion gene. With the emergence of drug resistance, next generation of TRK inhibitors can still maintain strong clinical efficacy in the case of TRK kinase domain mutations, and these inhibitors are in clinical trials. This review summarizes the characteristics and research progress of TRKA, focusing on the regulatory role of the TRKA signal pathway in different tumors. In addition, we have summarized the clinical significance of TRKA and the TRK inhibitors. This review may provide a new reference for the study of the mechanism of TRKA in different tumors, and also provide a new perspective for the in-depth understanding of the role of TRKA as a biomarker and therapeutic target in human cancer.
Collapse
Affiliation(s)
- Yichao Fan
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Boya Zhang
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xinhui Du
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Bangmin Wang
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Qiang Yan
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Liangyu Guo
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Weitao Yao
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
13
|
Uju CN, Unniappan S. Growth factors and female reproduction in vertebrates. Mol Cell Endocrinol 2024; 579:112091. [PMID: 37863469 DOI: 10.1016/j.mce.2023.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Female reproductive efficiency is influenced by the outcomes of various processes, including folliculogenesis, apoptosis, response to gonadotropin signaling, oocyte maturation, and ovulation. The role of hormones in regulating these processes and other reproductive activities has been well established. It is becoming increasingly evident that in addition to well-characterized hormones, growth factors play vital roles in regulating some of these reproductive activities. Growth factors and their receptors are widely distributed in vertebrate ovaries at different stages of ovarian development, indicating their involvement in intraovarian reproductive functions. In the ovary, cell surface receptors allow growth factors to regulate intraovarian reproductive activities. Understanding these actions in the reproductive axis would provide a tool to target growth factors and/or their receptors to yield desirable reproductive outcomes. These include enrichment of in vitro maturation and fertilization culture media, and management of infertility. This review discusses some widely characterized growth factors belonging to the TGF, EGF, IGF, FGF, and BDNF family of peptides and their role in female reproduction in vertebrates, with a focus on mammals.
Collapse
Affiliation(s)
- Chinelo N Uju
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
14
|
Oliveira JT, Yanick C, Wein N, Gomez Limia CE. Neuron-Schwann cell interactions in peripheral nervous system homeostasis, disease, and preclinical treatment. Front Cell Neurosci 2023; 17:1248922. [PMID: 37900588 PMCID: PMC10600466 DOI: 10.3389/fncel.2023.1248922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
Schwann cells (SCs) have a critical role in the peripheral nervous system. These cells are able to support axons during homeostasis and after injury. However, mutations in genes associated with the SCs repair program or myelination result in dysfunctional SCs. Several neuropathies such as Charcot-Marie-Tooth (CMT) disease, diabetic neuropathy and Guillain-Barré syndrome show abnormal SC functions and an impaired regeneration process. Thus, understanding SCs-axon interaction and the nerve environment in the context of homeostasis as well as post-injury and disease onset is necessary. Several neurotrophic factors, cytokines, and regulators of signaling pathways associated with proliferation, survival and regeneration are involved in this process. Preclinical studies have focused on the discovery of therapeutic targets for peripheral neuropathies and injuries. To study the effect of new therapeutic targets, modeling neuropathies and peripheral nerve injuries (PNIs) in vitro and in vivo are useful tools. Furthermore, several in vitro protocols have been designed using SCs and neuron cell lines to evaluate these targets in the regeneration process. SCs lines have been used to generate effective myelinating SCs without success. Alternative options have been investigated using direct conversion from somatic cells to SCs or SCs derived from pluripotent stem cells to generate functional SCs. This review will go over the advantages of these systems and the problems associated with them. In addition, there have been challenges in establishing adequate and reproducible protocols in vitro to recapitulate repair SC-neuron interactions observed in vivo. So, we also discuss the mechanisms of repair SCs-axon interactions in the context of peripheral neuropathies and nerve injury (PNI) in vitro and in vivo. Finally, we summarize current preclinical studies evaluating transgenes, drug, and novel compounds with translational potential into clinical studies.
Collapse
Affiliation(s)
| | | | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
15
|
Hu HL, Khatri L, Santacruz M, Church E, Moore C, Huang TT, Chao MV. Confronting the loss of trophic support. Front Mol Neurosci 2023; 16:1179209. [PMID: 37456526 PMCID: PMC10338843 DOI: 10.3389/fnmol.2023.1179209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023] Open
Abstract
Classic experiments with peripheral sympathetic neurons established an absolute dependence upon NGF for survival. A forgotten problem is how these neurons become resistant to deprivation of trophic factors. The question is whether and how neurons can survive in the absence of trophic support. However, the mechanism is not understood how neurons switch their phenotype to lose their dependence on trophic factors, such as NGF and BDNF. Here, we approach the problem by considering the requirements for trophic support of peripheral sympathetic neurons and hippocampal neurons from the central nervous system. We developed cellular assays to assess trophic factor dependency for sympathetic and hippocampal neurons and identified factors that rescue neurons in the absence of trophic support. They include enhanced expression of a subunit of the NGF receptor (Neurotrophin Receptor Homolog, NRH) in sympathetic neurons and an increase of the expression of the glucocorticoid receptor in hippocampal neurons. The results are significant since levels and activity of trophic factors are responsible for many neuropsychiatric conditions. Resistance of neurons to trophic factor deprivation may be relevant to the underlying basis of longevity, as well as an important element in preventing neurodegeneration.
Collapse
Affiliation(s)
- Hui-Lan Hu
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY, United States
| | - Latika Khatri
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States
| | - Marilyn Santacruz
- Department of Neuroscience, Pomona College, Claremont, CA, United States
| | - Emily Church
- Department of Neuroscience, Pomona College, Claremont, CA, United States
| | - Christopher Moore
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States
| | - Tony T. Huang
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY, United States
| | - Moses V. Chao
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York Langone Medical Center, New York, NY, United States
- Department of Psychiatry, New York Langone Medical Center, New York, NY, United States
- Department of Neuroscience and Physiology, New York Langone Medical Center, New York, NY, United States
| |
Collapse
|
16
|
Walsh J, Palandra J, Goihberg E, Deng S, Hurst S, Neubert H. Analysis of β-nerve growth factor and its precursor during human pregnancy by immunoaffinity-liquid chromatography tandem mass spectrometry. Sci Rep 2023; 13:9180. [PMID: 37280257 DOI: 10.1038/s41598-023-34695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
β-Nerve growth factor (NGF) is a neurotrophin that plays a critical role in fetal development during gestation. ProNGF is the precursor form of NGF with a distinct biological profile. In order to investigate the role of NGF and proNGF in pregnant human females, a sensitive and selective immunoaffinity liquid chromatography-tandem mass spectrometry assay was developed and qualified to simultaneously measure the levels of total NGF (tNGF; sum of mature and proNGF) and proNGF using full and relative quantification strategies, respectively. The assay was used to determine serum tNGF and proNGF levels in the three gestational trimesters of pregnancy and in non-pregnant female controls. Mean tNGF ± SD were 44.6 ± 12.3, 42.6 ± 9.3, 65.4 ± 17.6 and 77.0 ± 17.8 pg/mL for non-pregnant, first, second, and third trimesters, respectively, demonstrating no significant increase in circulating tNGF between the control and the first trimester, and a moderate yet significant 1.7-fold increase through gestation. proNGF levels during the first trimester were unchanged compared to control. In contrast to tNGF, however, proNGF levels during gestation remained stable without significant changes. The development of this sensitive, novel immunoaffinity duplexed assay for both tNGF and proNGF is expected to enable further elucidation of the roles these neurotrophins play in human pregnancy as well as other models.
Collapse
Affiliation(s)
- Jason Walsh
- Pfizer Inc., 1 Burtt Road, Andover, MA, 01810, USA.
| | - Joe Palandra
- Pfizer Inc., 1 Burtt Road, Andover, MA, 01810, USA
| | | | - Shibing Deng
- Pfizer Inc., 10777 Science Center Drive, San Diego, CA, 92121, USA
| | - Susan Hurst
- Pfizer Inc., 445 Eastern Point Road, Groton, CT, 06340, USA
| | | |
Collapse
|
17
|
Pisani A, Paciello F, Del Vecchio V, Malesci R, De Corso E, Cantone E, Fetoni AR. The Role of BDNF as a Biomarker in Cognitive and Sensory Neurodegeneration. J Pers Med 2023; 13:jpm13040652. [PMID: 37109038 PMCID: PMC10140880 DOI: 10.3390/jpm13040652] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a crucial function in the central nervous system and in sensory structures including olfactory and auditory systems. Many studies have highlighted the protective effects of BDNF in the brain, showing how it can promote neuronal growth and survival and modulate synaptic plasticity. On the other hand, conflicting data about BDNF expression and functions in the cochlear and in olfactory structures have been reported. Several clinical and experimental research studies showed alterations in BDNF levels in neurodegenerative diseases affecting the central and peripheral nervous system, suggesting that BDNF can be a promising biomarker in most neurodegenerative conditions, including Alzheimer's disease, shearing loss, or olfactory impairment. Here, we summarize current research concerning BDNF functions in brain and in sensory domains (olfaction and hearing), focusing on the effects of the BDNF/TrkB signalling pathway activation in both physiological and pathological conditions. Finally, we review significant studies highlighting the possibility to target BDNF as a biomarker in early diagnosis of sensory and cognitive neurodegeneration, opening new opportunities to develop effective therapeutic strategies aimed to counteract neurodegeneration.
Collapse
Affiliation(s)
- Anna Pisani
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Valeria Del Vecchio
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| | - Rita Malesci
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| | - Eugenio De Corso
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Elena Cantone
- Department of Neuroscience, Reproductive Sciences and Dentistry-ENT Section, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
18
|
Liu J, Zhang Y, Zhu Y, Tian L, Tang M, Shen J, Chen Y, Ding S. Research Progress on Small Molecules Inhibitors Targeting TRK Kinases. Curr Med Chem 2023; 30:1175-1192. [PMID: 35927900 DOI: 10.2174/0929867329666220801145639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/11/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Trk gene fusions are an important driver in the development of cancers, including secretory breast cancer and infantile congenital sarcoma. Since the first-generation of small molecule Trk inhibitors (Larotrectinib and Entrectinib) came to market, research on small molecule TRK inhibitors, especially second-generation inhibitors that break through the resistance problem, has developed rapidly. Therefore, this article focuses on the research progress of first-generation drugs and second-generation drugs that break through drug resistance. METHODS We used the database to search for relevant and cutting-edge documents, and then filtered and selected them based on the content. The appropriate articles were analyzed and classified, and finally, the article was written according to the topics. RESULTS The phenomenon of Trk protein fusion and its relation to tumors are described, followed by an explanation of the composition and signaling pathways of Trk kinases. The representative Trk inhibitors and the development of novel Trk inhibitors are classified according to whether they overcome drug resistance problems. CONCLUSION This paper provides a theoretical reference for the development of novel inhibitors by introducing and summarizing the representative and novel Trk inhibitors that break through the drug resistance problem.
Collapse
Affiliation(s)
- Ju Liu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, P. R. China.,API Engineering Tech-nology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P. R. China.,Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P. R. China
| | - Yadong Zhang
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, P. R. China
| | - Yan Zhu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, P. R. China
| | - Lu Tian
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, P. R. China
| | - Mingrui Tang
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, P. R. China
| | - Jiwei Shen
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, P. R. China.,API Engineering Tech-nology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P. R. China.,Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P. R. China
| | - Ye Chen
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, P. R. China.,API Engineering Tech-nology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P. R. China.,Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P. R. China
| | - Shi Ding
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, P. R. China.,API Engineering Tech-nology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P. R. China.,Small Molecular Tar-geted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P. R. China
| |
Collapse
|
19
|
Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis 2023; 176:105952. [PMID: 36493976 DOI: 10.1016/j.nbd.2022.105952] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The glial cell of the peripheral nervous system (PNS), the Schwann cell (SC), counts among the most multifaceted cells of the body. During development, SCs secure neuronal survival and participate in axonal path finding. Simultaneously, they orchestrate the architectural set up of the developing nerves, including the blood vessels and the endo-, peri- and epineurial layers. Perinatally, in rodents, SCs radially sort and subsequently myelinate individual axons larger than 1 μm in diameter, while small calibre axons become organised in non-myelinating Remak bundles. SCs have a vital role in maintaining axonal health throughout life and several specialized SC types perform essential functions at specific locations, such as terminal SC at the neuromuscular junction (NMJ) or SC within cutaneous sensory end organs. In addition, neural crest derived satellite glia maintain a tight communication with the soma of sensory, sympathetic, and parasympathetic neurons and neural crest derivatives are furthermore an indispensable part of the enteric nervous system. The remarkable plasticity of SCs becomes evident in the context of a nerve injury, where SC transdifferentiate into intriguing repair cells, which orchestrate a regenerative response that promotes nerve repair. Indeed, the multiple adaptations of SCs are captivating, but remain often ill-resolved on the molecular level. Here, we summarize and discuss the knowns and unknowns of the vast array of functions that this single cell type can cover in peripheral nervous system development, maintenance, and repair.
Collapse
|
20
|
Sorokin M, Rabushko E, Rozenberg JM, Mohammad T, Seryakov A, Sekacheva M, Buzdin A. Clinically relevant fusion oncogenes: detection and practical implications. Ther Adv Med Oncol 2022; 14:17588359221144108. [PMID: 36601633 PMCID: PMC9806411 DOI: 10.1177/17588359221144108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/22/2022] [Indexed: 12/28/2022] Open
Abstract
Mechanistically, chimeric genes result from DNA rearrangements and include parts of preexisting normal genes combined at the genomic junction site. Some rearranged genes encode pathological proteins with altered molecular functions. Those which can aberrantly promote carcinogenesis are called fusion oncogenes. Their formation is not a rare event in human cancers, and many of them were documented in numerous study reports and in specific databases. They may have various molecular peculiarities like increased stability of an oncogenic part, self-activation of tyrosine kinase receptor moiety, and altered transcriptional regulation activities. Currently, tens of low molecular mass inhibitors are approved in cancers as the drugs targeting receptor tyrosine kinase (RTK) oncogenic fusion proteins, that is, including ALK, ABL, EGFR, FGFR1-3, NTRK1-3, MET, RET, ROS1 moieties. Therein, the presence of the respective RTK fusion in the cancer genome is the diagnostic biomarker for drug prescription. However, identification of such fusion oncogenes is challenging as the breakpoint may arise in multiple sites within the gene, and the exact fusion partner is generally unknown. There is no gold standard method for RTK fusion detection, and many alternative experimental techniques are employed nowadays to solve this issue. Among them, RNA-seq-based methods offer an advantage of unbiased high-throughput analysis of only transcribed RTK fusion genes, and of simultaneous finding both fusion partners in a single RNA-seq read. Here we focus on current knowledge of biology and clinical aspects of RTK fusion genes, related databases, and laboratory detection methods.
Collapse
Affiliation(s)
| | - Elizaveta Rabushko
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | | | - Tharaa Mohammad
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia
| | | | - Marina Sekacheva
- I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | - Anton Buzdin
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia,Shemyakin-Ovchinnikov Institute of Bioorganic
Chemistry, Moscow, Russia,PathoBiology Group, European Organization for
Research and Treatment of Cancer (EORTC), Brussels, Belgium
| |
Collapse
|
21
|
Wang Y, Wang G, Zheng H, Liu J, Ma G, Huang G, Song Q, Du J. Distinct gene mutation profiles among multiple and single primary lung adenocarcinoma. Front Oncol 2022; 12. [PMID: 36531058 PMCID: PMC9755731 DOI: 10.3389/fonc.2022.1014997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
With the development of technologies, multiple primary lung cancer (MPLC) has been detected more frequently. Although large-scale genomics studies have made significant progress, the aberrant gene mutation in MPLC is largely unclear. In this study, 141 and 44 lesions from single and multiple primary lung adenocarcinoma (SP- and MP-LUAD) were analyzed. DNA and RNA were extracted from formalin-fixed, paraffin-embedded tumor tissue and sequenced by using the next-generation sequencing-based YuanSu450TM gene panel. We systematically analyzed the clinical features and gene mutations of these lesions, and found that there were six genes differently mutated in MP-LUAD and SP-LUAD lesions, including RBM10, CDK4, ATRX, NTRK1, PREX2, SS18. Data from the cBioPortal database indicated that mutation of these genes was related to some clinical characteristics, such as TMB, tumor type, et al. Besides, heterogeneity analysis suggested that different lesions could be tracked back to monophyletic relationships. We compared the mutation landscape of MP-LUAD and SP-LUAD and identified six differentially mutated genes (RBM10, CDK4, ATRX, NTRK1, PREX2, SS18), and certain SNV loci in TP53 and EGFR which might play key roles in lineage decomposition in multifocal samples. These findings may provide insight into personalized prognosis prediction and new therapies for MP-LUAD patients.
Collapse
|
22
|
Esencan E, Beroukhim G, Seifer DB. Age-related changes in Folliculogenesis and potential modifiers to improve fertility outcomes - A narrative review. Reprod Biol Endocrinol 2022; 20:156. [PMID: 36397149 PMCID: PMC9670479 DOI: 10.1186/s12958-022-01033-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
Abstract
Reproductive aging is characterized by a decline in oocyte quantity and quality, which is directly associated with a decline in reproductive potential, as well as poorer reproductive success and obstetrical outcomes. As women delay childbearing, understanding the mechanisms of ovarian aging and follicular depletion have become increasingly more relevant. Age-related meiotic errors in oocytes are well established. In addition, it is also important to understand how intraovarian regulators change with aging and how certain treatments can mitigate the impact of aging. Individual studies have demonstrated that reproductive pathways involving antimullerian hormone (AMH), vascular endothelial growth factor (VEGF), neurotropins, insulin-like growth factor 1 (IGF1), and mitochondrial function are pivotal for healthy oocyte and cumulus cell development and are altered with increasing age. We provide a comprehensive review of these individual studies and explain how these factors change in oocytes, cumulus cells, and follicular fluid. We also summarize how modifiers of folliculogenesis, such as vitamin D, coenzyme Q, and dehydroepiandrosterone (DHEA) may be used to potentially overcome age-related changes and enhance fertility outcomes of aged follicles, as evidenced by human and rodent studies.
Collapse
Affiliation(s)
- Ecem Esencan
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA.
| | - Gabriela Beroukhim
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - David B Seifer
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| |
Collapse
|
23
|
Kanazawa H, Fukuda K. The plasticity of cardiac sympathetic nerves and its clinical implication in cardiovascular disease. Front Synaptic Neurosci 2022; 14:960606. [PMID: 36160916 PMCID: PMC9500163 DOI: 10.3389/fnsyn.2022.960606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 01/08/2023] Open
Abstract
The heart is electrically and mechanically controlled by the autonomic nervous system, which consists of both the sympathetic and parasympathetic systems. It has been considered that the sympathetic and parasympathetic nerves regulate the cardiomyocytes’ performance independently; however, recent molecular biology approaches have provided a new concept to our understanding of the mechanisms controlling the diseased heart through the plasticity of the autonomic nervous system. Studies have found that cardiac sympathetic nerve fibers in hypertrophic ventricles strongly express an immature neuron marker and simultaneously cause deterioration of neuronal cellular function. This phenomenon was explained by the rejuvenation of cardiac sympathetic nerves. Moreover, heart failure and myocardial infarction have been shown to cause cholinergic trans-differentiation of cardiac sympathetic nerve fibers via gp130-signaling cytokines secreted from the failing myocardium, affecting cardiac performance and prognosis. This phenomenon is thought to be one of the adaptations that prevent the progression of heart disease. Recently, the concept of using device-based neuromodulation therapies to attenuate sympathetic activity and increase parasympathetic (vagal) activity to treat cardiovascular disease, including heart failure, was developed. Although several promising preclinical and pilot clinical studies using these strategies have been conducted, the results of clinical efficacy vary. In this review, we summarize the current literature on the plasticity of cardiac sympathetic nerves and propose potential new therapeutic targets for heart disease.
Collapse
|
24
|
Schirò G, Iacono S, Ragonese P, Aridon P, Salemi G, Balistreri CR. A Brief Overview on BDNF-Trk Pathway in the Nervous System: A Potential Biomarker or Possible Target in Treatment of Multiple Sclerosis? Front Neurol 2022; 13:917527. [PMID: 35911894 PMCID: PMC9332890 DOI: 10.3389/fneur.2022.917527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/01/2022] [Indexed: 01/09/2023] Open
Abstract
The growing incidence of neurodegenerative disorders in our populations is leading the research to identify potential biomarkers and targets for facilitating their early management and treatments. Biomarkers represent the crucial indicators of both physiological and pathological processes. Specific changes in molecular and cellular mechanisms of physiological processes result in biochemical alterations at systemic level, which can give us comprehensive information regarding the nature of any disease. In addition, any disease biomarker should be specific and reliable, able to consent of distinguishing the physiological condition of a tissue, organ, or system from disease, and be diverse among the various diseases, or subgroups or phenotypes of them. Accordingly, biomarkers can predict chances for diseases, facilitate their early diagnosis, and set guidelines for the development of new therapies for treating diseases and disease-making process. Here, we focus our attention on brain neurotrophic factor (BDNF)–tropomyosin receptor kinase (Trk) pathway, describing its multiple roles in the maintenance of central nervous system (CNS) health, as well as its implication in the pathogenesis of multiple sclerosis (MS). In addition, we also evidence the features of such pathway, which make of it a potential MS biomarker and therapeutic target.
Collapse
Affiliation(s)
- Giuseppe Schirò
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Salvatore Iacono
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Paolo Ragonese
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Paolo Ragonese
| | - Paolo Aridon
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppe Salemi
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Giuseppe Salemi
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
- *Correspondence: Carmela Rita Balistreri ; orcid.org/0000-0002-5393-1007
| |
Collapse
|
25
|
Di Benedetto MG, Scassellati C, Cattane N, Riva MA, Cattaneo A. Neurotrophic factors, childhood trauma and psychiatric disorders: A systematic review of genetic, biochemical, cognitive and imaging studies to identify potential biomarkers. J Affect Disord 2022; 308:76-88. [PMID: 35378148 DOI: 10.1016/j.jad.2022.03.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Exposure to traumatic experience represents one of the key environmental factors influencing the risk for several psychiatric disorders, in particular when suffered during childhood, a critical period for brain development, characterized by a high level of neuroplasticity. Abnormalities affecting neurotrophic factors might play a fundamental role in the link between childhood trauma (CT) and early life stress (ELS) and psychiatric disorders. METHODS A systematic review was conducted, considering genetic, biochemical and expression studies along with cognitive and brain structure imaging investigations, based on PubMed and Web of Science databases (available up until November 2021), to identify potential neuroplasticity related biomarkers associated both with CT/ELS and psychiatric disorders. The search was followed by data abstraction and study quality assessment (Newcastle-Ottawa Scale). RESULTS 103 studies met our eligibility criteria. Among them, 65 were available for genetic, 30 for biochemical and 3 for mRNA data; 45 findings were linked to specific symptomatology/pathologies, 16 with various cognitive functions, 19 with different brain areas, 6 on methylation and 36 performed on control subjects for the Brain Derived Neurotrophic Factor (BDNF); whereas 4 expression/biochemical studies covered Neurotrophin 4 (NT-4), Vascular Endothelium Growth Factor (VEGF), Epidermal Growth Factor (EGF), Fibroblast Growth Factor (FGF), and Transforming Growth Factor β1 (TGF-β1). LIMITATIONS Heterogeneity of assessments (biological, psychological, of symptomatology, and CT/ELS), age range and ethnicity of samples for BDNF studies; limited studies for other neurotrophins. CONCLUSIONS Results support the key role of BDNF (in form of Met allele) as biomarker, both at genetic and biochemical level, in mediating the effect of CT/ELS in psychiatric disorders, passing through specific cognitive functions and specific brain region architecture.
Collapse
Affiliation(s)
- Maria Grazia Di Benedetto
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| |
Collapse
|
26
|
Liu T, Xu Y, Yi CX, Tong Q, Cai D. The hypothalamus for whole-body physiology: from metabolism to aging. Protein Cell 2022; 13:394-421. [PMID: 33826123 PMCID: PMC9095790 DOI: 10.1007/s13238-021-00834-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Abstract
Obesity and aging are two important epidemic factors for metabolic syndrome and many other health issues, which contribute to devastating diseases such as cardiovascular diseases, stroke and cancers. The brain plays a central role in controlling metabolic physiology in that it integrates information from other metabolic organs, sends regulatory projections and orchestrates the whole-body function. Emerging studies suggest that brain dysfunction in sensing various internal cues or processing external cues may have profound effects on metabolic and other physiological functions. This review highlights brain dysfunction linked to genetic mutations, sex, brain inflammation, microbiota, stress as causes for whole-body pathophysiology, arguing brain dysfunction as a root cause for the epidemic of aging and obesity-related disorders. We also speculate key issues that need to be addressed on how to reveal relevant brain dysfunction that underlines the development of these disorders and diseases in order to develop new treatment strategies against these health problems.
Collapse
Affiliation(s)
- Tiemin Liu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Institute of Metabolism and Integrative Biology, Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yong Xu
- grid.39382.330000 0001 2160 926XChildren’s Nutrition Research Center, Department of Pediatrics, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Chun-Xia Yi
- grid.7177.60000000084992262Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Qingchun Tong
- grid.453726.10000 0004 5906 7293Brown Foundation Institute of Molecular Medicine, Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Graduate Program in Neuroscience of MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030 USA
| | - Dongsheng Cai
- grid.251993.50000000121791997Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 USA
| |
Collapse
|
27
|
Tessarollo L, Yanpallewar S. TrkB Truncated Isoform Receptors as Transducers and Determinants of BDNF Functions. Front Neurosci 2022; 16:847572. [PMID: 35321093 PMCID: PMC8934854 DOI: 10.3389/fnins.2022.847572] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/10/2022] [Indexed: 11/24/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of secreted growth factors and binds with high affinity to the TrkB tyrosine kinase receptors. BDNF is a critical player in the development of the central (CNS) and peripheral (PNS) nervous system of vertebrates and its strong pro-survival function on neurons has attracted great interest as a potential therapeutic target for the management of neurodegenerative disorders such as Amyotrophic Lateral Sclerosis (ALS), Huntington, Parkinson's and Alzheimer's disease. The TrkB gene, in addition to the full-length receptor, encodes a number of isoforms, including some lacking the catalytic tyrosine kinase domain. Importantly, one of these truncated isoforms, namely TrkB.T1, is the most widely expressed TrkB receptor in the adult suggesting an important role in the regulation of BDNF signaling. Although some progress has been made, the mechanism of TrkB.T1 function is still largely unknown. Here we critically review the current knowledge on TrkB.T1 distribution and functions that may be helpful to our understanding of how it regulates and participates in BDNF signaling in normal physiological and pathological conditions.
Collapse
Affiliation(s)
- Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | | |
Collapse
|
28
|
Lin NY, Chen ST, Chang HL, Lu MY, Yang YL, Chou SW, Lin DT, Lin KH, Jou ST, Hsu WM, Huang MC, Chang HH. C1GALT1 expression predicts a favorable prognosis and suppresses malignant phenotypes via TrkA signaling in neuroblastoma. Oncogenesis 2022; 11:8. [PMID: 35169131 PMCID: PMC8847342 DOI: 10.1038/s41389-022-00383-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 11/09/2022] Open
Abstract
Neuroblastoma (NB) is a childhood tumor derived from the sympathoadrenal lineage of the neural crest progenitor cells. Core 1 β1,3-galactosyltransferase (C1GALT1) controls the crucial step of GalNAc-type O-glycosylation, and its altered expression affects cancer behaviors. However, the role of C1GALT1 in NB tumors remains unclear. Our data showed that C1GALT1 expression was significantly associated with differentiated tumor histology, correlated with TrkA expression, and predicted good prognosis independently in NB. Downregulation of C1GALT1 promotes malignant behaviors of NB cells in vitro and in vivo. Mechanistic investigation showed that knockdown of C1GALT1 in NB cells increased TrkA pulled down through Vicia villosa agglutinin beads, indicating the modulation of O-glycans on TrkA by C1GALT1, and silencing C1GALT1 suppressed the TrkA expression on the NB cell surface. Overexpression of C1GALT1 increased the protein levels of TrkA and promoted the differentiation of NB cells, whereas knockdown of TrkA inhibited C1GALT1-induced neuronal differentiation. Moreover, the inhibitory effects of migration and invasion in C1GALT1-overexpressing NB cells were blocked by TrkA downregulation. C1GALT1 knockdown enhanced AKT phosphorylation but attenuated ERK phosphorylation, and these properties were consistent in C1GALT1-overexpressing NB cells with TrkA knockdown. Taken together, our data provided the first evidence for the existence of GalNAc-type O-glycans on TrkA and altered O-glycan structures by C1GALT1 can regulate TrkA signaling in NB cells. This study sheds light on the novel prognostic role of C1GALT1 in NB and provides new information of C1GALT1 and TrkA on the pathogenesis of NB.
Collapse
Affiliation(s)
- Neng-Yu Lin
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Syue-Ting Chen
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiu-Ling Chang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Meng-Yao Lu
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yung-Li Yang
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.,Departments of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Wei Chou
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Dong-Tsamn Lin
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.,Departments of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kai-Hsin Lin
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shiann-Tarng Jou
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiu-Hao Chang
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
29
|
Cote JL, Vander PB, Ellis M, Cline JM, Svezhova N, Doche ME, Maures TJ, Choudhury TA, Kong S, Klaft OGJ, Joe RM, Argetsinger LS, Carter-Su C. The nucleolar δ isoform of adapter protein SH2B1 enhances morphological complexity and function of cultured neurons. J Cell Sci 2022; 135:jcs259179. [PMID: 35019135 PMCID: PMC8918807 DOI: 10.1242/jcs.259179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/22/2021] [Indexed: 11/20/2022] Open
Abstract
The adapter protein SH2B1 is recruited to neurotrophin receptors, including TrkB (also known as NTRK2), the receptor for brain-derived neurotrophic factor (BDNF). Herein, we demonstrate that the four alternatively spliced isoforms of SH2B1 (SH2B1α-SH2B1δ) are important determinants of neuronal architecture and neurotrophin-induced gene expression. Primary hippocampal neurons from Sh2b1-/- [knockout (KO)] mice exhibit decreased neurite complexity and length, and BDNF-induced expression of the synapse-related immediate early genes Egr1 and Arc. Reintroduction of each SH2B1 isoform into KO neurons increases neurite complexity; the brain-specific δ isoform also increases total neurite length. Human obesity-associated variants, when expressed in SH2B1δ, alter neurite complexity, suggesting that a decrease or increase in neurite branching may have deleterious effects that contribute to the severe childhood obesity and neurobehavioral abnormalities associated with these variants. Surprisingly, in contrast to SH2B1α, SH2B1β and SH2B1γ, which localize primarily in the cytoplasm and plasma membrane, SH2B1δ resides primarily in nucleoli. Some SH2B1δ is also present in the plasma membrane and nucleus. Nucleolar localization, driven by two highly basic regions unique to SH2B1δ, is required for SH2B1δ to maximally increase neurite complexity and BDNF-induced expression of Egr1, Arc and FosL1.
Collapse
Affiliation(s)
- Jessica L. Cote
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Paul B. Vander
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael Ellis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joel M. Cline
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nadezhda Svezhova
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael E. Doche
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Travis J. Maures
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tahrim A. Choudhury
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Seongbae Kong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Olivia G. J. Klaft
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ray M. Joe
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lawrence S. Argetsinger
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christin Carter-Su
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Karpinski BA, Maynard TM, Bryan CA, Yitsege G, Horvath A, Lee NH, Moody SA, LaMantia AS. Selective disruption of trigeminal sensory neurogenesis and differentiation in a mouse model of 22q11.2 deletion syndrome. Dis Model Mech 2022; 15:dmm047357. [PMID: 33722956 PMCID: PMC8126478 DOI: 10.1242/dmm.047357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
22q11.2 Deletion Syndrome (22q11DS) is a neurodevelopmental disorder associated with cranial nerve anomalies and disordered oropharyngeal function, including pediatric dysphagia. Using the LgDel 22q11DS mouse model, we investigated whether sensory neuron differentiation in the trigeminal ganglion (CNgV), which is essential for normal orofacial function, is disrupted. We did not detect changes in cranial placode cell translocation or neural crest migration at early stages of LgDel CNgV development. However, as the ganglion coalesces, proportions of placode-derived LgDel CNgV cells increase relative to neural crest cells. In addition, local aggregation of placode-derived cells increases and aggregation of neural crest-derived cells decreases in LgDel CNgV. This change in cell-cell relationships was accompanied by altered proliferation of placode-derived cells at embryonic day (E)9.5, and premature neurogenesis from neural crest-derived precursors, reflected by an increased frequency of asymmetric neurogenic divisions for neural crest-derived precursors by E10.5. These early differences in LgDel CNgV genesis prefigure changes in sensory neuron differentiation and gene expression by postnatal day 8, when early signs of cranial nerve dysfunction associated with pediatric dysphagia are observed in LgDel mice. Apparently, 22q11 deletion destabilizes CNgV sensory neuron genesis and differentiation by increasing variability in cell-cell interaction, proliferation and sensory neuron differentiation. This early developmental divergence and its consequences may contribute to oropharyngeal dysfunction, including suckling, feeding and swallowing disruptions at birth, and additional orofacial sensory/motor deficits throughout life.
Collapse
Affiliation(s)
- Beverly A. Karpinski
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Thomas M. Maynard
- The Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA
| | - Corey A. Bryan
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Gelila Yitsege
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Anelia Horvath
- Department of Pharmacology and Physiology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Norman H. Lee
- Department of Pharmacology and Physiology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Anthony-Samuel LaMantia
- The Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
31
|
Blauel ER, Laetsch TW. The promise of TRK inhibitors in pediatric cancers with NTRK fusions. Cancer Genet 2022; 262-263:71-79. [PMID: 35108663 DOI: 10.1016/j.cancergen.2022.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/01/2021] [Accepted: 01/20/2022] [Indexed: 11/02/2022]
Abstract
NTRK fusions are rare oncogenic drivers that occur across a range of pediatric cancers. These include infantile fibrosarcoma and secretory breast cancer in which such fusions are nearly pathognomonic, and a spectrum of more common pediatric cancers in which NTRK fusions occur at a lower frequency. Within the last 5 years, two TRK inhibitors, larotrectinib and entrectinib, have demonstrated histology-agnostic activity against NTRK fusion driven cancers and achieved FDA approval. Here the data supporting the use of these TRK inhibitors for the treatment of cancers harboring NTRK fusions is reviewed, with a particular focus on the pediatric experience. Mechanisms of acquired resistance to these first generation TRK inhibitors are discussed and investigational second generation TRK inhibitors that may overcome some of these mechanisms of resistance are highlighted.
Collapse
|
32
|
Lin PH, Kuo LT, Luh HT. The Roles of Neurotrophins in Traumatic Brain Injury. LIFE (BASEL, SWITZERLAND) 2021; 12:life12010026. [PMID: 35054419 PMCID: PMC8780368 DOI: 10.3390/life12010026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023]
Abstract
Neurotrophins are a collection of structurally and functionally related proteins. They play important roles in many aspects of neural development, survival, and plasticity. Traumatic brain injury (TBI) leads to different levels of central nervous tissue destruction and cellular repair through various compensatory mechanisms promoted by the injured brain. Many studies have shown that neurotrophins are key modulators of neuroinflammation, apoptosis, blood–brain barrier permeability, memory capacity, and neurite regeneration. The expression of neurotrophins following TBI is affected by the severity of injury, genetic polymorphism, and different post-traumatic time points. Emerging research is focused on the potential therapeutic applications of neurotrophins in managing TBI. We conducted a comprehensive review by organizing the studies that demonstrate the role of neurotrophins in the management of TBI.
Collapse
Affiliation(s)
- Ping-Hung Lin
- Department of Medical Education, School of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Hui-Tzung Luh
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 235, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-956279587
| |
Collapse
|
33
|
Abstract
The sympathetic nervous system prepares the body for 'fight or flight' responses and maintains homeostasis during daily activities such as exercise, eating a meal or regulation of body temperature. Sympathetic regulation of bodily functions requires the establishment and refinement of anatomically and functionally precise connections between postganglionic sympathetic neurons and peripheral organs distributed widely throughout the body. Mechanistic studies of key events in the formation of postganglionic sympathetic neurons during embryonic and early postnatal life, including axon growth, target innervation, neuron survival, and dendrite growth and synapse formation, have advanced the understanding of how neuronal development is shaped by interactions with peripheral tissues and organs. Recent progress has also been made in identifying how the cellular and molecular diversity of sympathetic neurons is established to meet the functional demands of peripheral organs. In this Review, we summarize current knowledge of signalling pathways underlying the development of the sympathetic nervous system. These findings have implications for unravelling the contribution of sympathetic dysfunction stemming, in part, from developmental perturbations to the pathophysiology of peripheral neuropathies and cardiovascular and metabolic disorders.
Collapse
|
34
|
Comparative Transcriptome Profiling Reveals Changes of microRNAs Response to Exercise in Rats with Neuropathic Pain. Neural Plast 2021; 2021:5597139. [PMID: 34394340 PMCID: PMC8356008 DOI: 10.1155/2021/5597139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/24/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022] Open
Abstract
There is accumulating evidence showing that exercise therapy may play an active role in peripheral neuropathic pain (NP), but its mechanism is still unclear. Studies have found that microRNAs (miRNAs) may play a role in NP by regulating pain-related target genes. Therefore, we aimed to explore the changes of miRNA and mRNA of dorsal root ganglion (DRG) after NP in response to exercise with transcriptome technology. The chronic constriction injury (CCI) model was established, and rats were randomly allocated into three groups, namely, the sham-operated, CCI, and CCI-exercised groups. L4-L6 DRG tissue was taken for RNA-sequencing, and the differentially expressed genes (DEGs) were determined through bioinformatics analysis. Real-time PCR was used to confirm the accuracy. A total of 4 overlapping differentially expressed miRNAs and 186 overlapping differentially expressed mRNAs were identified in the two comparisons of the sham-operated group versus the CCI group and the CCI group versus the CCI-exercised group. Among these DEGs, miR-145-5p, miR-341, miR-300-5p, miR-653-5p, Atf3, Cacna2d1, Gal, and Ctss related to NP were validated by real-time PCR. DEGs between the CCI and CCI-exercised groups were enriched in HIF-1 signaling pathway, Rap1 signaling pathway, and neurotrophin signaling pathway. This study provides an understanding of the adaptive mechanisms after exercise of NP, and these DEGs in DRG might play a role in NP by stimulating the enriched pathways.
Collapse
|
35
|
LianXia Formula Granule Attenuates Cardiac Sympathetic Remodeling in Rats with Myocardial Infarction via the NGF/TrKA/PI3K/AKT Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5536406. [PMID: 34221073 PMCID: PMC8213506 DOI: 10.1155/2021/5536406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 01/24/2023]
Abstract
Sympathetic remodeling may cause severe arrhythmia after myocardial infarction (MI). Thus, targeting this process may be an effective strategy for clinical prevention of arrhythmias. LianXia Formula Granule (LXFG) can effectively improve the symptoms of patients with arrhythmia after MI, and modern pharmacological studies have shown that Coptidis Rhizoma and Rhizoma Pinelliae Preparata, the components of LXFG, have antiarrhythmia effects. Here, we investigated whether LXFG can mitigate sympathetic remodeling and suppress arrhythmia and then elucidated its underlying mechanism of action in rats after MI. Sprague-Dawley (SD) rats that had undergone a myocardial infarction model were randomly divided into 6 groups, namely, sham, model, metoprolol, and LXFG groups, with high, medium, and low dosages. We exposed the animals to 30 days of treatment and then evaluated incidence of arrhythmia and arrhythmia scores in vivo using programmed electrical stimulation. Moreover, we determined plasma catecholamines contents via enzyme-linked immunosorbent assay and detected expression of tyrosine hydroxylase (TH) at infarcted border zones via western blot, real-time PCR, and immunohistochemical analyses to assess sympathetic remodeling. Finally, we measured key molecules involved in the NGF/TrKA/PI3K/AKT pathways via western blot and real-time PCR. Compared with the model group, treatment with high dose of LXFG suppressed arrhythmia incidence and arrhythmia scores. In addition, all the LXFG groups significantly decreased protein and mRNA levels of TH, improved the average optical density of TH-positive nerve fibers, and reduced the levels of plasma catecholamines relative to the model group. Meanwhile, expression analysis revealed that key molecules in the NGF/TrKA/PI3K/AKT pathways were downregulated in the LXFG group when compared with model group. Overall, these findings indicate that LXFG suppresses arrhythmia and attenuates sympathetic remodeling in rats after MI. The mechanism is probably regulated by suppression of the NGF/TrKA/PI3K/AKT signaling pathway.
Collapse
|
36
|
Padmanabhan Nair V, Liu H, Ciceri G, Jungverdorben J, Frishman G, Tchieu J, Cederquist GY, Rothenaigner I, Schorpp K, Klepper L, Walsh RM, Kim TW, Cornacchia D, Ruepp A, Mayer J, Hadian K, Frishman D, Studer L, Vincendeau M. Activation of HERV-K(HML-2) disrupts cortical patterning and neuronal differentiation by increasing NTRK3. Cell Stem Cell 2021; 28:1566-1581.e8. [PMID: 33951478 DOI: 10.1016/j.stem.2021.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
The biological function and disease association of human endogenous retroviruses (HERVs) are largely elusive. HERV-K(HML-2) has been associated with neurotoxicity, but there is no clear understanding of its role or mechanistic basis. We addressed the physiological functions of HERV-K(HML-2) in neuronal differentiation using CRISPR engineering to activate or repress its expression levels in a human-pluripotent-stem-cell-based system. We found that elevated HERV-K(HML-2) transcription is detrimental for the development and function of cortical neurons. These effects are cell-type-specific, as dopaminergic neurons are unaffected. Moreover, high HERV-K(HML-2) transcription alters cortical layer formation in forebrain organoids. HERV-K(HML-2) transcriptional activation leads to hyperactivation of NTRK3 expression and other neurodegeneration-related genes. Direct activation of NTRK3 phenotypically resembles HERV-K(HML-2) induction, and reducing NTRK3 levels in context of HERV-K(HML-2) induction restores cortical neuron differentiation. Hence, these findings unravel a cell-type-specific role for HERV-K(HML-2) in cortical neuron development.
Collapse
Affiliation(s)
| | - Hengyuan Liu
- Department of Genome-Oriented Bioinformatics, Technical University Munich, Munich, Germany
| | - Gabriele Ciceri
- Developmental Biology and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Johannes Jungverdorben
- Developmental Biology and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Goar Frishman
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jason Tchieu
- Developmental Biology and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gustav Y Cederquist
- Developmental Biology and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ina Rothenaigner
- Assay Development and Screening Platform, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Helmholtz Zentrum München, Neuherberg, Germany
| | - Lena Klepper
- Institute of Virology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ryan M Walsh
- Developmental Biology and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tae Wan Kim
- Developmental Biology and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniela Cornacchia
- Developmental Biology and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andreas Ruepp
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jens Mayer
- Institute of Human Genetics, University of Saarland, Homburg, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dmitrij Frishman
- Department of Genome-Oriented Bioinformatics, Technical University Munich, Munich, Germany
| | - Lorenz Studer
- Developmental Biology and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michelle Vincendeau
- Institute of Virology, Helmholtz Zentrum München, Neuherberg, Germany; Developmental Biology and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
37
|
Rahimian N, Razavi ZS, Aslanbeigi F, Mirkhabbaz AM, Piroozmand H, Shahrzad MK, Hamblin MR, Mirzaei H. Non-coding RNAs related to angiogenesis in gynecological cancer. Gynecol Oncol 2021; 161:896-912. [PMID: 33781555 DOI: 10.1016/j.ygyno.2021.03.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Gynecological cancer affects the female reproductive system, including ovarian, uterine, endometrial, cervical, vulvar, and vaginal tumors. Non-coding RNAs (ncRNAs), and in particular microRNAs, function as regulatory molecules, which can control gene expression in a post-transcriptional manner. Normal physiological processes like cellular proliferation, differentiation, and apoptosis, and pathological processes such as oncogenesis and metastasis are regulated by microRNAs. Numerous reports have shown a direct role of microRNAs in the modulation of angiogenesis in gynecological cancer, via targeting pro-angiogenic factors and signaling pathways. Understanding the molecular mechanism involved in the regulation of angiogenesis by microRNAs may lead to new treatment options. Recently the regulatory role of some long non-coding RNAs in gynecological cancer has also been explored, but the information on this function is more limited. The aim of this article is to explore the pathways responsible for angiogenesis, and to what extent ncRNAs may be employed as biomarkers or therapeutic targets in gynecological cancer.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | | | | | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
38
|
Pathak A, Clark S, Bronfman FC, Deppmann CD, Carter BD. Long-distance regressive signaling in neural development and disease. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e382. [PMID: 32391977 PMCID: PMC7655682 DOI: 10.1002/wdev.382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Nervous system development proceeds via well-orchestrated processes involving a balance between progressive and regressive events including stabilization or elimination of axons, synapses, and even entire neurons. These progressive and regressive events are driven by functionally antagonistic signaling pathways with the dominant pathway eventually determining whether a neural element is retained or removed. Many of these developmental sculpting events are triggered by final target innervation necessitating a long-distance mode of communication. While long-distance progressive signaling has been well characterized, particularly for neurotrophic factors, there remains relatively little known about how regressive events are triggered from a distance. Here we discuss the emergent phenomenon of long-distance regressive signaling pathways. In particular, we will cover (a) progressive and regressive cues known to be employed after target innervation, (b) the mechanisms of long-distance signaling from an endosomal platform, (c) recent evidence that long-distance regressive cues emanate from platforms like death receptors or repulsive axon guidance receptors, and (d) evidence that these pathways are exploited in pathological scenarios. This article is categorized under: Nervous System Development > Vertebrates: General Principles Signaling Pathways > Global Signaling Mechanisms Establishment of Spatial and Temporal Patterns > Cytoplasmic Localization.
Collapse
Affiliation(s)
- Amrita Pathak
- Department of Biochemistry and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Shayla Clark
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia
| | - Francisca C. Bronfman
- Institute of Biomedical Sciences (ICB), Faculty of Medicine, Faculty of Life Science, Universidad Andres Bello, Santiago, Chile
| | - Christopher D. Deppmann
- Departments of Biology, Cell Biology, Biomedical Engineering, and Neuroscience, University of Virginia, Charlottesville, Virginia
| | - Bruce D. Carter
- Department of Biochemistry and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
39
|
Assessment of the toxicity and toxicokinetics of the novel potent tropomyosin receptor kinase (Trk) inhibitor LPM4870108 in rhesus monkeys. Regul Toxicol Pharmacol 2021; 122:104886. [PMID: 33556418 DOI: 10.1016/j.yrtph.2021.104886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 01/28/2023]
Abstract
LPM4870108 is a tropomyosin receptor kinase (Trk) inhibitor that is currently under consideration for human clinical trials. We characterized the toxicity and toxicokinetic properties of LPM4870108 following its oral administration to rhesus monkeys (5, 10, or 20 mg/kg/day for 4 weeks with a 4-week recovery period). No evidence of LPM4870108 toxicity was observed over this study as reflected by an absence of difference in body weight, ophthalmoscopy, urinalysis, gross, or histopathology findings. No significant differences in toxicity-related outcomes were detected when comparing LPM4870108 and control groups, and no significant treatment-related changes in food consumption, electrocardiogram results, blood pressure, hematological parameters, biochemical values, organ weight, or bone marrow parameters were observed. Treatment caused dose-dependent effects of gait disturbance, impaired balance, poor coordination, and decreased grip strength in all LPM4870108-treated animals, with these effects being attributable to excessive on-target Trk receptor inhibition. After the 4-week recovery period, all these abnormal treatment-related findings had fully or partially resolved. The toxicokinetic study of monkeys revealed that the LPM4870108 exposure increased with dose. Overall, LPM4870108 exhibited a safety profile in treated monkeys, indicating that the Highest Non-Severely Toxic Dose (HNSTD) for LPM4870108 in monkeys was 20 mg/kg/day.
Collapse
|
40
|
Zerani M, Polisca A, Boiti C, Maranesi M. Current Knowledge on the Multifactorial Regulation of Corpora Lutea Lifespan: The Rabbit Model. Animals (Basel) 2021; 11:ani11020296. [PMID: 33503812 PMCID: PMC7911389 DOI: 10.3390/ani11020296] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Corpora lutea (CL) are temporary endocrine structures that secrete progesterone, which is essential for maintaining a healthy pregnancy. A variety of regulatory factors come into play in modulating the functional lifespan of CL, with luteotropic and luteolytic effects. Many aspects of luteal phase physiology have been clarified, yet many others have not yet been determined, including the molecular and/or cellular mechanisms that maintain the CL from the beginning of luteolysis during early CL development. This paper summarizes our current knowledge of the endocrine and cellular mechanisms involved in multifactorial CL lifespan regulation, using the pseudopregnant rabbit model. Abstract Our research group studied the biological regulatory mechanisms of the corpora lutea (CL), paying particular attention to the pseudopregnant rabbit model, which has the advantage that the relative luteal age following ovulation is induced by the gonadotrophin-releasing hormone (GnRH). CL are temporary endocrine structures that secrete progesterone, which is essential for maintaining a healthy pregnancy. It is now clear that, besides the classical regulatory mechanism exerted by prostaglandin E2 (luteotropic) and prostaglandin F2α (luteolytic), a considerable number of other effectors assist in the regulation of CL. The aim of this paper is to summarize our current knowledge of the multifactorial mechanisms regulating CL lifespan in rabbits. Given the essential role of CL in reproductive success, a deeper understanding of the regulatory mechanisms will provide us with valuable insights on various reproductive issues that hinder fertility in this and other mammalian species, allowing to overcome the challenges for new and more efficient breeding strategies.
Collapse
|
41
|
Wei J, Shi Q, Xiong L, Xin G, Yi T, Xiao Y, Huang W. Transcriptome profiling of cells exposed to particular and intense electromagnetic radiation emitted by the "SG-III" prototype laser facility. Sci Rep 2021; 11:2017. [PMID: 33479397 PMCID: PMC7820428 DOI: 10.1038/s41598-021-81642-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/05/2021] [Indexed: 02/05/2023] Open
Abstract
The experiment of inertial confinement fusion by the "ShengGuang (SG)-III" prototype laser facility is a transient and extreme reaction process within several nanoseconds, which could form a very complicated and intense electromagnetic field around the target chamber of the facility and may lead to harmful effect on people around. In particular, the biological effects arising from such specific environment field could hardly be ignored and have never been investigated yet, and thus, we reported on the investigation of the biological effects of radiation on HaCat cells and PC12 cells to preliminarily assess the biological safety of the target range of the "SG-III" prototype laser facility. The viability revealed that the damage of cells was dose-dependent. Then we compared the transcriptomes of exposed and unexposed PC12 cells by RNA-Seq analysis based on Illumina Novaseq 6000 platform and found that most significantly differentially expressed genes with corresponding Gene Ontology terms and pathways were strongly involved in proliferation, transformation, necrosis, inflammation response, apoptosis and DNA damage. Furthermore, we find increase in the levels of several proteins responsible for cell-cycle regulation and tumor suppression, suggesting that pathways or mechanisms regarding DNA damage repair was are quickly activated. It was found that "SG-III" prototype radiation could induce DNA damage and promote apoptotic necrosis.
Collapse
Affiliation(s)
- Jiangbin Wei
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Qiwu Shi
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Lidan Xiong
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guang Xin
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tao Yi
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Yunqing Xiao
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Wanxia Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
42
|
Pius-Sadowska E, Machaliński B. Pleiotropic activity of nerve growth factor in regulating cardiac functions and counteracting pathogenesis. ESC Heart Fail 2021; 8:974-987. [PMID: 33465292 PMCID: PMC8006610 DOI: 10.1002/ehf2.13138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022] Open
Abstract
Cardiac innervation density generally reflects the levels of nerve growth factor (NGF) produced by the heart—changes in NGF expression within the heart and vasculature contribute to neuronal remodelling (e.g. sympathetic hyperinnervation or denervation). Its synthesis and release are altered under different pathological conditions. Although NGF is well known for its survival effects on neurons, it is clear that these effects are more wide ranging. Recent studies reported both in vitro and in vivo evidence for beneficial actions of NGF on cardiomyocytes in normal and pathological hearts, including prosurvival and antiapoptotic effects. NGF also plays an important role in the crosstalk between the nervous and cardiovascular systems. It was the first neurotrophin to be implicated in postnatal angiogenesis and vasculogenesis by autocrine and paracrine mechanisms. In connection with these unique cardiovascular properties of NGF, we have provided comprehensive insight into its function and potential effect of NGF underlying heart sustainable/failure conditions. This review aims to summarize the recent data on the effects of NGF on various cardiovascular neuronal and non‐neuronal functions. Understanding these mechanisms with respect to the diversity of NGF functions may be crucial for developing novel therapeutic strategies, including NGF action mechanism‐guided therapies.
Collapse
Affiliation(s)
- Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin, 70111, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin, 70111, Poland
| |
Collapse
|
43
|
Abstract
Gene rearrangements involving the neurotrophic receptor kinase genes NTRK1, NTRK2, and NTRK3 (referred to as TRK, encoding TRKA, TRKB, and TRKC, respectively) result in highly oncogenic fusions. TRK fusions are rare, with a prevalence of < 1% in solid tumors. Detection of TRK fusions can be based on fluorescence in-situ hybridization (FISH), immunohistochemistry (IHC), and next-generation sequencing (NGS), where RNA sequencing is the most sensitive method. Inhibition of TRK fusions with highly selective small-molecule TRK inhibitors (TRKi) such as entrectinib and larotrectinib, results in profound responses in most cancer patients, regardless of cancer histology. Even response in CNS metastases is relatively common. Although responses are often durable, many patients develop resistance to TRKi due to mutations in one of the TRK genes, or due to genetic alterations conferring activation of alternative oncogenic signaling pathways. Second-generation TRKi have been developed, which can overcome some of the TRK resistance mutations. TRKi are well tolerated, with most common adverse events being related to on-target/off-tumor inhibition of TRKs.
Collapse
|
44
|
Maranesi M, Boiti C, Zerani M. Nerve Growth Factor (NGF) and Animal Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:277-287. [PMID: 34453306 DOI: 10.1007/978-3-030-74046-7_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stimuli that lead to the release of gonadotropin-releasing hormone (GnRH) and pituitary gonadotropins and, consequently, ovulation in mammals fall into two broad categories. In the first, high plasma oestrogen concentrations induce the events that trigger ovulation, a characteristic of spontaneous ovulators. In the second, nerve stimuli occurring during mating reach the hypothalamus and trigger the release of GnRH and ovulation with a neuroendocrine reflex that characterizes induced ovulators.In this review, we will give an overview of the distribution of NGF and its expression in the different tissues of the male accessory sex glands, the main sites of NGF production. Next, we will highlight the role of NGF in sperm function and its potential cryopreserving role in artificial insemination techniques. Finally, we will evaluate the functions of NGF in ovulation, particularly in induced ovulators. Overall, the information obtained so far indicates that NGF is widely distributed in organs that regulate the reproductive activity, in both males and females. In spontaneous ovulators, NGF exerts mainly a luteotrophic action, while, in induced ovulators it is the main ovulation-inducing factor. A better understanding of the role of NGF in reproduction would be of great interest, since it could help finding innovative therapeutic aids to improve mammalian fertility.
Collapse
Affiliation(s)
- Margherita Maranesi
- Dipartimento di Medicina Veterinaria, Università di Perugia, Perugia, PG, Italy.
| | - Cristiano Boiti
- Dipartimento di Medicina Veterinaria, Università di Perugia, Perugia, PG, Italy
| | - Massimo Zerani
- Dipartimento di Medicina Veterinaria, Università di Perugia, Perugia, PG, Italy
| |
Collapse
|
45
|
Bochukova EG. Transcriptomics of the Prader-Willi syndrome hypothalamus. HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:369-379. [PMID: 34238471 DOI: 10.1016/b978-0-12-820683-6.00027-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prader-Willi syndrome (PWS) is a complex neurodevelopmental disorder, arising from a loss of paternity expressed genetic material on the imprinted chromosome locus 15q11-q13. Despite increasing clarity on the underlying genetic defects, the molecular basis of the condition remains poorly understood. Hypothalamic dysfunction is widely recognized as the basis of the core symptoms of PWS, which include a deficiency in growth hormone and reproductive hormones, circadian rhythm abnormalities, and a lack of satiety, leading to an extreme obesity, among others. Genome-wide gene expression analysis (transcriptomics) offers an unbiased interrogation of complex disease pathogenesis and a potential window into the dysregulated pathways involved in disease. In this chapter, we review the findings from recent work investigating the PWS hypothalamic transcriptome, discuss the significance of the findings in relation to the clinical presentation and molecular underpinnings of PWS, and highlight future research directions.
Collapse
Affiliation(s)
- Elena G Bochukova
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
46
|
Takahashi M, Sanchez JT. Effects of Neurotrophin-3 on Intrinsic Neuronal Properties at a Central Auditory Structure. Neurosci Insights 2020; 15:2633105520980442. [PMID: 33354669 PMCID: PMC7734498 DOI: 10.1177/2633105520980442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/23/2020] [Indexed: 11/15/2022] Open
Abstract
Neurotrophins, a class of growth factor proteins that control neuronal proliferation, morphology, and apoptosis, are found ubiquitously throughout the nervous system. One particular neurotrophin (NT-3) and its cognate tyrosine receptor kinase (TrkC) have recently received attention as a possible therapeutic target for synaptopathic sensorineural hearing loss. Additionally, research shows that NT-3-TrkC signaling plays a role in establishing the sensory organization of frequency topology (ie, tonotopic order) in the cochlea of the peripheral inner ear. However, the neurotrophic effects of NT-3 on central auditory properties are unclear. In this study we examined whether NT-3-TrkC signaling affects the intrinsic electrophysiological properties at a first-order central auditory structure in chicken, known as nucleus magnocellularis (NM). Here, the expression pattern of specific neurotrophins is well known and tightly regulated. By using whole-cell patch-clamp electrophysiology, we show that NT-3 application to brainstem slices does not affect intrinsic properties of high-frequency neuronal regions but had robust effects for low-frequency neurons, altering voltage-dependent potassium functions, action potential repolarization kinetics, and passive membrane properties. We suggest that NT-3 may contribute to the precise establishment and organization of tonotopy in the central auditory pathway by playing a specialized role in regulating the development of intrinsic neuronal properties of low-frequency NM neurons.
Collapse
Affiliation(s)
- Momoko Takahashi
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- The Hugh Knowles Hearing Research Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
47
|
Quality of life 6 and 18 months after mild traumatic brain injury in early childhood: An exploratory study of the role of genetic, environmental, injury, and child factors. Brain Res 2020; 1748:147061. [DOI: 10.1016/j.brainres.2020.147061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 11/18/2022]
|
48
|
LEE SH, YEO D, HONG JH. Effect of dihydroferulic acid obtained from fermented rice bran extract on neuroprotection and behavioral recovery in an ischemic rat model. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.33719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Dana YEO
- Inje University, Republic of Korea
| | | |
Collapse
|
49
|
Seasonal Expression of NGF and Its Cognate Receptors in the Ovaries of Grey Squirrels ( Sciurus carolinensis). Animals (Basel) 2020; 10:ani10091558. [PMID: 32887345 PMCID: PMC7552179 DOI: 10.3390/ani10091558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Invasive alien species pose a significant threat to biodiversity, as once they have adapted to their new environment, they cause the reduction and even extinction of native species. In this framework, the American grey squirrel (Sciurus carolinensis) poses a serious threat to the European red species squirrel (Sciurus vulgaris), especially in the Umbria region of Italy. In fact, an invasive grey squirrel population has adapted well to the Umbrian territory, showing high reproductive success. In addition to its role in the development of the vertebrate nervous system, nerve growth factor (NGF) has recently been found to play an important role in reproduction. In order to investigate the reproductive physiology of female grey squirrels, the ovarian presence, distribution, and gene expression of NGF and its cognate receptors were evaluated during both breeding and nonbreeding seasons. The presence and gene expression of this system at the ovarian level, mainly during the breeding season, confirm the possible involvement of NGF and its receptors in the gonadal activity of this invasive grey squirrel population. Abstract The grey squirrel is an invasive alien species that seriously threatens the conservation of the native red squirrel species. With the aim of characterizing the reproductive physiology of this species due to its great reproductive success, the function of the ovarian nerve growth factor (NGF) system was analyzed in a grey squirrel population living in central Italy. During the breeding and nonbreeding seasons, the ovarian presence, distribution, and gene expression of NGF, neurotrophic tyrosine kinase receptor 1 (NTRK1), and nerve growth factor receptor (NGFR), as well as NGF plasma concentrations, were evaluated in female grey squirrels. NGF was found in the luteal cells and in the thecal and granulosa cells of follicles, while NTRK1 and NGFR were only observed in follicular thecal and granulosa cells. NGF and NGFR transcripts were almost two-fold greater during the breeding season, while no seasonal differences were observed in NTRK1 gene expression. During the breeding season, NGFR was more expressed than NTRK1. Moreover, no changes were observed in NGF plasma levels during the reproductive cycle. The NGF system seems to be involved in regulating the ovarian cycle mainly via local modulation of NGF/NGFR, thus playing a role in the reproductive physiology of this grey squirrel population.
Collapse
|
50
|
Liu D, Flory J, Lin A, Offin M, Falcon CJ, Murciano-Goroff YR, Rosen E, Guo R, Basu E, Li BT, Harding JJ, Iyer G, Jhaveri K, Gounder MM, Shukla NN, Roberts SS, Glade-Bender J, Kaplanis L, Schram A, Hyman DM, Drilon A. Characterization of on-target adverse events caused by TRK inhibitor therapy. Ann Oncol 2020; 31:1207-1215. [PMID: 32422171 PMCID: PMC8341080 DOI: 10.1016/j.annonc.2020.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The tropomyosin receptor kinase (TRK) pathway controls appetite, balance, and pain sensitivity. While these functions are reflected in the on-target adverse events (AEs) observed with TRK inhibition, these AEs remain under-recognized, and pain upon drug withdrawal has not previously been reported. As TRK inhibitors are approved by multiple regulatory agencies for TRK or ROS1 fusion-positive cancers, characterizing these AEs and corresponding management strategies is crucial. PATIENTS AND METHODS Patients with advanced or unresectable solid tumors treated with a TRK inhibitor were retrospectively identified in a search of clinical databases. Among these patients, the frequency, severity, duration, and management outcomes of AEs including weight gain, dizziness or ataxia, and withdrawal pain were characterized. RESULTS Ninety-six patients with 15 unique cancer histologies treated with a TRK inhibitor were identified. Weight gain was observed in 53% [95% confidence interval (CI), 43%-62%] of patients and increased with time on TRK inhibition. Pharmacologic intervention, most commonly with glucagon-like peptide 1 analogs or metformin, appeared to result in stabilization or loss of weight. Dizziness, with or without ataxia, was observed in 41% (95% CI, 31%-51%) of patients with a median time to onset of 2 weeks (range, 3 days to 16 months). TRK inhibitor dose reduction was the most effective intervention for dizziness. Pain upon temporary or permanent TRK inhibitor discontinuation was observed in 35% (95% CI, 24%-46%) of patients; this was more common with longer TRK inhibitor use. TRK inhibitor reinitiation was the most effective intervention for withdrawal pain. CONCLUSIONS TRK inhibition-related AEs including weight gain, dizziness, and withdrawal pain occur in a substantial proportion of patients receiving TRK inhibitors. This safety profile is unique relative to other anticancer therapies and warrants careful monitoring. These on-target toxicities are manageable with pharmacologic intervention and dose modification.
Collapse
Affiliation(s)
- D Liu
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, USA
| | - J Flory
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Medicine, Weill Cornell Medical College, New York, USA
| | - A Lin
- Department of Medicine, Weill Cornell Medical College, New York, USA; Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - M Offin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Medicine, Weill Cornell Medical College, New York, USA
| | - C J Falcon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Y R Murciano-Goroff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - E Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - R Guo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - E Basu
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - B T Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Medicine, Weill Cornell Medical College, New York, USA
| | - J J Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Medicine, Weill Cornell Medical College, New York, USA
| | - G Iyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Medicine, Weill Cornell Medical College, New York, USA
| | - K Jhaveri
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Medicine, Weill Cornell Medical College, New York, USA
| | - M M Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Medicine, Weill Cornell Medical College, New York, USA
| | - N N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - S S Roberts
- Department of Medicine, Weill Cornell Medical College, New York, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - J Glade-Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - L Kaplanis
- Department of Nursing, Memorial Sloan Kettering Cancer Center, New York, USA
| | - A Schram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Medicine, Weill Cornell Medical College, New York, USA
| | - D M Hyman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Medicine, Weill Cornell Medical College, New York, USA
| | - A Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Medicine, Weill Cornell Medical College, New York, USA.
| |
Collapse
|