1
|
Waghmare I, Gangwani K, Rai A, Singh A, Kango-Singh M. A Tumor-Specific Molecular Network Promotes Tumor Growth in Drosophila by Enforcing a Jun N-Terminal Kinase-Yorkie Feedforward Loop. Cancers (Basel) 2024; 16:1768. [PMID: 38730720 PMCID: PMC11083887 DOI: 10.3390/cancers16091768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Cancer cells expand rapidly in response to altered intercellular and signaling interactions to achieve the hallmarks of cancer. Impaired cell polarity combined with activated oncogenes is known to promote several hallmarks of cancer, e.g., activating invasion by increased activity of Jun N-terminal kinase (JNK) and sustained proliferative signaling by increased activity of Hippo effector Yorkie (Yki). Thus, JNK, Yki, and their downstream transcription factors have emerged as synergistic drivers of tumor growth through pro-tumor signaling and intercellular interactions like cell competition. However, little is known about the signals that converge onto JNK and Yki in tumor cells and enable tumor cells to achieve the hallmarks of cancer. Here, using mosaic models of cooperative oncogenesis (RasV12,scrib-) in Drosophila, we show that RasV12,scrib- tumor cells grow through the activation of a previously unidentified network comprising Wingless (Wg), Dronc, JNK, and Yki. We show that RasV12,scrib- cells show increased Wg, Dronc, JNK, and Yki signaling, and all these signals are required for the growth of RasV12,scrib- tumors. We report that Wg and Dronc converge onto a JNK-Yki self-reinforcing positive feedback signal-amplification loop that promotes tumor growth. We found that the Wg-Dronc-Yki-JNK molecular network is specifically activated in polarity-impaired tumor cells and not in normal cells, in which apical-basal polarity remains intact. Our findings suggest that the identification of molecular networks may provide significant insights into the key biologically meaningful changes in signaling pathways and paradoxical signals that promote tumorigenesis.
Collapse
Affiliation(s)
- Indrayani Waghmare
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (I.W.); (A.R.); (A.S.)
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Karishma Gangwani
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (I.W.); (A.R.); (A.S.)
- Computational Biology Department, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Arushi Rai
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (I.W.); (A.R.); (A.S.)
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (I.W.); (A.R.); (A.S.)
- Premedical Programs, University of Dayton, Dayton, OH 45469, USA
- Integrative Science and Engineering Centre (ISE), University of Dayton, Dayton, OH 45469, USA
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (I.W.); (A.R.); (A.S.)
- Premedical Programs, University of Dayton, Dayton, OH 45469, USA
- Integrative Science and Engineering Centre (ISE), University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
2
|
Chimata AV, Darnell H, Raj A, Kango-Singh M, Singh A. Transcriptional pausing factor M1BP regulates cellular homeostasis by suppressing autophagy and apoptosis in Drosophila eye. AUTOPHAGY REPORTS 2023; 2:2252307. [PMID: 37746026 PMCID: PMC10512699 DOI: 10.1080/27694127.2023.2252307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/26/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
During organogenesis cellular homeostasis plays a crucial role in patterning and growth. The role of promoter proximal pausing of RNA polymerase II, which regulates transcription of several developmental genes by GAGA factor or Motif 1 Binding Protein (M1BP), has not been fully understood in cellular homeostasis. Earlier, we reported that M1BP, a functional homolog of ZKSCAN3, regulates wingless and caspase-dependent cell death (apoptosis) in the Drosophila eye. Further, blocking apoptosis does not fully rescue the M1BPRNAi phenotype of reduced eye. Therefore, we looked for other possible mechanism(s). In a forward genetic screen, members of the Jun-amino-terminal-(NH2)-Kinase (JNK) pathway were identified. Downregulation of M1BP ectopically induces JNK, a pro-death pathway known to activate both apoptosis and caspase-independent (autophagy) cell death. Activation of JNK pathway components can enhance M1BPRNAi phenotype and vice-versa. Downregulation of M1BP ectopically induced JNK signaling, which leads to apoptosis and autophagy. Apoptosis and autophagy are regulated independently by their genetic circuitry. Here, we found that blocking either apoptosis or autophagy alone rescues the reduced eye phenotype of M1BP downregulation; whereas, blocking both apoptosis and autophagy together significantly rescues the M1BP reduced eye phenotype to near wild-type in nearly 85% progeny. This data suggests that the cellular homeostasis response demonstrated by two independent cell death mechanisms, apoptosis and autophagy, can be regulated by a common transcriptional pausing mechanism orchestrated by M1BP. Since these fundamental processes are conserved in higher organisms, this novel functional link between M1BP and regulation of both apoptosis and autophagy can be extrapolated to humans.
Collapse
Affiliation(s)
| | - Hannah Darnell
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Akanksha Raj
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
- Premedical Program, University of Dayton, Dayton, OH, USA
- Integrative Science and Engineering (ISE), University of Dayton, Dayton, OH, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
- Premedical Program, University of Dayton, Dayton, OH, USA
- Center for Tissue Regeneration & Engineering (TREND), University of Dayton, Dayton, OH, USA
- Integrative Science and Engineering (ISE), University of Dayton, Dayton, OH, USA
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
3
|
Scarth JA, Wasson CW, Patterson MR, Evans D, Barba-Moreno D, Carden H, Cassidy R, Whitehouse A, Mankouri J, Samson A, Morgan EL, Macdonald A. Exploitation of ATP-sensitive potassium ion (K ATP) channels by HPV promotes cervical cancer cell proliferation by contributing to MAPK/AP-1 signalling. Oncogene 2023; 42:2558-2577. [PMID: 37443304 PMCID: PMC10439009 DOI: 10.1038/s41388-023-02772-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Persistent infection with high-risk human papillomaviruses (HPVs) is the causal factor in multiple human malignancies, including >99% of cervical cancers and a growing proportion of oropharyngeal cancers. Prolonged expression of the viral oncoproteins E6 and E7 is necessary for transformation to occur. Although some of the mechanisms by which these oncoproteins contribute to carcinogenesis are well-characterised, a comprehensive understanding of the signalling pathways manipulated by HPV is lacking. Here, we present the first evidence to our knowledge that the targeting of a host ion channel by HPV can contribute to cervical carcinogenesis. Through the use of pharmacological activators and inhibitors of ATP-sensitive potassium ion (KATP) channels, we demonstrate that these channels are active in HPV-positive cells and that this activity is required for HPV oncoprotein expression. Further, expression of SUR1, which forms the regulatory subunit of the multimeric channel complex, was found to be upregulated in both HPV+ cervical cancer cells and in samples from patients with cervical disease, in a manner dependent on the E7 oncoprotein. Importantly, knockdown of SUR1 expression or KATP channel inhibition significantly impeded cell proliferation via induction of a G1 cell cycle phase arrest. This was confirmed both in vitro and in in vivo tumourigenicity assays. Mechanistically, we propose that the pro-proliferative effect of KATP channels is mediated via the activation of a MAPK/AP-1 signalling axis. A complete characterisation of the role of KATP channels in HPV-associated cancer is now warranted in order to determine whether the licensed and clinically available inhibitors of these channels could constitute a potential novel therapy in the treatment of HPV-driven cervical cancer.
Collapse
Affiliation(s)
- James A Scarth
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Christopher W Wasson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Molly R Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Debra Evans
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, LS9 7TF, UK
| | - Diego Barba-Moreno
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Holli Carden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Rosa Cassidy
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Adel Samson
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, LS9 7TF, UK
| | - Ethan L Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
4
|
Deshpande P, Chimata AV, Snider E, Singh A, Kango-Singh M, Singh A. N-Acetyltransferase 9 ameliorates Aβ42-mediated neurodegeneration in the Drosophila eye. Cell Death Dis 2023; 14:478. [PMID: 37507384 PMCID: PMC10382493 DOI: 10.1038/s41419-023-05973-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, manifests as accumulation of amyloid-beta-42 (Aβ42) plaques and intracellular accumulation of neurofibrillary tangles (NFTs) that results in microtubule destabilization. Targeted expression of human Aβ42 (GMR > Aβ42) in developing Drosophila eye retinal neurons results in Aβ42 plaque(s) and mimics AD-like extensive neurodegeneration. However, there remains a gap in our understanding of the underlying mechanism(s) for Aβ42-mediated neurodegeneration. To address this gap in information, we conducted a forward genetic screen, and identified N-acetyltransferase 9 (Mnat9) as a genetic modifier of GMR > Aβ42 neurodegenerative phenotype. Mnat9 is known to stabilize microtubules by inhibiting c-Jun-N- terminal kinase (JNK) signaling. We found that gain-of-function of Mnat9 rescues GMR > Aβ42 mediated neurodegenerative phenotype whereas loss-of-function of Mnat9 exhibits the converse phenotype of enhanced neurodegeneration. Here, we propose a new neuroprotective function of Mnat9 in downregulating the JNK signaling pathway to ameliorate Aβ42-mediated neurodegeneration, which is independent of its acetylation activity. Transgenic flies expressing human NAT9 (hNAT9), also suppresses Aβ42-mediated neurodegeneration thereby suggesting functional conservation in the interaction of fly Mnat9 or hNAT9 with JNK-mediated neurodegeneration. These studies add to the repertoire of molecular mechanisms that mediate cell death response following accumulation of Aβ42 and may provide new avenues for targeting neurodegeneration.
Collapse
Affiliation(s)
| | | | - Emily Snider
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Aditi Singh
- Interdisciplinary Graduate Studies, College of Arts and Sciences, University of Dayton, Dayton, OH, 45469, USA
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
- Premedical Program, University of Dayton, Dayton, OH, 45469, USA
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, 45469, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA.
- Premedical Program, University of Dayton, Dayton, OH, 45469, USA.
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, 45469, USA.
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
5
|
Charlton-Perkins MA, Friedrich M, Cook TA. Semper's cells in the insect compound eye: Insights into ocular form and function. Dev Biol 2021; 479:126-138. [PMID: 34343526 PMCID: PMC8410683 DOI: 10.1016/j.ydbio.2021.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022]
Abstract
The arthropod compound eye represents one of two major eye types in the animal kingdom and has served as an essential experimental paradigm for defining fundamental mechanisms underlying sensory organ formation, function, and maintenance. One of the most distinguishing features of the compound eye is the highly regular array of lens facets that define individual eye (ommatidial) units. These lens facets are produced by a deeply conserved quartet of cuticle-secreting cells, called Semper cells (SCs). Also widely known as cone cells, SCs were originally identified for their secretion of the dioptric system, i.e. the corneal lens and underlying crystalline cones. Additionally, SCs are now known to execute a diversity of patterning and glial functions in compound eye development and maintenance. Here, we present an integrated account of our current knowledge of SC multifunctionality in the Drosophila compound eye, highlighting emerging gene regulatory modules that may drive the diverse roles for these cells. Drawing comparisons with other deeply conserved retinal glia in the vertebrate single lens eye, this discussion speaks to glial cell origins and opens new avenues for understanding sensory system support programs.
Collapse
Affiliation(s)
- Mark A Charlton-Perkins
- Department of Paediatrics, Wellcome-MRC Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, United Kingdom
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA; Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA
| | - Tiffany A Cook
- Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA; Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
6
|
Ordway AJ, Teeters GM, Weasner BM, Weasner BP, Policastro R, Kumar JP. A multi-gene knockdown approach reveals a new role for Pax6 in controlling organ number in Drosophila. Development 2021; 148:dev198796. [PMID: 33982759 PMCID: PMC8172120 DOI: 10.1242/dev.198796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/07/2021] [Indexed: 11/20/2022]
Abstract
Genetic screens are designed to target individual genes for the practical reason of establishing a clear association between a mutant phenotype and a single genetic locus. This allows for a developmental or physiological role to be assigned to the wild-type gene. We previously observed that the concurrent loss of Pax6 and Polycomb epigenetic repressors in Drosophila leads the eye to transform into a wing. This fate change is not seen when either factor is disrupted separately. An implication of this finding is that standard screens may miss the roles that combinations of genes play in development. Here, we show that this phenomenon is not limited to Pax6 and Polycomb but rather applies more generally. We demonstrate that in the Drosophila eye-antennal disc, the simultaneous downregulation of Pax6 with either the NURF nucleosome remodeling complex or the Pointed transcription factor transforms the head epidermis into an antenna. This is a previously unidentified fate change that is also not observed with the loss of individual genes. We propose that the use of multi-gene knockdowns is an essential tool for unraveling the complexity of development.
Collapse
Affiliation(s)
| | | | | | | | | | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
7
|
Guan Y, Yang YJ, Nagarajan P, Ge Y. Transcriptional and signalling regulation of skin epithelial stem cells in homeostasis, wounds and cancer. Exp Dermatol 2020; 30:529-545. [PMID: 33249665 DOI: 10.1111/exd.14247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The epidermis and skin appendages are maintained by their resident epithelial stem cells, which undergo long-term self-renewal and multilineage differentiation. Upon injury, stem cells are activated to mediate re-epithelialization and restore tissue function. During this process, they often mount lineage plasticity and expand their fates in response to damage signals. Stem cell function is tightly controlled by transcription machineries and signalling transductions, many of which derail in degenerative, inflammatory and malignant dermatologic diseases. Here, by describing both well-characterized and newly emerged pathways, we discuss the transcriptional and signalling mechanisms governing skin epithelial homeostasis, wound repair and squamous cancer. Throughout, we highlight common themes underscoring epithelial stem cell plasticity and tissue-level crosstalk in the context of skin physiology and pathology.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Gogia N, Sarkar A, Mehta AS, Ramesh N, Deshpande P, Kango-Singh M, Pandey UB, Singh A. Inactivation of Hippo and cJun-N-terminal Kinase (JNK) signaling mitigate FUS mediated neurodegeneration in vivo. Neurobiol Dis 2020; 140:104837. [PMID: 32199908 DOI: 10.1016/j.nbd.2020.104837] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS), a late-onset neurodegenerative disorder characterized by the loss of motor neurons in the central nervous system, has no known cure to-date. Disease causing mutations in human Fused in Sarcoma (FUS) leads to aggressive and juvenile onset of ALS. FUS is a well-conserved protein across different species, which plays a crucial role in regulating different aspects of RNA metabolism. Targeted misexpression of FUS in Drosophila model recapitulates several interesting phenotypes relevant to ALS including cytoplasmic mislocalization, defects at the neuromuscular junction and motor dysfunction. We screened for the genetic modifiers of human FUS-mediated neurodegenerative phenotype using molecularly defined deficiencies. We identified hippo (hpo), a component of the evolutionarily conserved Hippo growth regulatory pathway, as a genetic modifier of FUS mediated neurodegeneration. Gain-of-function of hpo triggers cell death whereas its loss-of-function promotes cell proliferation. Downregulation of the Hippo signaling pathway, using mutants of Hippo signaling, exhibit rescue of FUS-mediated neurodegeneration in the Drosophila eye, as evident from reduction in the number of TUNEL positive nuclei as well as rescue of axonal targeting from the retina to the brain. The Hippo pathway activates c-Jun amino-terminal (NH2) Kinase (JNK) mediated cell death. We found that downregulation of JNK signaling is sufficient to rescue FUS-mediated neurodegeneration in the Drosophila eye. Our study elucidates that Hippo signaling and JNK signaling are activated in response to FUS accumulation to induce neurodegeneration. These studies will shed light on the genetic mechanism involved in neurodegeneration observed in ALS and other associated disorders.
Collapse
Affiliation(s)
- Neha Gogia
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | - Ankita Sarkar
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | | | - Nandini Ramesh
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, PA, USA
| | | | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; Premedical Program, University of Dayton, Dayton, OH 45469, USA; Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH 45469, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, PA, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; Premedical Program, University of Dayton, Dayton, OH 45469, USA; Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH 45469, USA; The Integrative Science and Engineering Center, University of Dayton, Dayton, OH 45469, USA; Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
9
|
Irwin M, Tare M, Singh A, Puli OR, Gogia N, Riccetti M, Deshpande P, Kango-Singh M, Singh A. A Positive Feedback Loop of Hippo- and c-Jun-Amino-Terminal Kinase Signaling Pathways Regulates Amyloid-Beta-Mediated Neurodegeneration. Front Cell Dev Biol 2020; 8:117. [PMID: 32232042 PMCID: PMC7082232 DOI: 10.3389/fcell.2020.00117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD, OMIM: 104300) is an age-related disorder that affects millions of people. One of the underlying causes of AD is generation of hydrophobic amyloid-beta 42 (Aβ42) peptides that accumulate to form amyloid plaques. These plaques induce oxidative stress and aberrant signaling, which result in the death of neurons and other pathologies linked to neurodegeneration. We have developed a Drosophila eye model of AD by targeted misexpression of human Aβ42 in the differentiating retinal neurons, where an accumulation of Aβ42 triggers a characteristic neurodegenerative phenotype. In a forward deficiency screen to look for genetic modifiers, we identified a molecularly defined deficiency, which suppresses Aβ42-mediated neurodegeneration. This deficiency uncovers hippo (hpo) gene, a member of evolutionarily conserved Hippo signaling pathway that regulates growth. Activation of Hippo signaling causes cell death, whereas downregulation of Hippo signaling triggers cell proliferation. We found that Hippo signaling is activated in Aβ42-mediated neurodegeneration. Downregulation of Hippo signaling rescues the Aβ42-mediated neurodegeneration, whereas upregulation of Hippo signaling enhances the Aβ42-mediated neurodegeneration phenotypes. It is known that c-Jun-amino-terminal kinase (JNK) signaling pathway is upregulated in AD. We found that activation of JNK signaling enhances the Aβ42-mediated neurodegeneration, whereas downregulation of JNK signaling rescues the Aβ42-mediated neurodegeneration. We tested the nature of interactions between Hippo signaling and JNK signaling in Aβ42-mediated neurodegeneration using genetic epistasis approach. Our data suggest that Hippo signaling and JNK signaling, two independent signaling pathways, act synergistically upon accumulation of Aβ42 plaques to trigger cell death. Our studies demonstrate a novel role of Hippo signaling pathway in Aβ42-mediated neurodegeneration.
Collapse
Affiliation(s)
- Madison Irwin
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Meghana Tare
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Aditi Singh
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Oorvashi Roy Puli
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Neha Gogia
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Matthew Riccetti
- Department of Biology, University of Dayton, Dayton, OH, United States
| | | | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, United States
- Premedical Program, University of Dayton, Dayton, OH, United States
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, United States
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, United States
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, United States
- Premedical Program, University of Dayton, Dayton, OH, United States
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, United States
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, United States
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, United States
| |
Collapse
|
10
|
Sundqvist A, Voytyuk O, Hamdi M, Popeijus HE, Bijlsma-van der Burgt C, Janssen J, Martens JW, Moustakas A, Heldin CH, ten Dijke P, van Dam H. JNK-Dependent cJun Phosphorylation Mitigates TGFβ- and EGF-Induced Pre-Malignant Breast Cancer Cell Invasion by Suppressing AP-1-Mediated Transcriptional Responses. Cells 2019; 8:E1481. [PMID: 31766464 PMCID: PMC6952832 DOI: 10.3390/cells8121481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-β (TGFβ) has both tumor-suppressive and tumor-promoting effects in breast cancer. These functions are partly mediated through Smads, intracellular transcriptional effectors of TGFβ. Smads form complexes with other DNA-binding transcription factors to elicit cell-type-dependent responses. Previously, we found that the collagen invasion and migration of pre-malignant breast cancer cells in response to TGFβ and epidermal growth factor (EGF) critically depend on multiple Jun and Fos components of the activator protein (AP)-1 transcription factor complex. Here we report that the same process is negatively regulated by Jun N-terminal kinase (JNK)-dependent cJun phosphorylation. This was demonstrated by analysis of phospho-deficient, phospho-mimicking, and dimer-specific cJun mutants, and experiments employing a mutant version of the phosphatase MKP1 that specifically inhibits JNK. Hyper-phosphorylation of cJun by JNK strongly inhibited its ability to induce several Jun/Fos-regulated genes and to promote migration and invasion. These results show that MEK-AP-1 and JNK-phospho-cJun exhibit distinct pro- and anti-invasive functions, respectively, through differential regulation of Smad- and AP-1-dependent TGFβ target genes. Our findings are of importance for personalized cancer therapy, such as for patients suffering from specific types of breast tumors with activated EGF receptor-Ras or inactivated JNK pathways.
Collapse
Affiliation(s)
- Anders Sundqvist
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; (A.M.); (C.-H.H.); (P.t.D.)
| | - Oleksandr Voytyuk
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; (A.M.); (C.-H.H.); (P.t.D.)
| | - Mohamed Hamdi
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.H.); (H.E.P.); (C.B.-v.d.B.); (J.J.)
| | - Herman E. Popeijus
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.H.); (H.E.P.); (C.B.-v.d.B.); (J.J.)
| | - Corina Bijlsma-van der Burgt
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.H.); (H.E.P.); (C.B.-v.d.B.); (J.J.)
| | - Josephine Janssen
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.H.); (H.E.P.); (C.B.-v.d.B.); (J.J.)
| | - John W.M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands;
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; (A.M.); (C.-H.H.); (P.t.D.)
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; (A.M.); (C.-H.H.); (P.t.D.)
| | - Peter ten Dijke
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; (A.M.); (C.-H.H.); (P.t.D.)
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.H.); (H.E.P.); (C.B.-v.d.B.); (J.J.)
| | - Hans van Dam
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.H.); (H.E.P.); (C.B.-v.d.B.); (J.J.)
| |
Collapse
|
11
|
Hume DA, Caruso M, Ferrari-Cestari M, Summers KM, Pridans C, Irvine KM. Phenotypic impacts of CSF1R deficiencies in humans and model organisms. J Leukoc Biol 2019; 107:205-219. [PMID: 31330095 DOI: 10.1002/jlb.mr0519-143r] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Mϕ proliferation, differentiation, and survival are controlled by signals from the Mϕ CSF receptor (CSF1R). Mono-allelic gain-of-function mutations in CSF1R in humans are associated with an autosomal-dominant leukodystrophy and bi-allelic loss-of-function mutations with recessive skeletal dysplasia, brain disorders, and developmental anomalies. Most of the phenotypes observed in these human disease states are also observed in mice and rats with loss-of-function mutations in Csf1r or in Csf1 encoding one of its two ligands. Studies in rodent models also highlight the importance of genetic background and likely epistatic interactions between Csf1r and other loci. The impacts of Csf1r mutations on the brain are usually attributed solely to direct impacts on microglial number and function. However, analysis of hypomorphic Csf1r mutants in mice and several other lines of evidence suggest that primary hydrocephalus and loss of the physiological functions of Mϕs in the periphery contribute to the development of brain pathology. In this review, we outline the evidence that CSF1R is expressed exclusively in mononuclear phagocytes and explore the mechanisms linking CSF1R mutations to pleiotropic impacts on postnatal growth and development.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Melanie Caruso
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | | | - Kim M Summers
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Clare Pridans
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Katharine M Irvine
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
12
|
Sarkar A, Gogia N, Glenn N, Singh A, Jones G, Powers N, Srivastava A, Kango-Singh M, Singh A. A soy protein Lunasin can ameliorate amyloid-beta 42 mediated neurodegeneration in Drosophila eye. Sci Rep 2018; 8:13545. [PMID: 30202077 PMCID: PMC6131139 DOI: 10.1038/s41598-018-31787-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 08/24/2018] [Indexed: 01/30/2023] Open
Abstract
Alzheimer's disease (AD), a fatal progressive neurodegenerative disorder, also results from accumulation of amyloid-beta 42 (Aβ42) plaques. These Aβ42 plaques trigger oxidative stress, abnormal signaling, which results in neuronal death by unknown mechanism(s). We misexpress high levels of human Aβ42 in the differentiating retinal neurons of the Drosophila eye, which results in the Alzheimer's like neuropathology. Using our transgenic model, we tested a soy-derived protein Lunasin (Lun) for a possible role in rescuing neurodegeneration in retinal neurons. Lunasin is known to have anti-cancer effect and reduces stress and inflammation. We show that misexpression of Lunasin by transgenic approach can rescue Aβ42 mediated neurodegeneration by blocking cell death in retinal neurons, and results in restoration of axonal targeting from retina to brain. Misexpression of Lunasin downregulates the highly conserved cJun-N-terminal Kinase (JNK) signaling pathway. Activation of JNK signaling can prevent neuroprotective role of Lunasin in Aβ42 mediated neurodegeneration. This neuroprotective function of Lunasin is not dependent on retinal determination gene cascade in the Drosophila eye, and is independent of Wingless (Wg) and Decapentaplegic (Dpp) signaling pathways. Furthermore, Lunasin can significantly reduce mortality rate caused by misexpression of human Aβ42 in flies. Our studies identified the novel neuroprotective role of Lunasin peptide, a potential therapeutic agent that can ameliorate Aβ42 mediated neurodegeneration by downregulating JNK signaling.
Collapse
Affiliation(s)
- Ankita Sarkar
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Neha Gogia
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Neil Glenn
- Premedical Program, University of Dayton, Dayton, OH, 45469, USA
| | - Aditi Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Gillian Jones
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY, 42101, USA
| | - Nathan Powers
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY, 42101, USA
| | - Ajay Srivastava
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY, 42101, USA
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
- Premedical Program, University of Dayton, Dayton, OH, 45469, USA
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, 45469, USA
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, 45469, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA.
- Premedical Program, University of Dayton, Dayton, OH, 45469, USA.
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, 45469, USA.
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, 45469, USA.
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
13
|
Unlu AH, Tajeri S, Bilgic HB, Eren H, Karagenc T, Langsley G. The secreted Theileria annulata Ta9 protein contributes to activation of the AP-1 transcription factor. PLoS One 2018; 13:e0196875. [PMID: 29738531 PMCID: PMC5940210 DOI: 10.1371/journal.pone.0196875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 04/21/2018] [Indexed: 01/19/2023] Open
Abstract
Theileria annulata is an obligate intracellular protozoan parasite of the phylum Apicomplexa. Theileria sporozoites invade bovine leukocytes and develop into a multinucleate syncytial macroschizont that causes uncontrolled proliferation and dissemination of infected and transformed leukocytes. Activator protein 1 (AP-1) is a transcription factor driving expression of genes involved in proliferation and dissemination and is therefore a key player in Theileria-induced leukocytes transformation. Ta9 possesses a signal peptide allowing it to be secreted into the infected leukocyte cytosol and be presented to CD8 T cells in the context of MHC class I. First, we confirmed that Ta9 is secreted into the infected leukocyte cytosol, and then we generated truncated versions of GFP-tagged Ta9 and tested their ability to activate AP-1 in non-infected HEK293T human kidney embryo cells. The ability to activate AP-1-driven transcription was found to reside in the C-terminal 100 amino acids of Ta9 distant to the N-terminally located epitopes recognised by CD8+ T cells. Secreted Ta9 has therefore, not only the ability to stimulate CD8+ T cells, but also the potential to activate AP-1-driven transcription and contribute to T. annulata-induced leukocyte transformation.
Collapse
Affiliation(s)
- Ahmet Hakan Unlu
- Vocational School of Gevas, Van Yuzuncu Yil University, Van, Turkey
- * E-mail:
| | - Shahin Tajeri
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, France
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Huseyin Bilgin Bilgic
- Department of Parasitology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydin, Turkey
| | - Hasan Eren
- Department of Parasitology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydin, Turkey
| | - Tulin Karagenc
- Department of Parasitology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydin, Turkey
| | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, France
| |
Collapse
|
14
|
Cullin-4 regulates Wingless and JNK signaling-mediated cell death in the Drosophila eye. Cell Death Dis 2016; 7:e2566. [PMID: 28032862 PMCID: PMC5261020 DOI: 10.1038/cddis.2016.338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/28/2022]
Abstract
In all multicellular organisms, the fundamental processes of cell proliferation and cell death are crucial for growth regulation during organogenesis. Strict regulation of cell death is important to maintain tissue homeostasis by affecting processes like regulation of cell number, and elimination of unwanted/unfit cells. The developing Drosophila eye is a versatile model to study patterning and growth, where complex signaling pathways regulate growth and cell survival. However, the molecular mechanisms underlying regulation of these processes is not fully understood. In a gain-of-function screen, we found that misexpression of cullin-4 (cul-4), an ubiquitin ligase, can rescue reduced eye mutant phenotypes. Previously, cul-4 has been shown to regulate chromatin remodeling, cell cycle and cell division. Genetic characterization of cul-4 in the developing eye revealed that loss-of-function of cul-4 exhibits a reduced eye phenotype. Analysis of twin-spots showed that in comparison with their wild-type counterparts, the cul-4 loss-of-function clones fail to survive. Here we show that cul-4 clones are eliminated by induction of cell death due to activation of caspases. Aberrant activation of signaling pathways is known to trigger cell death in the developing eye. We found that Wingless (Wg) and c-Jun-amino-terminal-(NH2)-Kinase (JNK) signaling are ectopically induced in cul-4 mutant clones, and these signals co-localize with the dying cells. Modulating levels of Wg and JNK signaling by using agonists and antagonists of these pathways demonstrated that activation of Wg and JNK signaling enhances cul-4 mutant phenotype, whereas downregulation of Wg and JNK signaling rescues the cul-4 mutant phenotypes of reduced eye. Here we present evidences to demonstrate that cul-4 is involved in restricting Wg signaling and downregulation of JNK signaling-mediated cell death during early eye development. Overall, our studies provide insights into a novel role of cul-4 in promoting cell survival in the developing Drosophila eye.
Collapse
|
15
|
Külshammer E, Mundorf J, Kilinc M, Frommolt P, Wagle P, Uhlirova M. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy. Dis Model Mech 2015; 8:1279-93. [PMID: 26398940 PMCID: PMC4610234 DOI: 10.1242/dmm.020719] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/28/2015] [Indexed: 12/16/2022] Open
Abstract
Cancer initiation and maintenance of the transformed cell state depend on altered cellular signaling and aberrant activities of transcription factors (TFs) that drive pathological gene expression in response to cooperating genetic lesions. Deciphering the roles of interacting TFs is therefore central to understanding carcinogenesis and for designing cancer therapies. Here, we use an unbiased genomic approach to define a TF network that triggers an abnormal gene expression program promoting malignancy of clonal tumors, generated in Drosophila imaginal disc epithelium by gain of oncogenic Ras (RasV12) and loss of the tumor suppressor Scribble (scrib1). We show that malignant transformation of the rasV12scrib1 tumors requires TFs of distinct families, namely the bZIP protein Fos, the ETS-domain factor Ets21c and the nuclear receptor Ftz-F1, all acting downstream of Jun-N-terminal kinase (JNK). Depleting any of the three TFs improves viability of tumor-bearing larvae, and this positive effect can be enhanced further by their combined removal. Although both Fos and Ftz-F1 synergistically contribute to rasV12scrib1 tumor invasiveness, only Fos is required for JNK-induced differentiation defects and Matrix metalloprotease (MMP1) upregulation. In contrast, the Fos-dimerizing partner Jun is dispensable for JNK to exert its effects in rasV12scrib1 tumors. Interestingly, Ets21c and Ftz-F1 are transcriptionally induced in these tumors in a JNK- and Fos-dependent manner, thereby demonstrating a hierarchy within the tripartite TF network, with Fos acting as the most upstream JNK effector. Of the three TFs, only Ets21c can efficiently substitute for loss of polarity and cooperate with RasV12 in inducing malignant clones that, like rasV12scrib1 tumors, invade other tissues and overexpress MMP1 and the Drosophila insulin-like peptide 8 (Dilp8). While rasV12ets21c tumors require JNK for invasiveness, the JNK activity is dispensable for their growth. In conclusion, our study delineates both unique and overlapping functions of distinct TFs that cooperatively promote aberrant expression of target genes, leading to malignant tumor phenotypes. Summary: This study provides genetic evidence that malignancy driven by oncogenic Ras and loss of polarity requires transcription factors of three distinct protein families, acting in synergy downstream of JNK signaling.
Collapse
Affiliation(s)
- Eva Külshammer
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Juliane Mundorf
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Merve Kilinc
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Peter Frommolt
- Bioinformatics Facility, CECAD Research Center, University of Cologne, 50931 Cologne, Germany
| | - Prerana Wagle
- Bioinformatics Facility, CECAD Research Center, University of Cologne, 50931 Cologne, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
16
|
Gavin-Smyth J, Wang YC, Butler I, Ferguson EL. A genetic network conferring canalization to a bistable patterning system in Drosophila. Curr Biol 2013; 23:2296-2302. [PMID: 24184102 PMCID: PMC4495911 DOI: 10.1016/j.cub.2013.09.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/03/2013] [Accepted: 09/24/2013] [Indexed: 01/19/2023]
Abstract
To achieve the "constancy of the wild-type," the developing organism must be buffered against stochastic fluctuations and environmental perturbations. This phenotypic buffering has been theorized to arise from a variety of genetic mechanisms and is widely thought to be adaptive and essential for viability. In the Drosophila blastoderm embryo, staining with antibodies against the active, phosphorylated form of the bone morphogenetic protein (BMP) signal transducer Mad, pMad, or visualization of the spatial pattern of BMP-receptor interactions reveals a spatially bistable pattern of BMP signaling centered on the dorsal midline. This signaling event is essential for the specification of dorsal cell fates, including the extraembryonic amnioserosa. BMP signaling is initiated by facilitated extracellular diffusion that localizes BMP ligands dorsally. BMP signaling then activates an intracellular positive feedback circuit that promotes future BMP-receptor interactions. Here, we identify a genetic network comprising three genes that canalizes this BMP signaling event. The BMP target eiger (egr) acts in the positive feedback circuit to promote signaling, while the BMP binding protein encoded by crossveinless-2 (cv-2) antagonizes signaling. Expression of both genes requires the early activity of the homeobox gene zerknüllt (zen). Two Drosophila species lacking early zen expression have high variability in BMP signaling. These data both detail a new mechanism that generates developmental canalization and identify an example of a species with noncanalized axial patterning.
Collapse
Affiliation(s)
- Jackie Gavin-Smyth
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yu-Chiun Wang
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Ian Butler
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Edwin L Ferguson
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
17
|
Chicooree N, Griffiths JR, Connolly Y, Tan CT, Malliri A, Eyers CE, Smith DL. A novel approach to the analysis of SUMOylation with the independent use of trypsin and elastase digestion followed by database searching utilising consecutive residue addition to lysine. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:127-34. [PMID: 23239325 DOI: 10.1002/rcm.6425] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/28/2012] [Accepted: 09/28/2012] [Indexed: 06/01/2023]
Abstract
RATIONALE Identification of sites of protein SUMOylation is of great importance due its functional diversity within the cell. To date, most approaches to this problem rely on site-directed mutagenesis and/or highly specialised mass spectrometry approaches. We present a novel alternative approach to the site mapping of SUMOylation using trypsin and elastase digestion, routine mass spectrometry and an unbiased isotag database searching strategy. METHODS SUMOylated protein samples were digested with a number of enzymes and the resulting peptides separated using liquid chromatography. Analysis was carried out on both linear ion trap Orbitrap and quadrupole-time-of-flight (Q-TOF)-based mass spectrometers equipped with electrospray ionisation. The data files were subsequently searched using the Mascot algorithm with multiple variable tag modifications corresponding to SUMO-derived fragments. The utility of this approach was demonstrated with di-SUMO 2, di-SUMO 3, SUMO 1-RanGap(418-587) 1 and an enriched population of SUMOylated proteins. RESULTS Unbiased database searches led to the identification of a number of analytically useful isotags ranging in length from two to four residues. Isopeptide fragments were generated including QTGG (di-SUMO-2/3), TGG (di-SUMO-2/3) and GG (SUMO-1). The method was validated by successfully mapping a number of sites of SUMO modification on SUMO-modified proteins enriched from a cell lysate. CONCLUSIONS This combination of relaxed enzyme specificity, shortened isotag generation and unbiased database searching enabled confident identification of novel analytically useful SUMOylated isopeptides without a requirement for mutagenesis.
Collapse
Affiliation(s)
- Navin Chicooree
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Lu W, Casanueva MO, Mahowald AP, Kato M, Lauterbach D, Ferguson EL. Niche-associated activation of rac promotes the asymmetric division of Drosophila female germline stem cells. PLoS Biol 2012; 10:e1001357. [PMID: 22802725 PMCID: PMC3389017 DOI: 10.1371/journal.pbio.1001357] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 05/22/2012] [Indexed: 01/02/2023] Open
Abstract
An intracellular polarity in activation of the Rac GTPase cooperates with an extracellular signal to ensure a robust pattern of stem cell division in Drosophila female germline stem cells. Background Drosophila female germline stem cells (GSCs) reside adjacent to a cellular niche that secretes Bone Morphogenetic Protein (BMP) ligands and anchors the GSCs through adherens junctions. The GSCs divide asymmetrically such that one daughter remains in the niche as a GSC, while the other is born away from the niche and differentiates. However, given that the BMP signal can be diffusible, it remains unclear how a local extracellular asymmetry is sufficient to result in a robust pattern of asymmetric division. Methods and Findings Here we show that GSCs are polarized with respect to the cellular niche. We first use a modified biosensor to demonstrate that the small GTPase Rac is asymmetrically activated within the GSC at the niche-GSC interface. Experiments using loss-of-function and gain-of-function mutations in Rac indicate that asymmetric Rac activity both localizes the microtubule binding protein Apc2 to orient one GSC centrosome at the niche-GSC interface during interphase and activates the Jun N-terminal kinase pathway to increase the ability of the GSC to respond to BMP ligands. Other processes act in concert with each function of Rac. Specifically, we demonstrate that the GSC cell cycle arrests at prometaphase if centrosomes are misoriented. Conclusions Thus, the GSCs, an adult stem cell present in a cellular niche, have a niche-associated polarity that couples control of the division plane with increased response to an extracellular maintenance signal. Other processes work in parallel with the Rac-mediated polarity to ensure a robust pattern of asymmetric division. We suggest that all adult stem cells likely employ multiple, independently acting mechanisms to ensure asymmetric division to maintain tissue homeostasis. Adult stem cells are undifferentiated cells within an organism that undergo continual asymmetric division to produce two daughter cells that have different cell fates: one daughter remains a stem cell like its parent, while the other daughter differentiates. Thus the stock of stem cells is renewed while new cells are provided to ensure tissue maintenance. Often, an adult stem cell is present within a niche, a specific microenvironment that contains signals necessary to maintain the stem cell in an undifferentiated state. The plane of division of a niche-resident stem cell can be controlled so that one of its daughters arises outside of the niche. This daughter does not receive the maintenance signals and differentiates. However, because biological systems are inherently noisy, we postulated that there might be mechanisms that couple the control of the plane of stem cell division to the response to the extracellular maintenance signals to ensure a continued pattern of asymmetric division. In this study, we show that a well-characterized niche-resident stem cell, the Drosophila female germline stem cell (GSC), also has an intracellular polarity that contributes to the determination of daughter cell fate. We find that the small GTPase Rac is activated at the interface between the GSC and its niche and that this localized Rac activity has two functions: first, it orients the plane of GSC division to ensure that one GSC daughter is born outside the niche; and second, it increases the ability of the niche-resident GSC to respond to the maintenance signal. We propose that most stem cells integrate multiple mechanisms to ensure a robust pattern of asymmetric division.
Collapse
Affiliation(s)
- Wen Lu
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | - M. Olivia Casanueva
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Anthony P. Mahowald
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Mihoko Kato
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
| | - David Lauterbach
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Edwin L. Ferguson
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
19
|
Brandt JP, Aziz-Zaman S, Juozaityte V, Martinez-Velazquez LA, Petersen JG, Pocock R, Ringstad N. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity. PLoS One 2012; 7:e34014. [PMID: 22479504 PMCID: PMC3315506 DOI: 10.1371/journal.pone.0034014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 02/20/2012] [Indexed: 11/30/2022] Open
Abstract
Many animals possess neurons specialized for the detection of carbon dioxide (CO2), which acts as a cue to elicit behavioral responses and is also an internally generated product of respiration that regulates animal physiology. In many organisms how such neurons detect CO2 is poorly understood. We report here a mechanism that endows C. elegans neurons with the ability to detect CO2. The ETS-5 transcription factor is necessary for the specification of CO2-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient to bypass a requirement for ets-5 in CO2-detection and transforms neurons into CO2-sensing neurons. Because ETS-5 and GCY-9 are members of gene families that are conserved between nematodes and vertebrates, a similar mechanism might act in the specification of CO2-sensing neurons in other phyla.
Collapse
Affiliation(s)
- Julia P. Brandt
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Molecular Neurobiology Program, and Department of Cell Biology, NYU Langone Medical Center, New York, New York, United States of America
| | - Sonya Aziz-Zaman
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Molecular Neurobiology Program, and Department of Cell Biology, NYU Langone Medical Center, New York, New York, United States of America
| | - Vaida Juozaityte
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Luis A. Martinez-Velazquez
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Molecular Neurobiology Program, and Department of Cell Biology, NYU Langone Medical Center, New York, New York, United States of America
| | | | - Roger Pocock
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- * E-mail: (NR); (RP)
| | - Niels Ringstad
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Molecular Neurobiology Program, and Department of Cell Biology, NYU Langone Medical Center, New York, New York, United States of America
- * E-mail: (NR); (RP)
| |
Collapse
|
20
|
Katanaev VL, Kryuchkov MV. The eye of Drosophila as a model system for studying intracellular signaling in ontogenesis and pathogenesis. BIOCHEMISTRY (MOSCOW) 2012; 76:1556-81. [DOI: 10.1134/s0006297911130116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Ets transcription factor Pointed promotes the generation of intermediate neural progenitors in Drosophila larval brains. Proc Natl Acad Sci U S A 2011; 108:20615-20. [PMID: 22143802 DOI: 10.1073/pnas.1118595109] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intermediate neural progenitor (INP) cells are transient amplifying neurogenic precursor cells generated from neural stem cells. Amplification of INPs significantly increases the number of neurons and glia produced from neural stem cells. In Drosophila larval brains, INPs are produced from type II neuroblasts (NBs, Drosophila neural stem cells), which lack the proneural protein Asense (Ase) but not from Ase-expressing type I NBs. To date, little is known about how Ase is suppressed in type II NBs and how the generation of INPs is controlled. Here we show that one isoform of the Ets transcription factor Pointed (Pnt), PntP1, is specifically expressed in type II NBs, immature INPs, and newly mature INPs in type II NB lineages. Partial loss of PntP1 in genetic mosaic clones or ectopic expression of the Pnt antagonist Yan, an Ets family transcriptional repressor, results in a reduction or elimination of INPs and ectopic expression of Ase in type II NBs. Conversely, ectopic expression of PntP1 in type I NBs suppresses Ase expression the NB and induces ectopic INP-like cells in a process that depends on the activity of the tumor suppressor Brain tumor. Our findings suggest that PntP1 is both necessary and sufficient for the suppression of Ase in type II NBs and the generation of INPs in Drosophila larval brains.
Collapse
|
22
|
Tare M, Modi RM, Nainaparampil JJ, Puli OR, Bedi S, Fernandez-Funez P, Kango-Singh M, Singh A. Activation of JNK signaling mediates amyloid-ß-dependent cell death. PLoS One 2011; 6:e24361. [PMID: 21949710 PMCID: PMC3173392 DOI: 10.1371/journal.pone.0024361] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/07/2011] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an age related progressive neurodegenerative disorder. One of the reasons for Alzheimer's neuropathology is the generation of large aggregates of Aß42 that are toxic in nature and induce oxidative stress, aberrant signaling and many other cellular alterations that trigger neuronal cell death. However, the exact mechanisms leading to cell death are not clearly understood. METHODOLOGY/PRINCIPAL FINDINGS We employed a Drosophila eye model of AD to study how Aß42 causes cell death. Misexpression of higher levels of Aß42 in the differentiating photoreceptors of fly retina rapidly induced aberrant cellular phenotypes and cell death. We found that blocking caspase-dependent cell death initially blocked cell death but did not lead to a significant rescue in the adult eye. However, blocking the levels of c-Jun NH(2)-terminal kinase (JNK) signaling pathway significantly rescued the neurodegeneration phenotype of Aß42 misexpression both in eye imaginal disc as well as the adult eye. Misexpression of Aß42 induced transcriptional upregulation of puckered (puc), a downstream target and functional read out of JNK signaling. Moreover, a three-fold increase in phospho-Jun (activated Jun) protein levels was seen in Aß42 retina as compared to the wild-type retina. When we blocked both caspases and JNK signaling simultaneously in the fly retina, the rescue of the neurodegenerative phenotype is comparable to that caused by blocking JNK signaling pathway alone. CONCLUSIONS/SIGNIFICANCE Our data suggests that (i) accumulation of Aß42 plaques induces JNK signaling in neurons and (ii) induction of JNK contributes to Aß42 mediated cell death. Therefore, inappropriate JNK activation may indeed be relevant to the AD neuropathology, thus making JNK a key target for AD therapies.
Collapse
Affiliation(s)
- Meghana Tare
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Rohan M. Modi
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
| | | | - Oorvashi Roy Puli
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Shimpi Bedi
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Pedro Fernandez-Funez
- Departments of Neurology and Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, Ohio, United States of America
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, Ohio, United States of America
| |
Collapse
|
23
|
Abstract
Deregulation of the activator protein 1 (AP1) family gene regulators has been implicated in a wide range of diseases, including cancer. In this study we report that c-Jun was activated in human squamous cell carcinoma (SCC) and coexpression of c-Jun with oncogenic Ras was sufficient to transform primary human epidermal cells into malignancy in a regenerated human skin grafting model. In contrast, JunB was not induced in a majority of human SCC cells. Moreover, exogenous expression of JunB inhibited tumorigenesis driven by Ras or spontaneous human SCC cells. Conversely, the dominant-negative JunB mutant (DNJunB) promoted tumorigenesis, which is in contrast to the tumor-suppressor function of the corresponding c-Jun mutant. At the cellular level, JunB induced epidermal cell senescence and slowed cell growth in a cell-autonomous manner. Consistently, coexpression of JunB and Ras induced premature epidermal differentiation concomitant with upregulation of p16 and filaggrin and downregulation of cyclin D1 and cyclin-dependent kinase 4 (CDK4). These findings indicate that JunB and c-Jun differentially regulate cell growth and differentiation and induce opposite effects on epidermal neoplasia.JID JOURNAL CLUB ARTICLE: For questions, answers, and open discussion about this article, please go to http://www.nature.com/jid/journalclub.
Collapse
|
24
|
Ke H, Harris R, Coloff JL, Jin JY, Leshin B, Miliani de Marval P, Tao S, Rathmell JC, Hall RP, Zhang JY. The c-Jun NH2-terminal kinase 2 plays a dominant role in human epidermal neoplasia. Cancer Res 2010; 70:3080-8. [PMID: 20354187 DOI: 10.1158/0008-5472.can-09-2923] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The c-Jun NH(2)-terminal kinase (JNK) signaling cascade has been implicated in a wide range of diseases, including cancer. It is unclear how different JNK proteins contribute to human cancer. Here, we report that JNK2 is activated in more than 70% of human squamous cell carcinoma (SCC) samples and that inhibition of JNK2 pharmacologically or genetically impairs tumorigenesis of human SCC cells. Most importantly, JNK2, but not JNK1, is sufficient to couple with oncogenic Ras to transform primary human epidermal cells into malignancy with features of SCC. JNK2 prevents Ras-induced cell senescence and growth arrest by reducing the expression levels of the cell cycle inhibitor p16 and the activation of NF-kappaB. On the other hand, JNK, along with phosphoinositide 3-kinase, is essential for Ras-induced glycolysis, an energy-producing process known to benefit cancer growth. These data indicate that JNK2 collaborates with other oncogenes, such as Ras, at multiple molecular levels to promote tumorigenesis and hence represents a promising therapeutic target for cancer.
Collapse
Affiliation(s)
- Hengning Ke
- Department of Dermatology and Pharmacology, Duke University, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
A microRNA imparts robustness against environmental fluctuation during development. Cell 2009; 137:273-82. [PMID: 19379693 DOI: 10.1016/j.cell.2009.01.058] [Citation(s) in RCA: 361] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 11/25/2008] [Accepted: 01/29/2009] [Indexed: 11/20/2022]
Abstract
The microRNA miR-7 is perfectly conserved from annelids to humans, and yet some of the genes that it regulates in Drosophila are not regulated in mammals. We have explored the role of lineage restricted targets, using Drosophila, in order to better understand the evolutionary significance of microRNA-target relationships. From studies of two well characterized developmental regulatory networks, we find that miR-7 functions in several interlocking feedback and feedforward loops, and propose that its role in these networks is to buffer them against perturbation. To directly demonstrate this function for miR-7, we subjected the networks to temperature fluctuation and found that miR-7 is essential for the maintenance of regulatory stability under conditions of environmental flux. We suggest that some conserved microRNAs like miR-7 may enter into novel genetic relationships to buffer developmental programs against variation and impart robustness to diverse regulatory networks.
Collapse
|
26
|
Mialon A, Thastrup J, Kallunki T, Mannermaa L, Westermarck J, Holmström TH. Identification of nucleolar effects in JNK-deficient cells. FEBS Lett 2008; 582:3145-51. [PMID: 18703060 DOI: 10.1016/j.febslet.2008.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/02/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
Abstract
The c-Jun N-terminal kinase (JNK) signalling pathway has an established role in cellular stress signalling, cell survival and tumorigenesis. Here, we demonstrate that inhibition of JNK signalling results in partial delocalization of the RNA helicase DDX21 from the nucleolus to the nucleoplasm, increased nucleolar mobility of DDX21 and inhibition of rRNA processing. Furthermore, our results show that JNK signalling regulates DDX21 phosphorylation and protein expression. In conclusion, the results presented in this study reveal a previously unidentified cellular role for JNK signalling in the regulation of nucleolar functions. Based on these results, we propose that JNK-mediated effects on nucleolar homeostasis and rRNA processing should be considered when interpreting cellular phenotypes observed in JNK-deficient cell and animal models.
Collapse
Affiliation(s)
- Antoine Mialon
- Center for Biotechnology, University of Turku and Abo Akademi University, Artillerigatan 6, 20520 Turku, Finland
| | | | | | | | | | | |
Collapse
|
27
|
Zhang JY, Adams AE, Ridky TW, Tao S, Khavari PA. Tumor necrosis factor receptor 1/c-Jun-NH2-kinase signaling promotes human neoplasia. Cancer Res 2007; 67:3827-34. [PMID: 17440097 PMCID: PMC2239246 DOI: 10.1158/0008-5472.can-06-4017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The tumor necrosis factor alpha receptor (TNFR1) activates downstream effectors that include the mitogen-activated protein kinase kinase 7 (MKK7)/c-Jun-NH(2)-kinase (JNK)/activator protein 1 (AP1) cascade. Here, we report that JNK is activated in a majority of spontaneous human squamous cell carcinomas (SCC). JNK pathway induction bypassed cell cycle restraints induced by oncogenic Ras and cooperated with Ras to convert normal human epidermis into tumors indistinguishable from SCC, confirming its oncogenic potency in human tissue. Inhibiting MKK7, JNK, and AP1 as well as TNFR1 itself using genetic, pharmacologic, or antibody-mediated approaches abolished invasive human epidermal neoplasia in a tumor cell autonomous fashion. The TNFR1/MKK7/JNK/AP1 cascade thus promotes human neoplasia and represents a potential therapeutic target for human epithelial cancers.
Collapse
Affiliation(s)
- Jennifer Y. Zhang
- Department of Medicine, Division of Dermatology, Duke University School of Medicine, Durham, North Carolina
| | - Amy E. Adams
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Todd W. Ridky
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Shiying Tao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Paul A. Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
28
|
Kajanne R, Miettinen P, Mehlem A, Leivonen SK, Birrer M, Foschi M, Kähäri VM, Leppä S. EGF-R regulates MMP function in fibroblasts through MAPK and AP-1 pathways. J Cell Physiol 2007; 212:489-97. [PMID: 17348021 DOI: 10.1002/jcp.21041] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
EGF-R regulates cell proliferation, migration, and invasion in fibroblasts. However, the connection of EGF-R with downstream signaling pathways mediating these responses has remained elusive. Here we provide genetic and biochemical evidence that EGF-R- and AP-1-mediated signals are required for MMP expression and collagen contraction in fibroblasts. In EGF-R (-/-) mouse embryonal fibroblasts, basal and inducible expression of several MMPs, including MMP-2, -3, and -14 is impaired in comparison to wild-type counterparts. The loss of MMP expression is associated with a suppression of EGF-induced Erk and Jnk activities, and AP-1 DNA-binding and transactivation capacities. While inhibition of Jnk mainly prevents EGF-induced phosphorylation of c-Jun, inhibition of Erk pathway suppresses both the expression and phosphorylation of c-Jun and c-Fos proteins. Moreover, the expression of MMP-3 and -14, and collagen contraction is partially prevented by Mek/Erk and Jnk inhibitors. However, Jnk inhibitor also suppresses cell growth independently of EGF-R activity. The central role of AP-1 as a mediator of EGF-R signaling in fibroblasts is emphasized by the finding that expression of a dominant negative c-Jun downregulates the expression of MMP-3. Conversely, expression of a constitutively active Mek1 can induce MMP-3 expression independently of upstream signals. The results indicate that ERK pathway and AP-1 are downstream effectors of the EGF-R-mediated MMP-3 expression and collagen contraction in fibroblasts.
Collapse
Affiliation(s)
- Risto Kajanne
- Molecular Cancer Biology Research Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Singh A, Shi X, Choi KW. Lobe and Serrate are required for cell survival during early eye development in Drosophila. Development 2007; 133:4771-81. [PMID: 17090721 DOI: 10.1242/dev.02686] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Organogenesis involves an initial surge of cell proliferation, leading to differentiation. This is followed by cell death in order to remove extra cells. During early development, there is little or no cell death. However, there is a lack of information concerning the genes required for survival during the early cell-proliferation phase. Here, we show that Lobe (L) and the Notch (N) ligand Serrate (Ser), which are both involved in ventral eye growth, are required for cell survival in the early eye disc. We observed that the loss-of-ventral-eye phenotype in L or Ser mutants is due to the induction of cell death and the upregulation of secreted Wingless (Wg). This loss-of-ventral-eye phenotype can be rescued by (i) increasing the levels of cell death inhibitors, (ii) reducing the levels of Hid-Reaper-Grim complex, or (iii) reducing canonical Wg signaling components. Blocking Jun-N-terminal kinase (JNK) signaling, which can induce caspase-independent cell death, significantly rescued ventral eye loss in L or Ser mutants. However, blocking both caspase-dependent cell death and JNK signaling together showed stronger rescues of the L- or Ser-mutant eye at a 1.5-fold higher frequency. This suggests that L or Ser loss-of-function triggers both caspase-dependent and -independent cell death. Our studies thus identify a mechanism responsible for cell survival in the early eye.
Collapse
Affiliation(s)
- Amit Singh
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | |
Collapse
|
30
|
Lan HC, Li HJ, Lin G, Lai PY, Chung BC. Cyclic AMP stimulates SF-1-dependent CYP11A1 expression through homeodomain-interacting protein kinase 3-mediated Jun N-terminal kinase and c-Jun phosphorylation. Mol Cell Biol 2007; 27:2027-36. [PMID: 17210646 PMCID: PMC1820514 DOI: 10.1128/mcb.02253-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Steroids are synthesized in adrenal glands and gonads under the control of pituitary peptides. These peptides bind to cell surface receptors to activate the cyclic AMP (cAMP) signaling pathway leading to an increase of steroidogenic gene expression. Exactly how cAMP activates steroidogenic gene expression is not clear, except for the knowledge that transcription factor SF-1 plays a key role. Investigating the factors participating in SF-1 action, we found that c-Jun and homeodomain-interacting protein kinase 3 (HIPK3) were required for basal and cAMP-stimulated expression of one major steroidogenic gene, CYP11A1. HIPK3 enhanced SF-1 activity, and c-Jun was required for the functional interaction of HIPK3 with SF-1. Furthermore, after cAMP stimulation, both c-Jun and Jun N-terminal kinase (JNK) were phosphorylated through HIPK3. These phosphorylations were important for SF-1 activity and CYP11A1 expression. Thus, we have defined HIPK3-mediated JNK activity and c-Jun phosphorylation as important events that increase SF-1 activity for CYP11A1 transcription in response to cAMP. This finding has linked three common factors, HIPK3, JNK, and c-Jun, to the cAMP signaling pathway leading to increased steroidogenic gene expression.
Collapse
Affiliation(s)
- Hsin-Chieh Lan
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | | | |
Collapse
|
31
|
Abstract
Embryonic dorsal closure (DC) in Drosophila is a series of morphogenetic movements involving the bilateral dorsal movement of the epidermis (cell stretching) and dorsal suturing of the leading edge (LE) cells to enclose the viscera. The Syk family tyrosine kinase Shark plays a crucial role in this Jun amino-terminal kinase (JNK)-dependent process, where it acts upstream of JNK in LE cells. Using a yeast two-hybrid screen, the unique Drosophila homolog of the downstream of kinase (Dok) family, Ddok,was identified by its ability to bind Shark SH2 domains in a tyrosine phosphorylation-dependent fashion. In cultured S2 embryonic cells, Ddok tyrosine phosphorylation is Src dependent; Shark associates with Ddok and Ddok localizes at the cell cortex, together with a portion of the Shark protein. The embryonic expression pattern of Ddok resembles the expression pattern of Shark. Ddok loss-of-function mutant (DdokPG155)germ-line clones possess DC defects, including the loss of JNK-dependent expression of dpp mRNA in LE cells, and decreased epidermal F-actin staining and LE actin cable formation. Epistatic analysis indicates that Ddok functions upstream of shark to activate JNK signaling during DC. Consistent with these observations, Ddok mutant embryos exhibit decreased levels of tyrosine phosphorylated Shark at the cell periphery of LE and epidermal cells. As there are six mammalian Dok family members that exhibit some functional redundancy, analysis of the regulation of DC by Ddok is expected to provide novel insights into the function of the Dok adapter proteins.
Collapse
Affiliation(s)
- Romi Biswas
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
32
|
Mialon A, Sankinen M, Söderström H, Junttila TT, Holmström T, Koivusalo R, Papageorgiou AC, Johnson RS, Hietanen S, Elenius K, Westermarck J. DNA topoisomerase I is a cofactor for c-Jun in the regulation of epidermal growth factor receptor expression and cancer cell proliferation. Mol Cell Biol 2005; 25:5040-51. [PMID: 15923621 PMCID: PMC1140586 DOI: 10.1128/mcb.25.12.5040-5051.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA topoisomerase I (Topo I) is a molecular target for the anticancer agent topotecan in the treatment of small cell lung cancer and ovarian carcinomas. However, the molecular mechanisms by which topotecan treatment inhibits cancer cell proliferation are unclear. We describe here the identification of Topo I as a novel endogenous interaction partner for transcription factor c-Jun. Reciprocal coimmunoprecipitation analysis showed that Topo I and c-Jun interact in transformed human cells in a manner that is dependent on JNK activity. c-Jun target gene epidermal growth factor receptor (EGFR) was identified as a novel gene whose expression was specifically inhibited by topotecan. Moreover, Topo I overexpression supported c-Jun-mediated reporter gene activation and both genetic and chemical inhibition of c-Jun converted cells resistant to topotecan-elicited EGFR downregulation. Topotecan-elicited suppression of proliferation was rescued by exogenously expressed EGFR. Furthermore, we demonstrate the cooperation of the JNK-c-Jun pathway, Topo I, and EGFR in the positive regulation of HT-1080 cell proliferation. Together, these results have identified transcriptional coactivator Topo I as a first endogenous cofactor for c-Jun in the regulation of cell proliferation. In addition, the results of the present study strongly suggest that inhibition of EGFR expression is a novel mechanism by which topotecan inhibits cell proliferation in cancer therapy.
Collapse
Affiliation(s)
- Antoine Mialon
- Centre for Biotechnology, University of Turku and Abo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kielosto M, Nummela P, Katainen R, Leaner V, Birrer MJ, Hölttä E. Reversible Regulation of the Transformed Phenotype of Ornithine Decarboxylase- and Ras-Overexpressing Cells by Dominant-Negative Mutants of c-Jun. Cancer Res 2004; 64:3772-9. [PMID: 15172983 DOI: 10.1158/0008-5472.can-3188-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
c-Jun is an oncogenic transcription factor involved in the regulation of cell proliferation, apoptosis and transformation. We have previously reported that cell transformations induced by ornithine decarboxylase (ODC) and c-Ha-ras oncogene, commonly activated in various cancer cells, are associated with constitutively increased phosphorylation of c-Jun on Ser residues 63 and 73. In the present study, we examined the significance of c-Jun phosphorylation and activation on the phenotype of the ODC- and ras-transformants, by using specific inhibitors and dominant-negative (DN) mutants to c-Jun NH(2)-terminal kinase (JNK) and its upstream kinase, SEK1/MKK4 (mitogen-activated protein kinase kinase 4), and to c-Jun. The transformed morphology of both the ODC- and ras-expressing cells was reversed partially by JNK inhibitors and DN JNK1, more effectively by DN SEK1/MKK4 and phosphorylation-deficient c-Jun mutants (c-Jun(S63,73A), c-Jun(S63,73A,T91,93A)) and most potently by a transactivation domain deletion mutant of c-Jun (TAM67). Moreover, tetracycline-inducible TAM67 expression in ODC- and ras-transformed cells showed that the transformed phenotype of the cells is reversibly regulatable. TAM67 also inhibited the tumorigenicity of the cells in nude mice. These inducible cell lines, together with their parental cell lines, provide good models to identify the genes and proteins relevant to cellular transformation.
Collapse
Affiliation(s)
- Mari Kielosto
- Haartman Institute and Helsinki University Central Hospital, Department of Pathology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
34
|
Lopez RG, Carron C, Ghysdael J. v-SRC specifically regulates the nucleo-cytoplasmic delocalization of the major isoform of TEL (ETV6). J Biol Chem 2003; 278:41316-25. [PMID: 12893822 DOI: 10.1074/jbc.m306435200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
TEL is a frequent target of chromosomal translocations in human cancer and an alleged tumor suppressor gene. TEL encodes two isoforms: a major TEL-M1 isoform as well as TEL-M43, which lacks the first 42 amino acid residues of TEL-M1. Both isoforms are potent transcriptional repressors that can inhibit RAS-induced transformation. Here we show that the v-SRC protein-tyrosine kinase relieves the repressive activity of TEL-M1, an activity that is associated with the v-SRC-induced delocalization of TEL-M1 from the nucleus to the cytoplasm. TEL-M1 delocalization requires the kinase activity of v-SRC and is not induced by oncogenic RAS or AKT. Cytoplasmic delocalization of TEL-M1 in response to v-SRC critically depends upon its unique amino-terminal domain (SRCD domain) because (i). v-SRC did not inhibit the repressive properties of TEL-M43, nor affected TEL-M43 nuclear localization; (ii). fusion of the first 52 amino acid residues of TEL-M1 to FLI-1, an ETS protein insensitive to v-SRC-induced delocalization, is sufficient to confer v-SRC-induced delocalization to this TEL/FLI-1 chimeric protein. The v-SRC-induced nucleo-cytoplasmic delocalization of TEL-M1 does not involve phosphorylation of the SRCD and does not require TEL self-association and repressive domains. Finally, enforced expression of the v-SRC-insensitive TEL-M43, but not of TEL-M1, inhibits v-SRC-induced transformation of NIH3T3 fibroblasts. These results identify a regulatory domain in TEL that specifically impinges on the subcellular localization of its major TEL-M1 isoform. They, furthermore, indicate that inhibition of TEL-M1 nuclear function is required for v-SRC to induce cellular transformation.
Collapse
Affiliation(s)
- Rodolphe G Lopez
- CNRS UMR146-Institut Curie, Centre Universitaire, Bat 110, 91405 Orsay, France
| | | | | |
Collapse
|
35
|
Yamada T, Okabe M, Hiromi Y. EDL/MAE regulates EGF-mediated induction by antagonizing Ets transcription factor Pointed. Development 2003; 130:4085-96. [PMID: 12874129 DOI: 10.1242/dev.00624] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inductive patterning mechanisms often use negative regulators to coordinate the effects and efficiency of induction. During Spitz EGF-mediated neuronal induction in the Drosophila compound eye and chordotonal organs, Spitz causes activation of Ras signaling in the induced cells, resulting in the activation of Ets transcription factor Pointed P2. We describe developmental roles of a novel negative regulator of Ras signaling, EDL/MAE, a protein with an Ets-specific Pointed domain but not an ETS DNA-binding domain. The loss of EDL/MAE function results in reduced number of photoreceptor neurons and chordotonal organs, suggesting a positive role in the induction by Spitz EGF. However, EDL/MAE functions as an antagonist of Pointed P2, by binding to its Pointed domain and abolishing its transcriptional activation function. Furthermore, edl/mae appears to be specifically expressed in cells with inducing ability. This suggests that inducing cells, which can respond to Spitz they themselves produce, must somehow prevent activation of Pointed P2. Indeed hyperactivation of Pointed P2 in inducing cells interferes with their inducing ability, resulting in the reduction in inducing ability. We propose that EDL/MAE blocks autocrine activation of Pointed P2 so that inducing cells remain induction-competent. Inhibition of inducing ability by Pointed probably represents a novel negative feedback system that can prevent uncontrolled spread of induction of similar cell fates.
Collapse
Affiliation(s)
- Takuma Yamada
- Department of Developmental Genetics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
36
|
Rabinow L. The proliferation of Drosophila in cancer research: a system for the functional characterization of tumor suppressors and oncogenes. Cancer Invest 2002; 20:531-56. [PMID: 12094549 DOI: 10.1081/cnv-120002154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Leonard Rabinow
- Laboratoire de Signalisation, Développement et Cancer, CNRS UPRES-A 8080, Bâtiment 445, Université de Paris XI, 91405 Orsay, France.
| |
Collapse
|
37
|
Klappacher GW, Lunyak VV, Sykes DB, Sawka-Verhelle D, Sage J, Brard G, Ngo SD, Gangadharan D, Jacks T, Kamps MP, Rose DW, Rosenfeld MG, Glass CK. An induced Ets repressor complex regulates growth arrest during terminal macrophage differentiation. Cell 2002; 109:169-80. [PMID: 12007404 DOI: 10.1016/s0092-8674(02)00714-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Defining the molecular mechanisms that coordinately regulate proliferation and differentiation is a central issue in development. Here, we describe a mechanism in which induction of the Ets repressor METS/PE1 links terminal differentiation to cell cycle arrest. Using macrophages as a model, we provide evidence that METS/PE1 blocks Ras-dependent proliferation without inhibiting Ras-dependent expression of cell type-specific genes by selectively replacing Ets activators on the promoters of cell cycle control genes. Antiproliferative effects of METS require its interaction with DP103, a DEAD box-containing protein that assembles a novel corepressor complex. Functional interactions between the METS/DP103 complex and E2F/ pRB family proteins are also necessary for inhibition of cellular proliferation, suggesting a combinatorial code that directs permanent cell cycle exit during terminal differentiation.
Collapse
Affiliation(s)
- Günter W Klappacher
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Westermarck J, Weiss C, Saffrich R, Kast J, Musti AM, Wessely M, Ansorge W, Séraphin B, Wilm M, Valdez BC, Bohmann D. The DEXD/H-box RNA helicase RHII/Gu is a co-factor for c-Jun-activated transcription. EMBO J 2002; 21:451-60. [PMID: 11823437 PMCID: PMC125820 DOI: 10.1093/emboj/21.3.451] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tandem affinity purification (TAP) and mass spectrometric peptide sequencing showed that the DEAD-box RNA helicase RHII/Gu is a functional interaction partner of c-Jun in human cells. The N-terminal transcription activation region of, c-Jun interacts with a C-terminal domain of RHII/Gu. This interaction is stimulated by anisomycin treatment in a manner that is concurrent with, but independent of, c-Jun phosphorylation. A possible explanation for this effect is provided by the observation that RHII/Gu translocates from nucleolus to nucleoplasm upon anisomycin or UV treatment or when JNK signaling is activated by overexpression of a constitutively active form of MEKK1 kinase. Several experiments show that the RNA helicase activity of RHII/Gu supports c-Jun-mediated target gene activation: dominant-negative forms of RHII/Gu, as well as a neutralizing antibody against the enzyme, significantly interfered with c-Jun target gene activity but not with transcription in general. These findings clarify the mechanism of c-Jun-mediated transcriptional regulation, and provide evidence for an involvement of RHII/Gu in stress response and in RNA polymerase II-catalyzed transcription in mammalian cells.
Collapse
Affiliation(s)
- Jukka Westermarck
- EMBL, D-69117 Heidelberg, Germany, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland, Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA, Università della Calabria, I-87100 Rende (CS), Italy and CGM-CNRS, F-91198 Gif sur Yvette Cedex, France Present address: Biomedical Research Centre, Vancouver, BC, Canada V6T 1Z3 Corresponding authors e-mail: or
| | - Carsten Weiss
- EMBL, D-69117 Heidelberg, Germany, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland, Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA, Università della Calabria, I-87100 Rende (CS), Italy and CGM-CNRS, F-91198 Gif sur Yvette Cedex, France Present address: Biomedical Research Centre, Vancouver, BC, Canada V6T 1Z3 Corresponding authors e-mail: or
| | - Rainer Saffrich
- EMBL, D-69117 Heidelberg, Germany, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland, Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA, Università della Calabria, I-87100 Rende (CS), Italy and CGM-CNRS, F-91198 Gif sur Yvette Cedex, France Present address: Biomedical Research Centre, Vancouver, BC, Canada V6T 1Z3 Corresponding authors e-mail: or
| | - Jürgen Kast
- EMBL, D-69117 Heidelberg, Germany, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland, Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA, Università della Calabria, I-87100 Rende (CS), Italy and CGM-CNRS, F-91198 Gif sur Yvette Cedex, France Present address: Biomedical Research Centre, Vancouver, BC, Canada V6T 1Z3 Corresponding authors e-mail: or
| | - Anna-Maria Musti
- EMBL, D-69117 Heidelberg, Germany, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland, Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA, Università della Calabria, I-87100 Rende (CS), Italy and CGM-CNRS, F-91198 Gif sur Yvette Cedex, France Present address: Biomedical Research Centre, Vancouver, BC, Canada V6T 1Z3 Corresponding authors e-mail: or
| | - Matthias Wessely
- EMBL, D-69117 Heidelberg, Germany, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland, Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA, Università della Calabria, I-87100 Rende (CS), Italy and CGM-CNRS, F-91198 Gif sur Yvette Cedex, France Present address: Biomedical Research Centre, Vancouver, BC, Canada V6T 1Z3 Corresponding authors e-mail: or
| | - Wilhelm Ansorge
- EMBL, D-69117 Heidelberg, Germany, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland, Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA, Università della Calabria, I-87100 Rende (CS), Italy and CGM-CNRS, F-91198 Gif sur Yvette Cedex, France Present address: Biomedical Research Centre, Vancouver, BC, Canada V6T 1Z3 Corresponding authors e-mail: or
| | - Bertrand Séraphin
- EMBL, D-69117 Heidelberg, Germany, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland, Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA, Università della Calabria, I-87100 Rende (CS), Italy and CGM-CNRS, F-91198 Gif sur Yvette Cedex, France Present address: Biomedical Research Centre, Vancouver, BC, Canada V6T 1Z3 Corresponding authors e-mail: or
| | - Matthias Wilm
- EMBL, D-69117 Heidelberg, Germany, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland, Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA, Università della Calabria, I-87100 Rende (CS), Italy and CGM-CNRS, F-91198 Gif sur Yvette Cedex, France Present address: Biomedical Research Centre, Vancouver, BC, Canada V6T 1Z3 Corresponding authors e-mail: or
| | - Benigno C. Valdez
- EMBL, D-69117 Heidelberg, Germany, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland, Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA, Università della Calabria, I-87100 Rende (CS), Italy and CGM-CNRS, F-91198 Gif sur Yvette Cedex, France Present address: Biomedical Research Centre, Vancouver, BC, Canada V6T 1Z3 Corresponding authors e-mail: or
| | - Dirk Bohmann
- EMBL, D-69117 Heidelberg, Germany, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland, Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA, Università della Calabria, I-87100 Rende (CS), Italy and CGM-CNRS, F-91198 Gif sur Yvette Cedex, France Present address: Biomedical Research Centre, Vancouver, BC, Canada V6T 1Z3 Corresponding authors e-mail: or
| |
Collapse
|
39
|
Stronach B, Perrimon N. Activation of the JNK pathway during dorsal closure in Drosophila requires the mixed lineage kinase, slipper. Genes Dev 2002; 16:377-87. [PMID: 11825878 PMCID: PMC155330 DOI: 10.1101/gad.953002] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2001] [Accepted: 12/05/2001] [Indexed: 01/09/2023]
Abstract
The Jun kinase (JNK) pathway has been characterized for its role in stimulating AP-1 activity and for modulating the balance between cell growth and death during development, inflammation, and cancer. Six families of mammalian kinases acting at the level of JNKKK have emerged as upstream regulators of JNK activity (MLK, LZK, TAK, ASK, MEKK, and TPL); however, the specificity underlying which kinase is utilized for transducing a distinct signal is poorly understood. In Drosophila, JNK signaling plays a central role in dorsal closure, controlling cell fate and cell sheet morphogenesis during embryogenesis. Notably, in the fly genome, there are single homologs of each of the mammalian JNKKK families. Here, we identify mutations in one of those, a mixed lineage kinase, named slipper (slpr), and show that it is required for JNK activation during dorsal closure. Furthermore, our results show that other putative JNKKKs cannot compensate for the loss of slpr function and, thus, may regulate other JNK or MAPK-dependent processes.
Collapse
Affiliation(s)
- Beth Stronach
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
40
|
Fischer JA. Developmental regulation through protein stability. Results Probl Cell Differ 2002; 37:151-167. [PMID: 25707074 DOI: 10.1007/978-3-540-45398-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Janice A Fischer
- The University of Texas at Austin, Section of Molecular Cell and Developmental Biology, The Institute for Cellular and Molecular Biology, Moffett Molecular Biology Building, 2500 Speedway, Austin, Texas 78712, USA
| |
Collapse
|
41
|
Suzanne M, Perrimon N, Noselli S. The Drosophila JNK pathway controls the morphogenesis of the egg dorsal appendages and micropyle. Dev Biol 2001; 237:282-94. [PMID: 11543614 DOI: 10.1006/dbio.2001.0384] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During Drosophila oogenesis, the formation of the egg respiratory appendages and the micropyle require the shaping of anterior and dorsal follicle cells. Prior to their morphogenesis, cells of the presumptive appendages are determined by integrating dorsal-ventral and anterior-posterior positional information provided by the epidermal growth factor receptor (EGFR) and Decapentaplegic (Dpp) pathways, respectively. We show here that another signaling pathway, the Drosophila Jun-N-terminal kinase (JNK) cascade, is essential for the correct morphogenesis of the dorsal appendages and the micropyle during oogenesis. Mutant follicle cell clones of members of the JNK pathway, including DJNKK/hemipterous (hep), DJNK/basket (bsk), and Djun, block dorsal appendage formation and affect the micropyle shape and size, suggesting a late requirement for the JNK pathway in anterior chorion morphogenesis. In support of this view, hep does not affect early follicle cell patterning as indicated by the normal expression of kekkon (kek) and Broad-Complex (BR-C), two of the targets of the EGFR pathway in dorsal follicle cells. Furthermore, the expression of the TGF-beta homolog dpp, which is under the control of hep in embryos, is not coupled to JNK activity during oogenesis. We show that hep controls the expression of puckered (puc) in the follicular epithelium in a cell-autonomous manner. Since puc overexpression in the egg follicular epithelium mimics JNK appendages and micropyle phenotypes, it indicates a negative role of puc in their morphogenesis. The role of the JNK pathway in the morphogenesis of follicle cells and other epithelia during development is discussed.
Collapse
Affiliation(s)
- M Suzanne
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
42
|
Leppä S, Eriksson M, Saffrich R, Ansorge W, Bohmann D. Complex functions of AP-1 transcription factors in differentiation and survival of PC12 cells. Mol Cell Biol 2001; 21:4369-78. [PMID: 11390664 PMCID: PMC87096 DOI: 10.1128/mcb.21.13.4369-4378.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
c-Jun activation by mitogen-activated protein kinases has been implicated in various cellular signal responses. We investigated how JNK and c-Jun contribute to neuronal differentiation, cell survival, and apoptosis. In differentiated PC12 cells, JNK signaling can induce apoptosis and c-Jun mediates this response. In contrast, we show that in PC12 cells that are not yet differentiated, the AP-1 family member ATF-2 and not c-Jun acts as an executor of apoptosis. In this context c-Jun expression protects against apoptosis and triggers neurite formation. Thus, c-Jun has opposite functions before and after neuronal differentiation. These findings suggest a model in which the balance between ATF-2 and Jun activity in PC12 cells governs the choice between differentiation towards a neuronal fate and an apoptotic program. Further analysis of c-Jun mutants showed that the differentiation response requires functional dimerization and DNA-binding domains and that it is stimulated by phosphorylation in the transactivation domain. In contrast, c-Jun mutants incompetent for DNA binding or dimerization and also mutants lacking JNK binding and phosphorylation sites that cannot elicit neuronal differentiation efficiently protect PC12 cells from apoptosis. Hence, the protective role of c-Jun appears to be mediated by an unconventional mechanism that is separable from its function as a classical AP-1 transcription factor.
Collapse
Affiliation(s)
- S Leppä
- Haartman Institute, Department of Pathology, FIN-00014 University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
43
|
Ciapponi L, Jackson DB, Mlodzik M, Bohmann D. Drosophila Fos mediates ERK and JNK signals via distinct phosphorylation sites. Genes Dev 2001; 15:1540-53. [PMID: 11410534 PMCID: PMC312716 DOI: 10.1101/gad.886301] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2001] [Accepted: 04/17/2001] [Indexed: 11/25/2022]
Abstract
During Drosophila development Fos acts downstream from the JNK pathway. Here we show that it can also mediate ERK signaling in wing vein formation and photoreceptor differentiation. Drosophila JNK and ERK phosphorylate D-Fos with overlapping, but distinct, patterns. Analysis of flies expressing phosphorylation site point mutants of D-Fos revealed that the transcription factor responds differentially to JNK and ERK signals. Mutations in the phosphorylation sites for JNK interfere specifically with the biological effects of JNK activation, whereas mutations in ERK phosphorylation sites affect responses to the EGF receptor-Ras-ERK pathway. These results indicate that the distinction between ERK and JNK signals can be made at the level of D-Fos, and that different pathway-specific phosphorylated forms of the protein can elicit different responses.
Collapse
Affiliation(s)
- L Ciapponi
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
44
|
Tugores A, Le J, Sorokina I, Snijders AJ, Duyao M, Reddy PS, Carlee L, Ronshaugen M, Mushegian A, Watanaskul T, Chu S, Buckler A, Emtage S, McCormick MK. The epithelium-specific ETS protein EHF/ESE-3 is a context-dependent transcriptional repressor downstream of MAPK signaling cascades. J Biol Chem 2001; 276:20397-406. [PMID: 11259407 DOI: 10.1074/jbc.m010930200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Exon trapping and cDNA selection procedures were used to search for novel genes at human chromosome 11p13, a region previously associated with loss of heterozygosity in epithelial carcinomas. Using these approaches, we found the ESE-2 and ESE-3 genes, coding for ETS domain-containing transcription factors. These genes lie in close proximity to the catalase gene within a approximately 200-kilobase genomic interval. ESE-3 mRNA is widely expressed in human tissues with high epithelial content, and immunohistochemical analysis with a newly generated monoclonal antibody revealed that ESE-3 is a nuclear protein expressed exclusively in differentiated epithelial cells and that it is absent in the epithelial carcinomas tested. In transient transfections, ESE-3 behaves as a repressor of the Ras- or phorbol ester-induced transcriptional activation of a subset of promoters that contain ETS and AP-1 binding sites. ESE-3-mediated repression is sequence- and context-dependent and depends both on the presence of high affinity ESE-3 binding sites in combination with AP-1 cis-elements and the arrangement of these sites within a given promoter. We propose that ESE-3 might be an important determinant in the control of epithelial differentiation, as a modulator of the nuclear response to mitogen-activated protein kinase signaling cascades.
Collapse
Affiliation(s)
- A Tugores
- Axys Pharmaceuticals, Inc., South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
In recent years, studies in the model organism Drosophila melanogaster have contributed significant insights into the molecular and developmental biology of the AP-1 transcription factors Jun and Fos. Powerful genetic and biochemical approaches uncovered a baffling complexity and variability of the signaling connections to and from AP-1. The range of biological processes that Jun and Fos regulate in this organism is equally multi-faceted. Regulatory interactions between AP-1 and JNK, ERK, TGFbeta, Notch or other signaling systems have been implicated in the control of a multitude of embryonic and adult events, including tissue closure processes, patterning of eye, gut and wing, as well as apoptosis. Here we review the information that has been gathered on Drosophila AP-1 in signal transduction and on the developmental and cellular functions controlled by AP-1-mediated signals in the fly. Lessons learned from the studies on AP-1 in Drosophila may contribute to our general understanding, beyond species boundaries, of this fundamental class of transcriptional regulators.
Collapse
Affiliation(s)
- L Kockel
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts, MA 02115, USA
| | | | | |
Collapse
|
46
|
Affiliation(s)
- J P Kumar
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322-3030, USA
| | | |
Collapse
|
47
|
Abstract
Ets proteins are a family of transcription factors that share an 85 amino acid conserved DNA binding domain, the ETS domain. Over 25 mammalian Ets family members control important biological processes, including cellular proliferation, differentiation, lymphocyte development and activation, transformation and apoptosis by recognizing the GGA core motif in the promoter or enhancer of their target genes. Protein - protein interactions regulates DNA binding, subcellular localization, target gene selection and transcriptional activity of Ets proteins. Combinatorial control is a characteristic property of Ets family members, involving interaction between Ets and other key transcriptional factors such as AP-1, NFkappaB and Pax family members. Specific domains of Ets proteins interact with many protein motifs such as bHLH, bZipper and Paired domain. Such interactions coordinate cellular processes in response to diverse signals including cytokines, growth factors, antigen and cellular stresses.
Collapse
Affiliation(s)
- R Li
- Center for Molecular and Structural Biology, Medical University of South Carolina, Charleston, South Carolina, SC 29425, USA
| | | | | |
Collapse
|
48
|
Mavrothalassitis G, Ghysdael J. Proteins of the ETS family with transcriptional repressor activity. Oncogene 2000; 19:6524-32. [PMID: 11175368 DOI: 10.1038/sj.onc.1204045] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ETS proteins form one of the largest families of signal-dependent transcriptional regulators, mediating cellular proliferation, differentiation and tumorigenesis. Most of the known ETS proteins have been shown to activate transcription. However, four ETS proteins (YAN, ERF, NET and TEL) can act as transcriptional repressors. In three cases (ERF, NET and TEL) distinct repression domains have been identified and there are indications that NET and TEL may mediate transcription via Histone Deacetylase recruitment. All four proteins appear to be regulated by MAPKs, though for YAN and ERF this regulation seems to be restricted to ERKs. YAN, ERF and TEL have been implicated in cellular proliferation although there are indications suggesting a possible involvement of YAN and TEL in differentiation as well. Other ETS-domain proteins have been shown to repress transcription in a context specific manner, and there are suggestions that the ETS DNA-binding domain may act as a transcriptional repressor. Transcriptional repression by ETS domain proteins adds an other level in the orchestrated regulation by this diverse family of transcription factors that often recognize similar if not identical binding sites on DNA and are believed to regulate critical genes in a variety of biological processes. Definitive assessment of the importance of this novel regulatory level will require the identification of ETS proteins target genes and the further analysis of transcriptional control and biological function of these proteins in defined pathways.
Collapse
Affiliation(s)
- G Mavrothalassitis
- School of Medicine, University of Crete and IMBB-FORTH, Voutes, Heraklion, Crete 714-09, Greece
| | | |
Collapse
|
49
|
Abstract
Cellular responses to environmental stimuli are controlled by a series of signaling cascades that transduce extracellular signals from ligand-activated cell surface receptors to the nucleus. Although most pathways were initially thought to be linear, it has become apparent that there is a dynamic interplay between signaling pathways that result in the complex pattern of cell-type specific responses required for proliferation, differentiation and survival. One group of nuclear effectors of these signaling pathways are the Ets family of transcription factors, directing cytoplasmic signals to the control of gene expression. This family is defined by a highly conserved DNA binding domain that binds the core consensus sequence GGAA/T. Signaling pathways such as the MAP kinases, Erk1 and 2, p38 and JNK, the PI3 kinases and Ca2+-specific signals activated by growth factors or cellular stresses, converge on the Ets family of factors, controlling their activity, protein partnerships and specification of downstream target genes. Interestingly, Ets family members can act as both upstream and downstream effectors of signaling pathways. As downstream effectors their activities are directly controlled by specific phosphorylations, resulting in their ability to activate or repress specific target genes. As upstream effectors they are responsible for the spacial and temporal expression or numerous growth factor receptors. This review provides a brief survey of what is known to date about how this family of transcription factors is regulated by cellular signaling with a special focus on Ras responsive elements (RREs), the MAP kinases (Erks, p38 and JNK) and Ca2+-specific pathways and includes a description of the multiple roles of Ets family members in the lymphoid system. Finally, we will discuss other potential mechanisms and pathways involved in the regulation of this important family of transcription factors.
Collapse
Affiliation(s)
- J S Yordy
- Center for Molecular and Structural Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, SC 29403, USA
| | | |
Collapse
|
50
|
Weber U, Paricio N, Mlodzik M. Jun mediates Frizzled-induced R3/R4 cell fate distinction and planar polarity determination in the Drosophila eye. Development 2000; 127:3619-29. [PMID: 10903185 DOI: 10.1242/dev.127.16.3619] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Jun acts as a signal-regulated transcription factor in many cellular decisions, ranging from stress response to proliferation control and cell fate induction. Genetic interaction studies have suggested that Jun and JNK signaling are involved in Frizzled (Fz)-mediated planar polarity generation in the Drosophila eye. However, simple loss-of-function analysis of JNK signaling components did not show comparable planar polarity defects. To address the role of Jun and JNK in Fz signaling, we have used a combination of loss- and gain-of-function studies. Like Fz, Jun affects the bias between the R3/R4 photoreceptor pair that is critical for ommatidial polarity establishment. Detailed analysis of jun(−) clones reveals defects in R3 induction and planar polarity determination, whereas gain of Jun function induces the R3 fate and associated polarity phenotypes. We find also that affecting the levels of JNK signaling by either reduction or overexpression leads to planar polarity defects. Similarly, hypomorphic allelic combinations and overexpression of the negative JNK regulator Puckered causes planar polarity eye phenotypes, establishing that JNK acts in planar polarity signaling. The observation that Dl transcription in the early R3/R4 precursor cells is deregulated by Jun or Hep/JNKK activation, reminiscent of the effects seen with Fz overexpression, suggests that Jun is one of the transcription factors that mediates the effects of fz in planar polarity generation.
Collapse
Affiliation(s)
- U Weber
- European Molecular Biology Laboratory, Developmental Biology Programme, Meyerhofstrasse 1, Germany
| | | | | |
Collapse
|