1
|
Zubo W, Liu J, Liu Y, Wang X, Shu D. Utilizing Long-Read Sequencing for Haplotype Construction and Prevention of Autosomal Dominant Polycystic Kidney Disease Transmission in Mosaicism Family. DNA Cell Biol 2025. [PMID: 40173092 DOI: 10.1089/dna.2024.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
This study presents a case of autosomal dominant polycystic kidney disease (ADPKD) involving a mosaic microdeletion in the PKD1 gene and explores the application of long-read sequencing technologies for haplotype construction and preimplantation genetic testing (PGT). We report on a family where the proband was clinically diagnosed with PKD and found to have a partial deletion of the PKD1 gene because of the mosaic deletion mutation of PKD1 in the mother of the proband. Utilizing Oxford Nanopore long-read sequencing, we successfully constructed the haplotype of the deleted fragment region and identified an unaffected embryo for transplantation, resulting in a successful pregnancy. The prenatal genetic diagnosis confirmed the absence of deletion abnormalities in the fetus. Our findings underscore the significance of integrating advanced genomic technologies into clinical practice for PGT in ADPKD, particularly in cases involving partial deletion of X chromosome mosaic embryo transferred or complex structural variants. This approach not only prevents the transmission of ADPKD but also demonstrates the utility of long-read sequencing in overcoming the limitations of traditional PGT methods. Further research is warranted to evaluate the broader application of long-read sequencing for other monogenic disorders and to refine these techniques for enhanced diagnostic precision and clinical outcomes.
Collapse
Affiliation(s)
- Wu Zubo
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Liu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Defeng Shu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Stark Z, Byrne AB, Sampson MG, Lennon R, Mallett AJ. A guide to gene-disease relationships in nephrology. Nat Rev Nephrol 2025; 21:115-126. [PMID: 39443743 DOI: 10.1038/s41581-024-00900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
The use of next-generation sequencing technologies such as exome and genome sequencing in research and clinical care has transformed our understanding of the molecular architecture of genetic kidney diseases. Although the capability to identify and rigorously assess genetic variants and their relationship to disease has advanced considerably in the past decade, the curation of clinically relevant relationships between genes and specific phenotypes has received less attention, despite it underpinning accurate interpretation of genomic tests. Here, we discuss the need to accurately define gene-disease relationships in nephrology and provide a framework for appraising genetic and experimental evidence critically. We describe existing international programmes that provide expert curation of gene-disease relationships and discuss sources of discrepancy as well as efforts at harmonization. Further, we highlight the need for alignment of disease and phenotype terminology to ensure robust and reproducible curation of knowledge. These collective efforts to support evidence-based translation of genomic sequencing into practice across clinical, diagnostic and research settings are crucial for delivering the promise of precision medicine in nephrology, providing more patients with timely diagnoses, accurate prognostic information and access to targeted treatments.
Collapse
Affiliation(s)
- Zornitza Stark
- ClinGen, Boston, MA, USA.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Australian Genomics, Melbourne, Victoria, Australia.
| | - Alicia B Byrne
- ClinGen, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Matthew G Sampson
- ClinGen, Boston, MA, USA
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- Department of Paediatrics, Harvard Medical School, Boston, MA, USA
| | - Rachel Lennon
- ClinGen, Boston, MA, USA
- Wellcome Centre for Cell-Matrix Research, The University of Manchester, Manchester, UK
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester, UK
| | - Andrew J Mallett
- ClinGen, Boston, MA, USA.
- Townsville Hospital and Health Service, Townsville, Queensland, Australia.
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.
- Institute for Molecular Bioscience and Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Wang J, Qiu Y, Zhang L, Zhou X, Hu S, Liu Q, Yin S, Su Z, Liu S, Liu H, Wu X, Huang J. Adenine base editor corrected ADPKD point mutations in hiPSCs and kidney organoids. ADVANCED BIOTECHNOLOGY 2024; 2:20. [PMID: 39883350 PMCID: PMC11740842 DOI: 10.1007/s44307-024-00026-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 01/31/2025]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a dominant genetic disorder caused primarily by mutations in the PKD1 gene, resulting in the formation of numerous cysts and eventually kidney failure. However, there are currently no gene therapy studies aimed at correcting PKD1 gene mutations. In this study, we identified two mutation sites associated with ADPKD, c.1198 (C > T) and c.8311 (G > A), which could potentially be corrected by adenine base editor (ABE). The correction efficiencies of different ABE variants were tested using the HEK293T-PKD1 c.1198 (C > T) and HEK293T-PKD1 c.8311 (G > A) reporter cell lines. We then generated induced pluripotent stem cells (iPSCsmut/WT) from the peripheral blood mononuclear cells (PBMCs) of the heterozygous patient to develop a disease cell model. Since the iPSCsmut/WT did not exhibit a typical disease phenotype in stem cell status, differentiation into kidney organoids in vitro led to the expression of kidney organ-specific marker proteins. Stimulation of cAMP signaling with forskolin resulted in cystic expansion of renal epithelial tissue in iPSCmut/WT-derived kidney organoids, resembling the cystic phenotype observed in ADPKD patients. However, kidney organoids differentiated from ABE-corrected iPSCs did not display the cystic phenotype. Furthermore, we used a dual AAV split-ABEmax system as a therapeutic strategy and achieved an average editing efficiency of approximately 6.56% in kidney organoids. Overall, this study provides a framework for gene therapy targeting ADPKD through ABE single-base editing, offering promising prospects for future therapeutic interventions.
Collapse
Affiliation(s)
- Jingwen Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Yanling Qiu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Lei Zhang
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi, 030013, China
| | - Xinyao Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Sihui Hu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Qianyi Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Sisi Yin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Zehong Su
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Simiao Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Xueqing Wu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi, 030013, China.
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| |
Collapse
|
4
|
Laboyrie SL, Svensson MK, Josemans S, Sigvant B, Rotmans JI, Welander G. Vascular Access Outcomes in Patients with Autosomal Dominant Polycystic Kidney Disease. KIDNEY360 2024; 5:877-885. [PMID: 38985981 PMCID: PMC11219118 DOI: 10.34067/kid.0000000000000453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Key Points More patients with autosomal dominant polycystic kidney disease received their first intervention to re-establish vascular access patency. Patients with autosomal dominant polycystic kidney disease do not require differential monitoring and treatment of hemodialysis vascular access. Background Autosomal dominant polycystic kidney disease (ADPKD) is a leading hereditary cause of ESKD, often using hemodialysis as a form of RRT. Patients with ADPKD may also present with extrarenal manifestations, including arterial aneurysms. The gold standard for hemodialysis access is an arteriovenous vascular access (VA), such as arteriovenous fistulas (AVFs) or arteriovenous grafts (AVGs). However, limitations, such as low VA flow and inadequate AVF outward remodeling, affect VA utilization. This study aimed to explore whether ADPKD affects patency rates of AVFs/AVGs in comparison with other underlying ESKD causes. Methods We conducted a retrospective cohort study using data from the Swedish Renal Registry from 2011 to 2020, with follow-up until 2022. We included 496 patients with ADPKD and 4321 propensity score–matched controls. VA patency rates of patients with ADPKD were compared with those of non-ADPKD patients using Kaplan–Meier survival curves and Mantel–Cox log-rank test. Interventions to maintain or restore patency were also analyzed. Results Patients with ADPKD constituted 8.0% of all patients, with a higher proportion in the pre-ESKD phase during VA creation (51.6% versus 40.6%). No significant differences were observed in primary, postcannulation primary, secondary, or functional patency between patients with ADPKD and non-ADPKD patients. However, more VAs were ligated in patients with ADPKD (10.5% versus 7.7%, P = 0.03), and they underwent more first interventions to re-establish flow (49.4% versus 41.9%, P = 0.02). Conclusions These findings suggest that AVF/AVG patency remains comparable in patients with ESKD with or without ADPKD, and VA monitoring and treatment strategies for patients with ADPKD should align with those for individuals with other ESKD causes.
Collapse
Affiliation(s)
- Suzanne L. Laboyrie
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Maria K. Svensson
- Department of Medical Sciences Renal Medicine, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Centre, Uppsala University, Uppsala, Sweden
| | - Sabine Josemans
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Birgitta Sigvant
- Department of Surgical Sciences, Center of Clinical Research, Uppsala University, Uppsala, Sweden
| | - Joris I. Rotmans
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gunilla Welander
- Department of Medical Sciences Renal Medicine, Uppsala University, Uppsala, Sweden
- Center of Clinical Research, Region Värmland, Sweden
| |
Collapse
|
5
|
Jung HJ, Dixon EE, Coleman R, Watnick T, Reiter JF, Outeda P, Cebotaru V, Woodward OM, Welling PA. Polycystin-2-dependent transcriptome reveals early response of autosomal dominant polycystic kidney disease. Physiol Genomics 2023; 55:565-577. [PMID: 37720991 PMCID: PMC11178268 DOI: 10.1152/physiolgenomics.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in polycystin genes, Pkd1 and Pkd2, but the underlying pathogenic mechanisms are poorly understood. To identify genes and pathways that operate downstream of polycystin-2 (PC2), a comprehensive gene expression database was created, cataloging changes in the transcriptome immediately following PC2 protein depletion. To explore cyst initiation processes, an immortalized mouse inner medullary collecting duct line was developed with the ability to knock out the Pkd2 gene conditionally. Genome-wide transcriptome profiling was performed using RNA sequencing in the cells immediately after PC2 was depleted and compared with isogenic control cells. Differentially expressed genes were identified, and a bioinformatic analysis pipeline was implemented. Altered expression of candidate cystogenic genes was validated in Pkd2 knockout mice. The expression of nearly 900 genes changed upon PC2 depletion. Differentially expressed genes were enriched for genes encoding components of the primary cilia, the canonical Wnt pathway, and MAPK signaling. Among the PC2-dependent ciliary genes, the transcription factor Glis3 was significantly downregulated. MAPK signaling formed a key node at the epicenter of PC2-dependent signaling networks. Activation of Wnt and MAPK signaling, concomitant with the downregulation of Glis3, was corroborated in Pkd2 knockout mice. The data identify a PC2 cilia-to-nucleus signaling axis and dysregulation of the Gli-similar subfamily of transcription factors as a potential initiator of cyst formation in ADPKD. The catalog of PC2-regulated genes should provide a valuable resource for future ADPKD research and new opportunities for drug development.NEW & NOTEWORTHY Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease. Mutations in polycystin genes cause the disease, but the underlying mechanisms of cystogenesis are unknown. To help fill this knowledge gap, we created an inducible cell model of ADPKD and assembled a catalog of genes that respond in immediate proximity to polycystin-2 depletion using transcriptomic profiling. The catalog unveils a ciliary signaling-to-nucleus axis proximal to polycystin-2 dysfunction, highlighting Glis, Wnt, and MAPK signaling.
Collapse
Affiliation(s)
- Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Eryn E Dixon
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Richard Coleman
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States
- Chan Zuckerberg Biohub, San Francisco, California, United States
| | - Patricia Outeda
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Valeriu Cebotaru
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Paul A Welling
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
6
|
Wang Y, Wang Z, Pavel MA, Ng C, Kashyap P, Li B, Morais TDC, Ulloa GA, Yu Y. The diverse effects of pathogenic point mutations on ion channel activity of a gain-of-function polycystin-2. J Biol Chem 2023; 299:104674. [PMID: 37028763 PMCID: PMC10192930 DOI: 10.1016/j.jbc.2023.104674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Autosomal dominant polycystic kidney disease is caused by mutations in PKD1 or PKD2 genes. The latter encodes polycystin-2 (PC2, also known as TRPP2), a member of the transient receptor potential ion channel family. Despite most pathogenic mutations in PKD2 being truncation variants, there are also many point mutations, which cause small changes in protein sequences but dramatic changes in the in vivo function of PC2. How these mutations affect PC2 ion channel function is largely unknown. In this study, we systematically tested the effects of 31 point mutations on the ion channel activity of a gain-of-function PC2 mutant, PC2_F604P, expressed in Xenopus oocytes. The results show that all mutations in the transmembrane domains and channel pore region, and most mutations in the extracellular tetragonal opening for polycystins domain, are critical for PC2_F604P channel function. In contrast, the other mutations in the tetragonal opening for polycystins domain and most mutations in the C-terminal tail cause mild or no effects on channel function as assessed in Xenopus oocytes. To understand the mechanism of these effects, we have discussed possible conformational consequences of these mutations based on the cryo-EM structures of PC2. The results help gain insight into the structure and function of the PC2 ion channel and the molecular mechanism of pathogenesis caused by these mutations.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Zhifei Wang
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Mahmud Arif Pavel
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Courtney Ng
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Parul Kashyap
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Bin Li
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Tiago D C Morais
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Gabriella A Ulloa
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Yong Yu
- Department of Biological Sciences, St. John's University, Queens, New York, USA.
| |
Collapse
|
7
|
Maser RL, Calvet JP, Parnell SC. The GPCR properties of polycystin-1- A new paradigm. Front Mol Biosci 2022; 9:1035507. [PMID: 36406261 PMCID: PMC9672506 DOI: 10.3389/fmolb.2022.1035507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Polycystin-1 (PC1) is an 11-transmembrane (TM) domain-containing protein encoded by the PKD1 gene, the most frequently mutated gene leading to autosomal dominant polycystic kidney disease (ADPKD). This large (> 462 kDal) protein has a complex posttranslational maturation process, with over five proteolytic cleavages having been described, and is found at multiple cellular locations. The initial description of the binding and activation of heterotrimeric Gαi/o by the juxtamembrane region of the PC1 cytosolic C-terminal tail (C-tail) more than 20 years ago opened the door to investigations, and controversies, into PC1's potential function as a novel G protein-coupled receptor (GPCR). Subsequent biochemical and cellular-based assays supported an ability of the PC1 C-tail to bind numerous members of the Gα protein family and to either inhibit or activate G protein-dependent pathways involved in the regulation of ion channel activity, transcription factor activation, and apoptosis. More recent work has demonstrated an essential role for PC1-mediated G protein regulation in preventing kidney cyst development; however, the mechanisms by which PC1 regulates G protein activity continue to be discovered. Similarities between PC1 and the adhesion class of 7-TM GPCRs, most notably a conserved GPCR proteolysis site (GPS) before the first TM domain, which undergoes autocatalyzed proteolytic cleavage, suggest potential mechanisms for PC1-mediated regulation of G protein signaling. This article reviews the evidence supporting GPCR-like functions of PC1 and their relevance to cystic disease, discusses the involvement of GPS cleavage and potential ligands in regulating PC1 GPCR function, and explores potential connections between PC1 GPCR-like activity and regulation of the channel properties of the polycystin receptor-channel complex.
Collapse
Affiliation(s)
- Robin L. Maser
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS, United States
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - James P. Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Stephen C. Parnell
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
8
|
Xu J, Xue C, Wang X, Zhang L, Mei C, Mao Z. Chromatin Methylation Abnormalities in Autosomal Dominant Polycystic Kidney Disease. Front Med (Lausanne) 2022; 9:921631. [PMID: 35865176 PMCID: PMC9294145 DOI: 10.3389/fmed.2022.921631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease worldwide and is one of the major causes of end-stage renal disease. PKD1 and PKD2 are two genes that mainly contribute to the development and progression of ADPKD. The precise mechanism is not fully understood. In recent years, epigenetic modification has drawn increasing attention. Chromatin methylation is a very important category of PKD epigenetic changes and mostly involves DNA, histone, and RNA methylation. Genome hypomethylation and regional gene hypermethylation coexist in ADPKD. We found that the genomic DNA of ADPKD kidney tissues showed extensive demethylation by whole-genome bisulphite sequencing, while some regional DNA methylation from body fluids, such as blood and urine, can be used as diagnostic or prognostic biomarkers to predict PKD progression. Histone modifications construct the histone code mediated by histone methyltransferases and contribute to aberrant methylation changes in PKD. Considering the complexity of methylation abnormalities occurring in different regions and genes on the PKD epigenome, more specific therapy aiming to restore to the normal genome should lead to the development of epigenetic treatment.
Collapse
Affiliation(s)
- Jing Xu
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Cheng Xue
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaodong Wang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Lei Zhang
| | - Changlin Mei
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- Changlin Mei
| | - Zhiguo Mao
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- *Correspondence: Zhiguo Mao
| |
Collapse
|
9
|
Dow JAT, Simons M, Romero MF. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease. Nat Rev Nephrol 2022; 18:417-434. [PMID: 35411063 DOI: 10.1038/s41581-022-00561-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Although the genetic basis of many kidney diseases is being rapidly elucidated, their experimental study remains problematic owing to the lack of suitable models. The fruitfly Drosophila melanogaster provides a rapid, ethical and cost-effective model system of the kidney. The unique advantages of D. melanogaster include ease and low cost of maintenance, comprehensive availability of genetic mutants and powerful transgenic technologies, and less onerous regulation, as compared with mammalian systems. Renal and excretory functions in D. melanogaster reside in three main tissues - the transporting renal (Malpighian) tubules, the reabsorptive hindgut and the endocytic nephrocytes. Tubules contain multiple cell types and regions and generate a primary urine by transcellular transport rather than filtration, which is then subjected to selective reabsorption in the hindgut. By contrast, the nephrocytes are specialized for uptake of macromolecules and equipped with a filtering slit diaphragm resembling that of podocytes. Many genes with key roles in the human kidney have D. melanogaster orthologues that are enriched and functionally relevant in fly renal tissues. This similarity has allowed investigations of epithelial transport, kidney stone formation and podocyte and proximal tubule function. Furthermore, a range of unique quantitative phenotypes are available to measure function in both wild type and disease-modelling flies.
Collapse
Affiliation(s)
- Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Matias Simons
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, Paris, France
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
10
|
Cantero MDR, Cantiello HF. Polycystin-2 (TRPP2): Ion channel properties and regulation. Gene 2022; 827:146313. [PMID: 35314260 DOI: 10.1016/j.gene.2022.146313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 12/01/2022]
Abstract
Polycystin-2 (TRPP2, PKD2, PC2) is the product of the PKD2 gene, whose mutations cause Autosomal Dominant Polycystic Kidney Disease (ADPKD). PC2 belongs to the superfamily of TRP (Transient Receptor Potential) proteins that generally function as Ca2+-permeable nonselective cation channels implicated in Ca2+ signaling. PC2 localizes to various cell domains with distinct functions that likely depend on interactions with specific channel partners. Functions include receptor-operated, nonselective cation channel activity in the plasma membrane, intracellular Ca2+ release channel activity in the endoplasmic reticulum (ER), and mechanosensitive channel activity in the primary cilium of renal epithelial cells. Here we summarize our current understanding of the properties of PC2 and how other transmembrane and cytosolic proteins modulate this activity, providing functional diversity and selective regulatory mechanisms to its role in the control of cellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- María Del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina.
| | - Horacio F Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina
| |
Collapse
|
11
|
Sonbol HS, AlRashidi AA. Cloning and Expression of Receptor of Egg Jelly Protein of Polycystic Kidney Disease 1 Gene in Human Receptor of Egg Jelly Protein. PHARMACOPHORE 2022. [DOI: 10.51847/vqghabllgj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Agborbesong E, Zhou JX, Li LX, Calvet JP, Li X. Antioxidant enzyme peroxiredoxin 5 regulates cyst growth and ciliogenesis via modulating Plk1 stability. FASEB J 2022; 36:e22089. [PMID: 34888938 PMCID: PMC9060392 DOI: 10.1096/fj.202101270rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Oxidative stress is emerging as a contributing factor to the homeostasis in cystic diseases. However, the role antioxidant enzymes play in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD) remains elusive. Peroxiredoxin 5 (Prdx5) is an antioxidant enzyme that catalyzes the reduction of H2 O2 and alkyl hydroperoxide and plays an important role in different biological processes. In this study, we show that Prdx5 is downregulated in a PKD mutant mouse model and ADPKD patient kidneys. Knockdown of Prdx5 resulted in the formation of cysts in a three-dimensional mouse inner medullar collecting duct (IMCD) cell Matrigel culture system. The mechanisms of Prdx5 deficiency mediated cyst growth include: (1) induction of oxidative stress as indicated by increased mRNA expression of heme oxygenase-1, an oxidant stress marker; (2) activation of Erk, S6 and mTORC1, which contribute to cystic renal epithelial cell proliferation and cyst growth; (3) abnormal centrosome amplification and multipolar spindle formation which result in genome instability; (4) upregulation of Polo-like kinase 1 (Plk1) and Aurora kinase A, important mitotic kinases involved in cell proliferation and ciliogenesis; (5) impaired formation of primary cilia in mouse IMCD3 and retinal pigment epithelial cells, which could be rescued by inhibiting Plk1 activity; and (6) restraining the effect of Wnt3a and Wnt5a ligands on primary cilia in mouse IMCD3 cells, while regulating the activity of the canonical and non-canonical Wnt signaling in a separate cilia independent mechanism, respectively. Importantly, we found that targeting Plk1 with its inhibitor, volasertib, delayed cyst growth in Pkd1 conditional knockout mouse kidneys. Together, these findings indicate that Prdx5 is an important antioxidant that regulates cyst growth via diverse mechanisms, in particular, the Prdx5-Plk1 axis, and that induction and activation of Prdx5, alone or together with inhibition of Plk1, represent a promising strategy for combatting ADPKD.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Julie Xia Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - James P. Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
13
|
Schirrer L, Marín-García PJ, Llobat L. Feline Polycystic Kidney Disease: An Update. Vet Sci 2021; 8:269. [PMID: 34822642 PMCID: PMC8625840 DOI: 10.3390/vetsci8110269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Polycystic kidney disease (PKD) is a disease that affects felines and other mammals, such as humans. The common name is autosomal dominant polycystic kidney disease (ADPKD) and causes a progressive development of fluid-filled cysts in the kidney and sometimes in other organs as the liver and pancreas. The formation and growth of cysts progress slowly, causing deterioration of kidney tissue and a gradual decrease in kidney function, leading to irreversible kidney failure. Feline PKD or ADPKD in humans are hereditary pathologies of autosomal dominant transmission. ADPKD is one of the genetic diseases with the highest prevalence in humans. In cats, this disease also has a high prevalence, mainly in the Persian breed, being one of the most common feline genetic diseases. Imaging tests seem to be the most reliable method for diagnosis of the disease, although more genetic tests are being developed to detect the presence of the responsible mutation. In this review, we summarize the current knowledge about feline PKD to guide future research related to an adequate diagnosis and early detection of causal mutations. It can allow the establishment of selection programs to reduce or eliminate this pathology in feline breeds.
Collapse
Affiliation(s)
| | - Pablo Jesús Marín-García
- Department of Animal Production and Health, Veterinary Public Health and Food Sciences and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain;
| | - Lola Llobat
- Department of Animal Production and Health, Veterinary Public Health and Food Sciences and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain;
| |
Collapse
|
14
|
Montell C. Drosophila sensory receptors-a set of molecular Swiss Army Knives. Genetics 2021; 217:1-34. [PMID: 33683373 DOI: 10.1093/genetics/iyaa011] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Genetic approaches in the fruit fly, Drosophila melanogaster, have led to a major triumph in the field of sensory biology-the discovery of multiple large families of sensory receptors and channels. Some of these families, such as transient receptor potential channels, are conserved from animals ranging from worms to humans, while others, such as "gustatory receptors," "olfactory receptors," and "ionotropic receptors," are restricted to invertebrates. Prior to the identification of sensory receptors in flies, it was widely assumed that these proteins function in just one modality such as vision, smell, taste, hearing, and somatosensation, which includes thermosensation, light, and noxious mechanical touch. By employing a vast combination of genetic, behavioral, electrophysiological, and other approaches in flies, a major concept to emerge is that many sensory receptors are multitaskers. The earliest example of this idea was the discovery that individual transient receptor potential channels function in multiple senses. It is now clear that multitasking is exhibited by other large receptor families including gustatory receptors, ionotropic receptors, epithelial Na+ channels (also referred to as Pickpockets), and even opsins, which were formerly thought to function exclusively as light sensors. Genetic characterizations of these Drosophila receptors and the neurons that express them also reveal the mechanisms through which flies can accurately differentiate between different stimuli even when they activate the same receptor, as well as mechanisms of adaptation, amplification, and sensory integration. The insights gleaned from studies in flies have been highly influential in directing investigations in many other animal models.
Collapse
Affiliation(s)
- Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, The Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
15
|
Identification of pathological transcription in autosomal dominant polycystic kidney disease epithelia. Sci Rep 2021; 11:15139. [PMID: 34301992 PMCID: PMC8302622 DOI: 10.1038/s41598-021-94442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) affects more than 12 million people worldwide. Mutations in PKD1 and PKD2 cause cyst formation through unknown mechanisms. To unravel the pathogenic mechanisms in ADPKD, multiple studies have investigated transcriptional mis-regulation in cystic kidneys from patients and mouse models, and numerous dysregulated genes and pathways have been described. Yet, the concordance between studies has been rather limited. Furthermore, the cellular and genetic diversity in cystic kidneys has hampered the identification of mis-expressed genes in kidney epithelial cells with homozygous PKD mutations, which are critical to identify polycystin-dependent pathways. Here we performed transcriptomic analyses of Pkd1- and Pkd2-deficient mIMCD3 kidney epithelial cells followed by a meta-analysis to integrate all published ADPKD transcriptomic data sets. Based on the hypothesis that Pkd1 and Pkd2 operate in a common pathway, we first determined transcripts that are differentially regulated by both genes. RNA sequencing of genome-edited ADPKD kidney epithelial cells identified 178 genes that are concordantly regulated by Pkd1 and Pkd2. Subsequent integration of existing transcriptomic studies confirmed 31 previously described genes and identified 61 novel genes regulated by Pkd1 and Pkd2. Cluster analyses then linked Pkd1 and Pkd2 to mRNA splicing, specific factors of epithelial mesenchymal transition, post-translational protein modification and epithelial cell differentiation, including CD34, CDH2, CSF2RA, DLX5, HOXC9, PIK3R1, PLCB1 and TLR6. Taken together, this model-based integrative analysis of transcriptomic alterations in ADPKD annotated a conserved core transcriptomic profile and identified novel candidate genes for further experimental studies.
Collapse
|
16
|
The cellular pathways and potential therapeutics of Polycystic Kidney Disease. Biochem Soc Trans 2021; 49:1171-1188. [PMID: 34156429 DOI: 10.1042/bst20200757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
Polycystic Kidney Disease (PKD) refers to a group of disorders, driven by the formation of cysts in renal tubular cells and is currently one of the leading causes of end-stage renal disease. The range of symptoms observed in PKD is due to mutations in cilia-localising genes, resulting in changes in cellular signalling. As such, compounds that are currently in preclinical and clinical trials target some of these signalling pathways that are dysregulated in PKD. In this review, we highlight these pathways including cAMP, EGF and AMPK signalling and drugs that target them and may show promise in lessening the disease burden of PKD patients. At present, tolvaptan is the only approved therapy for ADPKD, however, it carries several adverse side effects whilst comparatively, no pharmacological drug is approved for ARPKD treatment. Aside from this, drugs that have been the subject of multiple clinical trials such as metformin, which targets AMPK signalling and somatostatins, which target cAMP signalling have shown great promise in reducing cyst formation and cellular proliferation. This review also discusses other potential and novel targets that can be used for future interventions, such as β-catenin and TAZ, where research has shown that a reduction in the overexpression of these signalling components results in amelioration of disease phenotype. Thus, it becomes apparent that well-designed preclinical investigations and future clinical trials into these pathways and other potential signalling targets are crucial in bettering disease prognosis for PKD patients and could lead to personalised therapy approaches.
Collapse
|
17
|
Wang Y, Zhai F, Guan S, Yan Z, Zhu X, Kuo Y, Wang N, Zhi X, Lian Y, Huang J, Jia J, Liu P, Li R, Qiao J, Yan L. A comprehensive PGT-M strategy for ADPKD patients with de novo PKD1 mutations using affected embryo or gametes as proband. J Assist Reprod Genet 2021; 38:2425-2434. [PMID: 33939064 DOI: 10.1007/s10815-021-02188-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease characterized by the development of renal cysts and progression to renal failure. Preimplantation genetic testing-monogenic disease (PGT-M) is an alternative option to obtain healthy babies. However, de novo PKD1 mutation of one of the spouses or the absence of a positive family history poses a serious challenge to PGT-M. Here, we described a comprehensive strategy which includes preimplantation genetic testing for aneuploidies (PGT-A) study and monogenic diagnosis study for ADPKD patients bearing de novo mutations. The innovation of our strategy is to use the gamete (polar body or single sperm) as proband for single-nucleotide polymorphism (SNP) linkage analysis to detect an embryo's carrier status. Nine ADPKD couples with either de novo mutation or without a positive family history were recruited and a total of 34 embryos from 13 PGT-M cycles were examined. Within these nine couples, two successfully delivered healthy babies had their genetic status confirmed by amniocentesis. This study provides a creative approach for embryo diagnosis of patients with de novo mutations or patients who lack essential family members for linkage analysis.
Collapse
Affiliation(s)
- Yuqian Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Fan Zhai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Shuo Guan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Zhiqiang Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiaohui Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Ying Kuo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Nan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Ying Lian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jin Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jialin Jia
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China.,Beijing Advanced Innovation Center for Genomics, Beijing, 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China. .,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China. .,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
18
|
Himmel NJ, Cox DN. Transient receptor potential channels: current perspectives on evolution, structure, function and nomenclature. Proc Biol Sci 2020; 287:20201309. [PMID: 32842926 DOI: 10.1098/rspb.2020.1309] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential superfamily of ion channels (TRP channels) is widely recognized for the roles its members play in sensory nervous systems. However, the incredible diversity within the TRP superfamily, and the wide range of sensory capacities found therein, has also allowed TRP channels to function beyond sensing an organism's external environment, and TRP channels have thus become broadly critical to (at least) animal life. TRP channels were originally discovered in Drosophila and have since been broadly studied in animals; however, thanks to a boom in genomic and transcriptomic data, we now know that TRP channels are present in the genomes of a variety of creatures, including green algae, fungi, choanoflagellates and a number of other eukaryotes. As a result, the organization of the TRP superfamily has changed radically from its original description. Moreover, modern comprehensive phylogenetic analyses have brought to light the vertebrate-centricity of much of the TRP literature; much of the nomenclature has been grounded in vertebrate TRP subfamilies, resulting in a glossing over of TRP channels in other taxa. Here, we provide a comprehensive review of the function, structure and evolutionary history of TRP channels, and put forth a more complete set of non-vertebrate-centric TRP family, subfamily and other subgroup nomenclature.
Collapse
Affiliation(s)
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
19
|
Lavu S, Vaughan LE, Senum SR, Kline TL, Chapman AB, Perrone RD, Mrug M, Braun WE, Steinman TI, Rahbari-Oskoui FF, Brosnahan GM, Bae KT, Landsittel D, Chebib FT, Yu AS, Torres VE, Harris PC. The value of genotypic and imaging information to predict functional and structural outcomes in ADPKD. JCI Insight 2020; 5:138724. [PMID: 32634120 DOI: 10.1172/jci.insight.138724] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/24/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUNDA treatment option for autosomal dominant polycystic kidney disease (ADPKD) has highlighted the need to identify rapidly progressive patients. Kidney size/age and genotype have predictive power for renal outcomes, but their relative and additive value, plus associated trajectories of disease progression, are not well defined.METHODSThe value of genotypic and/or kidney imaging data (Mayo Imaging Class; MIC) to predict the time to functional (end-stage kidney disease [ESKD] or decline in estimated glomerular filtration rate [eGFR]) or structural (increase in height-adjusted total kidney volume [htTKV]) outcomes were evaluated in a Mayo Clinic PKD1/PKD2 population, and eGFR and htTKV trajectories from 20-65 years of age were modeled and independently validated in similarly defined CRISP and HALT PKD patients.RESULTSBoth genotypic and imaging groups strongly predicted ESKD and eGFR endpoints, with genotype improving the imaging predictions and vice versa; a multivariate model had strong discriminatory power (C-index = 0.845). However, imaging but not genotypic groups predicted htTKV growth, although more severe genotypic and imaging groups had larger kidneys at a young age. The trajectory of eGFR decline was linear from baseline in the most severe genotypic and imaging groups, but it was curvilinear in milder groups. Imaging class trajectories differentiated htTKV growth rates; severe classes had rapid early growth and large kidneys, but growth later slowed.CONCLUSIONThe value of imaging, genotypic, and combined data to identify rapidly progressive patients was demonstrated, and reference values for clinical trials were provided. Our data indicate that differences in kidney growth rates before adulthood significantly define patients with severe disease.FUNDINGNIDDK grants: Mayo DK058816 and DK090728; CRISP DK056943, DK056956, DK056957, and DK056961; and HALT PKD DK062410, DK062408, DK062402, DK082230, DK062411, and DK062401.
Collapse
Affiliation(s)
| | - Lisa E Vaughan
- Department of Biomedical Statistics and Informatics, and
| | | | - Timothy L Kline
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Arlene B Chapman
- Division of Nephrology, University of Chicago School of Medicine, Chicago, Illinois, USA.,Department of Internal Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ronald D Perrone
- Division of Nephrology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Michal Mrug
- Division of Nephrology, University of Alabama and Department of Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - William E Braun
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio, USA
| | - Theodore I Steinman
- Renal Division, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Godela M Brosnahan
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Douglas Landsittel
- Center of Research on Health Care, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Alan Sl Yu
- Jared Grantham Kidney Institute, Kansas University Medical Center, Kansas, Kansas, USA
| | | | | | | |
Collapse
|
20
|
Hu J, Harris PC. Regulation of polycystin expression, maturation and trafficking. Cell Signal 2020; 72:109630. [PMID: 32275942 PMCID: PMC7269868 DOI: 10.1016/j.cellsig.2020.109630] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/26/2022]
Abstract
The major autosomal dominant polycystic kidney disease (ADPKD) genes, PKD1 and PKD2, are wildly expressed at the organ and tissue level. PKD1 encodes polycystin 1 (PC1), a large membrane associated receptor-like protein that can complex with the PKD2 product, PC2. Various cellular locations have been described for both PC1, including the plasma membrane and extracellular vesicles, and PC2, especially the endoplasmic reticulum (ER), but compelling evidence indicates that the primary cilium, a sensory organelle, is the key site for the polycystin complex to prevent PKD. As with other membrane proteins, the ER biogenesis pathway is key to appropriately folding, performing quality control, and exporting fully folded PC1 to the Golgi apparatus. There is a requirement for binding with PC2 and cleavage of PC1 at the GPS for this folding and export to occur. Six different monogenic defects in this pathway lead to cystic disease development, with PC1 apparently particularly sensitive to defects in this general protein processing pathway. Trafficking of membrane proteins, and the polycystins in particular, through the Golgi to the primary cilium have been analyzed in detail, but at this time, there is no clear consensus on a ciliary targeting sequence required to export proteins to the cilium. After transitioning though the trans-Golgi network, polycystin-bearing vesicles are likely sorted to early or recycling endosomes and then transported to the ciliary base, possibly via docking to transition fibers (TF). The membrane-bound polycystin complex then undergoes facilitated trafficking through the transition zone, the diffusion barrier at the base of the cilium, before entering the cilium. Intraflagellar transport (IFT) may be involved in moving the polycystins along the cilia, but data also indicates other mechanisms. The ciliary polycystin complex can be ubiquitinated and removed from cilia by internalization at the ciliary base and may be sent back to the plasma membrane for recycling or to lysosomes for degradation. Monogenic defects in processes regulating the protein composition of cilia are associated with syndromic disorders involving many organ systems, reflecting the pleotropic role of cilia during development and for tissue maintenance. Many of these ciliopathies have renal involvement, likely because of faulty polycystin signaling from cilia. Understanding the expression, maturation and trafficking of the polycystins helps understand PKD pathogenesis and suggests opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| | - Peter C Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
21
|
El Ters M, Zhou X, Lepping RJ, Lu P, Karcher RT, Mahnken JD, Brooks WM, Winklhofer FT, Li X, Yu AS. Biological Efficacy and Safety of Niacinamide in Patients With ADPKD. Kidney Int Rep 2020; 5:1271-1279. [PMID: 32775826 PMCID: PMC7403550 DOI: 10.1016/j.ekir.2020.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive cyst enlargement, leading to kidney failure. Sirtuin-1 is upregulated in ADPKD and accelerates disease progression by deacetylating p53. Niacinamide is a dietary supplement that inhibits sirtuins at high doses. METHODS We conducted an open-label, single-arm intervention trial (study 1, N = 10), and a randomized, double blinded, placebo-controlled trial (study 2, N = 36) to assess the biological activity and safety of niacinamide. Patients with ADPKD were given 30 mg/kg oral niacinamide or placebo, for 12 months. The primary endpoint was the ratio of acetylated p53 to total p53 protein in peripheral blood mononuclear cells (PBMCs). RESULTS There was no sustained effect of niacinamide on acetylated/total p53 in either study and no difference between placebo and niacinamide arms. There was no difference in the change in height-adjusted total kidney volume over 12 months between niacinamide and placebo. Niacinamide was generally well tolerated. The most common adverse effects were nausea, diarrhea, gastroesophageal reflux, headache, and acneiform rash but there was no difference in their incidence between niacinamide and placebo. CONCLUSIONS In conclusion, niacinamide is safe and well-tolerated in patients with ADPKD. However, we were unable to detect a sustained inhibition of sirtuin activity over 12 months of treatment, and there was no signal to suggest a beneficial effect on any efficacy measure.
Collapse
Affiliation(s)
- Mireille El Ters
- Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, Kansas, USA
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xia Zhou
- Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, Kansas, USA
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Rebecca J. Lepping
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Pengcheng Lu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Rainer T. Karcher
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jonathan D. Mahnken
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - William M. Brooks
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Franz T. Winklhofer
- Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, Kansas, USA
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiaogang Li
- Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, Kansas, USA
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Alan S.L. Yu
- Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, Kansas, USA
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
22
|
An Overview of In Vivo and In Vitro Models for Autosomal Dominant Polycystic Kidney Disease: A Journey from 3D-Cysts to Mini-Pigs. Int J Mol Sci 2020; 21:ijms21124537. [PMID: 32630605 PMCID: PMC7352572 DOI: 10.3390/ijms21124537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inheritable cause of end stage renal disease and, as of today, only a single moderately effective treatment is available for patients. Even though ADPKD research has made huge progress over the last decades, the precise disease mechanisms remain elusive. However, a wide variety of cellular and animal models have been developed to decipher the pathophysiological mechanisms and related pathways underlying the disease. As none of these models perfectly recapitulates the complexity of the human disease, the aim of this review is to give an overview of the main tools currently available to ADPKD researchers, as well as their main advantages and limitations.
Collapse
|
23
|
Ganoderic acid A is the effective ingredient of Ganoderma triterpenes in retarding renal cyst development in polycystic kidney disease. Acta Pharmacol Sin 2020; 41:782-790. [PMID: 31911637 PMCID: PMC7468358 DOI: 10.1038/s41401-019-0329-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common life-threatening monogenetic diseases characterized by progressive enlargement of fluid-filled renal cysts. Our previous study has shown that Ganoderma triterpenes (GT) retards PKD renal cyst development. In the present study we identified the effective ingredient of GT in suppression of kidney cyst development. Using an in vitro MDCK cystogenesis model, we identified ganoderic acid A (GA-A) as the most promising candidate among the 12 ganoderic acid (GA) monomers. We further showed that GA-A (6.25−100 μM) significantly inhibited cyst growth in MDCK cyst model and embryonic kidney cyst model in vitro, and the inhibitory effect was reversible. In kidney-specific Pkd1 knockout (kPKD) mice displaying severe cystic kidney disease, administration of GA-A (50 mg· kg−1 ·d−1, sc) significantly attenuated renal cyst development. In both MDCK cells and kidney of kPKD mice, we revealed that GA-A dose-dependently downregulated the Ras/MAPK signaling pathway. The expression of proliferating cell nuclear antigen (PCNA) was also suppressed, suggesting a possible effect of GA-A on cell proliferation. These experimental data suggest that GA-A may be the main ingredient of GT as a potential therapeutic reagent for treating ADPKD.
Collapse
|
24
|
Sussman CR, Wang X, Chebib FT, Torres VE. Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling. Cell Signal 2020; 72:109649. [PMID: 32335259 DOI: 10.1016/j.cellsig.2020.109649] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic disorder associated with polycystic liver disease (PLD) and other extrarenal manifestations, the most common monogenic cause of end-stage kidney disease, and a major burden for public health. Many studies have shown that alterations in G-protein and cAMP signaling play a central role in its pathogenesis. As for many other diseases (35% of all approved drugs target G-protein coupled receptors (GPCRs) or proteins functioning upstream or downstream from GPCRs), treatments targeting GPCR have shown effectiveness in slowing the rate of progression of ADPKD. Tolvaptan, a vasopressin V2 receptor antagonist is the first drug approved by regulatory agencies to treat rapidly progressive ADPKD. Long-acting somatostatin analogs have also been effective in slowing the rates of growth of polycystic kidneys and liver. Although no treatment has so far been able to prevent the development or stop the progression of the disease, these encouraging advances point to G-protein and cAMP signaling as a promising avenue of investigation that may lead to more effective and safe treatments. This will require a better understanding of the relevant GPCRs, G-proteins, cAMP effectors, and of the enzymes and A-kinase anchoring proteins controlling the compartmentalization of cAMP signaling. The purpose of this review is to provide an overview of general GPCR signaling; the function of polycystin-1 (PC1) as a putative atypical adhesion GPCR (aGPCR); the roles of PC1, polycystin-2 (PC2) and the PC1-PC2 complex in the regulation of calcium and cAMP signaling; the cross-talk of calcium and cAMP signaling in PKD; and GPCRs, adenylyl cyclases, cyclic nucleotide phosphodiesterases, and protein kinase A as therapeutic targets in ADPKD.
Collapse
Affiliation(s)
- Caroline R Sussman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
25
|
Polycystins as components of large multiprotein complexes of polycystin interactors. Cell Signal 2020; 72:109640. [PMID: 32305669 DOI: 10.1016/j.cellsig.2020.109640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/27/2022]
Abstract
Naturally occurring mutations in two separate genes, PKD1 and PKD2, are responsible for the vast majority of all cases of autosomal dominant polycystic kidney disease (ADPKD), one of the most common genetic diseases affecting 1 in 1000 Americans. The hallmark of ADPKD is the development of epithelial cysts in the kidney, liver, and pancreas. PKD1 encodes a large plasma membrane protein (PKD1, PC1, or Polycystin-1) with a long extracellular domain and has been speculated to function as an atypical G protein coupled receptor. PKD2 encodes an ion channel of the Transient Receptor Potential superfamily (TRPP2, PKD2, PC2, or Polycystin-2). Despite the identification of these genes more than 20 years ago, the molecular function of their encoded proteins and the mechanism(s) by which mutations in PKD1 and PKD2 cause ADPKD remain elusive. Genetic, biochemical, and functional evidence suggests they form a multiprotein complex present in multiple locations in the cell, including the plasma membrane, endoplasmic reticulum, and the primary cilium. Over the years, numerous interacting proteins have been identified using directed and unbiased approaches, and shown to modulate function, cellular localization, and protein stability and turnover of Polycystins. Delineation of the molecular composition of the Polycystin complex can have a significant impact on understanding their cellular function in health and disease states and on the identification of more specific and effective therapeutic targets.
Collapse
|
26
|
Maser RL, Calvet JP. Adhesion GPCRs as a paradigm for understanding polycystin-1 G protein regulation. Cell Signal 2020; 72:109637. [PMID: 32305667 DOI: 10.1016/j.cellsig.2020.109637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Polycystin-1, whose mutation is the most frequent cause of autosomal dominant polycystic kidney disease, is an extremely large and multi-faceted membrane protein whose primary or proximal cyst-preventing function remains undetermined. Accumulating evidence supports the idea that modulation of cellular signaling by heterotrimeric G proteins is a critical function of polycystin-1. The presence of a cis-autocatalyzed, G protein-coupled receptor (GPCR) proteolytic cleavage site, or GPS, in its extracellular N-terminal domain immediately preceding the first transmembrane domain is one of the notable conserved features of the polycystin-1-like protein family, and also of the family of cell adhesion GPCRs. Adhesion GPCRs are one of five families within the GPCR superfamily and are distinguished by a large N-terminal extracellular region consisting of multiple adhesion modules with a GPS-containing GAIN domain and bimodal functions in cell adhesion and signal transduction. Recent advances from studies of adhesion GPCRs provide a new paradigm for unraveling the mechanisms by which polycystin-1-associated G protein signaling contributes to the pathogenesis of polycystic kidney disease. This review highlights the structural and functional features shared by polycystin-1 and the adhesion GPCRs and discusses the implications of such similarities for our further understanding of the functions of this complicated protein.
Collapse
Affiliation(s)
- Robin L Maser
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA.
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA.
| |
Collapse
|
27
|
Ciliary Genes in Renal Cystic Diseases. Cells 2020; 9:cells9040907. [PMID: 32276433 PMCID: PMC7226761 DOI: 10.3390/cells9040907] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/05/2020] [Indexed: 12/28/2022] Open
Abstract
Cilia are microtubule-based organelles, protruding from the apical cell surface and anchoring to the cytoskeleton. Primary (nonmotile) cilia of the kidney act as mechanosensors of nephron cells, responding to fluid movements by triggering signal transduction. The impaired functioning of primary cilia leads to formation of cysts which in turn contribute to development of diverse renal diseases, including kidney ciliopathies and renal cancer. Here, we review current knowledge on the role of ciliary genes in kidney ciliopathies and renal cell carcinoma (RCC). Special focus is given on the impact of mutations and altered expression of ciliary genes (e.g., encoding polycystins, nephrocystins, Bardet-Biedl syndrome (BBS) proteins, ALS1, Oral-facial-digital syndrome 1 (OFD1) and others) in polycystic kidney disease and nephronophthisis, as well as rare genetic disorders, including syndromes of Joubert, Meckel-Gruber, Bardet-Biedl, Senior-Loken, Alström, Orofaciodigital syndrome type I and cranioectodermal dysplasia. We also show that RCC and classic kidney ciliopathies share commonly disturbed genes affecting cilia function, including VHL (von Hippel-Lindau tumor suppressor), PKD1 (polycystin 1, transient receptor potential channel interacting) and PKD2 (polycystin 2, transient receptor potential cation channel). Finally, we discuss the significance of ciliary genes as diagnostic and prognostic markers, as well as therapeutic targets in ciliopathies and cancer.
Collapse
|
28
|
Zuo X, Kwon SH, Janech MG, Dang Y, Lauzon SD, Fogelgren B, Polgar N, Lipschutz JH. Primary cilia and the exocyst are linked to urinary extracellular vesicle production and content. J Biol Chem 2019; 294:19099-19110. [PMID: 31694916 PMCID: PMC6916495 DOI: 10.1074/jbc.ra119.009297] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
The recently proposed idea of "urocrine signaling" hypothesizes that small secreted extracellular vesicles (EVs) contain proteins that transmit signals to distant cells. However, the role of renal primary cilia in EV production and content is unclear. We previously showed that the exocyst, a highly conserved trafficking complex, is necessary for ciliogenesis; that it is present in human urinary EVs; that knockdown (KD) of exocyst complex component 5 (EXOC5), a central exocyst component, results in very short or absent cilia; and that human EXOC5 overexpression results in longer cilia. Here, we show that compared with control Madin-Darby canine kidney (MDCK) cells, EXOC5 overexpression increases and KD decreases EV numbers. Proteomic analyses of isolated EVs from EXOC5 control, KD, and EXOC5-overexpressing MDCK cells revealed significant alterations in protein composition. Using immunoblotting to specifically examine the expression levels of ADP-ribosylation factor 6 (ARF6) and EPS8-like 2 (EPS8L2) in EVs, we found that EXOC5 KD increases ARF6 levels and decreases EPS8L2 levels, and that EXOC5 overexpression increases EPS8L2. Knockout of intraflagellar transport 88 (IFT88) confirmed that the changes in EV number/content were due to cilia loss: similar to EXOC5, the IFT88 loss resulted in very short or absent cilia, decreased EV numbers, increased EV ARF6 levels, and decreased Eps8L2 levels compared with IFT88-rescued EVs. Compared with control animals, urine from proximal tubule-specific EXOC5-KO mice contained fewer EVs and had increased ARF6 levels. These results indicate that perturbations in exocyst and primary cilia affect EV number and protein content.
Collapse
Affiliation(s)
- Xiaofeng Zuo
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia 30912
| | - Michael G Janech
- Department of Biology, College of Charleston, Charleston, South Carolina 29424
| | - Yujing Dang
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Steven D Lauzon
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | - Noemi Polgar
- Department of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
- Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425
| |
Collapse
|
29
|
Brill AL, Ehrlich BE. Polycystin 2: A calcium channel, channel partner, and regulator of calcium homeostasis in ADPKD. Cell Signal 2019; 66:109490. [PMID: 31805375 DOI: 10.1016/j.cellsig.2019.109490] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/30/2019] [Accepted: 12/01/2019] [Indexed: 01/26/2023]
Abstract
Polycystin 2 (PC2) is one of two main protein types responsible for the underlying etiology of autosomal dominant polycystic kidney disease (ADPKD), the most prevalent monogenic renal disease in the world. This debilitating and currently incurable condition is caused by loss-of-function mutations in PKD2 and PKD1, the genes encoding for PC2 and Polycystin 1 (PC1), respectively. Two-hit mutation events in these genes lead to renal cyst formation and eventual kidney failure, the main hallmarks of ADPKD. Though much is known concerning the physiological consequences and dysfunctional signaling mechanisms resulting from ADPKD development, to best understand the requirement of PC2 in maintaining organ homeostasis, it is important to recognize how PC2 acts under normal conditions. As such, an array of work has been performed characterizing the endogenous function of PC2, revealing it to be a member of the transient receptor potential (TRP) channel family of proteins. As a TRP protein, PC2 is a nonselective, cation-permeant, calcium-sensitive channel expressed in all tissue types, where it localizes primarily on the endoplasmic reticulum (ER), primary cilia, and plasma membrane. In addition to its channel function, PC2 interacts with and acts as a regulator of a number of other channels, ultimately further affecting intracellular signaling and leading to dysfunction in its absence. In this review, we describe the biophysical and physiological properties of PC2 as a cation channel and modulator of intracellular calcium channels, along with how these properties are altered in ADPKD.
Collapse
Affiliation(s)
- Allison L Brill
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Barbara E Ehrlich
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA; Department of Pharmacology, Yale University, New Haven, CT, USA.
| |
Collapse
|
30
|
Wang Z, Ng C, Liu X, Wang Y, Li B, Kashyap P, Chaudhry HA, Castro A, Kalontar EM, Ilyayev L, Walker R, Alexander RT, Qian F, Chen X, Yu Y. The ion channel function of polycystin-1 in the polycystin-1/polycystin-2 complex. EMBO Rep 2019; 20:e48336. [PMID: 31441214 PMCID: PMC6832002 DOI: 10.15252/embr.201948336] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2 gene, encoding the polycystic kidney disease protein polycystin-1 and the transient receptor potential channel polycystin-2 (also known as TRPP2), respectively. Polycystin-1 and polycystin-2 form a receptor-ion channel complex located in primary cilia. The function of this complex, especially the role of polycystin-1, is largely unknown due to the lack of a reliable functional assay. In this study, we dissect the role of polycystin-1 by directly recording currents mediated by a gain-of-function (GOF) polycystin-1/polycystin-2 channel. Our data show that this channel has distinct properties from that of the homomeric polycystin-2 channel. The polycystin-1 subunit directly contributes to the channel pore, and its eleven transmembrane domains are sufficient for its channel function. We also show that the cleavage of polycystin-1 at the N-terminal G protein-coupled receptor proteolysis site is not required for the activity of the GOF polycystin-1/polycystin-2 channel. These results demonstrate the ion channel function of polycystin-1 in the polycystin-1/polycystin-2 complex, enriching our understanding of this channel and its role in ADPKD.
Collapse
Affiliation(s)
- Zhifei Wang
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Courtney Ng
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Xiong Liu
- Department of Physiology, Membrane Protein Disease Research GroupFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Yan Wang
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Bin Li
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Parul Kashyap
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | | | - Alexis Castro
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | | | - Leah Ilyayev
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Rebecca Walker
- Division of NephrologyDepartment of MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - R Todd Alexander
- Departments of Pediatrics and PhysiologyUniversity of AlbertaEdmontonABCanada
| | - Feng Qian
- Division of NephrologyDepartment of MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Xing‐Zhen Chen
- Department of Physiology, Membrane Protein Disease Research GroupFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Yong Yu
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| |
Collapse
|
31
|
Stayner C, Brooke DG, Bates M, Eccles MR. Targeted Therapies for Autosomal Dominant Polycystic Kidney Disease. Curr Med Chem 2019; 26:3081-3102. [PMID: 29737248 DOI: 10.2174/0929867325666180508095654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening genetic disease in humans, affecting approximately 1 in 500 people. ADPKD is characterized by cyst growth in the kidney leading to progressive parenchymal damage and is the underlying pathology in approximately 10% of patients requiring hemodialysis or transplantation for end-stage kidney disease. The two proteins that are mutated in ADPKD, polycystin-1 and polycystin-2, form a complex located on the primary cilium and the plasma membrane to facilitate calcium ion release in the cell. There is currently no Food and Drug Administration (FDA)-approved therapy to cure or slow the progression of the disease. Rodent ADPKD models do not completely mimic the human disease, and therefore preclinical results have not always successfully translated to the clinic. Moreover, the toxicity of many of these potential therapies has led to patient withdrawals from clinical trials. RESULTS Here, we review compounds in clinical trial for treating ADPKD, and we examine the feasibility of using a kidney-targeted approach, with potential for broadening the therapeutic window, decreasing treatment-associated toxicity and increasing the efficacy of agents that have demonstrated activity in animal models. We make recommendations for integrating kidney- targeted therapies with current treatment regimes, to achieve a combined approach to treating ADPKD. CONCLUSION Many compounds are currently in clinical trial for ADPKD yet, to date, none are FDA-approved for treating this disease. Patients could benefit from efficacious pharmacotherapy, especially if it can be kidney-targeted, and intensive efforts continue to be focused on this goal.
Collapse
Affiliation(s)
- Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Darby G Brooke
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Michael Bates
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| |
Collapse
|
32
|
Bialleleic PKD1 mutations underlie early-onset autosomal dominant polycystic kidney disease in Saudi Arabian families. Pediatr Nephrol 2019; 34:1615-1623. [PMID: 31079206 DOI: 10.1007/s00467-019-04267-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/04/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Polycystic kidney disease (PKD) is one of the most common genetic renal diseases and may be inherited in an autosomal dominant or autosomal recessive pattern. Pathogenic variants in two major genes, PKD1 and PKD2, and two rarer genes, GANAB and DNAJB11, cause autosomal dominant PKD (ADPKD). Early onset and severe PKD can occur with PKD1 and PKD2 pathogenic variants and such phenotypes may be modified by second alleles inherited in trans. Homozygous or compound heterozygous hypomorphic PKD1 variants may also cause a moderate to severe disease PKD phenotype. METHODS Targeted renal gene panel followed by Sanger sequencing of PKD1 gene were employed to investigate molecular causes in early onset PKD patients. RESULTS In this study, we report four consanguineous Saudi Arabian families with early onset PKD which were associated with biallelic variants in PKD1 gene. CONCLUSIONS Our findings confirm that PKD1 alleles may combine to produce severe paediatric onset PKD mimicking the more severe autosomal recessive ciliopathy syndromes associated with PKD. Screening of parents of such children may also reveal subclinical PKD phenotypes.
Collapse
|
33
|
R Ferreira R, Fukui H, Chow R, Vilfan A, Vermot J. The cilium as a force sensor-myth versus reality. J Cell Sci 2019; 132:132/14/jcs213496. [PMID: 31363000 DOI: 10.1242/jcs.213496] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells need to sense their mechanical environment during the growth of developing tissues and maintenance of adult tissues. The concept of force-sensing mechanisms that act through cell-cell and cell-matrix adhesions is now well established and accepted. Additionally, it is widely believed that force sensing can be mediated through cilia. Yet, this hypothesis is still debated. By using primary cilia sensing as a paradigm, we describe the physical requirements for cilium-mediated mechanical sensing and discuss the different hypotheses of how this could work. We review the different mechanosensitive channels within the cilium, their potential mode of action and their biological implications. In addition, we describe the biological contexts in which cilia are acting - in particular, the left-right organizer - and discuss the challenges to discriminate between cilium-mediated chemosensitivity and mechanosensitivity. Throughout, we provide perspectives on how quantitative analysis and physics-based arguments might help to better understand the biological mechanisms by which cells use cilia to probe their mechanical environment.
Collapse
Affiliation(s)
- Rita R Ferreira
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Hajime Fukui
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Renee Chow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Andrej Vilfan
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Department of Living Matter Physics, 37077 Göttingen, Germany .,J. Stefan Institute, 1000 Ljubljana, Slovenia
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
34
|
Liu D, Huo Y, Chen S, Xu D, Yang B, Xue C, Fu L, Bu L, Song S, Mei C. Identification of Key Genes and Candidated Pathways in Human Autosomal Dominant Polycystic Kidney Disease by Bioinformatics Analysis. Kidney Blood Press Res 2019; 44:533-552. [DOI: 10.1159/000500458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/04/2019] [Indexed: 11/19/2022] Open
Abstract
Background/Aims: Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic form of kidney disease. High-throughput microarray analysis has been applied for elucidating key genes and pathways associated with ADPKD. Most genetic profiling data from ADPKD patients have been uploaded to public databases but not thoroughly analyzed. This study integrated 2 human microarray profile datasets to elucidate the potential pathways and protein-protein interactions (PPIs) involved in ADPKD via bioinformatics analysis in order to identify possible therapeutic targets. Methods: The kidney tissue microarray data of ADPKD patients and normal individuals were searched and obtained from NCBI Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified, and enriched pathways and central node genes were elucidated using related websites and software according to bioinformatics analysis protocols. Seven DEGs were validated between polycystic kidney disease and control kidney samples by quantitative real-time polymerase chain reaction. Results: Two original human microarray datasets, GSE7869 and GSE35831, were integrated and thoroughly analyzed. In total, 6,422 and 1,152 DEGs were extracted from GSE7869 and GSE35831, respectively, and of these, 561 DEGs were consistent between the databases (291 upregulated genes and 270 downregulated genes). From 421 nodes, 34 central node genes were obtained from a PPI network complex of DEGs. Two significant modules were selected from the PPI network complex by using Cytotype MCODE. Most of the identified genes are involved in protein binding, extracellular region or space, platelet degranulation, mitochondrion, and metabolic pathways. Conclusions: The DEGs and related enriched pathways in ADPKD identified through this integrated bioinformatics analysis provide insights into the molecular mechanisms of ADPKD and potential therapeutic strategies. Specifically, abnormal decorin expression in different stages of ADPKD may represent a new therapeutic target in ADPKD, and regulation of metabolism and mitochondrial function in ADPKD may become a focus of future research.
Collapse
|
35
|
Papavassiliou KA, Zoi I, Gargalionis AN, Koutsilieris M. Polycystin-1 affects cancer cell behaviour and interacts with mTOR and Jak signalling pathways in cancer cell lines. J Cell Mol Med 2019; 23:6215-6227. [PMID: 31251475 PMCID: PMC6714176 DOI: 10.1111/jcmm.14506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/28/2023] Open
Abstract
Polycystic Kidney Disease (PKD), which is attributable to mutations in the PKD1 and PKD2 genes encoding polycystin‐1 (PC1) and polycystin‐2 (PC2) respectively, shares common cellular defects with cancer, such as uncontrolled cell proliferation, abnormal differentiation and increased apoptosis. Interestingly, PC1 regulates many signalling pathways including Jak/STAT, mTOR, Wnt, AP‐1 and calcineurin‐NFAT which are also used by cancer cells for sending signals that will allow them to acquire and maintain malignant phenotypes. Nevertheless, the molecular relationship between polycystins and cancer is unknown. In this study, we investigated the role of PC1 in cancer biology using glioblastoma (GOS3), prostate (PC3), breast (MCF7), lung (A549) and colorectal (HT29) cancer cell lines. Our in vitro results propose that PC1 promotes cell migration in GOS3 cells and suppresses cell migration in A549 cells. In addition, PC1 enhances cell proliferation in GOS3 cells but inhibits it in MCF7, A549 and HT29 cells. We also found that PC1 up‐regulates mTOR signalling and down‐regulates Jak signalling in GOS3 cells, while it up‐regulates mTOR signalling in PC3 and HT29 cells. Together, our study suggests that PC1 modulates cell proliferation and migration and interacts with mTOR and Jak signalling pathways in different cancer cell lines. Understanding the molecular details of how polycystins are associated with cancer may lead to the identification of new players in this devastating disease.
Collapse
Affiliation(s)
- Kostas A Papavassiliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilianna Zoi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios N Gargalionis
- Department of Biopathology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
36
|
Luo C, Wu M, Su X, Yu F, Brautigan DL, Chen J, Zhou J. Protein phosphatase 1α interacts with a novel ciliary targeting sequence of polycystin-1 and regulates polycystin-1 trafficking. FASEB J 2019; 33:9945-9958. [PMID: 31157564 DOI: 10.1096/fj.201900338r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disorder causing renal failure. Mutations of polycystic kidney disease 1 (PKD1) account for most ADPKD cases. Defective ciliary localization of polycystin-1 (PC1), a large integral membrane protein encoded by PKD1, underlies the pathogenesis of a subgroup of patients with ADPKD. However, the mechanisms by which PC1 and other ciliary proteins traffic to the primary cilium remain poorly understood. A ciliary targeting sequence (CTS) that resides in ciliary receptors is considered to function in the process. It has been reported that the VxP motif in the intracellular C-terminal tail of PC1 functions as a CTS in an ADP ribosylation factor 4 (Arf4)/ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (ASAP1)-dependent manner. However, other recent studies have revealed that this motif is dispensable for PC1 trafficking to cilia. In this study, we identified a novel CTS consisting of 8 residues (RHKVRFEG) in the PC1 C tail. We found that this motif is sufficient to bind protein phosphatase 1 (PP1)α, a ubiquitously expressed phosphatase in the phosphoprotein phosphatase (PPP) family. Mutations in this CTS motif disrupt binding with PP1α and impair ciliary localization of PC1. Additionally, short hairpin RNA-mediated knockdown of PP1α results in reduced ciliary localization of PC1 and elongated cilia, suggesting a role for PP1α in the regulation of ciliary structure and function.-Luo, C., Wu, M., Su, X., Yu, F., Brautigan, D. L., Chen, J., Zhou, J. Protein phosphatase 1α interacts with a novel ciliary targeting sequence of polycystin-1 and regulates polycystin-1 trafficking.
Collapse
Affiliation(s)
- Chong Luo
- Kidney Disease Center, The First Affiliated Hospital-College of Medicine-National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China.,Harvard Center for Polycystic Kidney Disease Research-Renal Division, Department of Medicine, Brigham and Women's Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - Maoqing Wu
- Harvard Center for Polycystic Kidney Disease Research-Renal Division, Department of Medicine, Brigham and Women's Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - Xuefeng Su
- Harvard Center for Polycystic Kidney Disease Research-Renal Division, Department of Medicine, Brigham and Women's Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - Fangyan Yu
- Harvard Center for Polycystic Kidney Disease Research-Renal Division, Department of Medicine, Brigham and Women's Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - David L Brautigan
- Center for Cell Signaling, Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital-College of Medicine-National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Jing Zhou
- Harvard Center for Polycystic Kidney Disease Research-Renal Division, Department of Medicine, Brigham and Women's Hospital-Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Chumley P, Zhou J, Mrug S, Chacko B, Parant JM, Challa AK, Wilson LS, Berryhill TF, Barnes S, Kesterson RA, Bell PD, Darley-Usmar VM, Yoder BK, Mrug M. Truncating PKHD1 and PKD2 mutations alter energy metabolism. Am J Physiol Renal Physiol 2019; 316:F414-F425. [PMID: 30566001 PMCID: PMC6442375 DOI: 10.1152/ajprenal.00167.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Deficiency in polycystin 1 triggers specific changes in energy metabolism. To determine whether defects in other human cystoproteins have similar effects, we studied extracellular acidification and glucose metabolism in human embryonic kidney (HEK-293) cell lines with polycystic kidney and hepatic disease 1 ( PKHD1) and polycystic kidney disease (PKD) 2 ( PKD2) truncating defects along multiple sites of truncating mutations found in patients with autosomal recessive and dominant PKDs. While neither the PKHD1 or PKD2 gene mutations nor their position enhanced cell proliferation rate in our cell line models, truncating mutations in these genes progressively increased overall extracellular acidification over time ( P < 0.001 for PKHD1 and PKD2 mutations). PKHD1 mutations increased nonglycolytic acidification rate (1.19 vs. 1.03, P = 0.002), consistent with an increase in tricarboxylic acid cycle activity or breakdown of intracellular glycogen. In addition, they increased basal and ATP-linked oxygen consumption rates [7.59 vs. 5.42 ( P = 0.015) and 4.55 vs. 2.98 ( P = 0.004)]. The PKHD1 and PKD2 mutations also altered mitochondrial morphology, resembling the effects of polycystin 1 deficiency. Together, these data suggest that defects in major PKD genes trigger changes in mitochondrial energy metabolism. After validation in in vivo models, these initial observations would indicate potential benefits of targeting energy metabolism in the treatment of PKDs.
Collapse
Affiliation(s)
- Phillip Chumley
- Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Juling Zhou
- Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Sylvie Mrug
- Department of Psychology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Balu Chacko
- Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - John M Parant
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham , Birmingham, Alabama
| | - Anil K Challa
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Landon S Wilson
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham , Birmingham, Alabama
| | - Taylor F Berryhill
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham , Birmingham, Alabama
| | - Stephen Barnes
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - P Darwin Bell
- Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | | | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Alabama
| | - Michal Mrug
- Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Veterans Affairs Medical Center , Birmingham, Alabama
| |
Collapse
|
38
|
Primary cardiac manifestation of autosomal dominant polycystic kidney disease revealed by patient induced pluripotent stem cell-derived cardiomyocytes. EBioMedicine 2019; 40:675-684. [PMID: 30639418 PMCID: PMC6413318 DOI: 10.1016/j.ebiom.2019.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 02/08/2023] Open
Abstract
Background Mutations in PKD1 or PKD2 gene lead to autosomal dominant polycystic kidney disease (ADPKD). The mechanism of ADPKD progression and its link to increased cardiovascular mortality is still elusive. Methods We differentiated ADPKD patient induced pluripotent stem cells (iPSCs) to cardiomyocytes (CMs). The electrophysiological properties at the cellular level were analyzed by calcium imaging and whole cell patch clamping. Findings The ADPKD patient iPSC-CMs had decreased sarcoplasmic reticulum calcium content compared with Control-CMs. Spontaneous action potential of the PKD2 mutation line-derived CMs demonstrated slower beating rate and longer action potential duration. The PKD1 mutation line-derived CMs showed a comparable dose-dependent shortening of phase II repolarization with the Control-CMs, but a significant increase in beating frequency in response to L-type calcium channel blocker. The PKD1-mutant iPSC-CMs also showed a relatively unstable baseline as a greater percentage of cells exhibited delayed afterdepolarizations (DADs). Both the ADPKD patient iPSC-CMs showed more β-adrenergic agonist-elicited DADs compared with Control-CMs. Interpretation Characterization of ADPKD patient iPSC-CMs provides new insights into the increased clinical risk of arrhythmias, and the results enable disease modeling and drug screening for cardiac manifestations of ADPKD. Fund Ministry of Science and Technology, National Health Research Institutes, Academia Sinica Program for Technology Supporting Platform Axis Scheme, Thematic Research Program and Summit Research Program, and Kaohsiung Medical University Hospital, Taiwan.
Collapse
|
39
|
Mittal R, Woo FW, Castro CS, Cohen MA, Karanxha J, Mittal J, Chhibber T, Jhaveri VM. Organ‐on‐chip models: Implications in drug discovery and clinical applications. J Cell Physiol 2018; 234:8352-8380. [DOI: 10.1002/jcp.27729] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Frank W. Woo
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Carlo S. Castro
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Madeline A. Cohen
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Joana Karanxha
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Jeenu Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Tanya Chhibber
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University Chandigarh India
| | - Vasanti M. Jhaveri
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| |
Collapse
|
40
|
Xu P, Huang S, Li J, Zou Y, Gao M, Kang R, Yan J, Gao X, Gao Y. A novel splicing mutation in the PKD1 gene causes autosomal dominant polycystic kidney disease in a Chinese family: a case report. BMC MEDICAL GENETICS 2018; 19:198. [PMID: 30424739 PMCID: PMC6234645 DOI: 10.1186/s12881-018-0706-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/22/2018] [Indexed: 11/10/2022]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic renal disorder in humans, affecting 1 in 400 to 1000 individuals. Mutations PKD1 (which accounts for 85% of ADPKD and produces polycystin-1) and PKD2 (produces polycystin-2) are responsible for this disease. These two polycystins are critical for maintaining normal renal tubular structures during kidney development. Case presentation We performed genetic analysis on a family with ADPKD. DNA samples extracted from ADPKD patient blood were subject to targeted Next generation sequencing for human a panel of renal disease-related genes. A splicing mutation, c.2854-3C > G (also known as IVS11–3C > G), in the PKD1 gene was found in the 3 patients from the family, but was not found in four unaffected relatives and 100 normal control samples. Reverse transcription-PCR (RT-PCR) was performed to analyse the relative mRNA expression in the patient samples. mRNA sequencing showed that 29 bases inserted into the 3′-end of exon 11 in the PKD1 gene lead to a frameshift mutation. Conclusions The PKD1 c.2854-3C > G mutation leads to a frameshift mutation during translation of the polycystin-1 protein, which eventually led to ADPKD in the Chinese family.
Collapse
Affiliation(s)
- Peiwen Xu
- Center for Reproductive Medicine, Shandong University, Jinan, 250001, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| | - Sexing Huang
- Center for Reproductive Medicine, Shandong University, Jinan, 250001, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| | - Jie Li
- Center for Reproductive Medicine, Shandong University, Jinan, 250001, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| | - Yang Zou
- Center for Reproductive Medicine, Shandong University, Jinan, 250001, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| | - Ming Gao
- Center for Reproductive Medicine, Shandong University, Jinan, 250001, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| | - Ranran Kang
- Center for Reproductive Medicine, Shandong University, Jinan, 250001, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| | - Junhao Yan
- Center for Reproductive Medicine, Shandong University, Jinan, 250001, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| | - Xuan Gao
- Center for Reproductive Medicine, Shandong University, Jinan, 250001, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China. .,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China.
| | - Yuan Gao
- Center for Reproductive Medicine, Shandong University, Jinan, 250001, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China. .,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China.
| |
Collapse
|
41
|
Therapeutic Use of mTOR Inhibitors in Renal Diseases: Advances, Drawbacks, and Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3693625. [PMID: 30510618 PMCID: PMC6231362 DOI: 10.1155/2018/3693625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The mammalian (or mechanistic) target of rapamycin (mTOR) pathway has a key role in the regulation of a variety of biological processes pivotal for cellular life, aging, and death. Impaired activity of mTOR complexes (mTORC1/mTORC2), particularly mTORC1 overactivation, has been implicated in a plethora of age-related disorders, including human renal diseases. Since the discovery of rapamycin (or sirolimus), more than four decades ago, advances in our understanding of how mTOR participates in renal physiological and pathological mechanisms have grown exponentially, due to both preclinical studies in animal models with genetic modification of some mTOR components as well as due to evidence coming from the clinical experience. The main clinical indication of rapamycin is as immunosuppressive therapy for the prevention of allograft rejection, namely, in renal transplantation. However, considering the central participation of mTOR in the pathogenesis of other renal disorders, the use of rapamycin and its analogs meanwhile developed (rapalogues) everolimus and temsirolimus has been viewed as a promising pharmacological strategy. This article critically reviews the use of mTOR inhibitors in renal diseases. Firstly, we briefly overview the mTOR components and signaling as well as the pharmacological armamentarium targeting the mTOR pathway currently available or in the research and development stages. Thereafter, we revisit the mTOR pathway in renal physiology to conclude with the advances, drawbacks, and challenges regarding the use of mTOR inhibitors, in a translational perspective, in four classes of renal diseases: kidney transplantation, polycystic kidney diseases, renal carcinomas, and diabetic nephropathy.
Collapse
|
42
|
Li P, Zang K, Li Y, Liu C, Ma Q. Structural basis for specific calcium binding by the polycystic-kidney-disease domain of Vibrio anguillarum protease Epp. Biochem Biophys Res Commun 2018; 505:471-477. [PMID: 30268503 DOI: 10.1016/j.bbrc.2018.09.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
Extracellular proteases are often produced as pre-pro-enzyme and then undergo multiple processing steps to mature into the active form. The protease Epp, a virulent factor of Vibrio anguillarum, belongs to this family. Its maturation might be regulated by Ca2+ via its polycystic kidney disease (PKD) domain, but the molecular mechanism is unknown. Herein, we report the crystal structure of the first PKD domain from V. anguillarum Epp (Epp-PKD1) and its specific Ca2+-binding capacity. Epp-PKD1 exists as a monomer, consisting of seven β-strands which form two β-sheets stacking with each other. One Ca2+ is bound by the residues Asn3, Gln4, Asp27, Asp29, Asp68 and a water molecule with a pentagonal bipyramidal geometry. Incubating the apo Epp-PKD1 with Ca2+ but not Mg2+, Mn2+, or Zn2+, enhances the thermal and chemical stability of Epp-PKD1, indicating its specific binding to Ca2+. Epp-PKD1 shares high similarity in both sequence and overall structure with that of Vibrio cholerae PrtV, a homologous protease of Epp, however, they differ in the oligomeric state and local structure at the Ca2+-binding site, suggesting maturation of PrtV and Epp might be differently regulated by Ca2+. Likely, proteases may take advantage of the structural diversity in PKD domains to tune their Ca2+-regulated maturation process.
Collapse
Affiliation(s)
- Peihai Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kun Zang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingjie Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Changshui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingjun Ma
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
43
|
Abdelwahed M, Hilbert P, Ahmed A, Mahfoudh H, Bouomrani S, Dey M, Hachicha J, Kamoun H, Keskes-Ammar L, Belguith N. Mutational analysis in patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD): Identification of five mutations in the PKD1 gene. Gene 2018; 671:28-35. [DOI: 10.1016/j.gene.2018.05.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023]
|
44
|
Abstract
In Strongylocentrotus purpuratus, the fucose sulphate polymer (FSP) of egg jelly induces the sperm acrosome reaction (AR; Vacquier & Moy, 1997). Protease treatment of sperm renders the cells insensitive to FSP, indicating that sperm membrane receptors mediate the signal transduction events underlying the AR. Monoclonal antibodies to a 210 kDa membrane glycoprotein induce Ca2+ influx into sperm and trigger the AR (Trimmer et al., 1986; Moy et al., 1996). Purified 210 kDa protein binds species-specifically to egg jelly and blocks AR induction by antibody (Podell & Vacquier, 1985; Moy et al., 1996). FSP binds to the 210 kDa protein attached to Sepharose (Vacquier & Moy, 1997). Monoclonal antibodies localise the 210 kDa protein on the plasma membrane over the acrosome and also on the sperm flagellum. The 210 kDa protein has the attributes of a sperm receptor for egg jelly and is henceforth named suREJ1 (Moy et al., 1996). We describe here the three REJ proteins found thus far in S. purpuratus sperm.
Collapse
|
45
|
Viau A, Bienaimé F, Lukas K, Todkar AP, Knoll M, Yakulov TA, Hofherr A, Kretz O, Helmstädter M, Reichardt W, Braeg S, Aschman T, Merkle A, Pfeifer D, Dumit VI, Gubler MC, Nitschke R, Huber TB, Terzi F, Dengjel J, Grahammer F, Köttgen M, Busch H, Boerries M, Walz G, Triantafyllopoulou A, Kuehn EW. Cilia-localized LKB1 regulates chemokine signaling, macrophage recruitment, and tissue homeostasis in the kidney. EMBO J 2018; 37:embj.201798615. [PMID: 29925518 PMCID: PMC6068446 DOI: 10.15252/embj.201798615] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/13/2018] [Accepted: 05/22/2018] [Indexed: 12/24/2022] Open
Abstract
Polycystic kidney disease (PKD) and other renal ciliopathies are characterized by cysts, inflammation, and fibrosis. Cilia function as signaling centers, but a molecular link to inflammation in the kidney has not been established. Here, we show that cilia in renal epithelia activate chemokine signaling to recruit inflammatory cells. We identify a complex of the ciliary kinase LKB1 and several ciliopathy‐related proteins including NPHP1 and PKD1. At homeostasis, this ciliary module suppresses expression of the chemokine CCL2 in tubular epithelial cells. Deletion of LKB1 or PKD1 in mouse renal tubules elevates CCL2 expression in a cell‐autonomous manner and results in peritubular accumulation of CCR2+ mononuclear phagocytes, promoting a ciliopathy phenotype. Our findings establish an epithelial organelle, the cilium, as a gatekeeper of tissue immune cell numbers. This represents an unexpected disease mechanism for renal ciliopathies and establishes a new model for how epithelial cells regulate immune cells to affect tissue homeostasis.
Collapse
Affiliation(s)
- Amandine Viau
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,INSERM U1151, Institut Necker Enfants Malades, Department of Growth and Signaling, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Frank Bienaimé
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,INSERM U1151, Institut Necker Enfants Malades, Department of Growth and Signaling, Université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Service d'Explorations Fonctionnelles, Hôpital Necker-Enfants Malades, Paris, France
| | - Kamile Lukas
- Renal Department, University Medical Center, Freiburg, Germany
| | | | - Manuel Knoll
- Department of Rheumatology and Clinical Immunology, University Medical Center, Freiburg, Germany
| | - Toma A Yakulov
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexis Hofherr
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Kretz
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Neuroanatomy, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Helmstädter
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Reichardt
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Medical Physics, Department of Radiology, and Comprehensive Cancer Center, University Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simone Braeg
- Renal Department, University Medical Center, Freiburg, Germany
| | - Tom Aschman
- Department of Rheumatology and Clinical Immunology, University Medical Center, Freiburg, Germany
| | - Annette Merkle
- Medical Physics, Department of Radiology, and Comprehensive Cancer Center, University Medical Center, Freiburg, Germany
| | - Dietmar Pfeifer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Freiburg, Germany
| | - Verónica I Dumit
- Center for Biological Systems Analysis (ZBSA), Core Facility Proteomics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Marie-Claire Gubler
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France.,Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Roland Nitschke
- Center for Biological Systems Analysis (ZBSA), Life Imaging Center, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Tobias B Huber
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Fabiola Terzi
- INSERM U1151, Institut Necker Enfants Malades, Department of Growth and Signaling, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Jörn Dengjel
- Center for Biological Systems Analysis (ZBSA), Core Facility Proteomics, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Florian Grahammer
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Köttgen
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hauke Busch
- German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research (IMMZ), Albert-Ludwigs-University, Freiburg, Germany
| | - Gerd Walz
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Antigoni Triantafyllopoulou
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, University Medical Center, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, Charité - University Medical Centre Berlin, Berlin, Germany
| | - E Wolfgang Kuehn
- Renal Department, University Medical Center, Freiburg, Germany .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
46
|
Charmet R, Duffy S, Keshavarzi S, Gyorgy B, Marre M, Rossing P, McKnight AJ, Maxwell AP, Ahluwalia TVS, Paterson AD, Trégouët DA, Hadjadj S. Novel risk genes identified in a genome-wide association study for coronary artery disease in patients with type 1 diabetes. Cardiovasc Diabetol 2018; 17:61. [PMID: 29695241 PMCID: PMC5916834 DOI: 10.1186/s12933-018-0705-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/16/2018] [Indexed: 12/15/2022] Open
Abstract
Background Patients with type 1 diabetes are more at risk of coronary artery disease than the general population. Although evidence points to a genetic risk there have been no study investigating genetic risk factors of coronary artery disease specific to individuals with type 1 diabetes. To identify low frequency and common genetic variations associated with coronary artery disease in populations of individuals with type 1 diabetes. Methods A two-stage genome wide association study was conducted. The discovery phase involved the meta-analysis of three genome-wide association cohorts totaling 434 patients with type 1 diabetes and coronary artery disease (cases) and 3123 T1D individuals with no evidence of coronary artery disease (controls). Replication of the top association signals (p < 10−5) was performed in five additional independent cohorts totaling 585 cases and 2612 controls. Results One locus (rs115829748, located upstream of the MAP1B gene) reached the statistical threshold of 5 × 10−8 for genome-wide significance but did not replicate. Nevertheless, three single nucleotide polymorphisms provided suggestive evidence for association with coronary artery disease in the combined studies: CDK18 rs138760780 (OR = 2.60 95% confidence interval [1.75–3.85], p = 2.02 × 10−6), FAM189A2 rs12344245 (OR = 1.85 [1.41–2.43], p = 8.52 × 10−6) and PKD1 rs116092985 (OR = 1.53 [1.27–1.85], p = 1.01 × 10−5). In addition, our analyses suggested that genetic variations at the ANKS1A, COL4A2 and APOE loci previously found associated with coronary artery disease in the general population could have stronger effects in patients with type 1 diabetes. Conclusions This study suggests three novel candidate genes for coronary artery disease in the subgroup of patients affected with type 1 diabetes. The detected associations deserve to be definitively validated in additional epidemiological studies. Electronic supplementary material The online version of this article (10.1186/s12933-018-0705-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Romain Charmet
- Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, UPMC Univ. Paris 06, Paris, France.,ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Seamus Duffy
- Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland, UK
| | - Sareh Keshavarzi
- Genetics & Genome Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Beata Gyorgy
- Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, UPMC Univ. Paris 06, Paris, France.,ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Michel Marre
- Départment de Diabétologie, Endocrinologie et Nutrition, Assistance Publique Hôpitaux de Paris, Hôpital Bichat, DHU FIRE, Paris, France.,UFR de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.,University of Copenhagen, Copenhagen, Denmark
| | - Amy Jayne McKnight
- Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland, UK
| | - Alexander P Maxwell
- Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland, UK
| | | | - Andrew D Paterson
- Genetics & Genome Biology Program, Hospital for Sick Children, Toronto, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - David-Alexandre Trégouët
- Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, UPMC Univ. Paris 06, Paris, France. .,ICAN Institute for Cardiometabolism and Nutrition, Paris, France.
| | - Samy Hadjadj
- UFR de Médecine et Pharmacie, Université de Poitiers, Poitiers, France. .,INSERM, CIC 1402 & U1082, Poitiers, France. .,Service d'Endocrinologie-Diabétologie and Centre d'Investigation Clinique, CHU de Poitiers, BP 577, 86021, Poitiers Cedex, France.
| |
Collapse
|
47
|
Zhang B, Tran U, Wessely O. Polycystin 1 loss of function is directly linked to an imbalance in G-protein signaling in the kidney. Development 2018. [PMID: 29530879 DOI: 10.1242/dev.158931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of the kidney relies on the establishment and maintenance of a precise tubular diameter of its functional units, the nephrons. This process is disrupted in polycystic kidney disease (PKD), resulting in dilations of the nephron and renal cyst formation. In the course of exploring G-protein-coupled signaling in the Xenopus pronephric kidney, we discovered that loss of the G-protein α subunit, Gnas, results in a PKD phenotype. Polycystin 1, one of the genes mutated in human PKD, encodes a protein resembling a G-protein-coupled receptor. Furthermore, deletion of the G-protein-binding domain present in the intracellular C terminus of polycystin 1 impacts functionality. A comprehensive analysis of all the G-protein α subunits expressed in the Xenopus pronephric kidney demonstrates that polycystin 1 recruits a select subset of G-protein α subunits and that their knockdown - as in the case of Gnas - results in a PKD phenotype. Mechanistically, the phenotype is caused by increased endogenous G-protein β/γ signaling and can be reversed by pharmacological inhibitors as well as knocking down Gnb1. Together, our data support the hypothesis that G proteins are recruited to the intracellular domain of PKD1 and that this interaction is crucial for its function in the kidney.
Collapse
Affiliation(s)
- Bo Zhang
- Cleveland Clinic Foundation, Lerner Research Institute, Department of Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA.,LSU Health Sciences Center, Department of Cell Biology and Anatomy, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Uyen Tran
- Cleveland Clinic Foundation, Lerner Research Institute, Department of Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA
| | - Oliver Wessely
- Cleveland Clinic Foundation, Lerner Research Institute, Department of Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA
| |
Collapse
|
48
|
Breyer MD, Kretzler M. Novel avenues for drug discovery in diabetic kidney disease. Expert Opin Drug Discov 2017; 13:65-74. [DOI: 10.1080/17460441.2018.1398731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Matthew D. Breyer
- Lead Generation, Biotechnology Discovery Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
49
|
Ma M, Gallagher AR, Somlo S. Ciliary Mechanisms of Cyst Formation in Polycystic Kidney Disease. Cold Spring Harb Perspect Biol 2017; 9:a028209. [PMID: 28320755 PMCID: PMC5666631 DOI: 10.1101/cshperspect.a028209] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is a disease of defective tissue homeostasis resulting in active remodeling of nephrons and bile ducts to form fluid-filled sacs called cysts. The causal genes PKD1 and PKD2 encode transmembrane proteins polycystin 1 (PC1) and polycystin 2 (PC2), respectively. Together, the polycystins localize to the solitary primary cilium that protrudes from the apical surface of most kidney tubule cells and is thought to function as a privileged compartment that the cell uses for signal integration of sensory inputs. It has been proposed that PC1 and PC2 form a receptor-channel complex that detects external stimuli and transmit a local calcium-mediated signal, which may control a multitude of cellular processes by an as-yet unknown mechanism. Genetic studies using mouse models of cilia and polycystin dysfunction have shown that polycystins regulate an unknown cilia-dependent signal that is normally part of the homeostatic maintenance of nephron structure. ADPKD ensues when this pathway is dysregulated by absence of polycystins from intact cilia, but disruption of cilia also disrupts this signaling mechanism and ameliorates ADPKD even in the absence of polycystins. Understanding the role of cilia and ciliary signaling in ADPKD is challenging, but success will provide saltatory advances in our understanding of how tubule structure is maintained in healthy kidneys and how disruption of polycystin or cilia function leads to the pathological tissue remodeling process underlying ADPKD.
Collapse
Affiliation(s)
- Ming Ma
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8029
| | - Anna-Rachel Gallagher
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8029
| | - Stefan Somlo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8029
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8029
| |
Collapse
|
50
|
Cruz NM, Song X, Czerniecki SM, Gulieva RE, Churchill AJ, Kim YK, Winston K, Tran LM, Diaz MA, Fu H, Finn LS, Pei Y, Himmelfarb J, Freedman BS. Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. NATURE MATERIALS 2017; 16:1112-1119. [PMID: 28967916 PMCID: PMC5936694 DOI: 10.1038/nmat4994] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 08/29/2017] [Indexed: 05/23/2023]
Abstract
Polycystic kidney disease (PKD) is a life-threatening disorder, commonly caused by defects in polycystin-1 (PC1) or polycystin-2 (PC2), in which tubular epithelia form fluid-filled cysts. A major barrier to understanding PKD is the absence of human cellular models that accurately and efficiently recapitulate cystogenesis. Previously, we have generated a genetic model of PKD using human pluripotent stem cells and derived kidney organoids. Here we show that systematic substitution of physical components can dramatically increase or decrease cyst formation, unveiling a critical role for microenvironment in PKD. Removal of adherent cues increases cystogenesis 10-fold, producing cysts phenotypically resembling PKD that expand massively to 1-centimetre diameters. Removal of stroma enables outgrowth of PKD cell lines, which exhibit defects in PC1 expression and collagen compaction. Cyclic adenosine monophosphate (cAMP), when added, induces cysts in both PKD organoids and controls. These biomaterials establish a highly efficient model of PKD cystogenesis that directly implicates the microenvironment at the earliest stages of the disease.
Collapse
Affiliation(s)
- Nelly M. Cruz
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Xuewen Song
- Division of Nephrology, University Health Network, ON, M5G2N2, Canada
- University of Toronto, Toronto, ON, M5G2N2, Canada
| | - Stefan M. Czerniecki
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Ramila E. Gulieva
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Angela J. Churchill
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Yong Kyun Kim
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Kosuke Winston
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Linh M. Tran
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Marco A. Diaz
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Hongxia Fu
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Division of Hematology, Department of Medicine and Seattle WA 98109, USA
- Department of Bioengineering, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Laura S. Finn
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98105, USA
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - York Pei
- Division of Nephrology, University Health Network, ON, M5G2N2, Canada
- University of Toronto, Toronto, ON, M5G2N2, Canada
| | - Jonathan Himmelfarb
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Benjamin S. Freedman
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| |
Collapse
|