1
|
Thakur A, Subash S, Ahire D, Prasad B. Developmental Expression of Drug Transporters and Conjugating Enzymes Involved in Enterohepatic Recycling: Implication for Pediatric Drug Dosing. Clin Pharmacol Ther 2024; 116:1615-1626. [PMID: 39160670 PMCID: PMC11979781 DOI: 10.1002/cpt.3409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Around 50% of the drugs used in children have never been tested for safety and efficacy in this vulnerable population. Immature drug elimination pathways can lead to drug toxicity when pediatric doses are determined using empirical methods such as body-surface area or body-weight-normalized adult dosing. In the absence of clinical data, physiologically-based pharmacokinetic (PBPK) modeling has emerged as a useful tool to predict drug pharmacokinetics in children. These models utilize developmental physiological data, including age-dependent differences in the abundance of drug-metabolizing enzymes and transporters (DMET), to mechanistically extrapolate adult pharmacokinetic data to children. The reported abundance data of hepatic DMET proteins in subcellular fractions isolated from frozen tissue are prone to high technical variability. Therefore, we carried out the proteomics-based quantification of hepatic drug transporters and conjugating enzymes in 50 pediatric and 8 adult human hepatocyte samples. Out of the 34 studied proteins, 28 showed a significant increase or decrease with age. While MRP6, OAT7, and SULT1E1 were highest in < 1-year-old samples, the abundance of P-gp and UGT1A4 was negligible in < 1-year-old samples and increased significantly after 1 year of age. Incorporation of the age-dependent abundance data in PBPK models can help improve pediatric dose prediction, leading to safer drug pharmacotherapy in children.
Collapse
Affiliation(s)
- Aarzoo Thakur
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, US
| | - Sandhya Subash
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, US
| | - Deepak Ahire
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, US
| | - Bhagwat Prasad
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, US
| |
Collapse
|
2
|
Broeren E, Stover S, Bennett K, Giordano J, Galloway S, Lauzon J, Rust L, Suerink M, van Haeringen A, Reimers R. Prenatal Ultrasonographic Features Associated With ARSL and X-Linked Chondrodysplasia Punctata 1 (CDPX1): Literature Review and Case Series. Prenat Diagn 2024; 44:1663-1670. [PMID: 39313411 DOI: 10.1002/pd.6649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Chondrodysplasia punctata 1 (CDPX1) is an X-linked recessive disorder of cartilage and bone development characterized by stippling on the cartilage and bone, flattened nasal bridge, and brachydactyly, or short fingers. CDPX1 has been associated with variants in the ARSL gene and is known to manifest prenatally, however, there has been no systematic literature review on this evidence. AIMS Here, we reviewed the current literature on prenatal manifestations of CDPX1, and additionally introduce previously unpublished cases. MATERIALS & METHODS A systematic review of the literature was performed. Additionally, a GeneMatcher submission was created and a call for cases was presented at the Fetal Sequencing Consortium meetings to find previously unpublished cases. RESULTS For the 22 fetuses reported here, we found that 55% had nasal hypoplasia, 41% had bony stippling or calcifications, 32% had polyhydramnios, 5% had oligohydramnios, 23% had shortened long bones, 23% had spinal canal stenosis, 18% had ventriculomegaly, 9% had brachydactyly/brachytelephalangy, 9% had clubbed feet, 9% had premature rupture of membranes, and 9% had intraventricular hemorrhage detected through sonography or radiography. We also found 17 unique variants in ARSL for these 22 fetuses. DISCUSSION A previously unpublished association of ARSL variants with intrauterine fetal death or stillbirth has been noted in this study. It is also possible that intracranial hemorrhage is an underrecognized feature associated with CDPX1 variation. However, there have been challenges in applying ACMG criteria to ARSL, a gene without an associated Variant Curation Expert Panel. CONCLUSION This literature review and case series highlights which features of CDPX1 manifest prenatally, as well as introduces new phenotypes that have not been previously identified.
Collapse
Affiliation(s)
- Eleanor Broeren
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Samantha Stover
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Katya Bennett
- Liverpool Centre for Genomic Medicine, Liverpool Women's Hospital, Liverpool, UK
| | - Jessica Giordano
- Department of Obstetrics and Gynecology, Columbia University, New York, New York, USA
| | - Stephanie Galloway
- Department of Obstetrics and Gynecology, Columbia University, New York, New York, USA
| | - Julie Lauzon
- Department of Medical Genetics, Alberta Children's Hospital, Calgary, Canada
| | - Laura Rust
- Department of Clinical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Rebecca Reimers
- Departments of Genetics/Dysmorphology and Perinatology, Rady Children's Hospital, San Diego, California, USA
- Scripps Research, Scripps Research Translational Institute, San Diego, California, USA
- Department of Reproductive Sciences, University of California, San Diego, California, USA
| |
Collapse
|
3
|
Zhou L, Peng Y, Chen J, Xi H, Wang S, Kang G, Tang W, Xie W. A novel frameshift deletion variant of ARSL associated with X-linked recessive chondrodysplasia punctata 1: a case report and literature review of prenatal, confirmed cases. BMC Med Genomics 2024; 17:253. [PMID: 39425194 PMCID: PMC11488224 DOI: 10.1186/s12920-024-02029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND X-linked recessive chondrodysplasia punctata 1 (CDPX1) is a rare congenital skeletal dysplasia characterized by stippled epiphyses, nasal hypoplasia, and brachytelephalangy. ARSL (formerly known as ARSE), a member of the sulfatase gene family located on Xp22.3, has been identified as the causative gene for CDPX1. The high clinical and genetic heterogeneity of CDPX1 presents a challenge to prenatal diagnosis. CASE PRESENTATION A G1P0 woman in her 30s with an unremarkable prenatal course presented in the second trimester. Maternal diseases, tobacco, alcohol, and drug history during pregnancy were denied. Obstetrical ultrasound examination revealed a flattened nose and a flattened midface with echogenic alterations of lumbar spinous process in the fetus. Amniocentesis was performed for genetic testing. A normal karyotype and a negative result of CNV-seq were obtained. However, Whole exome sequencing (WES) in trios revealed a hemizygous ARSL variant [NM_000047.3:c.1108del p.(Trp370Glyfs*35)] in the fetus, which was maternally inherited as confirmed by Sanger sequencing. This variant was absent from the genomAD and HGMD databases. According to the ACMG guidelines, this variant was interpreted as likely pathogenic (PVS1 + PM2_Supporting). The couple decided to terminate the pregnancy. After induction of labour, a severe nasal hypoplasia was noted; and brachytelephalangy was not remarkable. Postmortem digital X-ray imaging revealed symmetrical stippled epiphyses of the vertebrae in all spine regions and enlargement of spinous process of L1-L4 vertebrae. CONCLUSION A novel frameshift deletion variant of ARSL and the associated fetal phenotype have been identified. This study provides useful information for prenatal diagnosis and genetic counseling of CDPX1.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Ying Peng
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Jing Chen
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Hui Xi
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Si Wang
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Gehua Kang
- Center for Reproductive Medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Wanglan Tang
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Wanqin Xie
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, No. 53 Xiangchun Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
4
|
Aoki E, Manabe N, Ohno S, Aoki T, Furukawa JI, Togayachi A, Aoki-Kinoshita K, Inokuchi JI, Kurosawa K, Kaname T, Yamaguchi Y, Nishihara S. Predicting the pathogenicity of missense variants based on protein instability to support diagnosis of patients with novel variants of ARSL. Mol Genet Metab Rep 2023; 37:101016. [PMID: 38053926 PMCID: PMC10694752 DOI: 10.1016/j.ymgmr.2023.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 12/07/2023] Open
Abstract
Rare diseases are estimated to affect 3.5%-5.9% of the population worldwide and are difficult to diagnose. Genome analysis is useful for diagnosis. However, since some variants, especially missense variants, are also difficult to interpret, tools to accurately predict the effect of missense variants are very important and needed. Here we developed a method, "VarMeter", to predict whether a missense variant is damaging based on Gibbs free energy and solvent-accessible surface area calculated from the AlphaFold 3D protein model. We applied this method to the whole-exome sequencing data of 900 individuals with rare or undiagnosed disease in our in-house database, and identified four who were hemizygous for missense variants of arylsulfatase L (ARSL; known as the genetic cause of chondrodysplasia punctata 1, CPDX1). Two individuals had a novel Ser89 to Asn (Ser89Asn) or Arg469 to Trp (Arg469Trp) substitution, respectively predicted as "damaging" or "benign"; the other two had an Arg111 to His (Arg111His) or Gly117 to Arg (Gly117Arg) substitution, respectively predicted as "damaging" or "possibly damaging" and previously reported in patients showing clinical manifestations of CDPX1. Expression and analysis of the missense variant proteins showed that the predicted pathogenic variants (Ser89Asn, Arg111His, and Gly117Arg) had complete loss of sulfatase activity and reduced protease resistance due to destabilization of protein structure, while the predicted benign variant (Arg469Trp) had activity and protease resistance comparable to those of wild-type ARSL. The individual with the novel pathogenic Ser89Asn variant exhibited characteristics of CDPX1, while the individual with the benign Arg469Trp variant exhibited no such characteristics. These findings demonstrate that VarMeter may be used to predict the deleteriousness of variants found in genome sequencing data and thereby support disease diagnosis.
Collapse
Affiliation(s)
- Eriko Aoki
- Glycan & Life Systems Integration Center (GaLSIC), Soka University, Hachioji 192-8577, Japan
| | - Noriyoshi Manabe
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Taiga Aoki
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Jun-Ichi Furukawa
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Nagoya 466-8550, Japan
| | - Akira Togayachi
- Glycan & Life Systems Integration Center (GaLSIC), Soka University, Hachioji 192-8577, Japan
| | - Kiyoko Aoki-Kinoshita
- Glycan & Life Systems Integration Center (GaLSIC), Soka University, Hachioji 192-8577, Japan
| | - Jin-Ichi Inokuchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama 232-8555, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Shoko Nishihara
- Glycan & Life Systems Integration Center (GaLSIC), Soka University, Hachioji 192-8577, Japan
| |
Collapse
|
5
|
Goettsch C. Unveiling novel genetic insights into arterial calcification. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1102-1103. [PMID: 39196144 DOI: 10.1038/s44161-023-00379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Claudia Goettsch
- Department of Internal Medicine I, Cardiology, University Hospital, Medical Faculty, RWTH Aachen, Aachen, Germany.
| |
Collapse
|
6
|
Liu S, Zheng J, Liu X, Lai Y, Zhang X, He T, Yang Y, Wang H, Zhang X. Comprehensive analysis of three female patients with different types of X/Y translocations and literature review. Mol Cytogenet 2023; 16:7. [PMID: 37202823 DOI: 10.1186/s13039-023-00639-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND X/Y translocations are highly heterogeneity in terms of clinical genetic effects, and most patients lack complete pedigree analysis for clinical and genetic characterization. RESULTS This study comprehensively analyzed the clinical and genetic characteristics of three new patients with X/Y translocations. Furthermore, cases with X/Y translocations reported in the literature and studies exploring the clinical genetic effects in patients with X/Y translocations were reviewed. All three female patients were carriers of X/Y translocations with different phenotypes. The karyotype for patient 1 was 46,X,der(X)t(X;Y)(p22.33;q12)mat, patient 2 was 46,X,der(X)t(X;Y)(q21.2;q11.2)dn, and patient 3 was 46,X,der(X)t(X;Y)(q28;q11.223)t(Y;Y)(q12;q11.223)mat. C-banding analysis of all three patients revealed a large heterochromatin region in the terminal region of the X chromosome. All patients underwent chromosomal microarray analysis, which revealed the precise copy number loss or gain. Data on 128 patients with X/Y translocations were retrieved from 81 studies; the phenotype of these patients was related to the breakpoint of the chromosome, size of the deleted region, and their sex. We reclassified the X/Y translocations into new types based on the breakpoints of the X and Y chromosomes. CONCLUSION X/Y translocations have substantial phenotypic diversity, and the genetic classification standards are not unified. With the development of molecular cytogenetics, it is necessary to combine multiple genetic methods to obtain an accurate and reasonable classification. Thus, clarifying their genetic causes and effects promptly will help in genetic counseling, prenatal diagnosis, preimplantation genetic testing, and improvement in clinical treatment strategies.
Collapse
Affiliation(s)
- Shanquan Liu
- Department of Medical Genetics & Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, No.20, South Section 3, Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children(Sichuan University), Ministry of Education, Chengdu, China
| | - Jiemei Zheng
- Department of Medical Genetics & Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, No.20, South Section 3, Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children(Sichuan University), Ministry of Education, Chengdu, China
| | - Xijing Liu
- Department of Medical Genetics & Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, No.20, South Section 3, Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children(Sichuan University), Ministry of Education, Chengdu, China
| | - Yi Lai
- Department of Medical Genetics & Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, No.20, South Section 3, Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children(Sichuan University), Ministry of Education, Chengdu, China
| | - Xuan Zhang
- Department of Medical Genetics & Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, No.20, South Section 3, Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children(Sichuan University), Ministry of Education, Chengdu, China
| | - Tiantian He
- Department of Medical Genetics & Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, No.20, South Section 3, Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children(Sichuan University), Ministry of Education, Chengdu, China
| | - Yan Yang
- Department of Medical Genetics & Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, No.20, South Section 3, Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children(Sichuan University), Ministry of Education, Chengdu, China
| | - He Wang
- Department of Medical Genetics & Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, No.20, South Section 3, Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children(Sichuan University), Ministry of Education, Chengdu, China
| | - Xuemei Zhang
- Department of Medical Genetics & Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, No.20, South Section 3, Renmin Road, Chengdu, 610041, Sichuan, China.
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children(Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
7
|
Handa A, Grigelioniene G, Nishimura G. Skeletal Dysplasia Families: A Stepwise Approach to Diagnosis. Radiographics 2023; 43:e220067. [PMID: 37053103 DOI: 10.1148/rg.220067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Skeletal dysplasias are a heterogeneous collection of genetic disorders characterized by bone and cartilage abnormalities, and they encompass over 400 disorders. These disorders are rare individually, but collectively they are common (approximate incidence of one in 5000 births). Radiologists occasionally encounter skeletal dysplasias in daily practice. In the 1980s, Professor Juergen Spranger proposed a concept suitable for the diagnosis of skeletal dysplasias termed bone dysplasia families. He stated that (a) different bone dysplasias that share a similar skeletal pattern can be grouped into a "family," (b) the final diagnosis is feasible through the provisional recognition of a pattern followed by a more careful analysis, and (c) families of bone dysplasias may be the result of similar pathogenetic mechanisms. The prototypes of bone dysplasia families include dysostosis multiplex family, achondroplasia family, spondyloepiphyseal dysplasia congenita family, and Larsen syndrome-otopalatodigital syndrome family. Since Spranger's proposal, the concept of bone dysplasia families, along with advancing genetic techniques, has been validated and further expanded. Today, this molecularly proven concept enables a simple stepwise approach to be applied to the radiologic diagnosis of skeletal dysplasias. The first step is the categorization of a given case into a family based on pattern recognition, and the second step is more meticulous observation, such as identification of different severities of the same pattern or subtle but distinctive findings. Since major skeletal dysplasias are limited in number, radiologists can be familiar with the representative patterns of these disorders. The authors describe a stepwise radiologic approach to diagnosing major skeletal dysplasia families and review the clinical and genetic features of these disorders. Published under a CC BY 4.0 license. Quiz questions for this article are available through the Online Learning Center. Online supplemental material and the slide presentation from the RSNA Annual Meeting are available for this article.
Collapse
Affiliation(s)
- Atsuhiko Handa
- From the Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115 (A.H.); Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden (G.G., G.N.); Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden (G.G.); Department of Clinical Genetics and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden (G.G.); and Center for Intractable Diseases, Saitama University Hospital, Saitama, Japan (G.N.)
| | - Giedre Grigelioniene
- From the Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115 (A.H.); Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden (G.G., G.N.); Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden (G.G.); Department of Clinical Genetics and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden (G.G.); and Center for Intractable Diseases, Saitama University Hospital, Saitama, Japan (G.N.)
| | - Gen Nishimura
- From the Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115 (A.H.); Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden (G.G., G.N.); Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden (G.G.); Department of Clinical Genetics and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden (G.G.); and Center for Intractable Diseases, Saitama University Hospital, Saitama, Japan (G.N.)
| |
Collapse
|
8
|
Lin Y, Fan L, Zhang R, Pan H, Li Y. ARSD is responsible for carcinoma and amyloidosis of breast epithelial cells. Eur J Cell Biol 2022; 101:151199. [PMID: 35066432 DOI: 10.1016/j.ejcb.2022.151199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/04/2022] [Accepted: 01/15/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer (BC) and Alzheimer's disease (AD) have pronounced female-to-male disparities and both are the major causes of death in elderly women. Intriguingly, there is an inverse incidence between BC and AD. In our previous study, we found that the expression of ARSD, a female-biased gene on chromosome Xp22.3 that encodes arylsulfatase D, is significantly downregulated in triple-negative breast cancer (TNBC) cells and tissue samples, and that ectopic ARSD overexpression could inhibit proliferation and migration of BC cells. However, the exact mechanism remains unclear. In this study, ARSD-overexpressing MDA-MB-231 cell strains were established. RNA-Seq and qRT-PCR validation were performed followed by GO and KEGG analyses. Transcriptome sequencing unveiled that Alzheimer's/Parkinson's/prion diseases were enriched in ARSD overexpressing BC cells. Besides, the top enriched pathways included lipoprotein/cholesterol metabolism, molecular chaperone and misfolding protein binding, mitochondrial respiration, dysfunction of lysosomes, etc. In which, a battery of genes, e.g., SERF1A, APOE, CD36 etc., were upregulated, while a series of genes, e.g., NDUFA11, NDUFS3, NDUFV1, etc. were downregulated, which were closely related to amyloidosis. The amyloidosis of BC cells and nerval cells caused by ARSD overexpression was verified with western blotting, immunohistochemical and Congo red staining. Collectively, downregulated ARSD may be closely associated with BC, and upregulated ARSD may cause amyloidosis of BC cells. Our findings suggest that ARSD deserves to be considered a new promising target for treating TNBC or for AD.
Collapse
Affiliation(s)
- Yun Lin
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China
| | - Liping Fan
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China
| | - Rendong Zhang
- The Breast Center, Surgical Oncology Session No. 1, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China
| | - Hongchao Pan
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China
| | - Yaochen Li
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China
| |
Collapse
|
9
|
Rahul M, Shrivastava N, Tewari N, Mathur V. Dentofacial manifestations of fetal warfarin syndrome in a paediatric patient. BMJ Case Rep 2022; 15:e243890. [PMID: 35039338 PMCID: PMC8768003 DOI: 10.1136/bcr-2021-243890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/04/2022] Open
Abstract
Anticoagulant therapy is commonly indicated during pregnancy to prevent thrombosis and prevention of prosthetic heart valve-associated thromboembolic events. Warfarin is a synthetic anticoagulant with low molecular weight and can cross the placenta resulting in congenital abnormalities termed fetal warfarin syndrome. This paper highlights the case of an 8-year-old boy with warfarin embryopathy. It highlights the extraoral and intraoral findings of the case along with the cephalometric analysis and provides insight into the phenotypic variations among the different cases reported in the literature.
Collapse
Affiliation(s)
- Morankar Rahul
- Division of Pedodontics and Preventive Dentistry, Center for Dental Education and Research, AIIMS, New Delhi, Delhi, India
| | - Nikhil Shrivastava
- Division of Pedodontics and Preventive Dentistry, Center for Dental Education and Research, AIIMS, New Delhi, Delhi, India
| | - Nitesh Tewari
- Division of Pedodontics and Preventive Dentistry, Center for Dental Education and Research, AIIMS, New Delhi, Delhi, India
| | - Vijay Mathur
- Division of Pedodontics and Preventive Dentistry, Center for Dental Education and Research, AIIMS, New Delhi, Delhi, India
| |
Collapse
|
10
|
Lin Y, Li C, Xiong W, Fan L, Pan H, Li Y. ARSD, a novel ERα downstream target gene, inhibits proliferation and migration of breast cancer cells via activating Hippo/YAP pathway. Cell Death Dis 2021; 12:1042. [PMID: 34725332 PMCID: PMC8560752 DOI: 10.1038/s41419-021-04338-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023]
Abstract
Advanced breast cancer (BC), especially basal like triple-negative BC (TNBC), is a highly malignant tumor without viable treatment option, highlighting the urgent need to seek novel therapeutic targets. Arylsulfatase D (ARSD), localized at Xp22.3, is a female-biased gene due to its escaping from X chromosome inactivation (XCI). Unfortunately, no systematic investigation of ARSD on BC has been reported. In this study, we observed that ARSD expression was positively related to ERα status either in BC cells or tissue specimens, which were associated with good prognosis. Furthermore, we found a set of hormone-responsive lineage-specific transcription factors, FOXA1, GATA3, ERα, directly drove high expression of ARSD through chromatin looping in luminal subtype BC cells. Opposingly, ARSD still subjected to XCI in TNBC cells mediated by Xist, CpG islands methylation, and inhibitory histone modification. Unexpectedly, we also found that ectopic ARSD overexpression could inhibit proliferation and migration of TNBC cells by activating Hippo/YAP pathway, indicating that ARSD may be a molecule brake on ERα signaling pathway, which restricted ERα to be an uncontrolled active status. Combined with other peoples' researches that Hippo signaling maintained ER expression and ER + BC growth, we believed that there should exist a regulative feedback loop formation among ERα, ARSD, and Hippo/YAP pathway. Collectively, our findings will help filling the knowledge gap about the influence of ARSD on BC and providing evidence that ARSD may serve as a potential marker to predict prognosis and as a therapeutic target.
Collapse
Affiliation(s)
- Yun Lin
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Chun Li
- Faculty of Health science, Hull York Medical School, University of Hull, Hull, UK, HU6 7RX
| | - Wei Xiong
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Liping Fan
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Hongchao Pan
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China.
| | - Yaochen Li
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China.
| |
Collapse
|
11
|
Lupski JR. Clan genomics: From OMIM phenotypic traits to genes and biology. Am J Med Genet A 2021; 185:3294-3313. [PMID: 34405553 PMCID: PMC8530976 DOI: 10.1002/ajmg.a.62434] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Clinical characterization of a patient phenotype has been the quintessential approach for elucidating a differential diagnosis and a hypothesis to explore a potential clinical diagnosis. This has resulted in a language of medicine and a semantic ontology, with both specialty- and subspecialty-specific lexicons, that can be challenging to translate and interpret. There is no 'Rosetta Stone' of clinical medicine such as the genetic code that can assist translation and interpretation of the language of genetics. Nevertheless, the information content embodied within a clinical diagnosis can guide management, therapeutic intervention, and potentially prognostic outlook of disease enabling anticipatory guidance for patients and families. Clinical genomics is now established firmly in medical practice. The granularity and informative content of a personal genome is immense. Yet, we are limited in our utility of much of that personal genome information by the lack of functional characterization of the overwhelming majority of computationally annotated genes in the haploid human reference genome sequence. Whereas DNA and the genetic code have provided a 'Rosetta Stone' to translate genetic variant information, clinical medicine, and clinical genomics provide the context to understand human biology and disease. A path forward will integrate deep phenotyping, such as available in a clinical synopsis in the Online Mendelian Inheritance in Man (OMIM) entries, with personal genome analyses.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
12
|
Aspects of the Neurospora crassa Sulfur Starvation Response Are Revealed by Transcriptional Profiling and DNA Affinity Purification Sequencing. mSphere 2021; 6:e0056421. [PMID: 34523983 PMCID: PMC8550094 DOI: 10.1128/msphere.00564-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accurate nutrient sensing is important for rapid fungal growth and exploitation of available resources. Sulfur is an important nutrient source found in a number of biological macromolecules, including proteins and lipids. The model filamentous fungus Neurospora crassa is capable of utilizing sulfur found in a variety of sources from amino acids to sulfate. During sulfur starvation, the transcription factor CYS-3 is responsible for upregulation of genes involved in sulfur uptake and assimilation. Using a combination of RNA sequencing and DNA affinity purification sequencing, we performed a global survey of the N. crassa sulfur starvation response and the role of CYS-3 in regulating sulfur-responsive genes. The CYS-3 transcription factor bound the promoters and regulated genes involved in sulfur metabolism. Additionally, CYS-3 directly activated the expression of a number of uncharacterized transporter genes, suggesting that regulation of sulfur import is an important aspect of regulation by CYS-3. CYS-3 also directly regulated the expression of genes involved in mitochondrial electron transfer. During sulfur starvation, genes involved in nitrogen metabolism, such as amino acid and nucleic acid metabolic pathways, along with genes encoding proteases and nucleases that are necessary for scavenging nitrogen, were activated. Sulfur starvation also caused changes in the expression of genes involved in carbohydrate metabolism, such as those encoding glycosyl hydrolases. Thus, our data suggest a connection between sulfur metabolism and other aspects of cellular metabolism. IMPORTANCE Identification of nutrients present in the environment is a challenge common to all organisms. Sulfur is an important nutrient source found in proteins, lipids, and electron carriers that are required for the survival of filamentous fungi such as Neurospora crassa. Here, we transcriptionally profiled the response of N. crassa to characterize the global response to sulfur starvation. We also used DNA affinity purification sequencing to identify the direct downstream targets of the transcription factor responsible for regulating genes involved in sulfur uptake and assimilation. Along with genes involved in sulfur metabolism, this transcription factor regulated a number of uncharacterized transporter genes and genes involved in mitochondrial electron transfer. Our data also suggest a connection between sulfur, nitrogen, and carbon metabolism, indicating that the regulation of a number of metabolic pathways is intertwined.
Collapse
|
13
|
Villegas-Mirón P, Acosta S, Nye J, Bertranpetit J, Laayouni H. Chromosome X-wide Analysis of Positive Selection in Human Populations: Common and Private Signals of Selection and its Impact on Inactivated Genes and Enhancers. Front Genet 2021; 12:714491. [PMID: 34646300 PMCID: PMC8502928 DOI: 10.3389/fgene.2021.714491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
The ability of detecting adaptive (positive) selection in the genome has opened the possibility of understanding the genetic basis of population-specific adaptations genome-wide. Here, we present the analysis of recent selective sweeps, specifically in the X chromosome, in human populations from the third phase of the 1,000 Genomes Project using three different haplotype-based statistics. We describe instances of recent positive selection that fit the criteria of hard or soft sweeps, and detect a higher number of events among sub-Saharan Africans than non-Africans (Europe and East Asia). A global enrichment of neural-related processes is observed and numerous genes related to fertility appear among the top candidates, reflecting the importance of reproduction in human evolution. Commonalities with previously reported genes under positive selection are found, while particularly strong new signals are reported in specific populations or shared across different continental groups. We report an enrichment of signals in genes that escape X chromosome inactivation, which may contribute to the differentiation between sexes. We also provide evidence of a widespread presence of soft-sweep-like signatures across the chromosome and a global enrichment of highly scoring regions that overlap potential regulatory elements. Among these, enhancers-like signatures seem to present putative signals of positive selection which might be in concordance with selection in their target genes. Also, particularly strong signals appear in regulatory regions that show differential activities, which might point to population-specific regulatory adaptations.
Collapse
Affiliation(s)
- Pablo Villegas-Mirón
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Sandra Acosta
- Department Pathology and Experimental Therapeutics, Medical School, University of Barcelona, Barcelona, Spain
| | - Jessica Nye
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain.,Bioinformatics Studies, ESCI-UPF, Barcelona, Spain
| |
Collapse
|
14
|
Hay M, Kumar V, Ricaño-Ponce I. The role of the X chromosome in infectious diseases. Brief Funct Genomics 2021; 21:143-158. [PMID: 34651167 DOI: 10.1093/bfgp/elab039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
Many infectious diseases in humans present with a sex bias. This bias arises from a combination of environmental factors, hormones and genetics. In this study, we review the contribution of the X chromosome to the genetic factor associated with infectious diseases. First, we give an overview of the X-linked genes that have been described in the context of infectious diseases and group them in four main pathways that seem to be dysregulated in infectious diseases: nuclear factor kappa-B, interleukin 2 and interferon γ cascade, toll-like receptors and programmed death ligand 1. Then, we review the infectious disease associations in existing genome-wide association studies (GWAS) from the GWAS Catalog and the Pan-UK Biobank, describing the main associations and their possible implications for the disease. Finally, we highlight the importance of including the X chromosome in GWAS analysis and the importance of sex-specific analysis.
Collapse
|
15
|
Zhang L, Hu H, Liang D, Li Z, Wu L. Prenatal Diagnosis in a Fetus With X-Linked Recessive Chondrodysplasia Punctata: Identification and Functional Study of a Novel Missense Mutation in ARSE. Front Genet 2021; 12:722694. [PMID: 34630518 PMCID: PMC8498588 DOI: 10.3389/fgene.2021.722694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
X-Linked recessive chondrodysplasia punctata (CDPX1) is a rare skeletal dysplasia characterized by stippled epiphyses, brachytelephalangy, and nasomaxillary hypoplasia. CDPX1 is caused by function loss of arylsulfatase E (ARSE, also known as ARSL). Pathogenic mutations in ARSE are responsible for CDPX1 in newborns or adults; however, studies have not fully explored prenatal cases. In the current study, a novel missense mutation (c.265A > G) in ARSE was identified in a fetus with short limbs using whole-exome sequencing (WES). Bioinformatic analysis showed that the variant was pathogenic, and RT-qPCR, Western blot, and enzymatic assays were performed to further explore pathogenicity of the variant. The findings showed that the variant decreased transcription and protein expression levels and led to loss of enzymatic activity of the protein. The novel mutation c.265A > G in ARSE was thus the genetic cause for the phenotype presented by the fetus. The current study presents a prenatal case in Chinese population using functional analysis of ARSE, which helps the family to predict recurrence risks for future pregnancies and provides more information for understanding this rare condition. The findings show that WES is a feasible method for prenatal diagnosis of fetuses with CDPX1.
Collapse
Affiliation(s)
- Li Zhang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Haoran Hu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China.,Hunan Jiahui Genetics Hospital, Changsha, China
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China.,Hunan Jiahui Genetics Hospital, Changsha, China
| |
Collapse
|
16
|
Of mice and men - and guinea pigs? Ann Anat 2021; 238:151765. [PMID: 34000371 DOI: 10.1016/j.aanat.2021.151765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/31/2022]
Abstract
This year marks the twentieth anniversary of the publication of the first draft of the human genome and its broad availability to the scientific community. In parallel, the annotation of the mouse genome led to the identification and analysis of countless genes by means of genetic manipulation. Today, when comparing both genomes, it might surprise that some genes are still seeking their respective homologs in either species. In this review, we aim at raising awareness for the remarkable differences between the researcher's favorite rodents, i.e., mice and rats, when it comes to the generation of rodent research models regarding genes with a particular delicate localization, namely the pseudoautosomal region on both sex chromosomes. Many of these genes are of utmost clinical relevance in humans and still miss a rodent disease model giving their absence in mice and rats or low sequence similarity compared to humans. The abundance of rodents within mammals prompted us to investigate different branches of rodents leading us to the re-discovery of the guinea pig as a mammalian research model for a distinct group of genes.
Collapse
|
17
|
Indrieri A, Franco B. Linear Skin Defects with Multiple Congenital Anomalies (LSDMCA): An Unconventional Mitochondrial Disorder. Genes (Basel) 2021; 12:genes12020263. [PMID: 33670341 PMCID: PMC7918533 DOI: 10.3390/genes12020263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial disorders, although heterogeneous, are traditionally described as conditions characterized by encephalomyopathy, hypotonia, and progressive postnatal organ failure. Here, we provide a systematic review of Linear Skin Defects with Multiple Congenital Anomalies (LSDMCA), a rare, unconventional mitochondrial disorder which presents as a developmental disease; its main clinical features include microphthalmia with different degrees of severity, linear skin lesions, and central nervous system malformations. The molecular basis of this disorder has been elusive for several years. Mutations were eventually identified in three X-linked genes, i.e., HCCS, COX7B, and NDUFB11, which are all endowed with defined roles in the mitochondrial respiratory chain. A peculiar feature of this condition is its inheritance pattern: X-linked dominant male-lethal. Only female or XX male individuals can be observed, implying that nullisomy for these genes is incompatible with normal embryonic development in mammals. All three genes undergo X-inactivation that, according to our hypothesis, may contribute to the extreme variable expressivity observed in this condition. We propose that mitochondrial dysfunction should be considered as an underlying cause in developmental disorders. Moreover, LSDMCA should be taken into consideration by clinicians when dealing with patients with microphthalmia with or without associated skin phenotypes.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy;
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 20090 Milan, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy;
- Medical Genetics, Department of Translational Medical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-1923-0615
| |
Collapse
|
18
|
Dyment DA, O'Donnell-Luria A, Agrawal PB, Coban Akdemir Z, Aleck KA, Antaki D, Al Sharhan H, Au PYB, Aydin H, Beggs AH, Bilguvar K, Boerwinkle E, Brand H, Brownstein CA, Buyske S, Chodirker B, Choi J, Chudley AE, Clericuzio CL, Cox GF, Curry C, de Boer E, de Vries BBA, Dunn K, Dutmer CM, England EM, Fahrner JA, Geckinli BB, Genetti CA, Gezdirici A, Gibson WT, Gleeson JG, Greenberg CR, Hall A, Hamosh A, Hartley T, Jhangiani SN, Karaca E, Kernohan K, Lauzon JL, Lewis MES, Lowry RB, López-Giráldez F, Matise TC, McEvoy-Venneri J, McInnes B, Mhanni A, Garcia Minaur S, Moilanen J, Nguyen A, Nowaczyk MJM, Posey JE, Õunap K, Pehlivan D, Pajusalu S, Penney LS, Poterba T, Prontera P, Doriqui MJR, Sawyer SL, Sobreira N, Stanley V, Torun D, Wargowski D, Witmer PD, Wong I, Xing J, Zaki MS, Zhang Y, Boycott KM, Bamshad MJ, Nickerson DA, Blue EE, Innes AM. Alternative genomic diagnoses for individuals with a clinical diagnosis of Dubowitz syndrome. Am J Med Genet A 2021; 185:119-133. [PMID: 33098347 PMCID: PMC8197629 DOI: 10.1002/ajmg.a.61926] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/09/2020] [Accepted: 09/19/2020] [Indexed: 01/19/2023]
Abstract
Dubowitz syndrome (DubS) is considered a recognizable syndrome characterized by a distinctive facial appearance and deficits in growth and development. There have been over 200 individuals reported with Dubowitz or a "Dubowitz-like" condition, although no single gene has been implicated as responsible for its cause. We have performed exome (ES) or genome sequencing (GS) for 31 individuals clinically diagnosed with DubS. After genome-wide sequencing, rare variant filtering and computational and Mendelian genomic analyses, a presumptive molecular diagnosis was made in 13/27 (48%) families. The molecular diagnoses included biallelic variants in SKIV2L, SLC35C1, BRCA1, NSUN2; de novo variants in ARID1B, ARID1A, CREBBP, POGZ, TAF1, HDAC8, and copy-number variation at1p36.11(ARID1A), 8q22.2(VPS13B), Xp22, and Xq13(HDAC8). Variants of unknown significance in known disease genes, and also in genes of uncertain significance, were observed in 7/27 (26%) additional families. Only one gene, HDAC8, could explain the phenotype in more than one family (N = 2). All but two of the genomic diagnoses were for genes discovered, or for conditions recognized, since the introduction of next-generation sequencing. Overall, the DubS-like clinical phenotype is associated with extensive locus heterogeneity and the molecular diagnoses made are for emerging clinical conditions sharing characteristic features that overlap the DubS phenotype.
Collapse
Affiliation(s)
- David A Dyment
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Anne O'Donnell-Luria
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Kyrieckos A Aleck
- Department of Genetics and Metabolism, Phoenix Children's Medical Group, Phoenix, Arizona, USA
| | - Danny Antaki
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Hind Al Sharhan
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Ping-Yee B Au
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Hatip Aydin
- Centre of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey
| | - Alan H Beggs
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Waco, Texas, USA
| | - Harrison Brand
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Catherine A Brownstein
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Steve Buyske
- Department of Statistics and Biostatistics, Rutgers University, Piscataway, New Jersey, USA
| | - Bernard Chodirker
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Albert E Chudley
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carol L Clericuzio
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Gerald F Cox
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Cynthia Curry
- University of California, San Francisco, California, USA
- Genetic Medicine, University Pediatric Specialists, Fresno, California, USA
| | - Elke de Boer
- Department of Human Genetics, Raboud University Medical Centre, Nijmegen, Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Raboud University Medical Centre, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Raboud University Medical Centre, Nijmegen, Netherlands
| | - Kathryn Dunn
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Cullen M Dutmer
- Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Eleina M England
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
| | - Jill A Fahrner
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bilgen B Geckinli
- Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Casie A Genetti
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - William T Gibson
- Department of Medical Genetics and British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Cheryl R Greenberg
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - April Hall
- Waisman Center Clinical Genetics, University of Wisconsin, Madison, Wisconsin, USA
| | - Ada Hamosh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Kristin Kernohan
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Julie L Lauzon
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - M E Suzanne Lewis
- Department of Medical Genetics and British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - R Brian Lowry
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Francesc López-Giráldez
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tara C Matise
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Jennifer McEvoy-Venneri
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Brenda McInnes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Aziz Mhanni
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sixto Garcia Minaur
- Sección de Genética Clínica, INGEMM (Instituto de Genética Médica y Molecular), Madrid, Spain
| | - Jukka Moilanen
- Department of Clinical Genetics, Oulu University Hospital, Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu, Oulu, Finland
| | - An Nguyen
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Malgorzata J M Nowaczyk
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Katrin Õunap
- United Laboratories, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Sander Pajusalu
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- United Laboratories, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia
| | - Lynette S Penney
- Department of Pediatrics, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Timothy Poterba
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paolo Prontera
- Medical Genetics Unit, Hospital Santa Maria della Misericordia and University of Perugia, Perugia, Italy
| | | | - Sarah L Sawyer
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Valentina Stanley
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Deniz Torun
- Department of Medical Genetics, Gulhane Military Medical Academy, Ankara, Turkey
| | - David Wargowski
- Division of Genetics, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - P Dane Witmer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Isaac Wong
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jinchuan Xing
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Yeting Zhang
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Kym M Boycott
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Deborah A Nickerson
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Elizabeth E Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Lysosomal sulfatases: a growing family. Biochem J 2020; 477:3963-3983. [PMID: 33120425 DOI: 10.1042/bcj20200586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
Sulfatases constitute a family of enzymes that specifically act in the hydrolytic degradation of sulfated metabolites by removing sulfate monoesters from various substrates, particularly glycolipids and glycosaminoglycans. A common essential feature of all known eukaryotic sulfatases is the posttranslational modification of a critical cysteine residue in their active site by oxidation to formylglycine (FGly), which is mediated by the FGly-generating enzyme in the endoplasmic reticulum and is indispensable for catalytic activity. The majority of the so far described sulfatases localize intracellularly to lysosomes, where they act in different catabolic pathways. Mutations in genes coding for lysosomal sulfatases lead to an accumulation of the sulfated substrates in lysosomes, resulting in impaired cellular function and multisystemic disorders presenting as lysosomal storage diseases, which also cover the mucopolysaccharidoses and metachromatic leukodystrophy. Bioinformatics analysis of the eukaryotic genomes revealed, besides the well described and long known disease-associated sulfatases, additional genes coding for putative enzymes with sulfatases activity, including arylsulfatase G as well as the arylsulfatases H, I, J and K, respectively. In this article, we review current knowledge about lysosomal sulfatases with a special focus on the just recently characterized family members arylsulfatase G and arylsulfatase K.
Collapse
|
20
|
Cappuccio G, Alagia M, Brunetti-Pierri N. A systematic cross-sectional survey of multiple sulfatase deficiency. Mol Genet Metab 2020; 130:283-288. [PMID: 32620537 DOI: 10.1016/j.ymgme.2020.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
Abstract
Multiple Sulfatase Deficiency (MSD) is an inborn error of metabolism caused by pathogenic variants in the SUMF1 gene encoding the formylglycine-generating enzyme (FGE) that activates all known sulfatases. FGE deficiency results in widespread tissue accumulation of multiple sulphated substrates. Through a systematic analysis of published cases, we retrieved 80 MSD cases and reviewed the disease clinical, biochemical, and genetic findings. Leukodystrophy, neurosensorial hearing loss, and ichthyosis were the most frequent findings at diagnosis. Of 51 reported pathogenic variants, 20 were likely gene disruptive and the remaining were missense variants. No correlations between class of variants and clinical severity or degree of enzyme deficiency were detected. However, cases harboring variants located at N-terminal always had severe neonatal presentations. Moreover, cases with neonatal onset showed the lowest overall survival rate compared to late-infantile and juvenile onsets. Using GnomAD, carrier frequency for pathogenic SUMF1 variants was estimated to be ~1/700 and the disease prevalence was approximately 1/2,000,000. In summary, MSD is an ultra-rare multisystem disorder with mainly neurologic, hearing and skin involvements. Although the collected data were retrospective and heterogenous, the quantitative data inform the disease natural history and are important for both counseling and design of future interventional studies.
Collapse
Affiliation(s)
- Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Marianna Alagia
- Department of Translational Medicine, Federico II University, Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.
| |
Collapse
|
21
|
Ma W, Mao J, Wang X, Duan L, Song Y, Lian X, Zheng J, Liu Z, Nie M, Wu X. Novel Microdeletion in the X Chromosome Leads to Kallmann Syndrome, Ichthyosis, Obesity, and Strabismus. Front Genet 2020; 11:596. [PMID: 32670353 PMCID: PMC7327112 DOI: 10.3389/fgene.2020.00596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/15/2020] [Indexed: 11/23/2022] Open
Abstract
Background A large deletion in Xp22.3 can result in contiguous gene syndromes, including X-linked ichthyosis (XLI) and Kallmann syndrome (KS), presenting with short stature, chondrodysplasia punctata, intellectual disability, and strabismus. XLI and KS are caused by the deletion of STS and ANOS1, respectively. Method Two KS patients with XLI were screened to identify possible pathogenic mutations using whole exome sequencing. The clinical characteristics, molecular genetics, treatment outcomes, and genotype–phenotype association for each patient were analyzed. Results We identified a novel 3,923 kb deletion within the Xp22.31 region (chrX: 5810838–9733877) containing STS, ANOS1, GPR143, NLGN4X, VCX-A, PUDP, and PNPLA4 in patient 1, who presented with KS, XLI, obesity, hyperlipidemia, and strabismus. We identified a novel 5,807 kb deletion within the Xp22.31-p22.33 regions (chrX: 2700083–8507807) containing STS, ANOS1, and other 24 genes in patient 2, who presented with KS, XLI, obesity, and strabismus. No developmental delay, abnormal speech development, or autistic behavior were noticed in either patient. Conclusion We identified two novel microdeletions in the X chromosome leading to KS and XLI. These findings contribute to the understanding of the molecular mechanisms that drive contiguous gene syndromes. Our research confirmed that the Kallmann-Ichthyosis phenotype is caused by microdeletions at the chromosome level.
Collapse
Affiliation(s)
- Wanlu Ma
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangfeng Mao
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xi Wang
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lian Duan
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuwen Song
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, China
| | - Xiaolan Lian
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Junjie Zheng
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhaoxiang Liu
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Min Nie
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueyan Wu
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Finding relationships among biological entities. LOGIC AND CRITICAL THINKING IN THE BIOMEDICAL SCIENCES 2020. [PMCID: PMC7499094 DOI: 10.1016/b978-0-12-821364-3.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Confusion over the concepts of “relationships” and “similarities” lies at the heart of many battles over the direction and intent of research projects. Here is a short story that demonstrates the difference between the two concepts: You look up at the clouds, and you begin to see the shape of a lion. The cloud has a tail, like a lion’s tale, and a fluffy head, like a lion’s mane. With a little imagination the mouth of the lion seems to roar down from the sky. You have succeeded in finding similarities between the cloud and a lion. If you look at a cloud and you imagine a tea kettle producing a head of steam and you recognize that the physical forces that create a cloud and the physical forces that produced steam from a heated kettle are the same, then you have found a relationship. Most popular classification algorithms operate by grouping together data objects that have similar properties or values. In so doing, they may miss finding the true relationships among objects. Traditionally, relationships among data objects are discovered by an intellectual process. In this chapter, we will discuss the scientific gains that come when we classify biological entities by relationships, not by their similarities.
Collapse
|
23
|
He G, Yin Y, Zhao J, Wang X, Yang J, Chen X, Ding L, Bai Y. Prenatal findings in a fetus with X-linked recessive type of chondrodysplasia punctata (CDPX1): a case report with novel mutation. BMC Pediatr 2019; 19:250. [PMID: 31337364 PMCID: PMC6647267 DOI: 10.1186/s12887-019-1629-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/16/2019] [Indexed: 11/28/2022] Open
Abstract
Background X-linked recessive chondrodysplasia punctate (CDPX1) is a rare congenital disorder of bone and cartilage development, caused by a mutation in the arylsulfatase E (ARSE) gene located on chromosome Xp22.3. Although most of the affected men had mild symptoms, some had more severe symptoms, and had a poor prognosis. Case presentation We present the case of a male fetus diagnosed with CDPX1. Ultrasound clearly showed that hypoplasia of the midface, flatness of face, low flatness of the nose, collapse of the tip of the nose, accompanied by severe spinal stenosis and secondary ossification center of the femoral metaphysis appeared in advance. Chromosome analysis of the amniotic fluid cells revealed 46, XY. Whole exome sequencing showed that there was a novel missense mutation of c.640G > A in ARSE gene on X chromosome. Three protein function prediction software FATHMM、Polyphen-2、PROVEAN have shown that the novel missense mutation of c.640G > A in this study was pathogenic. Conclusions Our case is a novel mutation and presents a typical characterization of the disease, which can expand the spectrum of mutations of the ARSE gene and is helpful for prenatal ultrasound diagnosis of this disease.
Collapse
Affiliation(s)
- Guannan He
- Department of Ultrasound, Women and Children's Hospital of Sichuan Province, No.290, Shayan West 2nd Road, Chengdu, 610031, Sichuan Province, China
| | - Yan Yin
- Department of Prenatal Diagnosis, Women and Children's Hospital of Sichuan Province, No.290, Shayan West 2nd Road, Chengdu, 610031, Sichuan Province, China
| | - Jing Zhao
- Department of Ultrasound, Women and Children's Hospital of Sichuan Province, No.290, Shayan West 2nd Road, Chengdu, 610031, Sichuan Province, China.
| | - Xueyan Wang
- Department of Prenatal Diagnosis, Women and Children's Hospital of Sichuan Province, No.290, Shayan West 2nd Road, Chengdu, 610031, Sichuan Province, China.
| | - Jiaxiang Yang
- Department of Ultrasound, Women and Children's Hospital of Sichuan Province, No.290, Shayan West 2nd Road, Chengdu, 610031, Sichuan Province, China
| | - Xi Chen
- Department of Ultrasound, Women and Children's Hospital of Sichuan Province, No.290, Shayan West 2nd Road, Chengdu, 610031, Sichuan Province, China
| | - Li Ding
- Department of Radiology, Women and Children's Hospital of Sichuan Province, Chengdu, 610031, China
| | - Yan Bai
- Department of Ultrasound, Women and Children's Hospital of Sichuan Province, No.290, Shayan West 2nd Road, Chengdu, 610031, Sichuan Province, China
| |
Collapse
|
24
|
García-Calzón S, Perfilyev A, de Mello VD, Pihlajamäki J, Ling C. Sex Differences in the Methylome and Transcriptome of the Human Liver and Circulating HDL-Cholesterol Levels. J Clin Endocrinol Metab 2018; 103:4395-4408. [PMID: 29846646 PMCID: PMC6212806 DOI: 10.1210/jc.2018-00423] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/23/2018] [Indexed: 11/19/2022]
Abstract
Context Epigenetics may contribute to sex-specific differences in human liver metabolism. Objective To study the impact of sex on DNA methylation and gene expression in human liver. Design/Setting Cross-sectional, Kuopio Obesity Surgery Study. Participants/Intervention We analyzed DNA methylation with the Infinium HumanMethylation450 BeadChip in liver of an obese population (34 males, 61 females). Females had a higher high-density lipoprotein (HDL)-cholesterol levels compared with males. Gene expression was measured with the HumanHT-12 Expression BeadChip in a subset of 42 participants. Results Females displayed higher average methylation in the X-chromosome, whereas males presented higher methylation in autosomes. We found 9455 CpG sites in the X-chromosome and 33,205 sites in autosomes with significant methylation differences in liver between sexes (q < 0.05). When comparing our findings with published studies, 95% of the sex-specific differences in liver methylation in the X-chromosome were also found in pancreatic islets and brain, and 26 autosomal sites showed sex-specific methylation differences in the liver as well as in other human tissues. Furthermore, this sex-specific methylation profile in liver was associated with hepatic gene expression changes between males and females. Notably, females showed higher HDL-cholesterol levels, which were associated with higher KDM6A expression and epigenetic differences in human liver. Accordingly, silencing of KDM6A in cultured liver cells reduced HDL-cholesterol levels and APOA1 expression, which is a major component of HDL particles. Conclusions Human liver has a sex-specific methylation profile in both the X-chromosome and autosomes, which associates with hepatic gene expression changes and HDL-cholesterol. We identified KDM6A as a novel target that regulates HDL-cholesterol levels.
Collapse
Affiliation(s)
- Sonia García-Calzón
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Vanessa D de Mello
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| |
Collapse
|
25
|
Alrukban H, Chitayat D. Fetal chondrodysplasia punctata associated with maternal autoimmune diseases: a review. APPLICATION OF CLINICAL GENETICS 2018; 11:31-44. [PMID: 29720879 PMCID: PMC5918624 DOI: 10.2147/tacg.s150982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chondrodysplasia punctata (CDP) is a skeletal abnormality characterized by premature calcification that is usually noticeable in the prenatal period and infancy. Etiologically, the condition is heterogeneous, and the causes include fetal conditions such as chromosome abnormalities, peroxisomal disorders, lysosomal storage disorders, cholesterol synthesis defects and abnormal vitamin K metabolism, as well as maternal diseases such as severe malabsorption and exposure to teratogens. An association between CDP and maternal autoimmune disease was first observed and reported by Curry et al and Costa et al in 1993 and expanded by Chitayat et al in 2010. This review lists the clinical characteristics and radiologic findings of all cases reported to date in English and discuss the possible etiology of this interesting fetal finding.
Collapse
Affiliation(s)
- Hadeel Alrukban
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, the Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - David Chitayat
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, the Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, The Prenatal Diagnosis and Medical Genetics Program, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
R Sousa A, Barreira R, Santos E. Low-dose warfarin maternal anticoagulation and fetal warfarin syndrome. BMJ Case Rep 2018; 2018:bcr-2017-223159. [PMID: 29627779 DOI: 10.1136/bcr-2017-223159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fetuses exposed to warfarin during pregnancy are at an increased risk of developing an embryopathy known as fetal warfarin syndrome or warfarin embryopathy. The most consistent anomalies are nasal hypoplasia and stippling of vertebrae or bony epiphyses. Management of pregnant patients on anticoagulation is challenging. Current guidelines suggest the use of warfarin if the therapeutic dose is ≤5 mg/day. We report the case of a newborn with signs of warfarin embryopathy born from a mother anticoagulated with warfarin due to mechanical mitral and aortic heart valves. Warfarin was required at the dose of 5 mg/day and was withheld without medical advice between weeks 8 and 10 with no other anticoagulation. The newborn presented with skeletal abnormalities and a ventricular septal defect that have not required specific treatment during the first year of life. Low-dose warfarin is associated with a lower risk of warfarin-related fetopathy but the risk of embryopathy seems unchanged.
Collapse
Affiliation(s)
- Ana R Sousa
- Department of Pediatric Cardiology, Centro Hospitalar de Lisboa Ocidental EPE, Lisbon, Portugal.,Department of Neonatology, Centro Hospitalar de Lisboa Ocidental EPE, Lisbon, Portugal
| | - Rita Barreira
- Department of Pediatrics, Centro Hospitalar de Lisboa Ocidental EPE, Lisbon, Portugal
| | - Edmundo Santos
- Department of Neonatology, Centro Hospitalar de Lisboa Ocidental EPE, Lisbon, Portugal
| |
Collapse
|
27
|
Ahrens-Nicklas R, Schlotawa L, Ballabio A, Brunetti-Pierri N, De Castro M, Dierks T, Eichler F, Ficicioglu C, Finglas A, Gaertner J, Kirmse B, Klepper J, Lee M, Olsen A, Parenti G, Vossough A, Vanderver A, Adang LA. Complex care of individuals with multiple sulfatase deficiency: Clinical cases and consensus statement. Mol Genet Metab 2018; 123:337-346. [PMID: 29397290 PMCID: PMC6856873 DOI: 10.1016/j.ymgme.2018.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
Multiple sulfatase deficiency (MSD) is an ultra-rare neurodegenerative disorder that results in defective sulfatase post-translational modification. Sulfatases in the body are activated by a unique protein, formylglycine-generating enzyme (FGE) that is encoded by SUMF1. When FGE is absent or insufficient, all 17 known human sulfatases are affected, including the enzymes associated with metachromatic leukodystrophy (MLD), several mucopolysaccharidoses (MPS II, IIIA, IIID, IVA, VI), chondrodysplasia punctata, and X-linked ichthyosis. As such, individuals demonstrate a complex and severe clinical phenotype that has not been fully characterized to date. In this report, we describe two individuals with distinct clinical presentations of MSD. Also, we detail a comprehensive systems-based approach to the management of individuals with MSD, from the initial diagnostic evaluation to unique multisystem issues and potential management options. As there have been no natural history studies to date, the recommendations within this report are based on published studies and consensus opinion and underscore the need for future research on evidence-based outcomes to improve management of children with MSD.
Collapse
Affiliation(s)
- Rebecca Ahrens-Nicklas
- Division of Human Genetics and Metabolism, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Lars Schlotawa
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Germany.
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Department of Translational Medicine, Federico II University of Naples, Italy
| | - Mauricio De Castro
- United States Air Force Medical Genetics Center, 81st Medical Group, Keesler AFB, MS, USA
| | - Thomas Dierks
- Faculty of Chemistry, Biochemistry I, Bielefeld University, Bielefeld, Germany
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Can Ficicioglu
- Division of Human Genetics and Metabolism, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Jutta Gaertner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Germany
| | - Brian Kirmse
- Department of Pediatrics, Genetic and Metabolism, University of Mississippi Medical Center, USA
| | - Joerg Klepper
- Department of Pediatrics and Neuropediatrics, Children's Hospital, Klinikum Aschaffenburg-Alzenau, Germany
| | - Marcus Lee
- Division of Pediatric Neurology, Children's of Mississippi, University of Mississippi Medical Center, Biloxi, MS, USA
| | | | - Giancarlo Parenti
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Department of Translational Medicine, Federico II University of Naples, Italy
| | - Arastoo Vossough
- Division of Neuroradiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adeline Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura A Adang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Marulanda J, Murshed M. Role of Matrix Gla protein in midface development: Recent advances. Oral Dis 2018; 24:78-83. [PMID: 29480643 DOI: 10.1111/odi.12758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 12/23/2022]
Abstract
Craniofacial development is a delicate process that involves complex interactions among cells of multiple developmental origins, their migration, proliferation, and differentiation. Tissue morphogenesis of the craniofacial skeleton depends on genetic and environmental factors, and on specific signaling pathways, which are still not well understood. Developmental defects of the midface caused by the absence, delays, or premature fusion of nasal and maxillary prominences vary in severity; leading to clefts, hypoplasias, and midline expansion. In the current review, we focus on the importance of the chondrocranium in craniofacial growth and how its impaired development leads to midface hypoplasia. More importantly, we reported how Matrix Gla protein (MGP), a potent inhibitor of extracellular matrix mineralization, facilitates midface development by preventing ectopic calcification of the nasal septum. In fact, MGP may act as a common link in multiple developmental pathologies all showing midface hypoplasia caused by abnormal cartilage calcification. This brief review discusses the gap in knowledge in the field, raises pertinent questions, which remain unanswered, and sheds light on the future research directions.
Collapse
Affiliation(s)
- J Marulanda
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - M Murshed
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
- Shriners Hospital for Children, Montreal, QC, Canada
| |
Collapse
|
29
|
Zhang D, Qu L, Zhou B, Wang G, Zhou G. Genomic variations in the counterpart normal controls of lung squamous cell carcinomas. Front Med 2017; 12:280-288. [PMID: 29185122 DOI: 10.1007/s11684-017-0580-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022]
Abstract
Lung squamous cell carcinoma (LUSC) causes approximately 400 000 deaths each year worldwide. The occurrence of LUSC is attributed to exposure to cigarette smoke, which induces the development of numerous genomic abnormalities. However, few studies have investigated the genomic variations that occur only in normal tissues that have been similarly exposed to tobacco smoke as tumor tissues. In this study, we sequenced the whole genomes of three normal lung tissue samples and their paired adjacent squamous cell carcinomas.We then called genomic variations specific to the normal lung tissues through filtering the genomic sequence of the normal lung tissues against that of the paired tumors, the reference human genome, the dbSNP138 common germline variants, and the variations derived from sequencing artifacts. To expand these observations, the whole exome sequences of 478 counterpart normal controls (CNCs) and paired LUSCs of The Cancer Genome Atlas (TCGA) dataset were analyzed. Sixteen genomic variations were called in the three normal lung tissues. These variations were confirmed by Sanger capillary sequencing. A mean of 0.5661 exonic variations/Mb and 7.7887 altered genes per sample were identified in the CNC genome sequences of TCGA. In these CNCs, C:G→T:A transitions, which are the genomic signatures of tobacco carcinogen N-methyl-N-nitro-N-nitrosoguanidine, were the predominant nucleotide changes. Twenty five genes in CNCs had a variation rate that exceeded 2%, including ARSD (18.62%), MUC4 (8.79%), and RBMX (7.11%). CNC variations in CTAGE5 and USP17L7 were associated with the poor prognosis of patients with LUSC. Our results uncovered previously unreported genomic variations in CNCs, rather than LUSCs, that may be involved in the development of LUSC.
Collapse
Affiliation(s)
- Dalin Zhang
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liwei Qu
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bo Zhou
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guizhen Wang
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangbiao Zhou
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
30
|
Qu LW, Zhou B, Wang GZ, Chen Y, Zhou GB. Genomic variations in paired normal controls for lung adenocarcinomas. Oncotarget 2017; 8:104113-104122. [PMID: 29262625 PMCID: PMC5732791 DOI: 10.18632/oncotarget.22020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/23/2017] [Indexed: 02/06/2023] Open
Abstract
Somatic genomic mutations in lung adenocarcinomas (LUADs) have been extensively dissected, but whether the counterpart normal lung tissues that are exposed to ambient air or tobacco smoke as the tumor tissues do, harbor genomic variations, remains unclear. Here, the genome of normal lung tissues and paired tumors of 11 patients with LUAD were sequenced, the genome sequences of counterpart normal controls (CNCs) and tumor tissues of 513 patients were downloaded from TCGA database and analyzed. In the initial screening, genomic alterations were identified in the "normal" lung tissues and verified by Sanger capillary sequencing. In CNCs of TCGA datasets, a mean of 0.2721 exonic variations/Mb and 5.2885 altered genes per sample were uncovered. The C:G→T:A transitions, a signature of tobacco carcinogen N-methyl-N-nitro-N-nitrosoguanidine, were the predominant nucleotide changes in CNCs. 16 genes had a variant rate of more than 2%, and CNC variations in MUC5B, ZXDB, PLIN4, CCDC144NL, CNTNAP3B, and CCDC180 were associated with poor prognosis whereas alterations in CHD3 and KRTAP5-5 were associated with favorable clinical outcome of the patients. This study identified the genomic alterations in CNC samples of LUADs, and further highlighted the DNA damage effect of tobacco on lung epithelial cells.
Collapse
Affiliation(s)
- Li-Wei Qu
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Zhou
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Gui-Zhen Wang
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Chen
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guang-Biao Zhou
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
31
|
Holmes RS. Comparative and evolutionary studies of mammalian arylsulfatase and sterylsulfatase genes and proteins encoded on the X-chromosome. Comput Biol Chem 2017; 68:71-77. [DOI: 10.1016/j.compbiolchem.2017.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/22/2016] [Accepted: 02/22/2017] [Indexed: 12/09/2022]
|
32
|
Dawson PA, Richard K, Perkins A, Zhang Z, Simmons DG. Review: Nutrient sulfate supply from mother to fetus: Placental adaptive responses during human and animal gestation. Placenta 2017; 54:45-51. [PMID: 28089504 DOI: 10.1016/j.placenta.2017.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/23/2016] [Accepted: 01/04/2017] [Indexed: 01/20/2023]
Abstract
Nutrient sulfate has numerous roles in mammalian physiology and is essential for healthy fetal growth and development. The fetus has limited capacity to generate sulfate and relies on sulfate supplied from the maternal circulation via placental sulfate transporters. The placenta also has a high sulfate requirement for numerous molecular and cellular functions, including sulfate conjugation (sulfonation) to estrogen and thyroid hormone which leads to their inactivation. Accordingly, the ratio of sulfonated (inactive) to unconjugated (active) hormones modulates endocrine function in fetal, placental and maternal tissues. During pregnancy, there is a marked increase in the expression of genes involved in transport and generation of sulfate in the mouse placenta, in line with increasing fetal and placental demands for sulfate. The maternal circulation also provides a vital reservoir of sulfate for the placenta and fetus, with maternal circulating sulfate levels increasing by 2-fold from mid-gestation. However, despite evidence from animal studies showing the requirement of maternal sulfate supply for placental and fetal physiology, there are no routine clinical measurements of sulfate or consideration of dietary sulfate intake in pregnant women. This is also relevant to certain xenobiotics or pharmacological drugs which when taken by the mother use significant quantities of circulating sulfate for detoxification and clearance, and thereby have the potential to decrease sulfonation capacity in the placenta and fetus. This article will review the physiological adaptations of the placenta for maintaining sulfate homeostasis in the fetus and placenta, with a focus on pathophysiological outcomes in animal models of disturbed sulfate homeostasis.
Collapse
Affiliation(s)
- P A Dawson
- Mater Research Institute, The University of Queensland, Woolloongabba, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia.
| | - K Richard
- Conjoint Endocrine Laboratory, Chemical Pathology, Pathology Queensland, Queensland Health, Herston, Australia
| | - A Perkins
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia
| | - Z Zhang
- Mater Research Institute, The University of Queensland, Woolloongabba, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - D G Simmons
- Mater Research Institute, The University of Queensland, Woolloongabba, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
33
|
Tanaka Y, Watanabe K, Katsumi K, Ohashi M, Nagasaki K, Hirano T. Occipitocervical Fusion for Severe Atlantoaxial Dislocation in an Underdeveloped Child with Chondrodysplasia Punctata: A Case Report. JBJS Case Connect 2017; 7:e16. [PMID: 29244697 DOI: 10.2106/jbjs.cc.16.00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
CASE We present a case of brachytelephalangic chondrodysplasia punctata with a severe atlantoaxial dislocation in an underdeveloped child. The patient underwent halo jacket application using 10 halo pins with <1 lb/in of torque, followed by posterior occipitocervical fusion with onlay rib and iliac autografts. After bone grafts and replacement of the halo ring multiple times, successful osseous fusion had been achieved by the 2-year follow-up. CONCLUSION Although simple bone-grafting with a halo jacket is useful in underdeveloped patients with skeletal dysplasia, the complications related to halo fixation, including cranial bone perforation, and the patient's neurological status must be carefully monitored.
Collapse
Affiliation(s)
- Yuki Tanaka
- Departments of Orthopedic Surgery (Y.T., K.W., K.K., M.O., and T.H.) and Pediatrics (K.N.), Niigata University Medical and Dental General Hospital, Niigata City, Niigata, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Langford R, Hurrion E, Dawson PA. Genetics and pathophysiology of mammalian sulfate biology. J Genet Genomics 2017; 44:7-20. [DOI: 10.1016/j.jgg.2016.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 12/23/2022]
|
35
|
Matching the Diversity of Sulfated Biomolecules: Creation of a Classification Database for Sulfatases Reflecting Their Substrate Specificity. PLoS One 2016; 11:e0164846. [PMID: 27749924 PMCID: PMC5066984 DOI: 10.1371/journal.pone.0164846] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022] Open
Abstract
Sulfatases cleave sulfate groups from various molecules and constitute a biologically and industrially important group of enzymes. However, the number of sulfatases whose substrate has been characterized is limited in comparison to the huge diversity of sulfated compounds, yielding functional annotations of sulfatases particularly prone to flaws and misinterpretations. In the context of the explosion of genomic data, a classification system allowing a better prediction of substrate specificity and for setting the limit of functional annotations is urgently needed for sulfatases. Here, after an overview on the diversity of sulfated compounds and on the known sulfatases, we propose a classification database, SulfAtlas (http://abims.sb-roscoff.fr/sulfatlas/), based on sequence homology and composed of four families of sulfatases. The formylglycine-dependent sulfatases, which constitute the largest family, are also divided by phylogenetic approach into 73 subfamilies, each subfamily corresponding to either a known specificity or to an uncharacterized substrate. SulfAtlas summarizes information about the different families of sulfatases. Within a family a web page displays the list of its subfamilies (when they exist) and the list of EC numbers. The family or subfamily page shows some descriptors and a table with all the UniProt accession numbers linked to the databases UniProt, ExplorEnz, and PDB.
Collapse
|
36
|
Human teratogens and genetic phenocopies. Understanding pathogenesis through human genes mutation. Eur J Med Genet 2016; 60:22-31. [PMID: 27639441 DOI: 10.1016/j.ejmg.2016.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022]
Abstract
Exposure to teratogenic drugs during pregnancy is associated with a wide range of embryo-fetal anomalies and sometimes results in recurrent and recognizable patterns of malformations; however, the comprehension of the mechanisms underlying the pathogenesis of drug-induced birth defects is difficult, since teratogenesis is a multifactorial process which is always the result of a complex interaction between several environmental factors and the genetic background of both the mother and the fetus. Animal models have been extensively used to assess the teratogenic potential of pharmacological agents and to study their teratogenic mechanisms; however, a still open issue concerns how the information gained through animal models can be translated to humans. Instead, significant information can be obtained by the identification and analysis of human genetic syndromes characterized by clinical features overlapping with those observed in drug-induced embryopathies. Until now, genetic phenocopies have been reported for the embryopathies/fetopathies associated with prenatal exposure to warfarin, leflunomide, mycophenolate mofetil, fluconazole, thalidomide and ACE inhibitors. In most cases, genetic phenocopies are caused by mutations in genes encoding for the main targets of teratogens or for proteins belonging to the same molecular pathways. The aim of this paper is to review the proposed teratogenic mechanisms of these drugs, by the analysis of human monogenic disorders and their molecular pathogenesis.
Collapse
|
37
|
Doo JW, Jang JH, Cho EH, Kim JK, Cho SC. Identification of a Novel Nonsense Mutation in the ARSE Gene of a Patient with X-Linked Recessive Chondrodysplasia Punctata. NEONATAL MEDICINE 2016. [DOI: 10.5385/nm.2016.23.3.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Jin Woong Doo
- Department of Pediatrics, Chonbuk National University Hospital, Jeonju, Korea
| | - Ja-Hyun Jang
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Korea
| | - Eun Hae Cho
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Korea
| | - Jin Kyu Kim
- Department of Pediatrics, Chonbuk National University Hospital, Jeonju, Korea
- Green Cross Genome, Yongin, Korea
| | - Soo Chul Cho
- Department of Pediatrics, Chonbuk National University Hospital, Jeonju, Korea
- Green Cross Genome, Yongin, Korea
| |
Collapse
|
38
|
Brachytelephalangic chondrodysplasia punctata caused by new small hemizygous deletion in a boy presenting with hearing loss. Mol Cytogenet 2015; 8:83. [PMID: 26526591 PMCID: PMC4628305 DOI: 10.1186/s13039-015-0187-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/27/2015] [Indexed: 11/30/2022] Open
Abstract
X-linked recessive type chondrodysplasia punctata (CDPX1) is a congenital disorder of cartilage and bone development with typical findings of stippled epyphises, nasomaxillary hypoplasia and short distal phalanges in a male patient. Disease is caused due to the loss of arylsulfatase E activity and only 55 patients with genetically confirmed disease have been reported so far. In 60–75 % of all patients the mutation in ARSE gene is detected by sequence analysis and in further 25 % of patients Xp deletions or rearrangements are causative and may be identified by classical chromosome studies. We report on a male patient refered to clinical geneticist for congenital hearing loss and mild dysplastic signs, both phenotypic features being relatively unspecific and non suggestive of CDPX1 in first instance. Array comparative genomic hybridisation showed approximatelly 3 kb big deletion, spaning intron and exon 7 of arylsulfatase E gene located in Xp22.33. This explained the cause of hearing loss, being present in 26–89 % od CDPX1 patients, as well as additional non prominent skeletal characteristics described by geneticist in our patient - mild midface hypoplasia and mild brachytelephalangy. Reported case introduces different presenting clinical phenotype for CDPX1, emphasizing different expressivity in this disorder.
Collapse
|
39
|
Silveira DB, da Rosa EB, de Mattos VF, Goetze TB, Sleifer P, Santa Maria FD, Rosa RCM, Rosa RFM, Zen PRG. Importance of a multidisciplinary approach and monitoring in fetal warfarin syndrome. Am J Med Genet A 2015; 167:1294-9. [PMID: 25899236 DOI: 10.1002/ajmg.a.36655] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/26/2014] [Indexed: 11/12/2022]
Abstract
Warfarin is a synthetic oral anticoagulant that crosses the placenta and can lead to a number of congenital abnormalities known as fetal warfarin syndrome. Our aim is to report on the follow-up from birth to age 8 years of a patient with fetal warfarin syndrome. He presented significant respiratory dysfunction, as well as dental and speech and language complications. The patient was the second child of a mother who took warfarin during pregnancy due to a metallic heart valve. The patient had respiratory dysfunction at birth. On physical examination, he had a hypoplastic nose, pectus excavatum, and clubbing of the fingers. Nasal fibrobronchoscopy showed upper airway obstruction due to narrowing of the nasal cavities. He underwent surgical correction with Max Pereira graft, zetaplasty, and osteotomies for the piriform aperture. At dental evaluation, he had caries and delayed eruption of the upper incisors. Speech and language assessment revealed high palate, mouth breathing, little nasal patency, and shortened upper lip. Auditory long latency and cognitive-related potential to auditory stimuli demonstrated functional changes in the cortical auditory pathways. We believe that the frequency of certain findings observed in our patient may be higher in fetal warfarin syndrome than is appreciated, since a significant number result in abortions, stillbirths, or children evaluated in the first year of life without a follow-up. Thus, a multidisciplinary approach and long-term monitoring of these patients may be necessary.
Collapse
Affiliation(s)
- Daniélle B Silveira
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), RS, Brazil.,Graduation in Nursing, UFCSPA, RS, Brazil
| | | | - Vinicius F de Mattos
- Clinical Genetics, UFCSPA and Complexo Hospitalar Santa Casa de Porto Alegre (CHSCPA), RS, Brazil
| | - Thayse B Goetze
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), RS, Brazil
| | - Pricila Sleifer
- Speech Language Pathology, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Fernanda D Santa Maria
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), RS, Brazil
| | - Rosana C M Rosa
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), RS, Brazil
| | - Rafael F M Rosa
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), RS, Brazil.,Clinical Genetics, UFCSPA and Complexo Hospitalar Santa Casa de Porto Alegre (CHSCPA), RS, Brazil.,Clinical Genetics, Hospital Materno Infantil Presidente Vargas (HMIPV), RS, Brazil
| | - Paulo R G Zen
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), RS, Brazil.,Clinical Genetics, UFCSPA and Complexo Hospitalar Santa Casa de Porto Alegre (CHSCPA), RS, Brazil
| |
Collapse
|
40
|
Dobek WA, Kim HG, Walls CA, Chorich LP, Tho SP, Wang ZX, McDonough PG, Layman LC. Long-term follow-up of females with unbalanced X;Y translocations-reproductive and nonreproductive consequences. Mol Cytogenet 2015; 8:13. [PMID: 25737742 PMCID: PMC4347569 DOI: 10.1186/s13039-015-0112-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/19/2015] [Indexed: 11/10/2022] Open
Abstract
Background Females with Xp;Yq translocations manifest short stature and normal fertility, but rarely have follow-up. The study purpose was to define the phenotype of a family with t(X;Y)(p22.3;q11.2), determine long-term reproductive function, and compare to all reported female cases. Methods Comprehensive clinical and molecular analyses were performed on the female proband, who had regular menses, normal endocrine function, and three pregnancies spanning seven years--a normal liveborn male and two with unbalanced translocations (liveborn female and stillborn male). Results The translocation truncated KAL1 and deleted 44 genes on der(X). Our report constitutes the longest follow-up of an X;Y translocation female. She had no evidence of Kallmann syndrome, gonadoblastoma, or cardiovascular disease. Detailed analysis of 50 published female cases indicated a uniform lack of follow-up and significant morbidity—intellectual disability (10%), facial dysmorphism (28%), eye abnormalities (14%), and skeletal defects (28%). Conclusions Our findings indicate normal ovarian function to date in a woman with an t(X;Y)(p22.3;q11.2). However, additional published studies in the literature suggest careful follow-up is necessary and contradict the generalization that females with Xp;Yq translocations are usually normal except for short stature. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0112-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Whitney A Dobek
- Department of Obstetrics & Gynecology, Medical College of Georgia, Georgia Regents University, Augusta, GA USA
| | - Hyung-Goo Kim
- Department of Obstetrics & Gynecology, Medical College of Georgia, Georgia Regents University, Augusta, GA USA ; Section of Reproductive Endocrinology, Infertility, & Genetics, Medical College of Georgia, Georgia Regents University, Augusta, GA USA
| | - Cedric A Walls
- Department of Obstetrics & Gynecology, Medical College of Georgia, Georgia Regents University, Augusta, GA USA
| | - Lynn P Chorich
- Department of Obstetrics & Gynecology, Medical College of Georgia, Georgia Regents University, Augusta, GA USA ; Section of Reproductive Endocrinology, Infertility, & Genetics, Medical College of Georgia, Georgia Regents University, Augusta, GA USA
| | - Sandra Pt Tho
- Department of Obstetrics & Gynecology, Medical College of Georgia, Georgia Regents University, Augusta, GA USA ; Section of Reproductive Endocrinology, Infertility, & Genetics, Medical College of Georgia, Georgia Regents University, Augusta, GA USA
| | - Zi-Xuan Wang
- Department of Surgery and Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, PA USA
| | - Paul G McDonough
- Department of Obstetrics & Gynecology, Medical College of Georgia, Georgia Regents University, Augusta, GA USA ; Section of Reproductive Endocrinology, Infertility, & Genetics, Medical College of Georgia, Georgia Regents University, Augusta, GA USA
| | - Lawrence C Layman
- Department of Obstetrics & Gynecology, Medical College of Georgia, Georgia Regents University, Augusta, GA USA ; Section of Reproductive Endocrinology, Infertility, & Genetics, Medical College of Georgia, Georgia Regents University, Augusta, GA USA ; Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, Augusta, GA USA
| |
Collapse
|
41
|
Shortt K, Chaudhary S, Grigoryev D, Heruth DP, Venkitachalam L, Zhang LQ, Ye SQ. Identification of novel single nucleotide polymorphisms associated with acute respiratory distress syndrome by exome-seq. PLoS One 2014; 9:e111953. [PMID: 25372662 PMCID: PMC4221189 DOI: 10.1371/journal.pone.0111953] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/29/2014] [Indexed: 12/26/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a lung condition characterized by impaired gas exchange with systemic release of inflammatory mediators, causing pulmonary inflammation, vascular leak and hypoxemia. Existing biomarkers have limited effectiveness as diagnostic and therapeutic targets. To identify disease-associating variants in ARDS patients, whole-exome sequencing was performed on 96 ARDS patients, detecting 1,382,399 SNPs. By comparing these exome data to those of the 1000 Genomes Project, we identified a number of single nucleotide polymorphisms (SNP) which are potentially associated with ARDS. 50,190SNPs were found in all case subgroups and controls, of which89 SNPs were associated with susceptibility. We validated three SNPs (rs78142040, rs9605146 and rs3848719) in additional ARDS patients to substantiate their associations with susceptibility, severity and outcome of ARDS. rs78142040 (C>T) occurs within a histone mark (intron 6) of the Arylsulfatase D gene. rs9605146 (G>A) causes a deleterious coding change (proline to leucine) in the XK, Kell blood group complex subunit-related family, member 3 gene. rs3848719 (G>A) is a synonymous SNP in the Zinc-Finger/Leucine-Zipper Co-Transducer NIF1 gene. rs78142040, rs9605146, and rs3848719 are associated significantly with susceptibility to ARDS. rs3848719 is associated with APACHE II score quartile. rs78142040 is associated with 60-day mortality in the overall ARDS patient population. Exome-seq is a powerful tool to identify potential new biomarkers for ARDS. We selectively validated three SNPs which have not been previously associated with ARDS and represent potential new genetic biomarkers for ARDS. Additional validation in larger patient populations and further exploration of underlying molecular mechanisms are warranted.
Collapse
Affiliation(s)
- Katherine Shortt
- Department of Pediatrics, Division of Experimental and Translational Genetics, Children's Mercy Hospital, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
- Department of Biomedical and Health Informatics, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
| | - Suman Chaudhary
- Department of Pediatrics, Division of Experimental and Translational Genetics, Children's Mercy Hospital, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
| | - Dmitry Grigoryev
- Department of Pediatrics, Division of Experimental and Translational Genetics, Children's Mercy Hospital, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
- Department of Biomedical and Health Informatics, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
| | - Daniel P. Heruth
- Department of Pediatrics, Division of Experimental and Translational Genetics, Children's Mercy Hospital, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
| | - Lakshmi Venkitachalam
- Department of Biomedical and Health Informatics, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
| | - Li Q. Zhang
- Department of Pediatrics, Division of Experimental and Translational Genetics, Children's Mercy Hospital, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
| | - Shui Q. Ye
- Department of Pediatrics, Division of Experimental and Translational Genetics, Children's Mercy Hospital, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
- Department of Biomedical and Health Informatics, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
42
|
Blondeel E, Molina-Gomes D, Bouhanna P, Fauvert D, Crosnier H, Dessuant H, Vialard F. Birth of a boy with isolated short stature after prenatal diagnosis of a Xp22.3 nullosomy due to an inherited t(X;15) (p22.3;p10) translocation. Clin Case Rep 2014; 2:98-102. [PMID: 25356259 PMCID: PMC4184603 DOI: 10.1002/ccr3.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/02/2014] [Accepted: 03/12/2014] [Indexed: 12/03/2022] Open
Abstract
Key Clinical Message Translocations between X and acrocentric chromosomes are rare. We report on the inheritance of a familial t(X;15)(p22.3;p10) translocation in a fetus referred for short long bones. Cytogenetic analysis revealed an unbalanced translocation combined with a three-gene nullosomy. After genetic counseling, a prognosis was established and a healthy boy was delivered.
Collapse
Affiliation(s)
- E Blondeel
- Department of Cytogenetics, Foetal Pathology, Obstetrics and Gynecology, Poissy Saint-Germain-en-Laye Hospital Poissy, France ; Versailles Saint-Quentin-en-Yvelines University Versailles, France
| | - D Molina-Gomes
- Department of Cytogenetics, Foetal Pathology, Obstetrics and Gynecology, Poissy Saint-Germain-en-Laye Hospital Poissy, France
| | - P Bouhanna
- Department of Cytogenetics, Foetal Pathology, Obstetrics and Gynecology, Poissy Saint-Germain-en-Laye Hospital Poissy, France
| | - D Fauvert
- Department of Cytogenetics, Foetal Pathology, Obstetrics and Gynecology, Poissy Saint-Germain-en-Laye Hospital Poissy, France
| | - H Crosnier
- Department of Paediatrics, Poissy Saint-Germain-en-Laye Hospital Poissy, France
| | - H Dessuant
- Cytogenetics Department, Biomnis Paris, France
| | - F Vialard
- Department of Cytogenetics, Foetal Pathology, Obstetrics and Gynecology, Poissy Saint-Germain-en-Laye Hospital Poissy, France ; Versailles Saint-Quentin-en-Yvelines University Versailles, France
| |
Collapse
|
43
|
Weaver KN, El Hallek M, Hopkin RJ, Sund KL, Henrickson M, Del Gaudio D, Yuksel A, Acar GO, Bober MB, Kim J, Boyadjiev SA. Keutel syndrome: report of two novel MGP mutations and discussion of clinical overlap with arylsulfatase E deficiency and relapsing polychondritis. Am J Med Genet A 2014; 164A:1062-8. [PMID: 24458983 DOI: 10.1002/ajmg.a.36390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 11/09/2013] [Indexed: 01/31/2023]
Abstract
Keutel syndrome is a rare, autosomal recessive disorder characterized by diffuse cartilage calcification, peripheral pulmonary artery stenosis, midface retrusion, and short distal phalanges. To date, 28 patients from 18 families have been reported, and five mutations in the matrix Gla protein gene (MGP) have been identified. The matrix Gla protein (MGP) is a vitamin K-dependent extracellular protein that functions as a calcification inhibitor through incompletely understood mechanisms. We present the clinical manifestations of three affected siblings from a consanguineous Turkish family, in whom we detected the sixth MGP mutation (c.79G>T, which predicts p.E27X) and a fourth unrelated patient in whom we detected the seventh MGP mutation, a partial deletion of exon 4. Both mutations predict complete loss of MGP function. One of the patients presented initially with a working diagnosis of relapsing polychondritis. Clinical features suggestive of Keutel syndrome were also observed in one additional unrelated patient who was later found to have a deletion of arylsulfatase E, consistent with a diagnosis of X-linked recessive chondrodysplasia punctata. Through a discussion of these cases, we highlight the clinical overlap of Keutel syndrome, X-linked chondrodysplasia punctata, and the inflammatory disease relapsing polychondritis.
Collapse
Affiliation(s)
- K Nicole Weaver
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mick TJ. Congenital Diseases. Clin Imaging 2014. [DOI: 10.1016/b978-0-323-08495-6.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Wiegmann EM, Westendorf E, Kalus I, Pringle TH, Lübke T, Dierks T. Arylsulfatase K, a novel lysosomal sulfatase. J Biol Chem 2013; 288:30019-30028. [PMID: 23986440 DOI: 10.1074/jbc.m113.499541] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human sulfatase family has 17 members, 13 of which have been characterized biochemically. These enzymes specifically hydrolyze sulfate esters in glycosaminoglycans, sulfolipids, or steroid sulfates, thereby playing key roles in cellular degradation, cell signaling, and hormone regulation. The loss of sulfatase activity has been linked to severe pathophysiological conditions such as lysosomal storage disorders, developmental abnormalities, or cancer. A novel member of this family, arylsulfatase K (ARSK), was identified bioinformatically through its conserved sulfatase signature sequence directing posttranslational generation of the catalytic formylglycine residue in sulfatases. However, overall sequence identity of ARSK with other human sulfatases is low (18-22%). Here we demonstrate that ARSK indeed shows desulfation activity toward arylsulfate pseudosubstrates. When expressed in human cells, ARSK was detected as a 68-kDa glycoprotein carrying at least four N-glycans of both the complex and high-mannose type. Purified ARSK turned over p-nitrocatechol and p-nitrophenyl sulfate. This activity was dependent on cysteine 80, which was verified to undergo conversion to formylglycine. Kinetic parameters were similar to those of several lysosomal sulfatases involved in degradation of sulfated glycosaminoglycans. An acidic pH optimum (~4.6) and colocalization with LAMP1 verified lysosomal functioning of ARSK. Further, it carries mannose 6-phosphate, indicating lysosomal sorting via mannose 6-phosphate receptors. ARSK mRNA expression was found in all tissues tested, suggesting a ubiquitous physiological substrate and a so far non-classified lysosomal storage disorder in the case of ARSK deficiency, as shown before for all other lysosomal sulfatases.
Collapse
Affiliation(s)
- Elena Marie Wiegmann
- From the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld, Germany and
| | - Eva Westendorf
- From the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld, Germany and
| | - Ina Kalus
- From the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld, Germany and
| | | | - Torben Lübke
- From the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld, Germany and
| | - Thomas Dierks
- From the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld, Germany and.
| |
Collapse
|
46
|
A potential molecular target for morphological defects of fetal alcohol syndrome: Kir2.1. Curr Opin Genet Dev 2013; 23:324-9. [DOI: 10.1016/j.gde.2013.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/05/2013] [Accepted: 05/06/2013] [Indexed: 12/30/2022]
|
47
|
Trent S, Davies W. Cognitive, behavioural and psychiatric phenotypes associated with steroid sulfatase deficiency. World J Transl Med 2013; 2:1-12. [DOI: 10.5528/wjtm.v2.i1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/24/2013] [Accepted: 02/08/2013] [Indexed: 02/05/2023] Open
Abstract
The enzyme steroid sulfatase (STS) desulfates a variety of steroid compounds thereby altering their activity. STS is expressed in the skin, and its deficiency in this tissue has been linked to the dermatological condition X-linked ichthyosis. STS is also highly expressed in the developing and adult human brain, and in a variety of steroidogenic organs (including the placenta and gonads); therefore it has the potential to influence brain development and function directly and/or indirectly (through influencing the hormonal milieu). In this review, we first discuss evidence from human and animal model studies suggesting that STS deficiency might predispose to neurobehavioural abnormalities and certain psychiatric disorders. We subsequently discuss potential mechanisms that may underlie these vulnerabilities. The data described herein have potential implications for understanding the complete spectrum of clinical phenotypes associated with X-linked ichthyosis, and may indicate novel pathogenic mechanisms underlying psychological dysfunction in developmental disorders such as attention deficit hyperactivity disorder and Turner syndrome.
Collapse
|
48
|
A prospective study of brachytelephalangic chondrodysplasia punctata: identification of arylsulfatase E mutations, functional analysis of novel missense alleles, and determination of potential phenocopies. Genet Med 2013; 15:650-7. [DOI: 10.1038/gim.2013.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/07/2013] [Indexed: 02/03/2023] Open
|
49
|
Meyer S, Löffler G, Gencik M, Fries P, Papanagiotou P, Oehl-Jaschkowitz B, Gortner L. Brachytelephalangic chondrodysplasia punctata with a new hemizygous missense mutation in a neonate. Am J Med Genet A 2013; 161A:626-9. [DOI: 10.1002/ajmg.a.35758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/13/2012] [Indexed: 11/10/2022]
|
50
|
Toriello HV, Erick M, Alessandri JL, Bailey D, Brunetti-Pierri N, Cox H, Fryer A, Marty D, McCurdy C, Mulliken JB, Murphy H, Omlor J, Pauli RM, Ranells JD, Sanchez-Valle A, Tobiasz A, Van Maldergem L, Lin AE. Maternal vitamin K deficient embryopathy: Association with hyperemesis gravidarum and Crohn disease. Am J Med Genet A 2013; 161A:417-29. [DOI: 10.1002/ajmg.a.35765] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/15/2012] [Indexed: 02/04/2023]
|