1
|
Goodall DJ, Warecka D, Hawkins M, Rudolph CJ. Interplay between chromosomal architecture and termination of DNA replication in bacteria. Front Microbiol 2023; 14:1180848. [PMID: 37434703 PMCID: PMC10331603 DOI: 10.3389/fmicb.2023.1180848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Faithful transmission of the genome from one generation to the next is key to life in all cellular organisms. In the majority of bacteria, the genome is comprised of a single circular chromosome that is normally replicated from a single origin, though additional genetic information may be encoded within much smaller extrachromosomal elements called plasmids. By contrast, the genome of a eukaryote is distributed across multiple linear chromosomes, each of which is replicated from multiple origins. The genomes of archaeal species are circular, but are predominantly replicated from multiple origins. In all three cases, replication is bidirectional and terminates when converging replication fork complexes merge and 'fuse' as replication of the chromosomal DNA is completed. While the mechanics of replication initiation are quite well understood, exactly what happens during termination is far from clear, although studies in bacterial and eukaryotic models over recent years have started to provide some insight. Bacterial models with a circular chromosome and a single bidirectional origin offer the distinct advantage that there is normally just one fusion event between two replication fork complexes as synthesis terminates. Moreover, whereas termination of replication appears to happen in many bacteria wherever forks happen to meet, termination in some bacterial species, including the well-studied bacteria Escherichia coli and Bacillus subtilis, is more restrictive and confined to a 'replication fork trap' region, making termination even more tractable. This region is defined by multiple genomic terminator (ter) sites, which, if bound by specific terminator proteins, form unidirectional fork barriers. In this review we discuss a range of experimental results highlighting how the fork fusion process can trigger significant pathologies that interfere with the successful conclusion of DNA replication, how these pathologies might be resolved in bacteria without a fork trap system and how the acquisition of a fork trap might have provided an alternative and cleaner solution, thus explaining why in bacterial species that have acquired a fork trap system, this system is remarkably well maintained. Finally, we consider how eukaryotic cells can cope with a much-increased number of termination events.
Collapse
Affiliation(s)
- Daniel J. Goodall
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | | | | | - Christian J. Rudolph
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
2
|
Toft CJ, Sorenson AE, Schaeffer PM. A soft Tus-Ter interaction is hiding a fail-safe lock in the replication fork trap of Dickeya paradisiaca. Microbiol Res 2022; 263:127147. [PMID: 35914414 DOI: 10.1016/j.micres.2022.127147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022]
Abstract
A variety of replication fork traps have recently been characterised in Enterobacterales, unveiling two different types of architecture. Of these, the degenerate type II fork traps are commonly found in Enterobacteriaceae such as Escherichia coli. The newly characterised type I fork traps are found almost exclusively outside Enterobacteriaceae within Enterobacterales and include several archetypes of possible ancestral architectures. Dickeya paradisiaca harbours a somewhat degenerate type I fork trap with a unique Ter1 adjacent to tus gene on one side of the circular chromosome and three putative Ter2-4 sites on the other side of the fork trap. The two innermost Ter1 and Ter2 sites are only separated by 18 kb, which is the shortest distance between two innermost Ter sites of any chromosomal fork trap identified so far. Of note, the dif site is located between these two sites, coinciding with a sharp GC-skew flip. Here we examined and compared the binding modalities of E. coli and D. paradisiaca Tus proteins for these Ter sites. Surprisingly, while Ter1-3 were functional, no significant Tus binding was observed for Ter4 even in low salt conditions, which is in stark contrast with the significant non-specific protein-DNA interactions that occur with E. coli Tus. Even more surprising was the finding that D. paradisiaca Tus has a relatively moderate binding affinity to double-stranded Ter while retaining an extremely high affinity to Ter-lock sequences. Our data revealed major differences in the salt resistance and stability between the D. paradisiaca and E. coli Tus protein complexes, suggesting that while Tus protein evolution can be quite flexible regarding the initial Ter binding step, it requires a highly stringent purifying selection for its final locked complex formation.
Collapse
Affiliation(s)
- Casey J Toft
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia
| | - Alanna E Sorenson
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia
| | - Patrick M Schaeffer
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia.
| |
Collapse
|
3
|
Moolman MC, Tiruvadi Krishnan S, Kerssemakers JWJ, de Leeuw R, Lorent V, Sherratt DJ, Dekker NH. The progression of replication forks at natural replication barriers in live bacteria. Nucleic Acids Res 2016; 44:6262-73. [PMID: 27166373 PMCID: PMC5291258 DOI: 10.1093/nar/gkw397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 01/07/2023] Open
Abstract
Protein-DNA complexes are one of the principal barriers the replisome encounters during replication. One such barrier is the Tus-ter complex, which is a direction dependent barrier for replication fork progression. The details concerning the dynamics of the replisome when encountering these Tus-ter barriers in the cell are poorly understood. By performing quantitative fluorescence microscopy with microfuidics, we investigate the effect on the replisome when encountering these barriers in live Escherichia coli cells. We make use of an E. coli variant that includes only an ectopic origin of replication that is positioned such that one of the two replisomes encounters a Tus-ter barrier before the other replisome. This enables us to single out the effect of encountering a Tus-ter roadblock on an individual replisome. We demonstrate that the replisome remains stably bound after encountering a Tus-ter complex from the non-permissive direction. Furthermore, the replisome is only transiently blocked, and continues replication beyond the barrier. Additionally, we demonstrate that these barriers affect sister chromosome segregation by visualizing specific chromosomal loci in the presence and absence of the Tus protein. These observations demonstrate the resilience of the replication fork to natural barriers and the sensitivity of chromosome alignment to fork progression.
Collapse
Affiliation(s)
- M Charl Moolman
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Sriram Tiruvadi Krishnan
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Jacob W J Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Roy de Leeuw
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Vincent Lorent
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, CNRS, (UMR 7538), F-93430 Villetaneuse, France
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| |
Collapse
|
4
|
Rybenkov VV. Maintenance of chromosome structure in Pseudomonas aeruginosa. FEMS Microbiol Lett 2014; 356:154-65. [PMID: 24863732 DOI: 10.1111/1574-6968.12478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/11/2014] [Accepted: 05/19/2014] [Indexed: 11/30/2022] Open
Abstract
Replication and segregation of genetic information are the activities central to the well-being of all living cells. Concerted mechanisms have evolved that ensure that each cellular chromosome is replicated once and only once per cell cycle and then faithfully segregated into daughter cells. Despite remarkable taxonomic diversity, these mechanisms are largely conserved across eubacteria, although species-specific distinctions can often be noted. Here, we provide an overview of the current state of knowledge about maintenance of the chromosome structure in Pseudomonas aeruginosa. We focus on global chromosome organization and its dynamics during DNA replication and cell division. Special emphasis is made on contrasting these activities in P. aeruginosa and other bacteria. Among unique P. aeruginosa, features are the presence of two distinct autonomously replicating sequences and multiple condensins, which suggests existence of novel regulatory mechanisms.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
5
|
Bastia D, Zaman S. Mechanism and physiological significance of programmed replication termination. Semin Cell Dev Biol 2014; 30:165-73. [PMID: 24811316 DOI: 10.1016/j.semcdb.2014.04.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/25/2014] [Indexed: 11/26/2022]
Abstract
Replication forks in both prokaryotic and eukaryotic systems pause at random sites due to depletion of dNTP pools, DNA damage, tight binding nonhistone proteins or unusual DNA sequences and/or structures, in a mostly non-polar fashion. However, there is also physiologically programmed replication termination at sequence-specific authentic replication termini. Here, the structure and functions of programmed replication termini, their mechanism of action and their diverse physiological functions in prokaryotes and eukaryotes have been reviewed.
Collapse
Affiliation(s)
- Deepak Bastia
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, United States.
| | - Shamsu Zaman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, United States
| |
Collapse
|
6
|
Moreau MJJ, Schaeffer PM. Differential Tus-Ter binding and lock formation: implications for DNA replication termination in Escherichia coli. MOLECULAR BIOSYSTEMS 2013; 8:2783-91. [PMID: 22859262 DOI: 10.1039/c2mb25281c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In E. coli, DNA replication termination occurs at Ter sites and is mediated by Tus. Two clusters of five Ter sites are located on each side of the terminus region and constrain replication forks in a polar manner. The polarity is due to the formation of the Tus-Ter-lock intermediate. Recently, it has been shown that DnaB helicase which unwinds DNA at the replication fork is preferentially stopped at the non-permissive face of a Tus-Ter complex without formation of the Tus-Ter-lock and that fork pausing efficiency is sequence dependent, raising two essential questions: Does the affinity of Tus for the different Ter sites correlate with fork pausing efficiency? Is formation of the Tus-Ter-lock the key factor in fork pausing? The combined use of surface plasmon resonance and GFP-Basta showed that Tus binds strongly to TerA-E and G, moderately to TerH-J and weakly to TerF. Out of these ten Ter sites only two, TerF and H, were not able to form significant Tus-Ter-locks. Finally, Tus's resistance to dissociation from Ter sites and the strength of the Tus-Ter-locks correlate with the differences in fork pausing efficiency observed for the different Ter sites by Duggin and Bell (2009).
Collapse
Affiliation(s)
- Morgane J J Moreau
- School of Pharmacy and Molecular Sciences, James Cook University, DB 21, James Cook Drive, Townsville, QLD 4811, Australia
| | | |
Collapse
|
7
|
Robinson A, Causer RJ, Dixon NE. Architecture and conservation of the bacterial DNA replication machinery, an underexploited drug target. Curr Drug Targets 2012; 13:352-72. [PMID: 22206257 PMCID: PMC3290774 DOI: 10.2174/138945012799424598] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 11/03/2011] [Accepted: 11/05/2011] [Indexed: 11/22/2022]
Abstract
New antibiotics with novel modes of action are required to combat the growing threat posed by multi-drug resistant bacteria. Over the last decade, genome sequencing and other high-throughput techniques have provided tremendous insight into the molecular processes underlying cellular functions in a wide range of bacterial species. We can now use these data to assess the degree of conservation of certain aspects of bacterial physiology, to help choose the best cellular targets for development of new broad-spectrum antibacterials. DNA replication is a conserved and essential process, and the large number of proteins that interact to replicate DNA in bacteria are distinct from those in eukaryotes and archaea; yet none of the antibiotics in current clinical use acts directly on the replication machinery. Bacterial DNA synthesis thus appears to be an underexploited drug target. However, before this system can be targeted for drug design, it is important to understand which parts are conserved and which are not, as this will have implications for the spectrum of activity of any new inhibitors against bacterial species, as well as the potential for development of drug resistance. In this review we assess similarities and differences in replication components and mechanisms across the bacteria, highlight current progress towards the discovery of novel replication inhibitors, and suggest those aspects of the replication machinery that have the greatest potential as drug targets.
Collapse
Affiliation(s)
- Andrew Robinson
- School of Chemistry, University of Wollongong, NSW 2522, Australia
| | | | | |
Collapse
|
8
|
Khayrutdinov BI, Bae WJ, Yun YM, Lee JH, Tsuyama T, Kim JJ, Hwang E, Ryu KS, Cheong HK, Cheong C, Ko JS, Enomoto T, Karplus PA, Güntert P, Tada S, Jeon YH, Cho Y. Structure of the Cdt1 C-terminal domain: conservation of the winged helix fold in replication licensing factors. Protein Sci 2010; 18:2252-64. [PMID: 19722278 DOI: 10.1002/pro.236] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In eukaryotic replication licensing, Cdt1 plays a key role by recruiting the MCM2-7 complex onto the origin of chromosome. The C-terminal domain of mouse Cdt1 (mCdt1C), the most conserved region in Cdt1, is essential for licensing and directly interacts with the MCM2-7 complex. We have determined the structures of mCdt1CS (mCdt1C_small; residues 452 to 557) and mCdt1CL (mCdt1C_large; residues 420 to 557) using X-ray crystallography and solution NMR spectroscopy, respectively. While the N-terminal 31 residues of mCdt1CL form a flexible loop with a short helix near the middle, the rest of mCdt1C folds into a winged helix structure. Together with the middle domain of mouse Cdt1 (mCdt1M, residues 172-368), this study reveals that Cdt1 is formed with a tandem repeat of the winged helix domain. The winged helix fold is also conserved in other licensing factors including archaeal ORC and Cdc6, which supports an idea that these replication initiators may have evolved from a common ancestor. Based on the structure of mCdt1C, in conjunction with the biochemical analysis, we propose a binding site for the MCM complex within the mCdt1C.
Collapse
Affiliation(s)
- Bulat I Khayrutdinov
- The Magnetic Resonance Team, Korea Basic Science Institute, 804-1 Yangchung-Ri, Ochang, Chungbuk 363-883, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Replication termination mechanism as revealed by Tus-mediated polar arrest of a sliding helicase. Proc Natl Acad Sci U S A 2008; 105:12831-6. [PMID: 18708526 DOI: 10.1073/pnas.0805898105] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The replication terminator protein Tus of Escherichia coli promotes polar fork arrest at sequence-specific replication termini (Ter) by antagonizing DNA unwinding by the replicative helicase DnaB. Here, we report that Tus is also a polar antitranslocase. We have used this activity as a tool to uncouple helicase arrest at a Tus-Ter complex from DNA unwinding and have shown that helicase arrest occurred without the generation of a DNA fork or a bubble of unpaired bases at the Tus-Ter complex. A mutant form of Tus, which reduces DnaB-Tus interaction but not the binding affinity of Tus for Ter DNA, was also defective in arresting a sliding DnaB. A model of polar fork arrest that proposes melting of the Tus-Ter complex and flipping of a conserved C residue of Ter at the blocking but not the nonblocking face has been reported. The model suggests that enhanced stability of Tus-Ter interaction caused by DNA melting and capture of a flipped base by Tus generates polarity strictly by enhanced protein-DNA interaction. In contrast, the observations presented here show that polarity of helicase and fork arrest in vitro is generated by a mechanism that not only involves interaction between the terminator protein and the arrested enzyme but also of Tus with Ter DNA, without any melting and base flipping in the termination complex.
Collapse
|
11
|
Shinkai A, Sekine SI, Urushibata A, Terada T, Shirouzu M, Yokoyama S. The putative DNA-binding protein Sto12a from the thermoacidophilic archaeon Sulfolobus tokodaii contains intrachain and interchain disulfide bonds. J Mol Biol 2007; 372:1293-304. [PMID: 17720190 DOI: 10.1016/j.jmb.2007.07.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 07/20/2007] [Accepted: 07/23/2007] [Indexed: 11/24/2022]
Abstract
The Sto12a protein, from the thermoacidophilic archaeon Sulfolobus tokodaii, has been identified as a small putative DNA-binding protein. Most of the proteins with a high level of amino acid sequence homology to this protein are derived from members of the Sulfolobaceae family, including a transcriptional regulator. We determined the crystal structure of Sto12a at 2.05 A resolution by multiple-wavelength anomalous dispersion phasing from the selenomethionine-containing protein crystal. This is the first structure of a member of this family of DNA-binding proteins. The Sto12a protein forms a homodimer, and the structure is composed of an N-terminal alpha-helix, a winged-helix-turn-helix domain, and a C-terminal alpha-helix that forms an interchain antiparallel coiled coil. The two winged-helix domains are located at both ends of the coiled coil, with putative DNA-recognition helices separated by approximately 34 A. A structural homology search indicated that the winged-helix domain shared a high level of homology with those found in B-DNA- or Z-DNA-binding proteins from various species, including archaea, bacteria, and human, despite a low level of sequence similarity. The unique structural features of the Sto12a protein include intrachain and interchain disulfide bonds, which stabilize the chain and homodimer structures. There are three cysteine residues: Cys15 and Cys16 in the N-terminal alpha-helix, and Cys100 in the C-terminal alpha-helix. Cys15 is involved in an interchain disulfide bridge with the other Cys15, and Cys16 forms an intrachain disulfide bridge with Cys100. This is a novel fold among winged-helix DNA-binding proteins. Possible DNA-binding interactions of the Sto12a protein are discussed based on the crystal structure of Sto12a and comparisons to other winged-helix DNA-binding proteins.
Collapse
Affiliation(s)
- Akeo Shinkai
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Accurate and complete replication of the genome in every cell division is a prerequisite of genomic stability. Thus, both prokaryotic and eukaryotic replication forks are extremely precise and robust molecular machines that have evolved to be up to the task. However, it has recently become clear that the replication fork is more of a hurdler than a runner: it must overcome various obstacles present on its way. Such obstacles can be called natural impediments to DNA replication, as opposed to external and genetic factors. Natural impediments to DNA replication are particular DNA binding proteins, unusual secondary structures in DNA, and transcription complexes that occasionally (in eukaryotes) or constantly (in prokaryotes) operate on replicating templates. This review describes the mechanisms and consequences of replication stalling at various natural impediments, with an emphasis on the role of replication stalling in genomic instability.
Collapse
Affiliation(s)
- Ekaterina V. Mirkin
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Sergei M. Mirkin
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607
- Corresponding author. Present address: Department of Biology, Tufts University, Medford, MA 02155. Phone: (617) 627-4794. Fax: (617) 627-3805. E-mail:
| |
Collapse
|
13
|
Vivian JP, Porter CJ, Wilce JA, Wilce MCJ. An asymmetric structure of the Bacillus subtilis replication terminator protein in complex with DNA. J Mol Biol 2007; 370:481-91. [PMID: 17521668 DOI: 10.1016/j.jmb.2007.02.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 02/08/2007] [Accepted: 02/17/2007] [Indexed: 11/25/2022]
Abstract
In Bacillus subtilis, the termination of DNA replication via polar fork arrest is effected by a specific protein:DNA complex formed between the replication terminator protein (RTP) and DNA terminator sites. We report the crystal structure of a replication terminator protein homologue (RTP.C110S) of B. subtilis in complex with the high affinity component of one of its cognate DNA termination sites, known as the TerI B-site, refined at 2.5 A resolution. The 21 bp RTP:DNA complex displays marked structural asymmetry in both the homodimeric protein and the DNA. This is in contrast to the previously reported complex formed with a symmetrical TerI B-site homologue. The induced asymmetry is consistent with the complex's solution properties as determined using NMR spectroscopy. Concomitant with this asymmetry is variation in the protein:DNA binding pattern for each of the subunits of the RTP homodimer. It is proposed that the asymmetric "wing" positions, as well as other asymmetrical features of the RTP:DNA complex, are critical for the cooperative binding that underlies the mechanism of polar fork arrest at the complete terminator site.
Collapse
Affiliation(s)
- J P Vivian
- Department of Pharmacology, University of Western Australia, Nedlands, Western Australia, 6009, Australia
| | | | | | | |
Collapse
|
14
|
Arita K, Hashimoto H, Igari K, Akaboshi M, Kutsuna S, Sato M, Shimizu T. Structural and biochemical characterization of a cyanobacterium circadian clock-modifier protein. J Biol Chem 2006; 282:1128-35. [PMID: 17098741 DOI: 10.1074/jbc.m608148200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Circadian clocks are self-sustained biochemical oscillators. The oscillator of cyanobacteria comprises the products of three kai genes (kaiA, kaiB, and kaiC). The autophosphorylation cycle of KaiC oscillates robustly in the cell with a 24-h period and is essential for the basic timing of the cyanobacterial circadian clock. Recently, period extender (pex), mutants of which show a short period phenotype, was classified as a resetting-related gene. In fact, pex mRNA and the pex protein (Pex) increase during the dark period, and a pex mutant subjected to diurnal light-dark cycles shows a 3-h advance in rhythm phase. Here, we report the x-ray crystallographic analysis and biochemical characterization of Pex from cyanobacterium Synechococcus elongatus PCC 7942. The molecule has an (alpha+beta) structure with a winged-helix motif and is indicated to function as a dimer. The subunit arrangement in the dimer is unique and has not been seen in other winged-helix proteins. Electrophoresis mobility shift assay using a 25-base pair complementary oligonucleotide incorporating the kaiA upstream sequence demonstrates that Pex has an affinity for the double-stranded DNA. Furthermore, mutation analysis shows that Pex uses the wing region to recognize the DNA. The in vivo rhythm assay of Pex shows that the constitutive expression of the pex gene harboring the mutation that fails to bind to DNA lacks the period-prolongation activity in the pex-deficient Synechococcus, suggesting that Pex is a DNA-binding transcription factor.
Collapse
Affiliation(s)
- Kyouhei Arita
- International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Vivian JP, Porter C, Wilce JA, Wilce MCJ. Crystallization and preliminary X-ray diffraction analysis of the Bacillus subtilis replication termination protein in complex with the 37-base-pair TerI-binding site. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:1104-7. [PMID: 17077489 PMCID: PMC2225203 DOI: 10.1107/s1744309106039108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 09/25/2006] [Indexed: 11/10/2022]
Abstract
The replication terminator protein (RTP) of Bacillus subtilis binds to specific DNA sequences that halt the progression of the replisome in a polar manner. These terminator complexes flank a defined region of the chromosome into which they allow replication forks to enter but not exit. Forcing the fusion of replication forks in a specific zone is thought to allow the coordination of post-replicative processes. The functional terminator complex comprises two homodimers each of 29 kDa bound to overlapping binding sites. A preparation of RTP and a 37-base-pair TerI sequence (comprising two binding sites for RTP) has been purified and crystallized. A data set to 3.9 A resolution with 97.0% completeness and an R(sym) of 12% was collected from a single flash-cooled crystal using synchrotron radiation. The diffraction data are consistent with space group P622, with unit-cell parameters a = b = 118.8, c = 142.6 A.
Collapse
Affiliation(s)
- J. P. Vivian
- School of Medicine and Pharmacology, University of Western Australia, Crawley, WA 6009, Australia
| | - C. Porter
- School of Biomedical and Chemical Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - J. A. Wilce
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - M. C. J. Wilce
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
- Correspondence e-mail:
| |
Collapse
|
16
|
Krings G, Bastia D. Molecular architecture of a eukaryotic DNA replication terminus-terminator protein complex. Mol Cell Biol 2006; 26:8061-74. [PMID: 16940176 PMCID: PMC1636744 DOI: 10.1128/mcb.01102-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
DNA replication forks pause at programmed fork barriers within nontranscribed regions of the ribosomal DNA (rDNA) genes of many eukaryotes to coordinate and regulate replication, transcription, and recombination. The mechanism of eukaryotic fork arrest remains unknown. In Schizosaccharomyces pombe, the promiscuous DNA binding protein Sap1 not only causes polar fork arrest at the rDNA fork barrier Ter1 but also regulates mat1 imprinting at SAS1 without fork pausing. Towards an understanding of eukaryotic fork arrest, we probed the interactions of Sap1 with Ter1 as contrasted with SAS1. The Sap1 dimer bound Ter1 with high affinity at one face of the DNA, contacting successive major grooves. The complex displayed translational symmetry. In contrast, Sap1 subunits approached SAS1 from opposite helical faces, forming a low-affinity complex with mirror image rotational symmetry. The alternate symmetries were reflected in distinct Sap1-induced helical distortions. Importantly, modulating protein-DNA interactions of the fork-proximal Sap1 subunit with the nonnatural binding site DR2 affected blocking efficiency without changes in binding affinity or binding mode but with alterations in Sap1-induced DNA distortion. The results reveal that Sap1-DNA affinity alone is insufficient to account for fork arrest and suggest that Sap1 binding-induced structural changes may result in formation of a competent fork-blocking complex.
Collapse
Affiliation(s)
- Gregor Krings
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
17
|
Taylor CM, Keating AE. Orientation and oligomerization specificity of the Bcr coiled-coil oligomerization domain. Biochemistry 2006; 44:16246-56. [PMID: 16331985 PMCID: PMC2526250 DOI: 10.1021/bi051493t] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Bcr oligomerization domain, from the Bcr-Abl oncoprotein, is an attractive therapeutic target for treating leukemias because it is required for cellular transformation. The domain homodimerizes via an antiparallel coiled coil with an adjacent short, helical swap domain. Inspection of the coiled-coil sequence does not reveal obvious determinants of helix-orientation specificity, raising the possibility that the antiparallel orientation preference and/or the dimeric oligomerization state are due to interactions of the swap domains. To better understand how structural specificity is encoded in Bcr, coiled-coil constructs containing either an N- or C-terminal cysteine were synthesized without the swap domain. When cross-linked to adopt exclusively parallel or antiparallel orientations, these showed similar circular dichroism spectra. Both constructs formed coiled-coil dimers, but the antiparallel construct was approximately 16 degrees C more stable than the parallel to thermal denaturation. Equilibrium disulfide-exchange studies confirmed that the isolated coiled-coil homodimer shows a very strong preference for the antiparallel orientation. We conclude that the orientation and oligomerization preferences of Bcr are not caused by the presence of the swap domains, but rather are directly encoded in the coiled-coil sequence. We further explored possible determinants of structural specificity by mutating residues in the d position of the coiled-coil core. Some of the mutations caused a change in orientation specificity, and all of the mutations led to the formation of higher-order oligomers. In the absence of the swap domain, these residues play an important role in disfavoring alternate states and are especially important for encoding dimeric oligomerization specificity.
Collapse
Affiliation(s)
| | - Amy E. Keating
- * To whom correspondence should be directed. Tel: 617-452-3398. Fax: 617-253-4043 E-mail:
| |
Collapse
|
18
|
Hu JS, Feng H, Zeng W, Lin GX, Xi XG. Solution structure of a multifunctional DNA- and protein-binding motif of human Werner syndrome protein. Proc Natl Acad Sci U S A 2005; 102:18379-84. [PMID: 16339893 PMCID: PMC1317980 DOI: 10.1073/pnas.0509380102] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Werner syndrome (WS) is an autosomal recessive disease that results in premature aging. Mutations in the WS gene (WRN) result in a loss of expression of the WRN protein and predispose WS patients to accelerated aging. As a helicase and a nuclease, WRN is unique among the five human RecQ helicase family members and is capable of multiple functions involved in DNA replication, repair, recombination, and telomere maintenance. A 144-residue fragment of WRN was previously determined to be a multifunctional DNA- and protein-binding domain (DPBD) that interacts with structure-specific DNA and a variety of DNA-processing proteins. In addition, DPBD functions as a nucleolar targeting sequence of WRN. The solution structure of the DPBD, the first of a WRN fragment, has been solved by NMR. DPBD consists of a winged helix-like motif and an unstructured C-terminal region of approximately 20 aa. The putative DNA-binding surface of DPBD has been identified by using known structural and biochemical data. Based on the structural data and on the biochemical data, we suggest a surface on the DPBD for interacting with other proteins. In this structural model, a single winged helix domain binds to both DNA and other proteins. Furthermore, we propose that DPBD functions as a regulatory domain to regulate the enzymatic activity of WRN and to direct cellular localization of WRN through protein-protein interaction.
Collapse
Affiliation(s)
- Jin-Shan Hu
- Department of Chemistry and Biochemistry and Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | |
Collapse
|
19
|
Neylon C, Kralicek AV, Hill TM, Dixon NE. Replication termination in Escherichia coli: structure and antihelicase activity of the Tus-Ter complex. Microbiol Mol Biol Rev 2005; 69:501-26. [PMID: 16148308 PMCID: PMC1197808 DOI: 10.1128/mmbr.69.3.501-526.2005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The arrest of DNA replication in Escherichia coli is triggered by the encounter of a replisome with a Tus protein-Ter DNA complex. A replication fork can pass through a Tus-Ter complex when traveling in one direction but not the other, and the chromosomal Ter sites are oriented so replication forks can enter, but not exit, the terminus region. The Tus-Ter complex acts by blocking the action of the replicative DnaB helicase, but details of the mechanism are uncertain. One proposed mechanism involves a specific interaction between Tus-Ter and the helicase that prevents further DNA unwinding, while another is that the Tus-Ter complex itself is sufficient to block the helicase in a polar manner, without the need for specific protein-protein interactions. This review integrates three decades of experimental information on the action of the Tus-Ter complex with information available from the Tus-TerA crystal structure. We conclude that while it is possible to explain polar fork arrest by a mechanism involving only the Tus-Ter interaction, there are also strong indications of a role for specific Tus-DnaB interactions. The evidence suggests, therefore, that the termination system is more subtle and complex than may have been assumed. We describe some further experiments and insights that may assist in unraveling the details of this fascinating process.
Collapse
Affiliation(s)
- Cameron Neylon
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom.
| | | | | | | |
Collapse
|
20
|
Hastings AF, Otting G, Folmer RHA, Duggin IG, Wake RG, Wilce MCJ, Wilce JA. Interaction of the replication terminator protein of Bacillus subtilis with DNA probed by NMR spectroscopy. Biochem Biophys Res Commun 2005; 335:361-6. [PMID: 16061201 DOI: 10.1016/j.bbrc.2005.07.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the dimeric 29 kDa replication terminator protein (RTP) and DNA terminator sites. We have used NMR spectroscopy to probe the changes in 1H-15N correlation spectra of a 15N-labelled RTP.C110S mutant upon the addition of a 21 base pair symmetrical DNA binding site. Assignment of the 1H-15N correlations was achieved using a suite of triple resonance NMR experiments with 15N,13C,70% 2H enriched protein recorded at 800 MHz and using TROSY pulse sequences. Perturbations to 1H-15N spectra revealed that the N-termini, alpha3-helices and several loops are affected by the binding interaction. An analysis of this data in light of the crystallographically determined apo- and DNA-bound forms of RTP.C110S revealed that the NMR spectral perturbations correlate more closely to protein structural changes upon complex formation rather than to interactions at the protein-DNA interface.
Collapse
Affiliation(s)
- Adam F Hastings
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
21
|
Duggin IG, Matthews JM, Dixon NE, Wake RG, Mackay JP. A Complex Mechanism Determines Polarity of DNA Replication Fork Arrest by the Replication Terminator Complex of Bacillus subtilis. J Biol Chem 2005; 280:13105-13. [PMID: 15657033 DOI: 10.1074/jbc.m414187200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two dimers of the replication terminator protein (RTP) of Bacillus subtilis bind to a chromosomal DNA terminator site to effect polar replication fork arrest. Cooperative binding of the dimers to overlapping half-sites within the terminator is essential for arrest. It was suggested previously that polarity of fork arrest is the result of the RTP dimer at the blocking (proximal) side within the complex binding very tightly and the permissive-side RTP dimer binding relatively weakly. In order to investigate this "differential binding affinity" model, we have constructed a series of mutant terminators that contain half-sites of widely different RTP binding affinities in various combinations. Although there appeared to be a correlation between binding affinity at the proximal half-site and fork arrest efficiency in vivo for some terminators, several deviated significantly from this correlation. Some terminators exhibited greatly reduced binding cooperativity (and therefore have reduced affinity at each half-site) but were highly efficient in fork arrest, whereas one terminator had normal affinity over the proximal half-site, yet had low fork arrest efficiency. The results show clearly that there is no direct correlation between the RTP binding affinity (either within the full complex or at the proximal half-site within the full complex) and the efficiency of replication fork arrest in vivo. Thus, the differential binding affinity over the proximal and distal half-sites cannot be solely responsible for functional polarity of fork arrest. Furthermore, efficient fork arrest relies on features in addition to the tight binding of RTP to terminator DNA.
Collapse
Affiliation(s)
- Iain G Duggin
- School of Molecular and Microbial Biosciences, The University of Sydney, New South Wales 2006 and Research School of Chemistry, Australian National University, Australian Capital Territory 0200, Australia.
| | | | | | | | | |
Collapse
|
22
|
Chen L, Chen LR, Zhou XE, Wang Y, Kahsai MA, Clark AT, Edmondson SP, Liu ZJ, Rose JP, Wang BC, Meehan EJ, Shriver JW. The hyperthermophile protein Sso10a is a dimer of winged helix DNA-binding domains linked by an antiparallel coiled coil rod. J Mol Biol 2004; 341:73-91. [PMID: 15312764 DOI: 10.1016/j.jmb.2004.05.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 03/19/2004] [Accepted: 05/18/2004] [Indexed: 01/01/2023]
Abstract
Sso10a is a member of a group of DNA-binding proteins thought to be important in chromatin structure and regulation in the hyperthermophilic archaeon Sulfolobus solfataricus. We have determined the structure of Sso10a to 1.47A resolution directly with unlabelled native crystals by a novel approach using sulfur single-wavelength anomalous scattering (SAS) from a chromium X-ray source. The 95 amino acid residue protein contains a winged helix DNA-binding domain with an extended C-terminal alpha-helix that leads to dimerization by forming a two-stranded, antiparallel coiled-coil rod. The winged helix domains are at opposite ends of the extended coiled coil with two putative DNA-recognition helices separated by 55A and rotated by 83 degrees. Formation of stable dimers in solution is demonstrated by both analytical ultracentrifugation and differential scanning calorimetry. With a T0 of 109 degrees C, Sso10a is one of the most stable two-stranded coiled coils known. The coiled coil contains a rare aspartate residue (D69) in the normally hydrophobic d position of the heptad repeat, with two aspartate-lysine (d-g') interhelical ion pairs in the symmetrical dimer. Mutation of D69 to alanine resulted in an increase in thermal stability, indicating that destabilization resulting from the partially buried aspartate residue cannot be offset by ion pair formation. Possible DNA-binding interactions are discussed on the basis of comparisons to other winged helix proteins. The structure of Sso10a provides insight into the structures of the conserved domain represented by COG3432, a group of more than 20 hypothetical transcriptional regulators coded in the genomic sequences of both crenarchaeota and euryarchaeota.
Collapse
Affiliation(s)
- Liqing Chen
- Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lee C, Hong B, Choi JM, Kim Y, Watanabe S, Ishimi Y, Enomoto T, Tada S, Kim Y, Cho Y. Structural basis for inhibition of the replication licensing factor Cdt1 by geminin. Nature 2004; 430:913-7. [PMID: 15286659 DOI: 10.1038/nature02813] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Accepted: 07/05/2004] [Indexed: 11/08/2022]
Abstract
To maintain chromosome stability in eukaryotic cells, replication origins must be licensed by loading mini-chromosome maintenance (MCM2-7) complexes once and only once per cell cycle. This licensing control is achieved through the activities of geminin and cyclin-dependent kinases. Geminin binds tightly to Cdt1, an essential component of the replication licensing system, and prevents the inappropriate reinitiation of replication on an already fired origin. The inhibitory effect of geminin is thought to prevent the interaction between Cdt1 and the MCM helicase. Here we describe the crystal structure of the mouse geminin-Cdt1 complex using tGeminin (residues 79-157, truncated geminin) and tCdt1 (residues 172-368, truncated Cdt1). The amino-terminal region of a coiled-coil dimer of tGeminin interacts with both N-terminal and carboxy-terminal parts of tCdt1. The primary interface relies on the steric complementarity between the tGeminin dimer and the hydrophobic face of the two short N-terminal helices of tCdt1 and, in particular, Pro 181, Ala 182, Tyr 183, Phe 186 and Leu 189. The crystal structure, in conjunction with our biochemical data, indicates that the N-terminal region of tGeminin might be required to anchor tCdt1, and the C-terminal region of tGeminin prevents access of the MCM complex to tCdt1 through steric hindrance.
Collapse
Affiliation(s)
- Changwook Lee
- National Creative Research Center for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Hyo-ja dong, San31, Pohang, KyungBook, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Thirlway J, Turner IJ, Gibson CT, Gardiner L, Brady K, Allen S, Roberts CJ, Soultanas P. DnaG interacts with a linker region that joins the N- and C-domains of DnaB and induces the formation of 3-fold symmetric rings. Nucleic Acids Res 2004; 32:2977-86. [PMID: 15173380 PMCID: PMC434434 DOI: 10.1093/nar/gkh628] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 05/11/2004] [Accepted: 05/11/2004] [Indexed: 11/12/2022] Open
Abstract
Loading of the replicative ring helicase onto the origin of replication (oriC) is the final outcome of a well coordinated series of events that collectively constitute a primosomal cascade. Once the ring helicase is loaded, it recruits the primase and signals the switch to the polymerization mode. The transient nature of the helicase-primase (DnaB-DnaG) interaction in the Escherichia coli system has hindered our efforts to elucidate its structure and function. Taking advantage of the stable DnaB-DnaG complex in Bacillus stearothermophilus, we have reviewed conflicting mutagenic data from other bacterial systems and shown that DnaG interacts with the flexible linker that connects the N- and C-terminal domains of DnaB. Furthermore, atomic force microscopy (AFM) imaging experiments show that binding of the primase to the helicase induces predominantly a 3-fold symmetric morphology to the hexameric ring. Overall, three DnaG molecules appear to interact with the hexameric ring helicase but a small number of complexes with two and even one DnaG molecule bound to DnaB were also detected. The structural/functional significance of these data is discussed and a speculative structural model for this complex is suggested.
Collapse
Affiliation(s)
- Jenny Thirlway
- Centre for Biomolecular Sciences (CBS), School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Vivian JP, Hastings AF, Duggin IG, Wake RG, Wilce MCJ, Wilce JA. The impact of single cysteine residue mutations on the replication terminator protein. Biochem Biophys Res Commun 2003; 310:1096-103. [PMID: 14559228 DOI: 10.1016/j.bbrc.2003.09.126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report the structural and biophysical consequences of cysteine substitutions in the DNA-binding replication terminator protein (RTP) of Bacillus subtilis, that resulted in an optimised RTP mutant suitable for structural studies. The cysteine residue 110 was replaced with alanine, valine or serine. Protein secondary structure and stability (using circular dichroism spectropolarimetry), self-association (using analytical ultracentrifugation), and DNA-binding measurements revealed RTP.C110S to be the most similar mutant to wild-type RTP. The C110A and C110V.RTP mutants were less soluble, less stable and showed lower DNA-binding affinity. The structure of RTP.C110S, solved to 2.5A resolution using crystallographic methods, showed no major structural perturbation due to the mutation. Heteronuclear NMR spectroscopic studies revealed subtle differences in the electronic environment about the site of mutation. The study demonstrates the suitability of serine as a substitute for cysteine in RTP and the high sensitivity of protein behaviour to single amino acid substitutions.
Collapse
Affiliation(s)
- J P Vivian
- Department of Pharmacology, Western Australian Institute for Medical Research, University of Western Australia, Perth, WA 6009, Australia
| | | | | | | | | | | |
Collapse
|
26
|
McClain DL, Binfet JP, Oakley MG. Evaluation of the energetic contribution of interhelical Coulombic interactions for coiled coil helix orientation specificity. J Mol Biol 2001; 313:371-83. [PMID: 11800563 DOI: 10.1006/jmbi.2001.5044] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coiled coils are formed by two or more alpha-helices that align in a parallel or an antiparallel relative orientation. The factors that determine a preference for a given relative helix orientation are incompletely understood. The helix orientation preference for the designed coiled coil, Acid-a1-Base-a1, was measured previously. This model system therefore provides a means for the experimental determination of the energetic contribution of a variety of interactions to helix orientation specificity. The antiparallel preference for Acid-a1-Base-a1 is imparted by a single buried polar interaction. Interhelical Coulombic interactions between residues at the e and g positions have been proposed to influence helix orientation preference. In the Acid-a1-Base-a1 heterodimer, potentially attractive Coulombic interactions are expected in both orientations. To determine the energetic consequences of Coulombic interactions for helix orientation preference, we have positioned a single charged residue in each peptide such that exclusively favorable interhelical Coulombic interactions can occur only in the parallel orientation. In contrast, two potentially repulsive interactions are expected in the antiparallel orientation. Because the buried polar interaction can occur only in the antiparallel orientation, interhelical Coulombic interactions favor the parallel orientation and the potential to form a buried polar interaction favors the antiparallel orientation. We find no clear preference for an antiparallel orientation in the resulting heterodimer, Acid-Ke-Base-Eg, suggesting that interhelical Coulombic interactions and a buried polar interaction are of approximately equal importance for helix orientation specificity. Stability measurements indicate that maintenance of all favorable electrostatic interactions and/or avoidance of two potentially repulsive interactions contributes approximately 2.1 kcal/mol to helix orientation preference.
Collapse
Affiliation(s)
- D L McClain
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | | | | |
Collapse
|
27
|
Mulugu S, Potnis A, Shamsuzzaman, Taylor J, Alexander K, Bastia D. Mechanism of termination of DNA replication of Escherichia coli involves helicase-contrahelicase interaction. Proc Natl Acad Sci U S A 2001; 98:9569-74. [PMID: 11493686 PMCID: PMC55493 DOI: 10.1073/pnas.171065898] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2001] [Indexed: 11/18/2022] Open
Abstract
Using yeast forward and reverse two-hybrid analyses, we have discovered that the replication terminator protein Tus of Escherichia coli physically interacts with DnaB helicase in vivo. We have confirmed this protein-protein interaction in vitro. We show further that replication termination involves protein-protein interaction between Tus and DnaB at a critical region of Tus protein, called the L1 loop. Several mutations located in the L1 loop region not only reduced the protein-protein interaction but also eliminated or reduced the ability of the mutant forms of Tus to arrest DnaB at a Ter site. At least one mutation, E49K, significantly reduced Tus-DnaB interaction and almost completely eliminated the contrahelicase activity of Tus protein in vitro without significantly reducing the affinity of the mutant form of Tus for Ter DNA, in comparison with the wild-type protein. The results, considered along with the crystal structure of Tus-Ter complex, not only elucidate further the mechanism of helicase arrest but also explain the molecular basis of polarity of replication fork arrest at Ter sites.
Collapse
Affiliation(s)
- S Mulugu
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
28
|
Gautam A, Mulugu S, Alexander K, Bastia D. A single domain of the replication termination protein of Bacillus subtilis is involved in arresting both DnaB helicase and RNA polymerase. J Biol Chem 2001; 276:23471-9. [PMID: 11313334 DOI: 10.1074/jbc.m009537200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The current models that have been proposed to explain the mechanism of replication termination are (i) passive arrest of a replication fork by the terminus (Ter) DNA-terminator protein complex that impedes the replication fork and the replicative helicase in a polar fashion and (ii) an active barrier model in which the Ter-terminator protein complex arrests a fork not only by DNA-protein interaction but also by mechanistically significant terminator protein-helicase interaction. Despite the existence of some evidence supporting in vitro interaction between the replication terminator protein (RTP) and DnaB helicase, there has been continuing debate in the literature questioning the validity of the protein-protein interaction model. The objective of the present work was two-fold: (i) to reexamine the question of RTP-DnaB interaction by additional techniques and different mutant forms of RTP, and (ii) to investigate if a common domain of RTP is involved in the arrest of both helicase and RNA polymerase. The results validate and confirm the RTP-DnaB interaction in vitro and suggest a critical role for this interaction in replication fork arrest. The results also show that the Tyr(33) residue of RTP plays a critical role both in the arrest of helicase and RNA polymerase.
Collapse
Affiliation(s)
- A Gautam
- Departments of Microbiology and Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
29
|
Gordon-Smith DJ, Carbajo RJ, Yang JC, Videler H, Runswick MJ, Walker JE, Neuhaus D. Solution structure of a C-terminal coiled-coil domain from bovine IF(1): the inhibitor protein of F(1) ATPase. J Mol Biol 2001; 308:325-39. [PMID: 11327770 DOI: 10.1006/jmbi.2001.4570] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bovine IF(1) is a basic, 84 amino acid residue protein that inhibits the hydrolytic action of the F(1)F(0) ATP synthase in mitochondria under anaerobic conditions. Its oligomerization state is dependent on pH. At a pH value below 6.5 it forms an active dimer. At higher pH values, two dimers associate to form an inactive tetramer. Here, we present the solution structure of a C-terminal fragment of IF(1) (44-84) containing all five of the histidine residues present in the sequence. Most unusually, the molecule forms an anti-parallel coiled-coil in which three of the five histidine residues occupy key positions at the dimer interface.
Collapse
Affiliation(s)
- D J Gordon-Smith
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Gautam A, Bastia D. A replication terminus located at or near a replication checkpoint of Bacillus subtilis functions independently of stringent control. J Biol Chem 2001; 276:8771-7. [PMID: 11124956 DOI: 10.1074/jbc.m009538200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have examined a replication terminus (psiL1) located on the left arm of the chromosome of Bacillus subtilis and within the yxcC gene and at or near the left replication checkpoint that is activated under stringent conditions. The psiL1 sequence appears to bind to two dimers of the replication terminator protein (RTP) rather weakly and seems to possess overlapping core and auxiliary sites that have some sequence similarities with normal Ter sites. Surprisingly, the asymmetrical, isolated psiL1 site arrested replication forks in vivo in both orientations and independent of stringent control. In vitro, the sequence arrested DnaB helicase in both orientations, albeit more weakly than the normal Ter1 terminus. The key points of mechanistic interest that emerge from the present work are: (i) strong binding of a Ter (psiL1) sequence to RTP did not appear to be essential for fork arrest and (ii) polarity of fork arrest could not be correlated in this case with just symmetrical protein-DNA interaction at the core and auxiliary sites of psiL1. On the basis of the result it would appear that the weak RTP-L1Ter interaction cannot by itself account for fork arrest, thus suggesting a role for DnaB-RTP interaction.
Collapse
Affiliation(s)
- A Gautam
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
31
|
Effects of replication termination mutants on chromosome partitioning in Bacillus subtilis. Proc Natl Acad Sci U S A 2001. [PMID: 11134515 PMCID: PMC14570 DOI: 10.1073/pnas.011506098] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many circular genomes have replication termination systems, yet disruption of these systems does not cause an obvious defect in growth or viability. We have found that the replication termination system of Bacillus subtilis contributes to accurate chromosome partitioning. Partitioning of the terminus region requires that chromosome dimers, that have formed as a result of RecA-mediated homologous recombination, be resolved to monomers by the site-specific recombinase encoded by ripX. In addition, the chromosome must be cleared from the region of formation of the division septum. This process is facilitated by the spoIIIE gene product which is required for movement of a chromosome out of the way of the division septum during sporulation. We found that deletion of rtp, which encodes the replication termination protein, in combination with mutations in ripX or spoIIIE, led to an increase in production of anucleate cells. This increase in production of anucleate cells depended on recA, indicating that there is probably an increase in chromosome dimer formation in the absence of the replication termination system. Our results also indicate that SpoIIIE probably enhances the function of the RipX recombinase system. We also determined the subcellular location of the replication termination protein and found that it is a good marker for the position of the chromosome terminus.
Collapse
|
32
|
Lemon KP, Kurtser I, Grossman AD. Effects of replication termination mutants on chromosome partitioning in
Bacillus subtilis. Proc Natl Acad Sci U S A 2001; 98:212-7. [PMID: 11134515 PMCID: PMC14570 DOI: 10.1073/pnas.98.1.212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many circular genomes have replication termination systems, yet
disruption of these systems does not cause an obvious defect in growth
or viability. We have found that the replication termination system of
Bacillus subtilis
contributes to accurate chromosome
partitioning. Partitioning of the terminus region requires that
chromosome dimers, that have formed as a result of RecA-mediated
homologous recombination, be resolved to monomers by the site-specific
recombinase encoded by
ripX
. In addition, the chromosome
must be cleared from the region of formation of the division septum.
This process is facilitated by the
spoIIIE
gene product
which is required for movement of a chromosome out of the way of the
division septum during sporulation. We found that deletion of
rtp
, which encodes the replication termination protein,
in combination with mutations in
ripX
or
spoIIIE
, led to an increase in production of anucleate
cells. This increase in production of anucleate cells depended on
recA
, indicating that there is probably an increase in
chromosome dimer formation in the absence of the replication
termination system. Our results also indicate that SpoIIIE probably
enhances the function of the RipX recombinase system. We also
determined the subcellular location of the replication termination
protein and found that it is a good marker for the position of the
chromosome terminus.
Collapse
Affiliation(s)
- K P Lemon
- Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
33
|
Okuda M, Watanabe Y, Okamura H, Hanaoka F, Ohkuma Y, Nishimura Y. Structure of the central core domain of TFIIEbeta with a novel double-stranded DNA-binding surface. EMBO J 2000; 19:1346-56. [PMID: 10716934 PMCID: PMC305675 DOI: 10.1093/emboj/19.6.1346] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human general transcription factor TFIIE consists of two subunits, TFIIEalpha and TFIIEbeta. Recently, TFIIEbeta has been found to bind to the region where the promoter starts to open to be single-stranded upon transcription initiation by RNA polymerase II. Here, the central core domain of human TFIIEbeta (TFIIEbetac) has been identified by a limited proteolysis. This solution structure has been determined by NMR. It consists of three helices with a beta hairpin at the C-terminus, resembling the winged helix proteins. However, TFIIEbetac shows a novel double-stranded DNA-binding activity where the DNA-binding surface locates on the opposite side to the previously reported winged helix motif by forming a positively charged furrow. A model will be proposed that TFIIE stabilizes the preinitiation complex by binding not only to the general transcription factors together with RNA polymerase II but also to the promoter DNA, where double-stranded DNA starts to open to be single-stranded upon activation of the preinitiation complex.
Collapse
Affiliation(s)
- M Okuda
- Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Several decades of research have delineated the roles of many proteins central to DNA replication. Here we present a structural perspective of this work spanning the past 15 years and highlight several recent advances in the field.
Collapse
Affiliation(s)
- J L Keck
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
35
|
Abstract
Chromosome replication is not a uniform and continuous process. Replication forks can be slowed down or arrested by DNA secondary structures, specific protein-DNA complexes, specific DNA-RNA hybrids, or interactions between the replication and transcription machineries. Replication arrest has important implications for the topology of replication intermediates and can trigger homologous and illegitimate recombination. Thus, replication arrest may be a key factor in genome instability. Several examples of these phenomena are reviewed here.
Collapse
Affiliation(s)
- O Hyrien
- Ecole Normale Supérieure, Paris, France
| |
Collapse
|
36
|
Duggin IG, Andersen PA, Smith MT, Wilce JA, King GF, Wake RG. Site-directed mutants of RTP of Bacillus subtilis and the mechanism of replication fork arrest. J Mol Biol 1999; 286:1325-35. [PMID: 10064700 DOI: 10.1006/jmbi.1999.2553] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA replication fork arrest during the termination phase of chromosome replication in Bacillus subtilis is brought about by the replication terminator protein (RTP) bound to specific DNA terminator sequences (Ter sites) distributed throughout the terminus region. An attractive suggestion by others was that crucial to the functioning of the RTP-Ter complex is a specific interaction between RTP positioned on the DNA and the helicase associated with the approaching replication fork. In support of this was the behaviour of two site-directed mutants of RTP. They appeared to bind Ter DNA normally but were ineffective in fork arrest as ascertained by in vitro Escherichia coli DnaB helicase and replication assays. We describe here a system for assessing the fork-arrest behaviour of RTP mutants in a bona fide in vivo assay in B. subtilis. One of the previously studied mutants, RTP.Y33N, was non-functional in fork arrest in vivo, as predicted. But through extensive analyses, this RTP mutant was shown to be severely defective in binding to Ter DNA, contrary to expectation. Taken in conjunction with recent findings on the other mutant (RTP.E30K), it is concluded that there is as yet no substantive evidence from the behaviour of RTP mutants to support the RTP-helicase interaction model for fork arrest. In an extension of the present work on RTP.Y33N, we determined the dissociation rates of complexes formed by wild-type (wt) RTP and another RTP mutant with various terminator sequences. The functional wtRTP-TerI complex was quite stable (half-life of 182 minutes), reminiscent of the great stability of the E. coli Tus-Ter complex. More significant were the exceptional stabilities of complexes comprising wtRTP and an RTP double-mutant (E39K.R42Q) bound to some particular terminator sequences. From the measurement of in vivo fork-arrest activities of the various complexes, it is concluded that the stability (half-life) of the whole RTP-Ter complex is not the overriding determinant of arrest, and that the RTP-Ter complex must be actively disrupted, or RTP removed, by the action of the approaching replication fork.
Collapse
Affiliation(s)
- I G Duggin
- Department of Biochemistry, University of Sydney, NSW, 2006, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Sequence-specific replication termini occur in many bacterial and plasmid chromosomes and consist of two components: a cis-acting ter site and a trans-acting replication terminator protein. The interaction of a terminator protein with the ter site creates a protein-DNA complex that arrests replication forks in a polar fashion by antagonizing the action of the replicative helicase (thereby exhibiting a contrahelicase activity). Terminator proteins also arrest RNA polymerases in a polar fashion. Passage of an RNA transcript through a terminus from the non-blocking direction abrogates replication termination function, a mechanism that is likely to be used in conditional termini or replication check points.
Collapse
Affiliation(s)
- D E Bussiere
- Department of Structural Biology, Abbott Laboratories, Abbott Park, IL 60064, USA
| | | |
Collapse
|
38
|
Autret S, Levine A, Vannier F, Fujita Y, Séror SJ. The replication checkpoint control in Bacillus subtilis: identification of a novel RTP-binding sequence essential for the replication fork arrest after induction of the stringent response. Mol Microbiol 1999; 31:1665-79. [PMID: 10209741 DOI: 10.1046/j.1365-2958.1999.01299.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have shown previously that induction of the stringent response in Bacillus subtilis resulted in the arrest of chromosomal replication between 100 and 200 kb either side of oriC at distinct stop sites, designated LSTer and RSTer, left and right stringent terminators respectively. This replication checkpoint was also shown to involve the RTP protein, normally active at the chromosomal terminus. In this study, we show that the replication block is absolutely dependent upon RelA, correlated with high levels of ppGpp, but that efficient arrest at STer sites also requires RTP. DNA-DNA hybridization data indicated that one or more such LSTer sites mapped to gene yxcC (-128 kb from oriC). A 7.75 kb fragment containing this gene was cloned into a theta replicating plasmid, and plasmid replication arrest, requiring both RelA and RTP, was demonstrated. This effect was polar, with plasmid arrest only detected when the fragment was orientated in the same direction with respect to replication, as in the chromosome. This LSTer2 site was further mapped to a 3.65 kb fragment overlapping the next40 probe. Remarkably, this fragment contains a 17 bp sequence (B'-1) showing 76% identity with an RTP binding site (B sequence) present at the chromosomal terminus. This B'-1 sequence, located in the gene yxcC, efficiently binds RTP in vitro, as shown by DNA gel retardation studies and DNase I footprinting. Importantly, precise deletion of this sequence abolished the replication arrest. We propose that this modified B site is an essential constituent of the LSTer2 site. The differences between arrest at the normal chromosomal terminus and arrest at LSTer site are discussed.
Collapse
Affiliation(s)
- S Autret
- Institut de Génétique et Microbiologie, URA CNRS 2225, Université Paris XI, Orsay, France
| | | | | | | | | |
Collapse
|
39
|
Oakley MG, Kim PS. A buried polar interaction can direct the relative orientation of helices in a coiled coil. Biochemistry 1998; 37:12603-10. [PMID: 9730833 DOI: 10.1021/bi981269m] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Coiled coils consist of bundles of two or more alpha-helices that are aligned in a parallel or an antiparallel relative orientation. The designed peptides, Acid-p1 and Base-p1, associate in solution to form a parallel, heterodimeric two-stranded coiled coil [O'Shea, E. K., Lumb, K. J., and Kim, P. S. (1993) Curr. Biol. 3, 658]. The buried interface of this complex is formed by hydrophobic Leu residues, with the exception of an Asn residue from each strand that is positioned to engage in a buried polar interaction. Substitution of these buried Asn residues by Leu residues results in a loss of structural uniqueness, as evidenced by a lack of a particular helix orientation in the Acid-Base coiled-coil complex [Lumb, K. J., and Kim, P. S. (1995) Biochemistry 34, 8642]. Here, we alter the positions of the Asn residues in the Acid and Base peptides such that a buried polar interaction is only expected to occur when the helices are in an antiparallel orientation. The resulting peptides, Acid-a1 and Base-a1, associate to form a helical heterodimer, as shown by circular dichroism (CD) and equilibrium sedimentation centrifugation. The helix orientation preference has been measured using covalently linked, disulfide-containing heterodimers in which the constituent peptides are constrained to interact in either a parallel or an antiparallel orientation. Although both the parallel and antiparallel heterodimers form stable, helical structures, the antiparallel heterodimer is the predominant species at equilibrium when the heterodimers are allowed to undergo thiol-disulfide exchange. In addition, the antiparallel heterodimer is more stable to chemical denaturation than the parallel counterpart by approximately 2.3 kcal/mol. These results demonstrate that a single buried polar interaction in the interface between the helices of a coiled coil is sufficient to determine the relative orientation of its constituent helices.
Collapse
Affiliation(s)
- M G Oakley
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Department of Biology, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
40
|
Affiliation(s)
- B J Graves
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City 84132, USA
| | | |
Collapse
|
41
|
Zuccola HJ, Rozzelle JE, Lemon SM, Erickson BW, Hogle JM. Structural basis of the oligomerization of hepatitis delta antigen. Structure 1998; 6:821-30. [PMID: 9687364 DOI: 10.1016/s0969-2126(98)00084-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The hepatitis D virus (HDV) is a small satellite virus of hepatitis B virus (HBV). Coinfection with HBV and HDV causes severe liver disease in humans. The small 195 amino-acid form of the hepatitis delta antigen (HDAg) functions as a trans activator of HDV replication. A larger form of the protein containing a 19 amino acid C-terminal extension inhibits viral replication. Both of these functions are mediated in part by a stretch of amino acids predicted to form a coiled coil (residues 13-48) that is common to both forms. It is believed that HDAg forms dimers and higher ordered structures through this coiled-coil region. RESULTS The high-resolution crystal structure of a synthetic peptide corresponding to residues 12 to 60 of HDAg has been solved. The peptide forms an antiparallel coiled coil, with hydrophobic residues near the termini of each peptide forming an extensive hydrophobic core with residues C-terminal to the coiled-coil domain in the dimer protein. The structure shows how HDAg forms dimers, but also shows the dimers forming an octamer that forms a 50 A ring lined with basic sidechains. This is confirmed by cross-linking studies of full-length recombinant small HDAg. CONCLUSIONS HDAg dimerizes through an antiparallel coiled coil. Dimers then associate further to form octamers through residues in the coiled-coil domain and residues C-terminal to this region. Our findings suggest that the structure of HDAg represents a previously unseen organization of a nucleocapsid protein and raise the possibility that the N terminus may play a role in binding the viral RNA.
Collapse
Affiliation(s)
- H J Zuccola
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
42
|
Griffiths AA, Andersen PA, Wake RG. Replication terminator protein-based replication fork-arrest systems in various Bacillus species. J Bacteriol 1998; 180:3360-7. [PMID: 9642188 PMCID: PMC107290 DOI: 10.1128/jb.180.13.3360-3367.1998] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The replication terminator protein (RTP) of Bacillus subtilis interacts with its cognate DNA terminators to cause replication fork arrest, thereby ensuring that the forks approaching one another at the conclusion of a round of replication meet within a restricted terminus region. A similar situation exists in Escherichia coli, but it appears that the fork-arrest systems in these two organisms have evolved independently of one another. In the present work, RTP homologs in four species closely related to B. subtilis (B. atrophaeus, B. amyloliquefaciens, B. mojavensis, and B. vallismortis) have been identified and characterized. An RTP homolog could not be identified in another closely related species, B. licheniformis. The nucleotide and amino acid changes from B. subtilis among the four homologs are consistent with the recently established phylogenetic tree for these species. The GC contents of the rtp genes raise the possibility that these organisms arose within this branch of the tree by horizontal transfer into a common ancestor after their divergence from B. licheniformis. Only 5 amino acid residue positions were changed among the four homologs, despite an up to 17.2% change in the nucleotide sequence, a finding that highlights the importance of the precise folded structure to the functioning of RTP. The absence of any significant change in the proposed DNA-binding region of RTP emphasizes the importance of its high affinity for the DNA terminator in its functioning. By coincidence, the single change (E30K) found in the B. mojavensis RTP corresponds exactly to that purposefully introduced by others into B. subtilis RTP to implicate a crucial role for E30 in the fork-arrest mechanism. The natural occurrence of this variant is difficult to reconcile with such an implication, and it was shown directly that RTP.E30K functions normally in fork arrest in B. subtilis in vivo. Additional DNA terminators were identified in the new RTP homolog-containing strains, allowing the definition of a Bacillus terminator consensus and identification of two more terminators in the B. subtilis 168 genome sequence to bring the total to nine.
Collapse
Affiliation(s)
- A A Griffiths
- Department of Biochemistry, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
43
|
del Solar G, Giraldo R, Ruiz-Echevarría MJ, Espinosa M, Díaz-Orejas R. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 1998; 62:434-64. [PMID: 9618448 PMCID: PMC98921 DOI: 10.1128/mmbr.62.2.434-464.1998] [Citation(s) in RCA: 703] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An essential feature of bacterial plasmids is their ability to replicate as autonomous genetic elements in a controlled way within the host. Therefore, they can be used to explore the mechanisms involved in DNA replication and to analyze the different strategies that couple DNA replication to other critical events in the cell cycle. In this review, we focus on replication and its control in circular plasmids. Plasmid replication can be conveniently divided into three stages: initiation, elongation, and termination. The inability of DNA polymerases to initiate de novo replication makes necessary the independent generation of a primer. This is solved, in circular plasmids, by two main strategies: (i) opening of the strands followed by RNA priming (theta and strand displacement replication) or (ii) cleavage of one of the DNA strands to generate a 3'-OH end (rolling-circle replication). Initiation is catalyzed most frequently by one or a few plasmid-encoded initiation proteins that recognize plasmid-specific DNA sequences and determine the point from which replication starts (the origin of replication). In some cases, these proteins also participate directly in the generation of the primer. These initiators can also play the role of pilot proteins that guide the assembly of the host replisome at the plasmid origin. Elongation of plasmid replication is carried out basically by DNA polymerase III holoenzyme (and, in some cases, by DNA polymerase I at an early stage), with the participation of other host proteins that form the replisome. Termination of replication has specific requirements and implications for reinitiation, studies of which have started. The initiation stage plays an additional role: it is the stage at which mechanisms controlling replication operate. The objective of this control is to maintain a fixed concentration of plasmid molecules in a growing bacterial population (duplication of the plasmid pool paced with duplication of the bacterial population). The molecules involved directly in this control can be (i) RNA (antisense RNA), (ii) DNA sequences (iterons), or (iii) antisense RNA and proteins acting in concert. The control elements maintain an average frequency of one plasmid replication per plasmid copy per cell cycle and can "sense" and correct deviations from this average. Most of the current knowledge on plasmid replication and its control is based on the results of analyses performed with pure cultures under steady-state growth conditions. This knowledge sets important parameters needed to understand the maintenance of these genetic elements in mixed populations and under environmental conditions.
Collapse
Affiliation(s)
- G del Solar
- Centro de Investigaciones Biológicas, CSIC, E-28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
44
|
Mohanty BK, Sahoo T, Bastia D. Mechanistic studies on the impact of transcription on sequence-specific termination of DNA replication and vice versa. J Biol Chem 1998; 273:3051-9. [PMID: 9446621 DOI: 10.1074/jbc.273.5.3051] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Since DNA replication and transcription often temporally and spatially overlap each other, the impact of one process on the other is of considerable interest. We have reported previously that transcription is impeded at the replication termini of Escherichia coli and Bacillus subtilis in a polar mode and that, when transcription is allowed to invade a replication terminus from the permissive direction, arrest of replication fork at the terminus is abrogated. In the present report, we have addressed four significant questions pertaining to the mechanism of transcription impedance by the replication terminator proteins. Is transcription arrested at the replication terminus or does RNA polymerase dissociate from the DNA causing authentic transcription termination? How does transcription cause abrogation of replication fork arrest at the terminus? Are the points of arrest of the replication fork and transcription the same or are these different? Are eukaryotic RNA polymerases also arrested at prokaryotic replication termini? Our results show that replication terminator proteins of E. coli and B. subtilis arrest but do not terminate transcription. Passage of an RNA transcript through the replication terminus causes the dissociation of the terminator protein from the terminus DNA, thus causing abrogation of replication fork arrest. DNA and RNA chain elongation are arrested at different locations on the terminator sites. Finally, although bacterial replication terminator proteins blocked yeast RNA polymerases in a polar fashion, a yeast transcription terminator protein (Reb1p) was unable to block T7 RNA polymerase and E. coli DnaB helicase.
Collapse
Affiliation(s)
- B K Mohanty
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
45
|
Sueoka N. Cell membrane and chromosome replication in Bacillus subtilis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 59:35-53. [PMID: 9427839 DOI: 10.1016/s0079-6603(08)61028-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review covers studies of the structural and functional roles of the cell membrane on the replication of the Bacillus subtillis chromosome. A particular emphasis is placed on the essential roles of the membrane complex for the in vivo initiation and termination of the chromosome replication. A critical gene complex in B. subtillis for the role of membrane complex is the dnaB operon that most likely consists of four genes (dnaB, dnaI, ORFZ/ORF213, and ORF omega/ORF281). Detailed studies of these genes are currently available only for the dnaB and dnaI genes. The unique feature of the dnaB gene is that temperature-sensitive mutants of this gene simultaneously lose, at the nonpermissive temperature, chromosome attachment at oriC to the membrane as well as the new round of replication initiation at oriC. Further studies on the genes and their products of the dnaB operon are therefore essential for our understanding of the in vivo mechanism of the initiation of chromosome replication and its regulation. The role of the membrane on the termination and segregation of the daughter chromosomes has not been discovered, but an important clue comes from the terminus area of the B. subtillis chromosome being bound to the membrane in a high-salt resistant and DnaB-independent fashion.
Collapse
Affiliation(s)
- N Sueoka
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80308, USA
| |
Collapse
|
46
|
Sunnerhagen M, Nilges M, Otting G, Carey J. Solution structure of the DNA-binding domain and model for the complex of multifunctional hexameric arginine repressor with DNA. NATURE STRUCTURAL BIOLOGY 1997; 4:819-26. [PMID: 9334747 DOI: 10.1038/nsb1097-819] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The structure of the monomeric DNA-binding domain of the Escherichia coli arginine repressor, ArgR, determined by NMR spectroscopy, shows structural homology to the winged helix-turn-helix (wHTH) family, a motif found in a diverse class of proteins including both gene regulators and gene organizers from prokaryotes and eukaryotes. Biochemical data on DNA binding by intact ArgR are used as constraints to position the domain on its DNA target and to derive a model for the hexamer-DNA complex using the known structure of the L-arginine-binding domain. The structural independence of the wHTH fold may be important for multimeric DNA-binding proteins that contact extended DNA regions with imperfect match to consensus sequences, a feature of many wHTH-domain proteins.
Collapse
Affiliation(s)
- M Sunnerhagen
- Karolinska Institute, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | | | | | | |
Collapse
|
47
|
Wake RG. Replication fork arrest and termination of chromosome replication in Bacillus subtilis. FEMS Microbiol Lett 1997; 153:247-54. [PMID: 9271849 DOI: 10.1111/j.1574-6968.1997.tb12581.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sporulation in Bacillus subtilis provided the first evidence for the presence of sequence-specific replication fork arrest (Ter) sites in the terminus region of the bacterial chromosome. These sites, when complexed with the replication terminator protein (RTP), block movement of a replication fork in a polar manner. The Ter sites are organized into two opposed groups which force the approaching forks to meet and fuse within a restricted terminus region. While the precise advantage provided to the cell through the presence of the so-called replication fork trap is not patently obvious, the same situation appears to have evolved independently in Escherichia coli. The molecular mechanism by which the RTP-Ter complex of B. subtilis (or the analogous but apparently unrelated complex in E. coli) functions is currently unresolved and subject to intense investigation. Replication fork arrest in B. subtilis, requiring RTP, also occurs under conditions of the stringent response at so-called STer sites that lie close to and on both sides of oriC. These sites are yet to be identified and characterized. How they are induced to function under stringent conditions is of considerable interest, and could provide vital clues about the mechanism of fork arrest by RTP-terminator complexes in general.
Collapse
Affiliation(s)
- R G Wake
- Department of Biochemistry, University of Sydney, NSW, Australia.
| |
Collapse
|
48
|
Noben-Trauth K, Naggert JK, Nishina PM. Cloning and expression analysis of mouse Cclp1, a new gene encoding a coiled-coil-like protein. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1352:133-7. [PMID: 9199242 DOI: 10.1016/s0167-4781(97)00050-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Here we describe the nucleotide sequence and expression pattern of a novel gene termed Coiled-coil-like protein 1 (Cclp1). A 2646bp open reading frame encodes a 882 amino acid protein with a predicted coiled-coil domain at the amino terminus. Cclp1 is expressed in a variety of adult tissues and during different stages of embryogenesis. The broad expression pattern suggests a general cellular function of CCLP1.
Collapse
|
49
|
Oakley MG, Kim PS. Protein dissection of the antiparallel coiled coil from Escherichia coli seryl tRNA synthetase. Biochemistry 1997; 36:2544-9. [PMID: 9054560 DOI: 10.1021/bi962391t] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The alpha-helices of coiled-coil proteins are predominantly parallel, in contrast to the general preference for an antiparallel orientation of interacting alpha-helices found in globular proteins. One intriguing exception is the antiparallel, two-stranded coiled coil comprising the long helical arm of the bacterial seryl tRNA synthetases (SRS). A recombinant 82-residue peptide corresponding to the helical arm of Escherichia coli SRS folds into a stable, monomeric, helical structure in the absence of the rest of the protein, as shown by circular dichroism (CD) and equilibrium sedimentation centrifugation. However, peptides corresponding to the individual helices of SRS are unstructured at neutral pH and do not associate appreciably at total peptide concentrations up to 100 microM. Covalent attachment of the the two peptides through a nonnatural, disulfide-containing linker restores structure and allows study of variants in which the individual helices are constrained to interact in either an antiparallel or a parallel orientation. We find that the antiparallel species are substantially more helical and more stable to thermal denaturation than their parallel counterpart. Thus, the SRS helical arm is an autonomously folding unit, and, unlike most other coiled coils, has an intrinsic preference for an antiparallel orientation of its constituent helices.
Collapse
Affiliation(s)
- M G Oakley
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, USA
| | | |
Collapse
|
50
|
Kralicek AV, Wilson PK, Ralston GB, Wake RG, King GF. Reorganization of terminator DNA upon binding replication terminator protein: implications for the functional replication fork arrest complex. Nucleic Acids Res 1997; 25:590-6. [PMID: 9016600 PMCID: PMC146460 DOI: 10.1093/nar/25.3.590] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the replication terminator protein (RTP) and DNA terminator sites. While determination of the crystal structure of RTP has facilitated our understanding of how a single RTP dimer interacts with terminator DNA, additional information is required in order to understand the assembly of a functional fork arrest complex, which requires an interaction between two RTP dimers and the terminator site. In this study, we show that the conformation of the major B.subtilis DNA terminator,TerI, becomes considerably distorted upon binding RTP. Binding of the first dimer of RTP to the B site of TerI causes the DNA to become slightly unwound and bent by approximately 40 degrees. Binding of a second dimer of RTP to the A site causes the bend angle to increase to approximately 60 degrees . We have used this new data to construct two plausible models that might explain how the ternary terminator complex can block DNA replication in a polar manner. In the first model, polarity of action is a consequence of the two RTP-DNA half-sites having different conformations. These different conformations result from different RTP-DNA contacts at each half-site (due to the intrinsic asymmetry of the terminator DNA), as well as interactions (direct or indirect) between the RTP dimers on the DNA. In the second model, polar fork arrest activity is a consequence of the different affinities of RTP for the A and B sites of the terminator DNA, modulated significantly by direct or indirect interactions between the RTP dimers.
Collapse
Affiliation(s)
- A V Kralicek
- Department of Biochemistry, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|