1
|
Mohammed TA, Zalzala MH. Synergistic action of cilnidipine and bexarotene in mitigating cholestatic liver damage: role of FXR signaling cascade. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04061-7. [PMID: 40244450 DOI: 10.1007/s00210-025-04061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025]
Abstract
Cholestasis, a condition characterized by impaired bile flow, can lead to severe liver damage if left untreated. Current therapeutic options are limited, necessitating the development of novel treatment strategies. This study investigated the synergistic action of cilnidipine, a calcium channel blocker, and bexarotene, a retinoid X receptor (RXR) agonist, in mitigating cholestatic liver damage induced by alpha-naphthyl isothiocyanate (ANIT) in rats. The study aimed to elucidate the role of the farnesoid X receptor (FXR) signaling cascade in the protective effects of the combined treatment. Rats were divided into three groups: a negative control group, an ANIT-treated group, and a group pretreated with cilnidipine and bexarotene before ANIT administration. Biochemical markers of liver function, oxidative stress, and inflammation were assessed, along with histological examination of liver tissue. The expression of genes related to the FXR signaling pathway was also evaluated using quantitative polymerase chain reaction (qPCR). The results demonstrated that pretreatment with cilnidipine and bexarotene significantly attenuated ANIT-induced cholestatic liver damage, as evidenced by improved liver function markers, reduced oxidative stress and inflammation, and ameliorated histological changes. Furthermore, the combined treatment upregulated the expression of FXR and its target genes, suggesting that the protective effects may be mediated through the activation of the FXR signaling cascade. These findings highlight the potential of cilnidipine and bexarotene as a novel therapeutic approach for the management of cholestatic liver disorders and provide insights into the underlying molecular mechanisms involving the FXR signaling pathway.
Collapse
Affiliation(s)
| | - Munaf H Zalzala
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
2
|
Sheng Y, Guo Y, Zhao B, Sun M, Dong Y, Yin Y, Wang Y, Peng C, Xu Y, Wang N, Liu J. Structural basis for the asymmetric binding of coactivator SRC1 to FXR-RXRα and allosteric communication within the complex. Commun Biol 2025; 8:425. [PMID: 40082595 PMCID: PMC11906777 DOI: 10.1038/s42003-025-07854-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Farnesoid X receptor (FXR) is a promising target for treatment of metabolic associated fatty liver disease (MAFLD). In this study, we employed an integrative approach to investigate the interaction between FXR-RXRα-DNA complex and the entire coactivator SRC1-NRID (nuclear receptor interaction domain). We constructed a multi-domain model of FXR-RXRα-DNA, highlighting the interface between FXR-DBD and LBD. Using HDX-MS, XL-MS, and biochemical assays, we revealed the allosteric communications in FXR-RXRα-DNA upon agonist and DNA binding. We then demonstrated that SRC1 binds only to the coactivator binding surface of FXR within the FXR-RXRα heterodimer, with the NR-box2 and NR-box3 of SRC1 as the key binding motifs. Our findings, which provide the first model of SRC1-NRID in complex with FXR-RXRα-DNA, shed light on the molecular mechanism through which the coactivator asymmetrically interacts with nuclear receptors and provide structural basis for further understanding the function of FXR and its implications in diseases.
Collapse
Affiliation(s)
- Yanan Sheng
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yaoting Guo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Beibei Zhao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mingze Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China
| | - Yan Dong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Yanwu Wang
- Baizhen Biotechnologies Inc., 430074, Wuhan, China
| | - Chao Peng
- Baizhen Biotechnologies Inc., 430074, Wuhan, China
- Central China Institute of Artificial Intelligence, Zhengzhou, China
| | - Yong Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China
| | - Na Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
| | - Jinsong Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
| |
Collapse
|
3
|
Fiorucci S, Marchianò S, Distrutti E, Biagioli M. Bile acids and their receptors in hepatic immunity. LIVER RESEARCH (BEIJING, CHINA) 2025; 9:1-16. [PMID: 40206435 PMCID: PMC11977286 DOI: 10.1016/j.livres.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 01/23/2025] [Indexed: 04/11/2025]
Abstract
Similarly to conventional steroids, bile acids function as signaling molecules, acting on a family of membrane and nuclear receptors. The best-characterized bile acid-regulated receptors are the farnesoid X receptor, activated by primary bile acids, and the G-protein-coupled bile acid receptor 1 (also known as Takeda G protein-coupled receptor 5), which is activated by secondary bile acids, such as lithocholic acid (LCA) and deoxycholic acid. Both the farnesoid X receptor and G-protein-coupled bile acid receptor 1 are expressed in cells of innate immunity, monocytes/macrophages, and natural killer cells. Their activation in these cells provides counter-regulatory signals that are inhibitory in nature and attenuate inflammation. In recent years, however, it has been increasingly appreciated that bile acids biotransformations by intestinal microbiota result in the formation of chemically different secondary bile acids that potently regulate adaptive immunity. The 3-oxoLCA and isoalloLCA, two LCA derivatives, bind receptors such as the retinoic acid receptor-related orphan receptor gamma t (RORγt) and the vitamin D receptor (VDR) that are expressed only by lymphoid cells, extending the regulatory role of bile acids to T cells, including T-helper 17 cells and type 3 innate lymphoid cells (ILC3). In this novel conceptual framework, bile acids have emerged as one of the main components of the postbiota, the waste array of chemical mediators generated by the intestinal microbiota. Deciphering the interaction of these mediators with the immune system in the intestine and liver is a novel and fascinating area of bile acid renaissance.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Wang Y, Bendre SV, Krauklis SA, Steelman AJ, Nelson ER. Role of Protein Regulators of Cholesterol Homeostasis in Immune Modulation and Cancer Pathophysiology. Endocrinology 2025; 166:bqaf031. [PMID: 39951497 DOI: 10.1210/endocr/bqaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 02/16/2025]
Abstract
Cholesterol metabolism and homeostasis have emerged as important factors governing various aspects of cancer biology. Clinical associations between circulating cholesterol and poor prognosis or use of cholesterol-lowering medication and improved prognosis have been noted for several different solid tumors. Mechanistically, cholesterol has many different direct and indirect effects on cancer cells themselves but is also critically involved in shaping the function of other cells of the tumor microenvironment, especially immune cells. There are 2 major feedback loops regulating cholesterol homeostasis. Here we highlight the major proteins involved in the so-called oxysterol-bile acid feedback loop and discuss how each has been implicated in cancer biology. We focus on roles within the immune system with implications for cancer. Given that many of these proteins are enzymes or nuclear receptors, both of which are amenable to small molecule intervention, we posit that this axis may represent a promising area for therapeutic intervention.
Collapse
Affiliation(s)
- Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Shruti V Bendre
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Steven A Krauklis
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People (ERN) and Regenerative Biology & Tissue Engineering (AJS), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People (ERN) and Regenerative Biology & Tissue Engineering (AJS), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Ye W, Zhao Y, Wang Y, Wang Y, Zhang H, Wang F, Chen W. Farnesoid X Receptor Attenuates the Tumorigenicity of Liver Cancer Stem Cells by Inhibiting STAT3 Phosphorylation. Int J Mol Sci 2025; 26:1122. [PMID: 39940889 PMCID: PMC11817294 DOI: 10.3390/ijms26031122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The Farnesoid X receptor (FXR) has recently been identified as being closely associated with the progression of primary hepatocellular carcinoma. Cancer stem cells (CSCs) play a crucial role in tumor initiation, progression, invasion, metastasis, recurrence, and drug resistance. The elucidation of the role and regulatory mechanism of FXR in CSCs is therefore deemed significant. Here, bioinformatics analysis has revealed a downregulation of FXR in hepatocellular carcinoma (HCC), which showed a negative correlation with HCC malignancy. This result was further confirmed through clinical sample analysis. Subsequently, CSCs were isolated from HCC cell lines and exhibited a significant decrease in the expression of FXR. The activation of FXR resulted in a remarkable inhibition of the proliferation, invasion, and tumorigenicity of CSCs. Furthermore, activated FXR prominently upregulated the expression of SOCS3 while suppressing STAT3 phosphorylation in CSCs. To further investigate this discovery, we established a DEN-induced HCC model in mice and observed that FXR-deficient mice exhibited heightened susceptibility to HCC. This was accompanied by decreased expression levels of SOCS3 and elevated expression and phosphorylation levels of STAT3, as well as significantly enhanced HCC CSCs markers and stemness-related genes expression in DEN-induced HCC tissues of FXR-deficient mice. Additionally, we also found a significant upregulation of CSCs markers and stemness-related genes within HCC clinical samples. Based on these findings, we postulated that targeted regulation of SOCS3 by FXR inhibits STAT3 phosphorylation, thereby exerting an inhibitory effect on CSCs.
Collapse
Affiliation(s)
- Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Yang Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Yibo Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Yahan Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Huan Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Fengling Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Weidong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| |
Collapse
|
6
|
Lu Q, Yu J, Xia N, Jin M, Zhao W, Fan X, Zhang R, Wang J, Jiang Z, Yu Q. Obeticholic acid aggravates liver fibrosis by activating hepatic farnesoid X receptor-induced apoptosis in cholestatic mice. Chem Biol Interact 2025; 406:111364. [PMID: 39725190 DOI: 10.1016/j.cbi.2024.111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/15/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Obeticholic acid (OCA) was approved for the treatment of primary biliary cholangitis (PBC) patients. However, it can cause severe drug-induced liver injury (DILI), which may put PBC patients at risk of acute-on-chronic liver failure (ACLF) and even death. Farnesoid X receptor (FXR) is considered as the target of OCA for cholestasis, but there is still a lack of research on whether hepatic and ileal FXR have different effects after OCA treatment. The aim of this study was to investigate the mechanism of OCA aggravating liver fibrosis in cholestasis. The results showed that 40 mg/kg OCA elevated serum AST, ALT, ALP and γ-GT levels in bile duct ligation (BDL) mice. Besides, severe fibrosis and necrosis were observed in the OCA-treated BDL mice, which was related to hepatic apoptosis pathway activation. Both hepatic and ileal FXR signaling could be significantly activated by OCA. However, ileum-specific knockout of Fxr aggravated OCA-induced liver injury in BDL mice. On the contrary, hepatic-specific knockout of Fxr structurally and functionally ameliorated liver pathological processes in the OCA-treated BDL mice, which was due to the blockade of hepatic FXR-induced apoptosis. In conclusion, the mechanism of OCA aggravating liver fibrosis in cholestasis was based on the activation of hepatic FXR-induced apoptosis. It was also indicated ileal FXR might be a safer pharmacological target for bile acids regulation.
Collapse
Affiliation(s)
- Qian Lu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingyi Yu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ninglin Xia
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ming Jin
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Wen Zhao
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xue Fan
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Rongmi Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jie Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China.
| | - Qinwei Yu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Wang W, Cai Z, Liang Z, Liao Z, Liu Y, Geng X, Yang Y, Chen Y, Huang Z, Yang Y, Li Z. Design, synthesis, and biological evaluation of novel highly potent FXR agonists bearing piperidine scaffold. Eur J Med Chem 2025; 282:117082. [PMID: 39580912 DOI: 10.1016/j.ejmech.2024.117082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) has become a serious threat to human health, which exhibited an increasing prevalence globally. Recently, the farnesoid X receptor (FXR) has been identified as a promising strategy for the treatment of MASH by regulating multiple pathogenesis. In this study, a new series of FXR agonists bearing piperidine scaffold was designed to reduce the high lipophilicity of the existing FXR agonists. After comprehensive multiparameter optimization, LZ-007 was discovered as a highly potent FXR agonist with suitable stability in liver microsomes of multiple species. LZ-007 exhibited highly oral bioavailability and targeted tissue exposure in the liver and ileum, while the plasma exposure is low, which might minimize the systemic side effects. Moreover, LZ-007 was significantly up-regulated the expressions of FXR and its downstream genes in the liver and ileum. In MASH model, LZ-007 exerted potent anti-MASH effects by regulating the multiple signal pathways related to lipid metabolism, oxidative stress, inflammation and fibrosis. In a 30-day toxicity study, no apparent adverse effects were observed in LZ-007 treated groups, even at the high doses of 250 and 500 mg/kg. With the positive pharmacodynamics and safety profiles, LZ-007 is worthy of further evaluation as a new anti-MASH agent.
Collapse
Affiliation(s)
- Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zhilin Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zibin Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yuxia Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xinqian Geng
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan Province, Kunming, Yunnan, 650021, PR China
| | - Yuanqian Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yisi Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zibin Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Ying Yang
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan Province, Kunming, Yunnan, 650021, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
8
|
Liu Z, You C. The bile acid profile. Clin Chim Acta 2025; 565:120004. [PMID: 39419312 DOI: 10.1016/j.cca.2024.120004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
As a large and structurally diverse family of small molecules, bile acids play a crucial role in regulating lipid, glucose, and energy metabolism. In the human body, bile acids share a similar chemical structure with many isomers, exhibit little difference in polarity, and possess various physiological activities. The types and contents of bile acids present in different diseases vary significantly. Therefore, comprehensive and accurate detection of the content of various types of bile acids in different biological samples can not only provide new insights into the pathogenesis of diseases but also facilitate the exploration of novel strategies for disease diagnosis, treatment, and prognosis. The detection of disease-induced changes in bile acid profiles has emerged as a prominent research focus in recent years. Concurrently, targeted metabolomics methods utilizing high-performance liquid chromatography-mass spectrometry (HPLC-MS) have progressively established themselves as the predominant technology for the separation and detection of bile acids. Bile acid profiles will increasingly play an important role in diagnosis and guidance in the future as the relationship between disease and changes in bile acid profiles becomes clearer. This highlights the growing diagnostic value of bile acid profiles and their potential to guide clinical decision-making. This review aims to explore the significance of bile acid profiles in clinical diagnosis from four perspectives: the synthesis and metabolism of bile acids, techniques for detecting bile acid profiles, changes in bile acid profiles associated with diseases, and the challenges and future prospects of applying bile acid profiles in clinical settings.
Collapse
Affiliation(s)
- Zhenhua Liu
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Chongge You
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
9
|
Mansouri P, Mansouri P, Behmard E, Najafipour S, Kouhpayeh A, Farjadfar A. Novel targets for mucosal healing in inflammatory bowel disease therapy. Int Immunopharmacol 2025; 144:113544. [PMID: 39571265 DOI: 10.1016/j.intimp.2024.113544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic condition affecting the gastrointestinal tract, primarily manifesting as ulcerative colitis (UC) or Crohn's disease (CD). Both inflammation and disruption of the intestinal epithelial barrier are key factors in IBD pathogenesis. Substantial evidence has revealed a significant association between aberrant immune responses and impairment of the intestinal epithelial barrier in IBD pathogenesis. The components of the intestinal epithelium, particularly goblet cells and Paneth cells, are crucial to gut homeostasis, as they secrete mucin, antimicrobial peptides (AMPs), and cytokines. Furthermore, impairment of epithelial integrity, which is regulated by tight junctions, is a hallmark of IBD pathology. While common treatments for IBD, such as anti-inflammatory drugs, target various signaling pathways with varying efficacies, therapeutic approaches focused on mucosal and epithelial barrier healing have been largely neglected. Moreover, high costs, side effects, and insufficient or inconsistent therapeutic outcomes remain major drawbacks of conventional anti-IBD drugs. Recent studies on epithelial barrier regeneration and permeability reduction have introduced promising therapeutic targets, including farnesoid X receptor (FXR), urokinase-type plasminogen activator (uPA)-urokinase-type plasminogen activator receptor (uPAR) interaction, fecal microbiota transplantation (FMT), and insulin receptor (INSR). Notably, the simultaneous targeting of intestinal inflammation and promotion of epithelial barrier healing shows promise for efficient IBD treatment. Future research should explore targeted therapies and combination treatments, including natural remedies, microbiota colonization, stem cell approaches, and computer-aided drug design. It is also crucial to focus on accurate prognosis and developing a thorough understanding of IBD development mechanisms.
Collapse
Affiliation(s)
- Pardis Mansouri
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Pegah Mansouri
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran
| | - Sohrab Najafipour
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran
| | - Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran.
| | - Akbar Farjadfar
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran.
| |
Collapse
|
10
|
Fujimori K, Iguchi Y, Yamashita Y, Gohda K, Teno N. FXR Activation Accelerates Early Phase of Osteoblast Differentiation Through COX-2-PGE 2-EP4 Axis in BMP-2-Induced Mouse Mesenchymal Stem Cells. Molecules 2024; 30:58. [PMID: 39795115 PMCID: PMC11722014 DOI: 10.3390/molecules30010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/14/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Farnesoid X receptor (FXR), a nuclear receptor, is expressed in calvaria and bone marrow stromal cells and plays a role in bone homeostasis. However, the mechanism of FXR-activated osteoblast differentiation remains unclear. In this study, we investigated the regulatory mechanism underlying FXR-activated osteoblast differentiation using bone morphogenetic protein-2 (BMP-2)-induced mouse ST-2 mesenchymal stem cells. We also synthesized a novel FXR agonist, FLG390, and compared its biological effects in osteoblast differentiation with a known FXR agonist, chenodeoxycholic acid (CDCA). As an FXR agonist, FLG390 accelerated osteoblast differentiation to a comparable extent with CDCA, enhancing alkaline phosphatase (ALP) activity and the expression of osteoblast differentiated-related genes such as ALP, collagen type 1 α1 chain (COL1A1), and runt-related transcription factor 2 (RUNX2). FXR activation elevated the expression of cyclooxygenase (COX)-2 and the production of prostaglandin (PG) E2 in the early phase of osteoblast differentiation. A selective COX-2 inhibitor and an antagonist of EP4 receptors, one of PGE2 receptors, partially suppressed FXR-activated osteoblast differentiation. Moreover, treatment with either inhibitor during the first 6 h after initiating osteoblast differentiation repressed FXR-activated osteoblast differentiation to the same extent as did the treatment for 6 d. Therefore, a novel FXR agonist, FLG390, exhibited potency comparable to CDCA. FXR activation promoted the early phase of osteoblast differentiation via the COX-2-PGE2-EP4 axis, representing a potential target for control of bone metabolism.
Collapse
Affiliation(s)
- Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Japan
| | - Yusuke Iguchi
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure 737-0112, Japan; (Y.I.); (Y.Y.)
| | - Yukiko Yamashita
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure 737-0112, Japan; (Y.I.); (Y.Y.)
| | - Keigo Gohda
- Computer-Aided Molecular Modeling Research Center, Kansai (CAMM-Kansai), 3-32-302, Tsuto-Otsuka, Nishinomiya 663-8241, Japan;
| | - Naoki Teno
- Graduate School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure 737-0112, Japan;
- Faculty of Clinical Nutrition, Hiroshima International University, 5-1-1, Hirokoshingai, Kure 737-0112, Japan
| |
Collapse
|
11
|
Angendohr C, Missing L, Ehlting C, Wolf SD, Lang KS, Vucur M, Luedde T, Bode JG. Interleukin 1 β suppresses bile acid-induced BSEP expression via a CXCR2-dependent feedback mechanism. PLoS One 2024; 19:e0315243. [PMID: 39680527 DOI: 10.1371/journal.pone.0315243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammation-induced cholestasis is a common problem in septic patients and results from cytokine-mediated inhibition of bile acid export including impaired expression of the bile salt export pump (BSEP) with a consecutive increase in intracellular bile acids mediating cell damage. The present study focuses on the mechanisms by which interleukin 1 β (IL-1β), as a critical mediator of sepsis-induced cholestasis, controls the expression of BSEP in hepatocytes. Notably, the treatment of hepatocytes with IL-1β leads to the upregulation of a broad chemokine pattern. Thereby, the IL-1β -induced expression of in particular the CXCR2 ligands CXCL1 and 2 is further enhanced by bile acids, whereas the FXR-mediated upregulation of BSEP induced by bile acids is inhibited by IL-1β. In this context, it is interesting to note that inhibitor studies indicate that IL-1β mediates its inhibitory effects on bile acid-induced expression of BSEP indirectly via CXCR2 ligands. Consistently, inhibition of CXCR2 with the inhibitor SB225002 significantly attenuated of the inhibitory effect of IL-1β on BSEP expression. These data suggest that part of the cholestasis-inducing effect of IL-1β is mediated via a CXCR2-dependent feedback mechanism.
Collapse
Affiliation(s)
- Carolin Angendohr
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Leah Missing
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Ehlting
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stephanie D Wolf
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Karl S Lang
- Department of Immunology, University of Essen, Essen, Germany
| | - Mihael Vucur
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tom Luedde
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes G Bode
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
12
|
Yang J, Zhao T, Fan J, Zou H, Lan G, Guo F, Shi Y, Ke H, Yu H, Yue Z, Wang X, Bai Y, Li S, Liu Y, Wang X, Chen Y, Li Y, Lei X. Structure-guided discovery of bile acid derivatives for treating liver diseases without causing itch. Cell 2024; 187:7164-7182.e18. [PMID: 39476841 DOI: 10.1016/j.cell.2024.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/11/2024] [Accepted: 10/02/2024] [Indexed: 12/15/2024]
Abstract
Chronic itch is a debilitating symptom profoundly impacting the quality of life in patients with liver diseases like cholestasis. Activation of the human G-protein coupled receptor, MRGPRX4 (hX4), by bile acids (BAs) is implicated in promoting cholestasis itch. However, the detailed underlying mechanisms remain elusive. Here, we identified 3-sulfated BAs that are elevated in cholestatic patients with itch symptoms. We solved the cryo-EM structure of hX4-Gq in a complex with 3-phosphated deoxycholic acid (DCA-3P), a mimic of the endogenous 3-sulfated deoxycholic acid (DCA-3S). This structure revealed an unprecedented ligand-binding pocket in MRGPR family proteins, highlighting the crucial role of the 3-hydroxyl (3-OH) group on BAs in activating hX4. Guided by this structural information, we designed and developed compound 7 (C7), a BA derivative lacking the 3-OH. Notably, C7 effectively alleviates hepatic injury and fibrosis in liver disease models while significantly mitigating the itch side effects.
Collapse
Affiliation(s)
- Jun Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tianjun Zhao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing 100871, China
| | - Junping Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huaibin Zou
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Guangyi Lan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing 100871, China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yaocheng Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Han Ke
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huasheng Yu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zongwei Yue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yingjie Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Shuai Li
- Hepaitech (Beijing) Biopharma Technology Co., Ltd., Beijing, China
| | - Yingjun Liu
- Hepaitech (Beijing) Biopharma Technology Co., Ltd., Beijing, China
| | - Xiaoming Wang
- Hepaitech (Beijing) Biopharma Technology Co., Ltd., Beijing, China
| | - Yu Chen
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Yulong Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing 100871, China.
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China.
| |
Collapse
|
13
|
Chen C, Zhou X, Cheng W, Li X, Zhang B, Tu J, Meng J, Peng Y, Duan X, Yu Q, Tan X. Design, synthesis and FXR partial agonistic activity of anthranilic acid derivatives bearing aryloxy moiety as therapeutic agents for metabolic dysfunction-associated steatohepatitis. Bioorg Chem 2024; 153:107940. [PMID: 39515132 DOI: 10.1016/j.bioorg.2024.107940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/26/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Farnesoid X receptor (FXR) is considered a promising therapeutic target for the treatment of metabolic dysfunction-associated steatohepatitis (MASH). Increasing evidence suggests that targeting FXR with full agonists may lead to side effects. FXR partial agonists, which moderately activate FXR signaling, are emerging as a feasible approach to mitigate side effects and address MASH. Herein, a series of novel anthranilic acid derivatives bearing aryloxy moiety were designed and synthesized using a hybrid strategy from the previously identified FXR partial agonists DM175 and AIV-25. Particularly, compound 26 exhibited potent FXR partial agonistic activity in a dual-luciferase reporter gene assay with an EC50 value of 0.09 ± 0.02 µM (75.13 % maximum efficacy relative to OCA). In the MASH mice model, compound 26 significantly ameliorated the pathological features of the liver, including steatosis, inflammation, and fibrosis. In addition, compound 26 displayed high selectivity, good oral bioavailability, high liver distribution, as well as an acceptable safety profile. Molecular simulation studies showed that compound 26 fitted well with the binding site of FXR. Collectively, these findings demonstrated that compound 26 might serve as a promising candidate targeting FXR for MASH treatment.
Collapse
Affiliation(s)
- Cong Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Environmental Exposure Omics and Life Cycle Health, College of Public Health, Guilin Medical University, Guilin 541199, China
| | - Xianghui Zhou
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China; Department of Pharmacy, Yunfu People's Hospital, Yunfu 527300, China
| | - Wa Cheng
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xin Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Bing Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Jiaojiao Tu
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Jieyun Meng
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yanfen Peng
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xiaoqun Duan
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China.
| | - Qiming Yu
- Guangxi Key Laboratory of Environmental Exposure Omics and Life Cycle Health, College of Public Health, Guilin Medical University, Guilin 541199, China.
| | - Xiangduan Tan
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
14
|
Liu J, Huang S, Hou Y, Fu S, Wang L, Hu J, Liu C, Liu X. FXR promotes clear cell renal cell carcinoma carcinogenesis via MMP-7-regulated EMT pathway. Sci Rep 2024; 14:29411. [PMID: 39592748 PMCID: PMC11599922 DOI: 10.1038/s41598-024-80368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Renal cell carcinoma (RCC) ranks as a prevalent malignant neoplasm, with clear cell renal cell carcinoma (ccRCC, also known as KIRC) accounting for approximately 75% of all RCC cases. The farnesoid X receptor (FXR, encoded by NR1H4), functioning as a nuclear receptor, plays a crucial role in regulating gene transcription. Although the involvement of FXR in tumors of the digestive system and in acute kidney injury has been extensively studied, its specific role in the pathogenesis of ccRCC has yet to be thoroughly investigated. Consequently, the objective of our current investigation is to uncover the functional roles of FXR in ccRCC. In this study, plasmids for the overexpression of FXR were constructed, and small interfering RNA (siRNA) constructs were designed. Dual-luciferase reporter assays confirmed a direct binding interaction between FXR and the promoter of the matrix metalloproteinase 7 (MMP-7) gene. Additionally, a mouse xenograft model elucidated the regulatory effect of FXR on MMP-7 in the context of tumor growth. This study elucidates how FXR regulates the promotion of ccRCC through the MMP-7-mediated EMT pathway. Interestingly, FXR is typically regarded as a tumor suppressor gene that affects gastrointestinal tumors, providing a potential new therapeutic direction for ccRCC.
Collapse
Affiliation(s)
- Jiachen Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Shiyu Huang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanguang Hou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shujie Fu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juncheng Hu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Cheng Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Ma Y, Du C, Liu Y, Feng M, Shou Y, Yu D, Jin Y. Aristolochic acid-induced dyslipidemia and hepatotoxicity: The potential role of FXR and AHR receptors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117266. [PMID: 39509784 DOI: 10.1016/j.ecoenv.2024.117266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Aristolochic acids (AAs) represent a class of nitrophenanthrene carboxylic acids naturally existing or accidentally mixed in herbal medicines or crops, which have long been recognized for causing nephropathy. Recently, the linkage between AAs and liver injury has become a concern; however, the current understanding of the mechanism or mode of action (MOA) is limited. In the present study, we investigated nuclear receptor-mediated MOA associated with AAs-induced liver injury including dyslipidemia and hepatotoxicity. Bioinformatic analysis of AAI-interacting genes indicated nuclear receptor-mediated metabolizing pathways; Transcriptomic profiling of AAs-exposed rats with liver injury suggested FXR-, NRF2-, and AHR- mediated pathways in the injured livers of the rats. Mechanistic investigation using HepG2 cells indicated AAI-induced hepatic lipid accumulation by elevating Triglyceride (TG) through inhibition of the FXR. In addition, AAI-induced hepatocellular damage by activating the AHR pathway, which further generated ROS and activated the NRF2 pathway. Together, these results provided new clues for researchers who are interested in chemical-induced liver injury.
Collapse
Affiliation(s)
- Yumei Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Chenlong Du
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, China
| | - Yuzhen Liu
- Gaomi Municipal Center for Disease Control and Prevention, Weifang Institute of Preventive Medicine, Weifang, China
| | - Meiyao Feng
- Department of Environmental Health, Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao, China
| | - Yingqing Shou
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
16
|
Zeng L, Huang J, Wang Y, Hu Y, Zhou S, Lu Y. Oleanolic acid induces hepatic injury by disrupting hepatocyte tight junction and dysregulation of farnesoid X receptor-mediated bile acid efflux transporters. J Appl Toxicol 2024; 44:1725-1741. [PMID: 39030772 DOI: 10.1002/jat.4667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/09/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Oleanolic acid (OA) is a naturally occurring pentacyclic triterpene compound that has been reported to cause cholestatic liver injury. However, the regulation and pathogenic role of bile acids in OA-induced development of cholestatic liver injury remains largely unclear. Farnesoid X receptor (FXR) is a metabolic nuclear receptor that plays an important role in bile acid homeostasis in the liver by regulating efflux transporters bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2). The aim of this study was to investigate the effect of OA on hepatocyte tight junction function and determine the role of FXR, BSEP, and MRP2 in the mechanism of impairment of transport of bile acids induced by OA. Both in vivo and in vitro models were used to characterize the OA-induced liver injury. The liquid chromatography-tandem mass spectrometry (LC-MS) was employed to characterize the efflux function of the transporters, and the results showed that OA caused a blockage of bile acids efflux. OA treatment resulted in decreased expression levels of the tight junction proteins zonula occludens-1 and occludin. Immunofluorescence results showed that OA treatment significantly reduced the number of bile ducts and the immunofluorescence intensity. Pretreatment with agonists of FXR and MRP2, respectively, in animal experiments attenuated OA-induced liver injury, while pretreatment with inhibitors of BSEP and MRP2 further aggravated OA-induced liver injury. These results suggest that OA inhibits FXR-mediated BSEP and MRP2, leading to impaired bile acid efflux and disruption of tight junctions between liver cells, resulting in liver damage.
Collapse
Affiliation(s)
- Li Zeng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jianxiang Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Department of Pharmacy, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Yi Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yan Hu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
17
|
Lee MH, Nuccio SP, Mohanty I, Hagey LR, Dorrestein PC, Chu H, Raffatellu M. How bile acids and the microbiota interact to shape host immunity. Nat Rev Immunol 2024; 24:798-809. [PMID: 39009868 DOI: 10.1038/s41577-024-01057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/17/2024]
Abstract
Bile acids are increasingly appearing in the spotlight owing to their novel impacts on various host processes. Similarly, there is growing attention on members of the microbiota that are responsible for bile acid modifications. With recent advances in technology enabling the discovery and continued identification of microbially conjugated bile acids, the chemical complexity of the bile acid landscape in the body is increasing at a rapid pace. In this Review, we summarize our current understanding of how bile acids and the gut microbiota interact to modulate immune responses during homeostasis and disease, with a particular focus on the gut.
Collapse
Affiliation(s)
- Michael H Lee
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA
| | - Sean-Paul Nuccio
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA
| | - Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lee R Hagey
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Hiutung Chu
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), La Jolla, CA, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), La Jolla, CA, USA.
| |
Collapse
|
18
|
Fang Y, Qin M, Zheng Q, Wang K, Han X, Yang Q, Sang X, Cao G. Role of Bile Acid Receptors in the Development and Function of Diabetic Nephropathy. Kidney Int Rep 2024; 9:3116-3133. [PMID: 39534198 PMCID: PMC11551060 DOI: 10.1016/j.ekir.2024.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetic nephropathy (DN) is a prevalent microvascular complication that occurs often in individuals with diabetes. It significantly raises the mortality rate of affected patients. Therefore, there is an urgent need to identify therapeutic targets for controlling and preventing the occurrence and development of DN. Bile acids (BAs) are now recognized as intricate metabolic integrators and signaling molecules. The activation of BAs has great promise as a therapeutic approach for preventing DN, renal damage caused by obesity, and nephrosclerosis. The nuclear receptors (NRs), farnesoid X receptor (FXR), pregnane X receptor (PXR), vitamin D receptor (VDR); and the G protein-coupled BA receptor, Takeda G-protein-coupled receptor 5 (TGR5) have important functions in controlling lipid, glucose, and energy metabolism, inflammation, as well as drug metabolism and detoxification. Over the past 10 years, there has been advancement in comprehending the biology and processes of BA receptors in the kidney, as well as in the creation of targeted BA receptor agonists. In this review, we discuss the role of BA receptors, FXR, PXR, VDR, and TGR5 in DN and their role in renal physiology, as well as the development and application of agonists that activate BA receptors for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yuanyuan Fang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Minjing Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qitong Zheng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia'nan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
19
|
Wen YQ, Zou ZY, Zhao GG, Zhang MJ, Zhang YX, Wang GH, Shi JJ, Wang YY, Song YY, Wang HX, Chen RY, Zheng DX, Duan XQ, Liu YM, Gonzalez FJ, Fan JG, Xie C. FXR activation remodels hepatic and intestinal transcriptional landscapes in metabolic dysfunction-associated steatohepatitis. Acta Pharmacol Sin 2024; 45:2313-2327. [PMID: 38992119 PMCID: PMC11489735 DOI: 10.1038/s41401-024-01329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024]
Abstract
The escalating obesity epidemic and aging population have propelled metabolic dysfunction-associated steatohepatitis (MASH) to the forefront of public health concerns. The activation of FXR shows promise to combat MASH and its detrimental consequences. However, the specific alterations within the MASH-related transcriptional network remain elusive, hindering the development of more precise and effective therapeutic strategies. Through a comprehensive analysis of liver RNA-seq data from human and mouse MASH samples, we identified central perturbations within the MASH-associated transcriptional network, including disrupted cellular metabolism and mitochondrial function, decreased tissue repair capability, and increased inflammation and fibrosis. By employing integrated transcriptome profiling of diverse FXR agonists-treated mice, FXR liver-specific knockout mice, and open-source human datasets, we determined that hepatic FXR activation effectively ameliorated MASH by reversing the dysregulated metabolic and inflammatory networks implicated in MASH pathogenesis. This mitigation encompassed resolving fibrosis and reducing immune infiltration. By understanding the core regulatory network of FXR, which is directly correlated with disease severity and treatment response, we identified approximately one-third of the patients who could potentially benefit from FXR agonist therapy. A similar analysis involving intestinal RNA-seq data from FXR agonists-treated mice and FXR intestine-specific knockout mice revealed that intestinal FXR activation attenuates intestinal inflammation, and has promise in attenuating hepatic inflammation and fibrosis. Collectively, our study uncovers the intricate pathophysiological features of MASH at a transcriptional level and highlights the complex interplay between FXR activation and both MASH progression and regression. These findings contribute to precise drug development, utilization, and efficacy evaluation, ultimately aiming to improve patient outcomes.
Collapse
Affiliation(s)
- Ying-Quan Wen
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zi-Yuan Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China
| | - Guan-Guan Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Meng-Jiao Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yong-Xin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Gai-Hong Wang
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | - Jing-Jing Shi
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | - Yuan-Yang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Laboratory Medicine and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Ye-Yu Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China
| | - Hui-Xia Wang
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | - Ru-Ye Chen
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | | | - Xiao-Qun Duan
- Industrial Technology Research Institute of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Ya-Meng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jian-Gao Fan
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China.
| | - Cen Xie
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Rapacciuolo P, Finamore C, Giorgio CD, Fiorillo B, Massa C, Urbani G, Marchianò S, Bordoni M, Cassiano C, Morretta E, Spinelli L, Lupia A, Moraca F, Biagioli M, Sepe V, Monti MC, Catalanotti B, Fiorucci S, Zampella A. Design, Synthesis, and Pharmacological Evaluation of Dual FXR-LIFR Modulators for the Treatment of Liver Fibrosis. J Med Chem 2024; 67:18334-18355. [PMID: 39382988 DOI: 10.1021/acs.jmedchem.4c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Although multiple approaches have been suggested, treating mild-to-severe fibrosis in the context of metabolic dysfunction associated with liver disease (MASLD) remains a challenging area in drug discovery. Pathogenesis of liver fibrosis is multifactorial, and pathogenic mechanisms are deeply intertwined; thus, it is well accepted that future treatment requires the development of multitarget modulators. Harnessing the 3,4,5-trisubstituted isoxazole scaffold, previously described as a key moiety in Farnesoid X receptor (FXR) agonism, herein we report the discovery of a novel class of hybrid molecules endowed with dual activity toward FXR and the leukemia inhibitory factor receptor (LIFR). Up to 27 new derivatives were designed and synthesized. The pharmacological characterization of this series resulted in the identification of 3a as a potent FXR agonist and LIFR antagonist with excellent ADME properties. In vitro and in vivo characterization identified compound 3a as the first-in-class hybrid LIFR inhibitor and FXR agonist that protects against the development of acute liver fibrosis and inflammation.
Collapse
Affiliation(s)
- Pasquale Rapacciuolo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Claudia Finamore
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Cristina Di Giorgio
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Bianca Fiorillo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Chiara Cassiano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Lucio Spinelli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Antonio Lupia
- Department of Life and Environmental Sciences, University of Cagliari, Via Università, 40, Cagliari 09124, Italy
| | - Federica Moraca
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| |
Collapse
|
21
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 PMCID: PMC11549937 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
22
|
Xu R, Zhang L, Pan H, Zhang Y. Retinoid X receptor heterodimers in hepatic function: structural insights and therapeutic potential. Front Pharmacol 2024; 15:1464655. [PMID: 39478961 PMCID: PMC11521896 DOI: 10.3389/fphar.2024.1464655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Nuclear receptors (NRs) are key regulators of multiple physiological functions and pathological changes in the liver in response to a variety of extracellular signaling changes. Retinoid X receptor (RXR) is a special member of the NRs, which not only responds to cellular signaling independently, but also regulates multiple signaling pathways by forming heterodimers with various other NR. Therefore, RXR is widely involved in hepatic glucose metabolism, lipid metabolism, cholesterol metabolism and bile acid homeostasis as well as hepatic fibrosis. Specific activation of particular dimers regulating physiological and pathological processes may serve as important pharmacological targets. So here we describe the basic information and structural features of the RXR protein and its heterodimers, focusing on the role of RXR heterodimers in a number of physiological processes and pathological imbalances in the liver, to provide a theoretical basis for RXR as a promising drug target.
Collapse
Affiliation(s)
- Renjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyue Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Xie Z, Li Y, Cheng L, Huang Y, Rao W, Shi H, Li J. Potential therapeutic strategies for MASH: from preclinical to clinical development. LIFE METABOLISM 2024; 3:loae029. [PMID: 39872142 PMCID: PMC11749562 DOI: 10.1093/lifemeta/loae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 01/03/2025]
Abstract
Current treatment paradigms for metabolic dysfunction-associated steatohepatitis (MASH) are based primarily on dietary restrictions and the use of existing drugs, including anti-diabetic and anti-obesity medications. Given the limited number of approved drugs specifically for MASH, recent efforts have focused on promising strategies that specifically target hepatic lipid metabolism, inflammation, fibrosis, or a combination of these processes. In this review, we examined the pathophysiology underlying the development of MASH in relation to recent advances in effective MASH therapy. Particularly, we analyzed the effects of lipogenesis inhibitors, nuclear receptor agonists, glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists, fibroblast growth factor mimetics, and combinatorial therapeutic approaches. We summarize these targets along with their preclinical and clinical candidates with the ultimate goal of optimizing the therapeutic prospects for MASH.
Collapse
Affiliation(s)
- Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yufeng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Long Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yidan Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanglin Rao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Honglu Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
24
|
Scaletti ER, Unterlass JE, Almlöf I, Koolmeister T, Vallin KS, Kapsitidou D, Tsuber V, Helleday T, Stenmark P, Jemth AS. Kinetic and structural characterization of NUDT15 and NUDT18 as catalysts of isoprene pyrophosphate hydrolysis. FEBS J 2024; 291:4301-4322. [PMID: 38944687 DOI: 10.1111/febs.17202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/19/2024] [Accepted: 06/06/2024] [Indexed: 07/01/2024]
Abstract
Isoprene pyrophosphates play a crucial role in the synthesis of a diverse array of essential nonsterol and sterol biomolecules and serve as substrates for posttranslational isoprenylation of proteins, enabling specific anchoring to cellular membranes. Hydrolysis of isoprene pyrophosphates would be a means to modulate their levels, downstream products, and protein isoprenylation. While NUDIX hydrolases from plants have been described to catalyze the hydrolysis of isoprene pyrophosphates, homologous enzymes with this function in animals have not yet been reported. In this study, we screened an extensive panel of human NUDIX hydrolases for activity in hydrolyzing isoprene pyrophosphates. We found that human nucleotide triphosphate diphosphatase NUDT15 and 8-oxo-dGDP phosphatase NUDT18 efficiently catalyze the hydrolysis of several physiologically relevant isoprene pyrophosphates. Notably, we demonstrate that geranyl pyrophosphate is an excellent substrate for NUDT18, with a catalytic efficiency of 2.1 × 105 m-1·s-1, thus making it the best substrate identified for NUDT18 to date. Similarly, geranyl pyrophosphate proved to be the best isoprene pyrophosphate substrate for NUDT15, with a catalytic efficiency of 4.0 × 104 M-1·s-1. LC-MS analysis of NUDT15 and NUDT18 catalyzed isoprene pyrophosphate hydrolysis revealed the generation of the corresponding monophosphates and inorganic phosphate. Furthermore, we solved the crystal structure of NUDT15 in complex with the hydrolysis product geranyl phosphate at a resolution of 1.70 Å. This structure revealed that the active site nicely accommodates the hydrophobic isoprenoid moiety and helped identify key binding residues. Our findings imply that isoprene pyrophosphates are endogenous substrates of NUDT15 and NUDT18, suggesting they are involved in animal isoprene pyrophosphate metabolism.
Collapse
Affiliation(s)
- Emma R Scaletti
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Judith E Unterlass
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Ingrid Almlöf
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Tobias Koolmeister
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Karl S Vallin
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Despina Kapsitidou
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Viktoriia Tsuber
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Thomas Helleday
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Ann-Sofie Jemth
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, 171 77, Sweden
| |
Collapse
|
25
|
Alruhaimi RS, Ahmeda AF, Hussein OE, Alotaibi MF, Germoush MO, Elgebaly HA, Hassanein EHM, Mahmoud AM. Galangin attenuates chlorpyrifos-induced kidney injury by mitigating oxidative stress and inflammation and upregulating Nrf2 and farnesoid-X-receptor in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104542. [PMID: 39179192 DOI: 10.1016/j.etap.2024.104542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Chlorpyrifos (CPF) is a highly toxic commonly used pesticide and can seriously harm human health. This study assessed the potential of galangin (GAL), an antioxidant flavonoid, to attenuate oxidative stress, inflammation and kidney injury caused by CPF, emphasizing the role of farnesoid-x-receptor (FXR) and Nrf2. Rats were supplemented with CPF and GAL for 28 days. CPF increased serum creatinine, urea and Kim-1, provoked several tissue alterations, and increased kidney ROS, malondialdehyde (MDA), NF-κB p65, TNF-α, iNOS, and caspase-3. GAL effectively ameliorated serum kidney injury markers, ROS, MDA, and TNF-α, suppressed NF-κB p65, iNOS, and caspase-3, and enhanced antioxidants. GAL suppressed Keap1 and upregulated FXR, Nrf2, HO-1 and NQO-1 in CPF-administered rats. GAL exhibited binding affinity with Keap1, FXR, caspase-3, iNOS, HO-1, and NF-κB. In conclusion, GAL is effective in preventing CPF nephrotoxicity by attenuating oxidative stress and inflammation. This protection is linked to upregulation of antioxidants, Nrf2/HO-1 signaling and FXR.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ahmad F Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Omnia E Hussein
- Higher Technological Institute for Applied Health Sciences, Beni-Suef, Egypt
| | - Mohammed F Alotaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, Sakakah, Saudi Arabia
| | - Hassan A Elgebaly
- Biology Department, College of Science, Jouf University, Sakakah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
26
|
Tomioka I, Ota C, Tanahashi Y, Ikegami K, Ishihara A, Kohri N, Fujii H, Morohaku K. Loss of the DNA-binding domain of the farnesoid X receptor gene causes severe liver and kidney injuries. Biochem Biophys Res Commun 2024; 721:150125. [PMID: 38762930 DOI: 10.1016/j.bbrc.2024.150125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Farnesoid X receptor (FXR) regulates bile acid synthesis, lipid metabolism, and glucose homeostasis in metabolic organs. FXR-knockout (FXR-KO) mice lacking the last exon of the FXR gene develop normally and display no prenatal and early postnatal lethality, whereas human patients with mutations in the DNA-binding domain of the FXR gene develop severe hepatic dysfunction. In this study, we generated novel FXR-KO mice lacking the DNA-binding domain of the FXR gene using CRISPR-Cas9 technology and evaluated their phenotypes. Similar to the aforementioned FXR-KO mice, our novel mice showed elevated serum levels of total bile acids and total cholesterol. However, they were obviously short-lived, showing severe liver and renal pathologies at an early age. These results indicate that FXR, including its unknown isoforms, has more significant functions in multiple organs than previously reported. Thus, the novel FXR-KO mice could lead to a new aspect that requires reworking of previous knowledge of FXR in the liver and renal function.
Collapse
Affiliation(s)
- Ikuo Tomioka
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Japan.
| | - Chihiro Ota
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Japan
| | - Yuka Tanahashi
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Japan
| | - Kayoko Ikegami
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Japan
| | - Ayaka Ishihara
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Japan
| | - Nanami Kohri
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Japan
| | - Hiroshi Fujii
- Laboratory of Biochemistry, Faculty of Agriculture, Shinshu University, Japan
| | - Kanako Morohaku
- Laboratory of Germ Cell Physiology and Engineering, Faculty of Agriculture, Shinshu University, Japan
| |
Collapse
|
27
|
Batliner M, Schumacher F, Wigger D, Vivas W, Prell A, Fohmann I, Köhler T, Schempp R, Riedel A, Vaeth M, Fekete A, Kleuser B, Kurzai O, Nieuwenhuizen NE. The Candida albicans quorum-sensing molecule farnesol alters sphingolipid metabolism in human monocyte-derived dendritic cells. mBio 2024; 15:e0073224. [PMID: 38953353 PMCID: PMC11323541 DOI: 10.1128/mbio.00732-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024] Open
Abstract
Candida albicans, an opportunistic fungal pathogen, produces the quorum-sensing molecule farnesol, which we have shown alters the transcriptional response and phenotype of human monocyte-derived dendritic cells (DCs), including their cytokine secretion and ability to prime T cells. This is partially dependent on the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), which has numerous ligands, including the sphingolipid metabolite sphingosine 1-phosphate. Sphingolipids are a vital component of membranes that affect membrane protein arrangement and phagocytosis of C. albicans by DCs. Thus, we quantified sphingolipid metabolites in monocytes differentiating into DCs by High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Farnesol increased the activity of serine palmitoyltransferase, leading to increased levels of 3-keto-dihydrosphingosine, dihydrosphingosine, and dihydrosphingosine 1-phosphate and inhibited dihydroceramide desaturase by inducing oxidative stress, leading to increased levels of dihydroceramide and dihydrosphingomyelin species and reduced ceramide levels. Accumulation of dihydroceramides can inhibit mitochondrial function; accordingly, farnesol reduced mitochondrial respiration. Dihydroceramide desaturase inhibition increases lipid droplet formation, which we observed in farnesol-treated cells, coupled with an increase in intracellular triacylglycerol species. Furthermore, inhibition of dihydroceramide desaturase with either farnesol or specific inhibitors impaired the ability of DCs to prime interferon-γ-producing T cells. The effect of farnesol on sphingolipid metabolism, triacylglycerol synthesis, and mitochondrial respiration was not dependent on PPAR-γ. In summary, our data reveal novel effects of farnesol on sphingolipid metabolism, neutral lipid synthesis, and mitochondrial function in DCs that affect their instruction of T cell cytokine secretion, indicating that C. albicans can manipulate host cell metabolism via farnesol secretion.IMPORTANCECandida albicans is a common commensal yeast, but it is also an opportunistic pathogen which is one of the leading causes of potentially lethal hospital-acquired infections. There is growing evidence that its overgrowth in the gut can influence diseases as diverse as alcohol-associated liver disease and COVID-19. Previously, we found that its quorum-sensing molecule, farnesol, alters the phenotype of dendritic cells differentiating from monocytes, impairing their ability to drive protective T cell responses. Here, we demonstrate that farnesol alters the metabolism of sphingolipids, important structural components of the membrane that also act as signaling molecules. In monocytes differentiating to dendritic cells, farnesol inhibited dihydroceramide desaturase, resulting in the accumulation of dihydroceramides and a reduction in ceramide levels. Farnesol impaired mitochondrial respiration, known to occur with an accumulation of dihydroceramides, and induced the accumulation of triacylglycerol and oil bodies. Inhibition of dihydroceramide desaturase resulted in the impaired ability of DCs to induce interferon-γ production by T cells. Thus, farnesol production by C. albicans could manipulate the function of dendritic cells by altering the sphingolipidome.
Collapse
Affiliation(s)
- Maria Batliner
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | | | - Dominik Wigger
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Wolfgang Vivas
- Institute for Infectious Diseases and Infection Control, Jena University Hospital–Friedrich Schiller University, Jena, Germany
- Associated Research Group Translational Infection Medicine, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute (HKI), Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital–Friedrich Schiller University, Jena, Germany
| | - Agata Prell
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ingo Fohmann
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Tobias Köhler
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Rebekka Schempp
- Institute for Virology and Immunobiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Angela Riedel
- Mildred Scheel Early Career Center (MSNZ), University Hospital of Würzburg, Würzburg, Germany
| | - Martin Vaeth
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Agnes Fekete
- Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, Jena, Germany
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, Jena, Germany
| | - Natalie E. Nieuwenhuizen
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Wang J, Xu H, Liu Z, Cao Y, Chen S, Hou R, Zhou Y, Wang Y. Bile acid-microbiota crosstalk in hepatitis B virus infection. J Gastroenterol Hepatol 2024; 39:1509-1516. [PMID: 38721685 DOI: 10.1111/jgh.16604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 08/10/2024]
Abstract
Hepatitis B virus (HBV) is a hepatotropic non-cytopathic virus characterized by liver-specific gene expression. HBV infection highjacks bile acid metabolism, notably impairing bile acid uptake via sodium taurocholate cotransporting polypeptide (NTCP), which is a functional receptor for HBV entry. Concurrently, HBV infection induces changes in bile acid synthesis and the size of the bile acid pool. Conversely, bile acid facilitates HBV replication and expression through the signaling molecule farnesoid X receptor (FXR), a nuclear receptor activated by bile acid. However, in HepaRG cells and primary hepatocytes, FXR agonists suppress HBV RNA expression and the synthesis and secretion of DNA. In the gut, the size and composition of the bile acid pool significantly influence the gut microbiota. In turn, the gut microbiota impacts bile acid metabolism and innate immunity, potentially promoting HBV clearance. Thus, the bile acid-gut microbiota axis represents a complex and evolving relationship in the context of HBV infection. This review explores the interplay between bile acid and gut microbiota in HBV infection and discusses the development of HBV entry inhibitors targeting NTCP.
Collapse
Affiliation(s)
- Jiaxin Wang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Huimin Xu
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zixin Liu
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yutong Cao
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Siyu Chen
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Ruifang Hou
- Hebi Key Laboratory of Liver Disease, Department of Infectious Diseases, People's Hospital of Hebi, Henan University, Hebi, China
| | - Yun Zhou
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yandong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
29
|
Ding C, Wang Z, Dou X, Yang Q, Ning Y, Kao S, Sang X, Hao M, Wang K, Peng M, Zhang S, Han X, Cao G. Farnesoid X receptor: From Structure to Function and Its Pharmacology in Liver Fibrosis. Aging Dis 2024; 15:1508-1536. [PMID: 37815898 PMCID: PMC11272191 DOI: 10.14336/ad.2023.0830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 10/12/2023] Open
Abstract
The farnesoid X receptor (FXR), a ligand-activated transcription factor, plays a crucial role in regulating bile acid metabolism within the enterohepatic circulation. Beyond its involvement in metabolic disorders and immune imbalances affecting various tissues, FXR is implicated in microbiota modulation, gut-to-brain communication, and liver disease. The liver, as a pivotal metabolic and detoxification organ, is susceptible to damage from factors such as alcohol, viruses, drugs, and high-fat diets. Chronic or recurrent liver injury can culminate in liver fibrosis, which, if left untreated, may progress to cirrhosis and even liver cancer, posing significant health risks. However, therapeutic options for liver fibrosis remain limited in terms of FDA-approved drugs. Recent insights into the structure of FXR, coupled with animal and clinical investigations, have shed light on its potential pharmacological role in hepatic fibrosis. Progress has been achieved in both fundamental research and clinical applications. This review critically examines recent advancements in FXR research, highlighting challenges and potential mechanisms underlying its role in liver fibrosis treatment.
Collapse
Affiliation(s)
- Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shi Kao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| |
Collapse
|
30
|
Chen Y, Anderson MT, Payne N, Santori FR, Ivanova NB. Nuclear Receptors and the Hidden Language of the Metabolome. Cells 2024; 13:1284. [PMID: 39120315 PMCID: PMC11311682 DOI: 10.3390/cells13151284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Nuclear hormone receptors (NHRs) are a family of ligand-regulated transcription factors that control key aspects of development and physiology. The regulation of NHRs by ligands derived from metabolism or diet makes them excellent pharmacological targets, and the mechanistic understanding of how NHRs interact with their ligands to regulate downstream gene networks, along with the identification of ligands for orphan NHRs, could enable innovative approaches for cellular engineering, disease modeling and regenerative medicine. We review recent discoveries in the identification of physiologic ligands for NHRs. We propose new models of ligand-receptor co-evolution, the emergence of hormonal function and models of regulation of NHR specificity and activity via one-ligand and two-ligand models as well as feedback loops. Lastly, we discuss limitations on the processes for the identification of physiologic NHR ligands and emerging new methodologies that could be used to identify the natural ligands for the remaining 17 orphan NHRs in the human genome.
Collapse
Affiliation(s)
- Yujie Chen
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Matthew Tom Anderson
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Nathaniel Payne
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Fabio R. Santori
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Natalia B. Ivanova
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
31
|
Fiorucci S, Marchianò S, Urbani G, Di Giorgio C, Distrutti E, Zampella A, Biagioli M. Immunology of bile acids regulated receptors. Prog Lipid Res 2024; 95:101291. [PMID: 39122016 DOI: 10.1016/j.plipres.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Bile acids are steroids formed at the interface of host metabolism and intestinal microbiota. While primary bile acids are generated in the liver from cholesterol metabolism, secondary bile acids represent the products of microbial enzymes. Close to 100 different enzymatic modifications of bile acids structures occur in the human intestine and clinically guided metagenomic and metabolomic analyses have led to the identification of an extraordinary number of novel metabolites. These chemical mediators make an essential contribution to the composition and function of the postbiota, participating to the bidirectional communications of the intestinal microbiota with the host and contributing to the architecture of intestinal-liver and -brain and -endocrine axes. Bile acids exert their function by binding to a group of cell membrane and nuclear receptors collectively known as bile acid-regulated receptors (BARRs), expressed in monocytes, tissue-resident macrophages, CD4+ T effector cells, including Th17, T regulatory cells, dendritic cells and type 3 of intestinal lymphoid cells and NKT cells, highlighting their role in immune regulation. In this review we report on how bile acids and their metabolitesmodulate the immune system in inflammations and cancers and could be exploiting for developing novel therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | | | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
32
|
Peng CY, Liao YC, Yang YC, Hung YW, Huang LR, Peng YC. Ursodeoxycholic Acid Modulates the Interaction of miR-21 and Farnesoid X Receptor and NF-κB Signaling. Biomedicines 2024; 12:1236. [PMID: 38927442 PMCID: PMC11200433 DOI: 10.3390/biomedicines12061236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: This study investigates the effects of Ursodeoxycholic acid (UDCA) on NF-κB signaling, farnesoid X receptor (FXR) singling, and microRNA-21 in HepG2 cells. (2) Methods: HepG2 cells were treated with lipopolysaccharide (LPS) to simulate hepatic inflammation. The investigation focused on the expression of NF-κB activation, which was analyzed using Western blot, confocal microscopy, and Electrophoretic Mobility-shift Assays (EMSA). Additionally, NF-κB and farnesoid X receptor (FXR) singling expressions of micro-RNA-21, COX-2, TNF-α, IL-6, cyp7A1, and shp were assessed by RT-PCR. (3) Results: UDCA effectively downregulated LPS-induced expressions of NF-κB/65, p65 phosphorylation, and also downregulated FXR activity by Western blot. Confocal microscopy and EMSA results confirmed UDCA's role in modulating NF-κB signaling. UDCA reduced the expressions of LPS-induced COX-2, TNF-α, and IL-6, which were related to NF-κB signaling. UDCA downregulated LPS-induced cyp7A1 gene expression and upregulated shp gene expression, demonstrating selective gene regulation via FXR. UDCA also significantly decreased micro-RNA 21 levels. (4) Conclusions: This study demonstrates UDCA's potent anti-inflammatory effects on NF-κB and FXR signaling pathways, and thus its potential to modulate hepatic inflammation and carcinogenesis through interactions with NF-κB and FXR. The decrease in micro-RNA 21 expression further underscores its therapeutic potential.
Collapse
Affiliation(s)
- Chi-Yi Peng
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung 402202, Taiwan;
| | - Yi-Chun Liao
- Division of Gastroenterology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan;
- School of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Yi-Chin Yang
- Neurological Institute, Taichung Veterans General Hospital, Taichung 407219, Taiwan;
| | - Yi-Wen Hung
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung 404327, Taiwan;
| | - Lan-Ru Huang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan;
| | - Yen-Chun Peng
- Division of Gastroenterology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan;
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| |
Collapse
|
33
|
Yin X, Yan Y, Li J, Cao Z, Shen S, Chang Q, Zhao Y, Wang X, Wang P. Nuclear receptors for epidermal lipid barrier: Advances in mechanisms and applications. Exp Dermatol 2024; 33:e15107. [PMID: 38840418 DOI: 10.1111/exd.15107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/20/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024]
Abstract
The skin plays an essential role in preventing the entry of external environmental threats and the loss of internal substances, depending on the epidermal permeability barrier. Nuclear receptors (NRs), present in various tissues and organs including full-thickness skin, have been demonstrated to exert significant effects on the epidermal lipid barrier. Formation of the lipid lamellar membrane and the normal proliferation and differentiation of keratinocytes (KCs) are crucial for the development of the epidermal permeability barrier and is regulated by specific NRs such as PPAR, LXR, VDR, RAR/RXR, AHR, PXR and FXR. These receptors play a key role in regulating KC differentiation and the entire process of epidermal lipid synthesis, processing and secretion. Lipids derived from sebaceous glands are influenced by NRs as well and participate in regulation of the epidermal lipid barrier. Furthermore, intricate interplay exists between these receptors. Disturbance of barrier function leads to a range of diseases, including psoriasis, atopic dermatitis and acne. Targeting these NRs with agonists or antagonists modulate pathways involved in lipid synthesis and cell differentiation, suggesting potential therapeutic approaches for dermatosis associated with barrier damage. This review focuses on the regulatory role of NRs in the maintenance and processing of the epidermal lipid barrier through their effects on skin lipid synthesis and KC differentiation, providing novel insights for drug targets to facilitate precision medicine strategies.
Collapse
Affiliation(s)
- Xidie Yin
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiandan Li
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhi Cao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuzhan Shen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qihang Chang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiting Zhao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
34
|
Tang Y, Fan Y, Wang Y, Wang D, Huang Q, Chen T, Cao X, Wen C, Shen X, Li J, You Y. A Current Understanding of FXR in NAFLD: The multifaceted regulatory role of FXR and novel lead discovery for drug development. Biomed Pharmacother 2024; 175:116658. [PMID: 38701562 DOI: 10.1016/j.biopha.2024.116658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) has reached 30 %, with an annual increase. The incidence of NAFLD-induced cirrhosis is rapidly rising and has become the leading indicator for liver transplantation in the US. However, there are currently no US Food and Drug Administration-approved drugs for NAFLD. Increasing evidence underscores the close association between NAFLD and bile acid metabolism disorder, highlighting the feasibility of targeting the bile acid signaling pathway for NAFLD treatment. The farnesoid X receptor (FXR) is an endogenous receptor for bile acids that exhibits favorable effects in ameliorating the metabolic imbalance of bile acids, lipid disorders, and disruption of intestinal homeostasis, all of which are key characteristics of NAFLD, making FXR a promising therapeutic target for NAFLD. The present review provides a comprehensive overview of the diverse mechanisms through which FXR improves NAFLD, with particular emphasis on its involvement in regulating bile acid homeostasis and the recent advancements in drug development targeting FXR for NAFLD treatment.
Collapse
Affiliation(s)
- Yuhong Tang
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Yujuan Fan
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Yiming Wang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Dong Wang
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Qingyu Huang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tongqing Chen
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Xinyue Cao
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Cailing Wen
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Shen
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China.
| | - Jian Li
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yan You
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Akepati PR, Gochanour EM. Investigational farnesoid X receptor agonists for the treatment of primary biliary cholangitis. Expert Opin Investig Drugs 2024; 33:627-638. [PMID: 38676426 DOI: 10.1080/13543784.2024.2348743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Up to 40% of Primary biliary cholangitis (PBC) patients have a suboptimal response to Ursodeoxycholic acid (UDCA). Close to half of such patients show a remarkable improvement when additionally treated with Obeticholic acid (OCA) but have a dose-dependent increase of pruritus. This relative success of OCA, a first-in-class Farnesoid receptor (FXR) agonist, has positioned FXR as an attractive target for drug development. Novel candidates have since emerged, providing hope for this subgroup of patients who lack effective and safe treatments. AREAS COVERED We discussed the role of bile acids in PBC pathogenesis and how the FXR agonists provide therapeutic value by affecting bile acid synthesis and transport. Novel FXR agonists undergoing pre-clinical and clinical trials for PBC were enlisted via literature search by including the terms 'FXR agonists,' 'FXR PBC,' 'PBC clinical trials' on PubMed, MEDLINE via Ovid, and Clinicaltrials.gov. EXPERT OPINION Novel FXR agonists currently under investigation for PBC improve the disease surrogate markers in early trials. However, as with OCA, pruritus remains a concern with the newer drugs despite targeted chemical modifications to increase FXR specificity. Directing future resources toward studying the molecular mechanisms behind pruritus may lead to better drug design and efficacious yet safer drugs.
Collapse
Affiliation(s)
- Prithvi Reddy Akepati
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Eric M Gochanour
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
- The Gastroenterology Center, Valley View Hospital, Glenwood Springs, CO, USA
| |
Collapse
|
36
|
Du X, Liu M, Trevisi E, Ju L, Yang Y, Gao W, Song Y, Lei L, Zolzaya M, Li X, Fang Z, Liu G. Expression of hepatic genes involved in bile acid metabolism in dairy cows with fatty liver. J Dairy Sci 2024:S0022-0302(24)00833-6. [PMID: 38825110 DOI: 10.3168/jds.2023-24485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/28/2024] [Indexed: 06/04/2024]
Abstract
Bile acids are cholesterol-derived molecules that are primarily produced in the liver. In nonruminants with fatty liver, overproduction of bile acids is associated with liver injury. During the transition period, fatty liver is a metabolic disorder that can affect up to 50% of high-producing dairy cows. The purpose of this study was to provide a comprehensive evaluation on hepatic bile acid metabolism in dairy cows with fatty liver by assessing expression changes of genes involved in bile acid synthesis, export and uptake. The serum activities of aspartate aminotransferase, alanine aminotransferase and glutamate dehydrogenase and concentration of total bile acids were all greater, whereas serum concentration of total cholesterol was lower in cows with fatty liver than in healthy cows. Content of total bile acids was higher but total cholesterol was slightly lower in liver tissues from fatty liver cows than from healthy cows. The hepatic mRNA abundance of cholesterol 7a-hydroxylase (CYP7A1), hydroxy-delta-5-steroid dehydrogenase, 3 β- and steroid delta-isomerase 7 (HSD3B7) and sterol 12α-hydroxylase (CYP8B1), enzymes involved in the classic pathway of bile acid synthesis, was higher in fatty liver cows than in healthy cows. Compared with healthy cows, the hepatic mRNA abundance of alternative bile acid synthesis pathway-related genes sterol 27-hydroxylase (CYP27A1) and oxysterol 7α-hydroxylase (CYP7B1) did not differ in cows with fatty liver. The protein and mRNA abundance of bile acid transporter bile salt efflux pump (BSEP) were lower in the liver of dairy cow with fatty liver. Compared with healthy cows, the hepatic mRNA abundance of bile acid transporters solute carrier family 51 subunit α (SLC51A), ATP binding cassette subfamily C member 1 (ABCC1) and 3 (ABCC3) was greater in cows with fatty liver, whereas the solute carrier family 51 subunit β (SLC51B) did not differ. The expression of genes involved in bile acid uptake, including solute carrier family 10 member 1 (NTCP), solute carrier organic anion transporter family member 1A2 (SLCO1A2) and 2B1 (SLCO2B1) was upregulated in dairy cows with fatty liver. Furthermore, the hepatic protein and mRNA abundance of bile acid metabolism regulators farnesoid X receptor (FXR) and small heterodimer partner (SHP) were lower in cows with fatty liver than in healthy cows. Overall, these data suggest that inhibition of FXR signaling pathway may lead to the increased bile acid synthesis and uptake and decreased secretion of bile acids from hepatocytes to the bile, which elevates hepatic bile acids content in dairy cows with fatty liver. As the hepatotoxicity of bile acids has been demonstrated on nonruminant hepatocytes, it is likely that the liver injury is induced by increased hepatic bile acids content in dairy cows with fatty liver.
Collapse
Affiliation(s)
- Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Lingxue Ju
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuting Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Majigsuren Zolzaya
- Institute of Veterinary Medicine, Mongolian Mongolian University of Life Sciences (MULS)
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhiyuan Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
37
|
Huang X, Liu X, Li Z. Bile acids and coronavirus disease 2019. Acta Pharm Sin B 2024; 14:1939-1950. [PMID: 38799626 PMCID: PMC11119507 DOI: 10.1016/j.apsb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/08/2023] [Accepted: 01/28/2024] [Indexed: 05/29/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been significantly alleviated. However, long-term health effects and prevention strategy remain unresolved. Thus, it is essential to explore the pathophysiological mechanisms and intervention for SARS-CoV-2 infection. Emerging research indicates a link between COVID-19 and bile acids, traditionally known for facilitating dietary fat absorption. The bile acid ursodeoxycholic acid potentially protects against SARS-CoV-2 infection by inhibiting the farnesoid X receptor, a bile acid nuclear receptor. The activation of G-protein-coupled bile acid receptor, another membrane receptor for bile acids, has also been found to regulate the expression of angiotensin-converting enzyme 2, the receptor through which the virus enters human cells. Here, we review the latest basic and clinical evidence linking bile acids to SARS-CoV-2, and reveal their complicated pathophysiological mechanisms.
Collapse
Affiliation(s)
- Xiaoru Huang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Xuening Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Zijian Li
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
38
|
Silva RBV, Coelho Júnior VG, de Paula Mattos Júnior A, Julidori Garcia H, Siqueira Caixeta Nogueira E, Mazzoni TS, Ramos Martins J, Rosatto Moda LM, Barchuk AR. Farnesol, a component of plant-derived honeybee-collected resins, shows JH-like effects in Apis mellifera workers. JOURNAL OF INSECT PHYSIOLOGY 2024; 154:104627. [PMID: 38373613 DOI: 10.1016/j.jinsphys.2024.104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Farnesol, a sesquiterpene found in all eukaryotes, precursor of juvenile hormone (JH) in insects, is involved in signalling, communication, and antimicrobial defence. Farnesol is a compound of floral volatiles, suggesting its importance in pollination and foraging behaviour. Farnesol is found in the resin of Baccharis dracunculifolia, from which honeybees elaborate the most worldwide marketable propolis. Bees use propolis to seal cracks in the walls, reinforce the wax combs, and as protection against bacteria and fungi. The introduction within a honeybee hive of a compound with potential hormonal activity can be a challenge to the colony survival, mainly because the transition from within-hive to outside activities of workers is controlled by JH. Here, we tested the hypothesis that exogenous farnesol alters the pacing of developing workers. The first assays showed that low doses of the JH precursor (0.1 and 0.01 µg) accelerate pharate-adult development, with high doses being toxic. The second assay was conducted in adult workers and demonstrated bees that received 0.2 µg farnesol showed more agitated behaviour than the control bees. If farnesol was used by corpora allata (CA) cells as a precursor of JH and this hormone was responsible for the observed behavioural alterations, these glands were expected to be larger after the treatment. Our results on CA measurements after 72 h of treatment showed bees that received farnesol had glands doubled in size compared to the control bees (p < 0.05). Additionally, we expected the expression of JH synthesis, JH degradation, and JH-response genes would be upregulated in the treated bees. Our results showed that indeed, the mean transcript levels of these genes were higher in the treated bees (significant for methyl farnesoate epoxidase and juvenile hormone esterase, p < 0.05). These results suggest farnesol is used in honeybees as a precursor of JH, leading to increasing JH titres, and thus modulating the pacing of workers development. This finding has behavioural and ecological implications, since alterations in the dynamics of the physiological changes associated to aging in young honeybees may significantly impact colony balance in nature.
Collapse
Affiliation(s)
- Raissa Bayker Vieira Silva
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Valdeci Geraldo Coelho Júnior
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Adolfo de Paula Mattos Júnior
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Henrique Julidori Garcia
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Ester Siqueira Caixeta Nogueira
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Talita Sarah Mazzoni
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Juliana Ramos Martins
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Lívia Maria Rosatto Moda
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Angel Roberto Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
39
|
Jin M, Zou T, Huang H, Chen M, Zou H, Chen B, Lai C, Li H, Zhang P. The Effect of Coenzyme Q10 Supplementation on Bile Acid Metabolism: Insights from Network Pharmacology, Molecular Docking, and Experimental Validation. Mol Nutr Food Res 2024; 68:e2400147. [PMID: 38643378 DOI: 10.1002/mnfr.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Indexed: 04/22/2024]
Abstract
SCOPE Bile acids play a crucial role in lipid absorption and the regulation of lipid, glucose, and energy homeostasis. Coenzyme Q10 (CoQ10), a lipophilic antioxidant, has been recognized for its positive effects on obesity and related glycolipid metabolic disorders. However, the relationship between CoQ10 and bile acids has not yet been evaluated. METHODS AND RESULTS This study assesses the impact of CoQ10 treatment on bile acid metabolism in mice on a high-fat diet using Ultra-Performance Liquid Chromatography-tandem Mass Spectrometry. CoQ10 reverses the reduction in serum and colonic total bile acid levels and alters the bile acid profile in mice that are caused by a high-fat diet. Seventeen potential targets of CoQ10 in bile acid metabolism are identified by network pharmacology, with six being central to the mechanism. Molecular docking shows a high binding affinity of CoQ10 to five of these key targets. Further analyses indicate that farnesoid X (FXR) receptor and Takeda G-protein coupled receptor 5 (TGR5) may be crucial targets for CoQ10 to regulate bile acid metabolism and exert beneficial effects. CONCLUSION This study sheds light on the impact of CoQ10 in bile acids metabolism and offers a new perspective on the application of CoQ10 in metabolic health.
Collapse
Affiliation(s)
- Mengcheng Jin
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Tangbin Zou
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China
| | - Hairong Huang
- Southwest Hospital Jiangbei Area (The 958th hospital of Chinese People's Liberation Army), Chongqing, 400020, China
| | - Ming Chen
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Haoqi Zou
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Baoyan Chen
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Chengze Lai
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Huawen Li
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Peiwen Zhang
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
40
|
Lange AH, Pedersen MG, Ellegaard AM, Nerild HH, Brønden A, Sonne DP, Knop FK. The bile-gut axis and metabolic consequences of cholecystectomy. Eur J Endocrinol 2024; 190:R1-R9. [PMID: 38551177 DOI: 10.1093/ejendo/lvae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
Cholelithiasis and cholecystitis affect individuals of all ages and are often treated by surgical removal of the gallbladder (cholecystectomy), which is considered a safe, low-risk procedure. Nevertheless, recent findings show that bile and its regulated storage and excretion may have important metabolic effects and that cholecystectomy is associated with several metabolic diseases postoperatively. Bile acids have long been known as emulsifiers essential to the assimilation of lipids and absorption of lipid-soluble vitamins, but more recently, they have also been reported to act as metabolic signaling agents. The nuclear receptor, farnesoid X receptor (FXR), and the G protein-coupled membrane receptor, Takeda G protein-coupled receptor 5 (TGR5), are specific to bile acids. Through activation of these receptors, bile acids control numerous metabolic functions. Cholecystectomy affects the storage and excretion of bile acids, which in turn may influence the activation of FXR and TGR5 and their effects on metabolism including processes leading to metabolic conditions such as metabolic dysfunction-associated steatotic liver disease and metabolic syndrome. Here, with the aim of elucidating mechanisms behind cholecystectomy-associated dysmetabolism, we review studies potentially linking cholecystectomy and bile acid-mediated metabolic effects and discuss possible pathophysiological mechanisms behind cholecystectomy-associated dysmetabolism.
Collapse
Affiliation(s)
- Andreas H Lange
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
| | - Miriam G Pedersen
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
| | - Anne-Marie Ellegaard
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
| | - Henriette H Nerild
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
| | - Andreas Brønden
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, DK-2400 Copenhagen, Denmark
| | - David P Sonne
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, DK-2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, DK-2730 Herlev, Denmark
| |
Collapse
|
41
|
Lin Q, Zhang B, Dai M, Cheng Y, Li F. Aspirin Caused Intestinal Damage through FXR and ET-1 Signaling Pathways. Int J Mol Sci 2024; 25:3424. [PMID: 38542397 PMCID: PMC10970274 DOI: 10.3390/ijms25063424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 01/02/2025] Open
Abstract
Aspirin is a non-steroidal, anti-inflammatory drug often used long term. However, long-term or large doses will cause gastrointestinal adverse reactions. To explore the mechanism of intestinal damage, we used non-targeted metabolomics; farnesoid X receptor (FXR) knockout mice, which were compared with wild-type mice; FXR agonists obeticholic acid (OCA) and chenodeoxycholic acid (CDCA); and endothelin-producing inhibitor estradiol to explore the mechanisms of acute and chronic intestinal injuries induced by aspirin from the perspective of molecular biology. Changes were found in the bile acids taurocholate acid (TCA) and tauro-β-muricholic acid (T-β-MCA) in the duodenum, and we detected a significant inhibition of FXR target genes. After additional administration of the FXR agonists OCA and CDCA, duodenal villus damage and inflammation were effectively improved. The results in the FXR knockout mice and wild-type mice showed that the overexpression of endothelin 1 (ET-1) was independent of FXR regulation after aspirin exposure, whereas CDCA was able to restore the activation of ET-1, which was induced by aspirin in wild-type mice in an FXR-dependent manner. The inhibition of ET-1 production could also effectively protect against small bowel damage. Therefore, the study revealed the key roles of the FXR and ET-1 pathways in acute and chronic aspirin-induced intestinal injuries, as well as strategies on alleviating aspirin-induced gastrointestinal injury by activating FXR and inhibiting ET-1 overexpression.
Collapse
Affiliation(s)
- Qiuxia Lin
- Laboratory of Hepatointestinal Diseases and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.L.); (B.Z.); (Y.C.)
- Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binbin Zhang
- Laboratory of Hepatointestinal Diseases and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.L.); (B.Z.); (Y.C.)
- Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Manyun Dai
- Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Cheng
- Laboratory of Hepatointestinal Diseases and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.L.); (B.Z.); (Y.C.)
- Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Li
- Laboratory of Hepatointestinal Diseases and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.L.); (B.Z.); (Y.C.)
- Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
42
|
Hollenback D, Hambruch E, Fink G, Birkel M, Schulz A, Hornberger M, Liu K, Staiger KM, Krol HD, Deuschle U, Steeneck C, Kinzel O, Liles JT, Budas G, Watkins WJ, Kremoser C. Development of Cilofexor, an Intestinally-Biased Farnesoid X Receptor Agonist, for the Treatment of Fatty Liver Disease. J Pharmacol Exp Ther 2024; 389:61-75. [PMID: 38409114 DOI: 10.1124/jpet.123.001900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
The farnesoid X receptor (FXR) is a nuclear receptor that controls bile acid, lipid, and cholesterol metabolism. FXR-targeted drugs have shown promise in late-stage clinical trials for non-alcoholic steatohepatitis. Herein, we used clinical results from our first non-steroidal FXR agonist, 4-[2-[2-chloro-4-[[5-cyclopropyl-3-(2,6-dichlorophenyl)-4-isoxazolyl]methoxy]phenyl]cyclopropyl] benzoic acid (Px-102), to develop cilofexor, a potent, non-steroidal FXR agonist with a more manageable safety profile. Px-102 demonstrated the anticipated pharmacodynamic (PD) effects in healthy volunteers but caused a 2-fold increase in alanine aminotransferase (ALT) activity and changes in cholesterol levels. These data guided development of a high fat diet mouse model to screen FXR agonists based on ALT and cholesterol changes. Cilofexor was identified to elicit only minor changes in these parameters. The differing effects of cilofexor and Px-102 on ALT/cholesterol in the model could not be explained by potency or specificity, and we hypothesized that the relative contribution of intestinal and liver FXR activation may be responsible. Gene expression analysis from rodent studies revealed that cilofexor, but not Px-102, had a bias for FXR transcriptional activity in the intestine compared with the liver. Fluorescent imaging in hepatoma cells demonstrated similar subcellular localization for cilofexor and Px-102, but cilofexor was more rapidly washed out, consistent with a lower membrane residence time contributing to reduced hepatic transcriptional effects. Cilofexor demonstrated antisteatotic and antifibrotic efficacy in rodent models and antisteatotic efficacy in a monkey model, with the anticipated PD and a manageable safety profile in human phase I studies. SIGNIFICANCE STATEMENT: Farnesoid X receptor (FXR) agonists have shown promise in treating non-alcoholic steatohepatitis and other liver diseases in the clinic, but balancing efficacy with undesired side effects has been difficult. Here, we examined the preclinical and clinical effects of the first-generation FXR agonist, 4-[2-[2-chloro-4-[[5-cyclopropyl-3-(2,6-dichlorophenyl)-4-isoxazolyl]methoxy]phenyl]cyclopropyl] benzoic acid, to enable the selection of an analog, cilofexor, with unique properties that reduced side effects yet maintained efficacy. Cilofexor is one of the few remaining FXR agonists in clinical development.
Collapse
Affiliation(s)
- David Hollenback
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Eva Hambruch
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Gero Fink
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Manfred Birkel
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Andreas Schulz
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Martin Hornberger
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Kathy Liu
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Kelly MacLennan Staiger
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Helen Desiree Krol
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Ulrich Deuschle
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Christoph Steeneck
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Olaf Kinzel
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - John T Liles
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Grant Budas
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - William J Watkins
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Claus Kremoser
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| |
Collapse
|
43
|
Laddha AP, Dzielak L, Lewis C, Xue R, Manautou JE. Impact of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) on the expression and function of hepatobiliary transporters: A comprehensive mechanistic review. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167037. [PMID: 38295624 DOI: 10.1016/j.bbadis.2024.167037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 02/02/2024]
Abstract
The liver plays a central role in the biotransformation and disposition of endogenous molecules and xenobiotics. In addition to drug-metabolizing enzymes, transporter proteins are key determinants of drug hepatic clearance. Hepatic transporters are transmembrane proteins that facilitate the movement of chemicals between sinusoidal blood and hepatocytes. Other drug transporters translocate molecules from hepatocytes into bile canaliculi for biliary excretion. The formers are known as basolateral, while the latter are known as canalicular transporters. Also, these transporters are classified into two super-families, the solute carrier transporter (SLC) and the adenosine triphosphate (ATP)-binding cassette (ABC) transporter. The expression and function of transporters involve complex regulatory mechanisms, which are contributing factors to interindividual variability in drug pharmacokinetics and disposition. A considerable number of liver diseases are known to alter the expression and function of drug transporters. Among them, non-alcoholic fatty liver disease (NAFLD) is a chronic condition with a rapidly increasing incidence worldwide. NAFLD, recently reclassified as metabolic dysfunction-associated steatotic liver disease (MASLD), is a disease continuum that includes steatosis with or without mild inflammation (NASH), and potentially neuroinflammatory pathology. NASH is additionally characterized by the presence of hepatocellular injury. During NAFLD and NASH, drug transporters exhibit altered expression and function, leading to altered drug pharmacokinetics and pharmacodynamics, thus increasing the risk of adverse drug reactions. The purpose of the present review is to provide comprehensive mechanistic information on the expression and function of hepatic transporters under fatty liver conditions and hence, the impact on the pharmacokinetic profiles of certain drugs from the available pre-clinical and clinical literature.
Collapse
Affiliation(s)
- Ankit P Laddha
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Lindsey Dzielak
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA; Non-Clinical Drug Safety (NDS) Department, Boehringer Ingelheim Pharmaceutical Co., Ridgefield, CT, USA
| | - Cedric Lewis
- Non-Clinical Drug Safety (NDS) Department, Boehringer Ingelheim Pharmaceutical Co., Ridgefield, CT, USA
| | - Raymond Xue
- Charles River Laboratories, Inc., Shrewsbury, MA, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
44
|
Hasan IH, Shaheen SY, Alhusaini AM, Mahmoud AM. Simvastatin mitigates diabetic nephropathy by upregulating farnesoid X receptor and Nrf2/HO-1 signaling and attenuating oxidative stress and inflammation in rats. Life Sci 2024; 340:122445. [PMID: 38278349 DOI: 10.1016/j.lfs.2024.122445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Diabetic nephropathy is one of the complications of diabetes that affects the kidney and can result in renal failure. The cholesterol-lowering drug simvastatin (SIM) has shown promising effects against diabetic nephropathy (DN). This study evaluated the protective role of SIM on DN, pointing to the involvement of farnesoid X receptor (FXR) and Nrf2/HO-1 signaling in attenuating inflammatory response, oxidative injury, and tissue damage in streptozotocin-induced diabetic rats. SIM was supplemented orally for 8 weeks, and samples were collected for analysis. SIM effectively ameliorated hyperglycemia, kidney hypertrophy, body weight loss, and tissue injury and fibrosis in diabetic animals. SIM mitigated oxidative stress (OS), inflammatory response, and cell death, as evidenced by the suppressed malondialdehyde, nitric oxide, myeloperoxidase, NF-kB, TNF-α, IL-1β, CD68, Bax, and caspase-3 in the diabetic kidney. These effects were linked to suppressed Keap1, upregulated FXR, Nrf2, and HO-1, and enhanced antioxidant defenses and Bcl-2. The in silico findings revealed the binding affinity of SIM with NF-kB, caspase-3, Keap1, HO-1, and FXR. In conclusion, SIM protects against DN by attenuating hyperglycemia, kidney injury, fibrosis, inflammation, and OS, and upregulating antioxidants, FXR, and Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Iman H Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11459, Saudi Arabia..
| | - Sameerah Y Shaheen
- Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Ahlam M Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11459, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK..
| |
Collapse
|
45
|
Md Shahrulnizam NAN, Mohd Efendy Goon MD, Ab Rahim S, Lew SW, Sheikh Abdul Kadir SH, Ibrahim E. Palm-based tocotrienol-rich fraction (TRF) supplementation modulates cardiac sod1 expression, fxr target gene expression, and tauro-conjugated bile acid levels in aleptinemic mice fed a high-fat diet. GENES & NUTRITION 2024; 19:3. [PMID: 38413846 PMCID: PMC10898183 DOI: 10.1186/s12263-024-00742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/10/2024] [Indexed: 02/29/2024]
Abstract
Tocotrienol-rich fraction (TRF) has been reported to protect the heart from oxidative stress-induced inflammation. It is, however, unclear whether the protective effects of TRF against oxidative stress involve the activation of farnesoid X receptor (fxr), a bile acid receptor, and the regulation of bile acid metabolites. In the current study, we investigated the effects of TRF supplementation on antioxidant activities, expression of fxr and its target genes in cardiac tissue, and serum untargeted metabolomics of high-fat diet-fed mice. Mice were divided into high-fat diet (HFD) with or without TRF supplementation (control) for 6 weeks. At the end of the intervention, body weight (BW), waist circumference (WC), and random blood glucose were measured. Heart tissues were collected, and the gene expression of sod1, sod2, gpx, and fxr and its target genes shp and stat3 was determined. Serum was subjected to untargeted metabolomic analysis using UHPLC-Orbitrap. In comparison to the control, the WC of the TRF-treated group was higher (p >0.05) than that of the HFD-only group, in addition there was no significant difference in weight or random blood glucose level. Downregulation of sod1, sod2, and gpx expression was observed in TRF-treated mice; however, only sod1 was significant when compared to the HFD only group. The expression of cardiac shp (fxr target gene) was significantly upregulated, but stat3 was significantly downregulated in the TRF-treated group compared to the HFD-only group. Biochemical pathways found to be influenced by TRF supplementation include bile acid secretion, primary bile acid biosynthesis, and biotin and cholesterol metabolism. In conclusion, TRF supplementation in HFD-fed mice affects antioxidant activities, and more interestingly, TRF also acts as a signaling molecule that is possibly involved in several bile acid-related biochemical pathways accompanied by an increase in cardiac fxr shp expression. This study provides new insight into TRF in deregulating bile acid receptors and metabolites in high-fat diet-fed mice.
Collapse
Affiliation(s)
- Nur Aliah Natasha Md Shahrulnizam
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia
| | - Mohd Danial Mohd Efendy Goon
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerFoRM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia
| | - Sharaniza Ab Rahim
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia
| | - Sook Weih Lew
- Department of Pediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerFoRM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia.
| | - Effendi Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia.
| |
Collapse
|
46
|
Liu CX, Gao Y, Xu XF, Jin X, Zhang Y, Xu Q, Ding HX, Li BJ, Du FK, Li LC, Zhong MW, Zhu JK, Zhang GY. Bile acids inhibit ferroptosis sensitivity through activating farnesoid X receptor in gastric cancer cells. World J Gastroenterol 2024; 30:485-498. [PMID: 38414591 PMCID: PMC10895598 DOI: 10.3748/wjg.v30.i5.485] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is associated with high mortality rates. Bile acids (BAs) reflux is a well-known risk factor for GC, but the specific mechanism remains unclear. During GC development in both humans and animals, BAs serve as signaling molecules that induce metabolic reprogramming. This confers additional cancer phenotypes, including ferroptosis sensitivity. Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression. However, it is not fully defined if BAs can influence GC progression by modulating ferroptosis. AIM To reveal the mechanism of BAs regulation in ferroptosis of GC cells. METHODS In this study, we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis. We used gain and loss of function assays to examine the impacts of farnesoid X receptor (FXR) and BTB and CNC homology 1 (BACH1) overexpression and knockdown to obtain further insights into the molecular mechanism involved. RESULTS Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells. This effect correlated with increased glutathione (GSH) concentrations, a reduced GSH to oxidized GSH ratio, and higher GSH peroxidase 4 (GPX4) expression levels. Subsequently, we confirmed that BAs exerted these effects by activating FXR, which markedly increased the expression of GSH synthetase and GPX4. Notably, BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR. Finally, our results suggested that FXR could significantly promote GC cell proliferation, which may be closely related to its anti-ferroptosis effect. CONCLUSION This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSH-GPX4 axis in GC cells. This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux.
Collapse
Affiliation(s)
- Chu-Xuan Liu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, China
| | - Ying Gao
- Department of General Surgery, Linyi People's Hospital, Linyi 276034, Shandong Province, China
| | - Xiu-Fang Xu
- Department of Nursing, Huantai TCM Hospital, Zibo 256400, Shandong Province, China
| | - Xin Jin
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, China
| | - Yun Zhang
- Center for Translational medical Research, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - Qian Xu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - Huan-Xin Ding
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - Bing-Jun Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - Fang-Ke Du
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - Lin-Chuan Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - Ming-Wei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - Jian-Kang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - Guang-Yong Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, China
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, China
| |
Collapse
|
47
|
Li L, Kong L, Xu S, Wang C, Gu J, Luo H, Meng Q. FXR overexpression prevents hepatic steatosis through inhibiting AIM2 inflammasome activation in alcoholic liver disease. Hepatol Int 2024; 18:188-205. [PMID: 38183609 DOI: 10.1007/s12072-023-10621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND AND PURPOSE Alcoholic liver disease (ALD), a metabolic liver disease caused by excessive alcohol consumption, has attracted increasing attention due to its high prevalence and mortality. Up to date, there is no effective and feasible treatment method for ALD. This study was to investigate whether Farnesoid X receptor (FXR, NR1H4) can alleviate ALD and whether this effect is mediated by inhibiting absent in melanoma 2 (AIM2) inflammasome activation. METHODS The difference in FXR expression between normal subjects and ALD patients was analyzed using the Gene Expression Omnibus (GEO) database. Lieber-DeCarli liquid diet with 5% ethanol (v/v) (EtOH) was adopted to establish the mouse ALD model. Liver histopathological changes and the accumulation of lipid droplets were assessed by H&E and Oil Red O staining. Quantitative real-time PCR, Western blotting analysis and immunofluorescence staining were utilized to evaluate the expression levels of related genes and proteins. DCFH-DA staining was adopted to visualize reactive oxidative species (ROS). RESULTS FXR was distinctly downregulated in liver tissues of patients with steatosis compared to normal livers using the GEO database, and in ethanol-induced AML-12 cellular steatosis model. FXR overexpression ameliorated hepatic lipid metabolism disorder and steatosis induced by ethanol by inhibiting the expression of genes involved in lipid synthesis and inducing the expression of genes responsible for lipid metabolism. Besides, FXR overexpression inhibited ethanol-induced AIM2 inflammasome activation and alleviated oxidative stress and ROS production during ethanol-induced hepatic steatosis. However, when FXR was knocked down, the results were completely opposite. CONCLUSIONS FXR attenuated lipid metabolism disorders and lipid degeneration in alcohol-caused liver injury and alleviated oxidative stress and inflammation by inhibiting AIM2 inflammasome activation.
Collapse
Affiliation(s)
- Lin Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Lina Kong
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Shuai Xu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Jiangning Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Haifeng Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
48
|
Yan D, Lv M, Kong X, Feng L, Ying Y, Liu W, Wang X, Ma X. FXR controls insulin content by regulating Foxa2-mediated insulin transcription. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119655. [PMID: 38135007 DOI: 10.1016/j.bbamcr.2023.119655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Farnesoid X receptor (FXR) is a nuclear ligand-activated receptor of bile acids that plays a role in the modulation of insulin content. However, the underlying molecular mechanisms remain unclear. Forkhead box a2 (Foxa2) is an important nuclear transcription factor in pancreatic β-cells and is involved in β-cell function. We aimed to explore the signaling mechanism downstream of FXR to regulate insulin content and underscore its association with Foxa2 and insulin gene (Ins) transcription. All experiments were conducted on FXR transgenic mice, INS-1 823/13 cells, and diabetic Goto-Kakizaki (GK) rats undergoing sham or Roux-en-Y gastric bypass (RYGB) surgery. Islets from FXR knockout mice and INS-1823/13 cells with FXR knockdown exhibited substantially lower insulin levels than that of controls. This was accompanied by decreased Foxa2 expression and Ins transcription. Conversely, FXR overexpression increased insulin content, concomitant with enhanced Foxa2 expression and Ins transcription in INS-1 823/13 cells. Moreover, FXR knockdown reduced FXR recruitment and H3K27 trimethylation in the Foxa2 promoter. Importantly, Foxa2 overexpression abrogated the adverse effects of FXR knockdown on Ins transcription and insulin content in INS-1 823/13 cells. Notably, RYGB surgery led to improved insulin content in diabetic GK rats, which was accompanied by upregulated FXR and Foxa2 expression and Ins transcription. Collectively, these data suggest that Foxa2 serves as the target gene of FXR in β-cells and mediates FXR-enhanced Ins transcription. Additionally, the upregulated FXR/Foxa2 signaling cascade could contribute to the enhanced insulin content in diabetic GK rats after RYGB.
Collapse
Affiliation(s)
- Dan Yan
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China.
| | - Moyang Lv
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Xiangchen Kong
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Linxian Feng
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Ying Ying
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Wenjuan Liu
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Xin Wang
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaosong Ma
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
49
|
Groenen C, Nguyen TA, Paulusma C, van de Graaf S. Bile salt signaling and bile salt-based therapies in cardiometabolic disease. Clin Sci (Lond) 2024; 138:1-21. [PMID: 38180064 PMCID: PMC10767275 DOI: 10.1042/cs20230934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Bile salts have an established role in the emulsification and intestinal absorption of dietary lipids, and their homeostasis is tightly controlled by various transporters and regulators in the enterohepatic circulation. Notably, emerging evidence points toward bile salts as major modulators of cardiometabolic disease (CMD), an umbrella disease of disorders affecting the heart and blood vessels that is caused by systemic metabolic diseases such as Type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD), the latter encompassing also metabolic dysfunction-associated steatohepatitis (MASH). The underlying mechanisms of protective effects of bile salts are their hormonal properties, enabling them to exert versatile metabolic effects by activating various bile salt-responsive signaling receptors with the nuclear farnesoid X receptor (FXR) and the Takeda G-protein-coupled receptor 5 (TGR5) as most extensively investigated. Activation of FXR and TGR5 is involved in the regulation of glucose, lipid and energy metabolism, and inflammation. Bile salt-based therapies directly targeting FXR and TGR5 signaling have been evaluated for their therapeutic potential in CMD. More recently, therapeutics targeting bile salt transporters thereby modulating bile salt localization, dynamics, and signaling, have been developed and evaluated in CMD. Here, we discuss the current knowledge on the contribution of bile salt signaling in the pathogenesis of CMD and the potential of bile salt-based therapies for the treatment of CMD.
Collapse
Affiliation(s)
- Claire C.J. Groenen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Thuc-Anh Nguyen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| |
Collapse
|
50
|
Alzain AA, Mukhtar RM. Application of computational approaches for the drug discovery of cholesterol gallstone disease: identification of new farnesoid X receptor modulators as a case study. GALLSTONE FORMATION, DIAGNOSIS, TREATMENT AND PREVENTION 2024:223-243. [DOI: 10.1016/b978-0-443-16098-1.00003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|