1
|
Hawkins RD, Brodin L, Theodorsson E, Végvári Á, Kandel ER, Hokfelt T. Distribution, cellular localization, and colocalization of several peptide neurotransmitters in the central nervous system of Aplysia. Learn Mem 2023; 30:116-123. [PMID: 37442624 PMCID: PMC10353257 DOI: 10.1101/lm.053758.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Neuropeptides are widely used as neurotransmitters in vertebrates and invertebrates. In vertebrates, a detailed understanding of their functions as transmitters has been hampered by the complexity of the nervous system. The marine mollusk Aplysia, with a simpler nervous system and many large, identified neurons, presents several advantages for addressing this question and has been used to examine the roles of tens of peptides in behavior. To screen for other peptides that might also play roles in behavior, we observed immunoreactivity in individual neurons in the central nervous system of adult Aplysia with antisera raised against the Aplysia peptide FMRFamide and two mammalian peptides that are also found in Aplysia, cholecystokinin (CCK) and neuropeptide Y (NPY), as well as serotonin (5HT). In addition, we observed staining of individual neurons with antisera raised against mammalian somatostatin (SOM) and peptide histidine isoleucine (PHI). However, genomic analysis has shown that these two peptides are not expressed in the Aplysia nervous system, and we have therefore labeled the unknown peptides stained by these two antibodies as XSOM and XPHI There was an area at the anterior end of the cerebral ganglion that had staining by antisera raised against many different transmitters, suggesting that this may be a modulatory region of the nervous system. There was also staining for XSOM and, in some cases, FMRFamide in the bag cell cluster of the abdominal ganglion. In addition, these and other studies have revealed a fairly high degree of colocalization of different neuropeptides in individual neurons, suggesting that the peptides do not just act independently but can also interact in different combinations to produce complex functions. The simple nervous system of Aplysia is advantageous for further testing these ideas.
Collapse
Affiliation(s)
- Robert D Hawkins
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
- New York State Psychiatric Institute, New York, New York 10032, USA
| | - Lennart Brodin
- Department of Neuroscience, Karolinska Institutet, Stockholm S-17177, Sweden
| | - Elvar Theodorsson
- Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology, Linköping University, Linköping S-58185, Sweden
| | - Ákos Végvári
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm S-17177, Sweden
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
- New York State Psychiatric Institute, New York, New York 10032, USA
- Howard Hughes Medical Institute, New York, New York 10032, USA
| | - Tomas Hokfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm S-17177, Sweden
| |
Collapse
|
2
|
Li C, Zheng Y, Cong X, Liu H, Storey KB, Chen M. Molecular and functional characterization of the luqin-type neuropeptide signaling system in the sea cucumber Apostichopus japonicus. Peptides 2022; 155:170839. [PMID: 35839946 DOI: 10.1016/j.peptides.2022.170839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/10/2022] [Accepted: 07/10/2022] [Indexed: 11/18/2022]
Abstract
The functional characteristics of neuropeptides in marine invertebrates have attracted significant attention recently although functional studies of luqin-type neuropeptides are still very limited, especially in deuterostomes. The sea cucumber, Apostichopus japonicus, is a representative species of deuterostomian Holothurian invertebrates. The species has high nutritional and medicinal value in China. In this study, we report the first comprehensive histological, biochemical and pharmacological characterization of luqin-type neuropeptide signaling in the sea cucumber A. japonicus. The A. japonicus luqin-like neuropeptide precursor (AjLQP) contains a single typical deuterostomian luqin-like neuropeptide AjLQ with an xFxRWamide motif. AjLQ was identified as the ligand for a luqin-type neuropeptide receptor AjLQR, that was previously predicted to be a tachykinin-type receptor, and triggers a rapid intracellular mobilization of Ca2+, followed by receptor internalization and a transient increase in ERK1/2 phosphorylation. In situ hybridization, immunohistochemistry and qRT-PCR analysis revealed extensive expression of AjLQP and AjLQ in A. japonicus tissues, especially in locomotion-related organs. In vitro pharmacological tests revealed that AjLQ caused 12.69% ± 1.99% (p < 0.01) relaxation of longitudinal muscle preparations at 10-7 M concentration. Furthermore, we observed significantly increased expression of AjLQP (about 17.63 fold, p < 0.01) in intestine of deeply aestivating sea cucumbers, which suggests that AjLQ might be involved in feeding inhibition during aestivation. The present study provides a first insight into the experimental characterization of luqin-type neuropeptide signaling in a sea cucumber. The results will broaden our understanding of the potential function of neuropeptides during important biological processes in marine invertebrates and provide theoretical support for optimizing sea cucumber aquaculture technology.
Collapse
Affiliation(s)
- Chenyi Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Xiao Cong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Huachen Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China.
| |
Collapse
|
3
|
Yañez-Guerra LA, Elphick MR. Evolution and Comparative Physiology of Luqin-Type Neuropeptide Signaling. Front Neurosci 2020; 14:130. [PMID: 32132900 PMCID: PMC7041311 DOI: 10.3389/fnins.2020.00130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/31/2020] [Indexed: 02/01/2023] Open
Abstract
Luqin is a neuropeptide that was discovered and named on account of its expression in left upper quadrant cells of the abdominal ganglion in the mollusc Aplysia californica. Subsequently, luqin-type peptides were identified as cardio-excitatory neuropeptides in other molluscs and a cognate receptor was discovered in the pond snail Lymnaea stagnalis. Phylogenetic analyses have revealed that orthologs of molluscan luqin-type neuropeptides occur in other phyla; these include neuropeptides in ecdysozoans (arthropods, nematodes) that have a C-terminal RYamide motif (RYamides) and neuropeptides in ambulacrarians (echinoderms, hemichordates) that have a C-terminal RWamide motif (RWamides). Furthermore, precursors of luqin-type neuropeptides typically have a conserved C-terminal motif containing two cysteine residues, although the functional significance of this is unknown. Consistent with the orthology of the neuropeptides and their precursors, phylogenetic and pharmacological studies have revealed that orthologous G-protein coupled receptors (GPCRs) mediate effects of luqin-type neuropeptides in spiralians, ecdysozoans, and ambulacrarians. Luqin-type signaling originated in a common ancestor of the Bilateria as a paralog of tachykinin-type signaling but, unlike tachykinin-type signaling, luqin-type signaling was lost in chordates. This may largely explain why luqin-type signaling has received less attention than many other neuropeptide signaling systems. However, insights into the physiological actions of luqin-type neuropeptides (RYamides) in ecdysozoans have been reported recently, with roles in regulation of feeding and diuresis revealed in insects and roles in regulation of feeding, egg laying, locomotion, and lifespan revealed in the nematode Caenorhabditis elegans. Furthermore, characterization of a luqin-type neuropeptide in the starfish Asterias rubens (phylum Echinodermata) has provided the first insights into the physiological roles of luqin-type signaling in a deuterostome. In conclusion, although luqin was discovered in Aplysia over 30 years ago, there is still much to be learnt about luqin-type neuropeptide signaling. This will be facilitated in the post-genomic era by the emerging opportunities for experimental studies on a variety of invertebrate taxa.
Collapse
Affiliation(s)
- Luis Alfonso Yañez-Guerra
- School of Biological and Chemical Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
4
|
Webber MP, Thomson JWS, Buckland-Nicks J, Croll RP, Wyeth RC. GABA-, histamine-, and FMRFamide-immunoreactivity in the visual, vestibular and central nervous systems of Hermissenda crassicornis. J Comp Neurol 2017; 525:3514-3528. [PMID: 28726311 DOI: 10.1002/cne.24286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 11/12/2022]
Abstract
Hermissenda crassicornis is a model for studying the molecular and cellular basis for classical conditioning, based on its ability to associate light with vestibular stimulation. We used confocal microscopy to map histamine (HA), FMRF-amide, and γ-aminobutyric acid (GABA) immunoreactivity in the central nervous system (CNS), eyes, optic ganglia and statocysts of the nudibranchs. For HA immunoreactivity, we documented both consistently and variably labeled CNS structures across individuals. We also noted minor differences in GABA immunoreactivity in the CNS compared to previous work on Hermissenda. Contrary to expectations, we found no evidence for GABA inside the visual or vestibular systems. Instead, we found only FMRFamide- and HA immunoreactivity (FMRFamide: 4 optic ganglion cells, 4-5 hair cells; HA: 3 optic ganglion cells, 8 hair cells). Overall, our results can act as basis for comparisons of nervous systems across nudibranchs, and suggest further exploration of intraspecific plasticity versus evolutionary changes in gastropod nervous systems.
Collapse
Affiliation(s)
- Marissa P Webber
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - James W S Thomson
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Johnny Buckland-Nicks
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Russell C Wyeth
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| |
Collapse
|
5
|
Zhang Z, Tublitz NJ. Expression of the SOFaRP2 gene in the central nervous system of the adult cuttlefish Sepia officinalis. Neuropeptides 2013; 47:149-55. [PMID: 23465584 DOI: 10.1016/j.npep.2013.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 01/19/2013] [Accepted: 01/29/2013] [Indexed: 11/28/2022]
Abstract
FMRFamide-related Peptides (FaRPs) are involved in a variety of physiological processes, including reproduction, feeding, development, body patterning and osmoregulation in vertebrates and invertebrates. Here we investigate the expression pattern of cuttlefish Sepia officinalis FaRP2 gene in the brain by in situ hybridization. The SOFaRP2 gene was found to be expressed most intensively in the posterior chromatophore lobe, vasomotor lobe and subvertical lobe. In addition, positive staining was also found in the fin lobe, brachial lobe, anterior chromatophore lobe, anterior, dorsal and lateral basal lobes, inferior and superior frontal lobes, and optic lobe. The expression pattern of SOFaRP2 suggests its involvement in chromatophore regulation, feeding behavior, and learning and memory.
Collapse
Affiliation(s)
- Zhuobin Zhang
- Department of Biology, University of Oregon, Eugene, OR 97403, USA.
| | | |
Collapse
|
6
|
Fioravante D, Liu RY, Byrne JH. The ubiquitin-proteasome system is necessary for long-term synaptic depression in Aplysia. J Neurosci 2008; 28:10245-56. [PMID: 18842884 PMCID: PMC2571080 DOI: 10.1523/jneurosci.2139-08.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/20/2008] [Accepted: 08/05/2008] [Indexed: 01/24/2023] Open
Abstract
The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.
Collapse
Affiliation(s)
- Diasinou Fioravante
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, Houston, Texas 77030
| | - Rong-Yu Liu
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, Houston, Texas 77030
| | - John H. Byrne
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, Houston, Texas 77030
| |
Collapse
|
7
|
López-Vera E, Aguilar MB, Heimer de la Cotera EP. FMRFamide and related peptides in the phylum mollusca. Peptides 2008; 29:310-7. [PMID: 18241957 DOI: 10.1016/j.peptides.2007.09.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
Abstract
FMRFamide is one of the well-known peptides studied within the phylum Mollusca. It was first isolated from the clam Macrocallista nimbosa during the end of the 1960s. Since then, a number of reports related to FMRFamide have been published from different experimental approaches, revealing that it and its related peptides (FaRPs) are implicated in a variety of physiological processes. As this year is the 30th anniversary since its discovery, this review focuses on diverse findings related to both FMRFamide and FaRPs in the phylum Mollusca.
Collapse
Affiliation(s)
- Estuardo López-Vera
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México, DF, 04510, Mexico.
| | | | | |
Collapse
|
8
|
Jezzini SH, Bodnarova M, Moroz LL. Two-color in situ hybridization in the CNS of Aplysia californica. J Neurosci Methods 2005; 149:15-25. [PMID: 16061289 DOI: 10.1016/j.jneumeth.2005.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 04/04/2005] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
Aplysia californica is an attractive model organism for cellular and systems neuroscience. Currently, there is a growing body of sequence data from Aplysia that includes many interesting genes. To fully exploit this molecular data it must be integrated with the large body of physiological data that are already available for identified neurons in Aplysia networks. In situ hybridization is a powerful technique that enables this to be done. Expression patterns of selected mRNA transcripts can be mapped to individual cells in the central nervous system (CNS). Here, we describe a detailed non-radioactive in situ hybridization protocol optimized for whole-mount preparations of Aplysia ganglia. The indirect alkaline phosphatase-based chromogenic detection method we employ may be used with one or two colors in order to detect one or two different transcripts in the same preparation. The procedure is also compatible with intracellular dye labeling, making it possible to couple localization of transcripts with electrophysiological studies in positively identified neurons. Double labeling was done for transcripts encoding the neuropeptides FMRFamide and sensorin. The sensitive detection of mRNA and great preservation of CNS morphology makes this method a useful tool for analyzing expression patterns of neuron specific genes in Aplysia.
Collapse
Affiliation(s)
- Sami H Jezzini
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, FL 32080, USA
| | | | | |
Collapse
|
9
|
Morishita F, Nakanishi Y, Sasaki K, Kanemaru K, Furukawa Y, Matsushima O. Distribution of the Aplysia cardioexcitatory peptide, NdWFamide, in the central and peripheral nervous systems of Aplysia. Cell Tissue Res 2003; 312:95-111. [PMID: 12712320 DOI: 10.1007/s00441-003-0707-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2002] [Accepted: 01/28/2003] [Indexed: 10/25/2022]
Abstract
NdWFamide is an Aplysia cardioexcitatory tri-peptide containing D-tryptophan. To investigate the roles of this peptide, we examined the immunohistochemical distribution of NdWFamide-positive neurons in Aplysia tissues. All the ganglia of the central nervous system (CNS) contained NdWFamide-positive neurons. In particular, two left upper quadrant cells in the abdominal ganglion, and the anterior cells in the pleural ganglion showed extensive positive signals. NdWFamide-positive processes were observed in peripheral tissues, such as those of the cardio-vascular system, digestive tract, and sex-accessory organs, and in the connectives or neuropils in the CNS. NdWFamide-positive neurons were abundant in peripheral plexuses, such as the stomatogastric ring. To examine the NdWFamide contents of tissues, we fractionated peptidic extracts from the respective tissues by reversed-phase high-pressure liquid chromatography and then assayed the fractions by competitive enzyme-linked immunosorbent assay. A fraction corresponding to the retention time of synthetic NdWFamide contained the most immunoreactivity, indicating that the tissues contained NdWFamide. The prevalence of the NdWFamide content was roughly in the order: abdominal ganglion >heart >gill >blood vessels >digestive tract. In most of the tissues containing NdWFamide-positive nerves, NdWFamide modulated the motile activities of the tissues. Thus, NdWFamide seems to be a versatile neurotransmitter/modulator of Aplysia and probably regulates the physiological activities of this animal.
Collapse
Affiliation(s)
- Fumihiro Morishita
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, 739-8526, Higashi-Hiroshima, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Angers A, Zappulla JP, Zollinger M, DesGroseillers L. Gene products from LUQ neurons in the abdominal ganglion are present at the renal pore of Aplysia californica. Comp Biochem Physiol B Biochem Mol Biol 2000; 126:435-43. [PMID: 11007186 DOI: 10.1016/s0305-0491(00)00217-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The L2-4,6 and L5 cells located in the left upper quadrant of the abdominal ganglion of Aplysia californica express the L5-67 and LUQ-1 genes, respectively, in a nonoverlapping manner. These cells send major neurites to the kidney and at least some of them were shown to innervate the renal pore closer muscle, and thereby control its function. By using in-situ hybridization and immunofluorescence, the presence of L5-67 and LUQ-1 mRNAs and peptides was studied in the kidney, with emphasis on the region of the renal pore. We detected immunoreactive materials in many small varicose nerve fibers running along the central epithelium in the inner parts of the kidney, and in neurites located within a large nerve associated with muscles inside the renal pore. Our observations represent the first direct evidence of the presence of gene products from LUQ cells at the renal pore, suggesting that they may be responsible for mediating LUQ cell signals. Furthermore, mRNAs coding for the L5-67 and LUQ-1 peptides were also found in the nerve structure inside the renal pore. Our report documents a striking example of neuropeptide mRNA targeting nerve terminals that are very distant from their cell bodies.
Collapse
Affiliation(s)
- A Angers
- Département de Biochimie, Université de Montréal, Station Centre-Ville, Québec, Canada
| | | | | | | |
Collapse
|
11
|
Differential distribution of functional receptors for neuromodulators evoking short-term heterosynaptic plasticity in Aplysia sensory neurons. J Neurosci 1997. [PMID: 8922410 DOI: 10.1523/jneurosci.16-23-07540.1996] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic transmission and excitability in Aplysia sensory neurons (SNs) are bidirectionally modulated by 5-HT and FMRFamide. To explore the regional distribution of different functional receptors that modulate SN properties, we examined changes in synaptic efficacy and excitability with brief focal applications of the neuromodulators to different regions of SNs that have established connections with motor cell L7 in culture. Short-term changes in synaptic efficacy were evoked only when 5-HT or FMRFamide was applied to regions with SN varicosities along the surface of L7 axons. Applications to adjacent SN neurites with few varicosities in contact with L7 axons failed to evoke a significant change in synaptic efficacy. The distribution of functional receptors mediating changes in excitability differed for 5-HT and FMRFamide. Whereas excitability increases were evoked only when 5-HT was applied to SN cell bodies, excitability decreases in SNs were evoked only when FMRFamide was applied to regions along the L7 axon with SN varicosities. Without the target cell, cell bodies of SNs expressed both 5-HT and FMRFamide receptors that modulate excitability. These results indicate that functional G-protein-coupled receptors for two neuromodulators are distributed differentially along the surface of a presynaptic neuron that forms chemical connections in vitro. This differential distribution of receptors on the presynaptic neuron is regulated by a target and does not require the physical presence of neurons that release the neuromodulators.
Collapse
|
12
|
Giardino ND, Aloyz RS, Zollinger M, Miller MW, DesGroseillers L. L5-67 and LUQ-1 peptide precursors of Aplysia californica: distribution and localization of immunoreactivity in the central nervous system and in peripheral tissues. J Comp Neurol 1996; 374:230-45. [PMID: 8906496 DOI: 10.1002/(sici)1096-9861(19961014)374:2<230::aid-cne6>3.0.co;2-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two genes (L5-67 and LUQ-1) that encode neuropeptide precursors have recently been shown to be expressed in a distinct and non-overlapping manner in the five left upper quadrant (LUQ) cells of the abdominal ganglion of Aplysia (Landry et al. [1992]. J. Neurobiol 23:89-101). By using wholemount immunohistochemistry and radioimmunoassay (RIA), the pattern of expression of these two genes was assessed at the protein level throughout the central nervous system (CNS) and in peripheral tissues of Aplysia californica. The distribution of LUQ-1 precursor-like immunoreactivity was fairly limited, occurring in the ventral LUQ cell (L5) and in a total of approximately 20 additional neurons in the abdominal and cerebral ganglia. L5-67 precursor-like immunoreactive material was more prevalent, appearing in a total of approximately 100 neurons distributed among each of the central ganglia. Identified L5-67-immunoreactive neurons included the four dorsal LUQ cells (L2-4 and L6) and two giant neurons (R2 and LPI1). In one group of cells, the H cluster of the cerebral ganglion, L5-67 immunofluorescence was substantially more intense in larger versus smaller animals, suggesting that this peptide precursor is subject to developmental regulation in certain neurons. Immunoelectron microscopic examination of the subcellular localization of L5-67 immunoreactivity in LUQ cell somata and axons revealed its association with dense-core vesicles (approximately 114 nm in diameter). In the periphery, L5-67-immunoreactive fibers were detected in specific regions of the circulatory system (auricle, ventricle, cristae aorta, anterior aorta) and the reproductive system (genital ganglion, large hermaphroditie duct, small hermaphroditie duct, ovotestis). The kidney and the intestine, two tissues in which considerable secretion and absorption occur, contained material immunoreactive to both L5-67 and LUQ-1 antisera. The localization of the two peptide precursors in these tissues differed substantially, with L5-67 occurring in widely ramifying varicose fibers, whereas LUQ-1 was found in restricted foci of fibers and in small spherical cells that appeared to lack processes. These results support previous findings concerning the heterogeneity of neurotransmitter phenotypes in the LUQ cells. Furthermore, they are indicative of a fairly broad role for the L5-67-derived neuropeptides, and a more limited role for the LUQ-1-derived neuropeptides, in the regulation of the visceral organ systems of Aplysia.
Collapse
Affiliation(s)
- N D Giardino
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
The presence of the molluscan neuropeptide FMRFamide was investigated in the heart of the sea hare, Aplysia californica. Immunohistochemical localization and high performance liquid chromatography (HPLC) coupled with radioimmunoassays of HPLC fractions were used to demonstrate the presence of FMRFamide and FLRFamide in the heart. FMRFamide-immunoreactive (FMRFamide-IR) nerve fibers, varicosities, and neuronal somata were observed in whole-mounts of the hearts. The atrium and atrioventricular (AV) valve regions contained significantly higher densities (P < 0.05, ANOVA) of immunoreactive varicosities compared to the ventricle. The high density of FMRFamide-IR varicosities in the atrium and the lack of sensitivity of this region to FMRFamide suggest that the atrium may be a neurohemal organ for the release of FMRFamide. The presence of FMRFamide-IR somata in the Aplysia heart suggests that peripheral neurons may play a role in modifying heart activity, independent of the central nervous system.
Collapse
Affiliation(s)
- L L Harris
- Department of Biological Science, California State University, Fullerton 92634-9480, USA
| | | | | |
Collapse
|
14
|
Aloyz RS, DesGroseillers L. Processing of the L5-67 precursor peptide and characterization of LUQIN in the LUQ neurons of Aplysia californica. Peptides 1995; 16:331-8. [PMID: 7784264 DOI: 10.1016/0196-9781(94)00140-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Metabolic labeling of the dorsal Left Upper Quadrant (LUQ) cells of the abdominal ganglion of Aplysia californica and RP-HPLC separation of their peptide content allowed us to identify the L5-67 precursor and its processed peptides. Cleavage of the signal peptide occurred between amino acids 23 and 24 of the prepropeptide and generated a propeptide of 89 amino acids. Further processing by endopeptidases at the twin basic residues Lys12-Arg13 of the precursor generated a peptide of 76 amino acids, as well as an amidated decapeptide, LUQIN. The sequence of LUQIN was determined by amino acid sequencing and by its comigration with the synthetic peptide Ala-Pro-Ser-Trp-Arg-Pro-Gln-Gly-Arg-Phe-amide in three different RP-HPLC systems. The amidation of LUQIN was further demonstrated by its resistance to carboxypeptidase A digestion.
Collapse
Affiliation(s)
- R S Aloyz
- Department of Biochemistry, University of Montreal, Canada
| | | |
Collapse
|
15
|
Miller MW, Alevizos A, Cropper EC, Kupfermann I, Weiss KR. Distribution of buccalin-like immunoreactivity in the central nervous system and peripheral tissues of Aplysia californica. J Comp Neurol 1992; 320:182-95. [PMID: 1619048 DOI: 10.1002/cne.903200204] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neuropeptide buccalin A was originally purified and sequenced from a nerve-muscle system used in feeding-related behaviors of Aplysia californica in which it has been proposed that it acts as a modulatory cotransmitter. The distribution of buccalin-like immunoreactivity in the central ganglia and in peripheral tissues of Aplysia californica was examined by whole mount immunohistochemical techniques. Immunoreactive material was located in specific cell bodies and clusters of neurons in each of the ganglia. Immunoreactive fibers were present in each of the connectives between ganglia, in tracts coursing through the ganglia, and in the majority of the peripheral nerves. Most fibers were smooth in contour, but some had regularly spaced swellings. Varicosities containing immunoreactive material were located on specific neuronal somata and on certain tissues associated with the feeding, circulatory, digestive, and reproductive systems. The specific and widespread distribution of buccalin-like immunoreactivity supports the hypothesis that members of the buccalin peptide family act as neuromodulators or neurotransmitters in a variety of central and peripheral circuits in Aplysia.
Collapse
Affiliation(s)
- M W Miller
- Center for Neurobiology and Behavior, New York State Psychiatric Institute, New York
| | | | | | | | | |
Collapse
|
16
|
Landry C, Crine P, DesGroseillers L. Differential expression of neuropeptide gene mRNA within the LUQ cells of Aplysia californica. JOURNAL OF NEUROBIOLOGY 1992; 23:89-101. [PMID: 1564457 DOI: 10.1002/neu.480230109] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two neuropeptide precursor cDNAs (LUQ-1 and L5-67) have been recently isolated from the Left Upper Quadrant (LUQ) neurons of the abdominal ganglion of Aplysia californica (Shyamala, Fisher, and Scheller, 1986; Wickham and DesGroseillers, 1991). Using in situ hybridization techniques as well as dot blot and polymerase chain reaction (PCR) assays, we have studied the expression of these genes in the central nervous system (CNS) of Aplysia californica. The LUQ-1 gene was found to be expressed in neuron L5 in the abdominal ganglion, whereas the expression of the L5-67 gene was observed in the other four LUQ cells (L2-4 and L6). When in situ hybridization was performed on paraffin sections of the abdominal ganglion, clusters of smaller cells located in the left hemiganglion, were also found to express either the LUQ-1 or the L5-67 gene, never both. In many sections, the mRNAs coding for the two neuropeptides were found not only in cell bodies but also in the axon of individual LUQ neurons and even as far as the pericardial nerve. The presence of neuropeptide mRNA in axons, pericardial nerve, and kidney has been confirmed by polymerase chain reaction. A specific, although diffuse hybridization in the left upper quadrant also suggests that mRNA is present in the neuritic field. Taken together these results indicate that neuron L5 is the only giant neuron expressing the LUQ-1 gene and might therefore have a physiological function different from the other four LUQ cells. Neuropeptide mRNAs were also found in the axon and/or the neuritic field of giant neurons and could play important roles related to cell signalling in axons and nerve termini.
Collapse
Affiliation(s)
- C Landry
- Department of Biochemistry, University of Montreal, Quebec, Canada
| | | | | |
Collapse
|
17
|
Miller MW, Alevizos A, Cropper EC, Vilim FS, Karagogeos D, Kupfermann I, Weiss KR. Localization of myomodulin-like immunoreactivity in the central nervous system and peripheral tissues of Aplysia californica. J Comp Neurol 1991; 314:627-44. [PMID: 1816269 DOI: 10.1002/cne.903140402] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The distribution of myomodulin-like peptides in the nervous system of Aplysia californica was examined by using immunocytochemical techniques. Neurons and cell clusters containing immunoreactive material were located in each of the major central ganglia. Myomodulin-like immunoreactivity was also present in fibers in each of the connectives between the ganglia and in peripheral nerves. Varicosities containing immunoreactive material were located on specific regions of peripheral tissues associated with the feeding, digestive, cardiovascular, and reproductive systems. Double-labeling experiments were used to demonstrate myomodulin-like immunoreactivity in two identified neurons, the motor neuron B16 in the buccal ganglion and the widely acting interneuron L10 in the abdominal ganglion. Structures in the eye and cerebral ganglion that may correspond to the optic circadian pacemaker system were also stained. The central and peripheral distribution of myomodulin-like immunoreactivity indicates that this family of neuropeptides is present in specific efferent, afferent, and interneuronal elements that participate in a diversity of neural circuits in Aplysia.
Collapse
Affiliation(s)
- M W Miller
- Center for Neurobiology and Behavior, New York State Psychiatric Institute, New York
| | | | | | | | | | | | | |
Collapse
|
18
|
Wickham L, Desgroseillers L. A bradykinin-like neuropeptide precursor gene is expressed in neuron L5 of Aplysia californica. DNA Cell Biol 1991; 10:249-58. [PMID: 2029336 DOI: 10.1089/dna.1991.10.249] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Left upper quadrant (LUQ) cells in Aplysia californica extensively innervate the kidney and regulate some renal functions, although the nature of the neurotransmitters involved in these functions is still unknown. We isolated a new neuropeptide gene (LUQ-1) whose expression in the LUQ cells could be regulated posttranscriptionally by alternative choices of polyadenylation sites. This clone encodes a putative 16.3-kD precursor peptide which contains potential proteolytic cleavage sites that could generate smaller mature peptides. One of these peptides has a 63% identity with mammalian bradykinin/kallidin peptides. The Aplysia haploid genome contains a single copy of the gene, which is interrupted by at least one large intervening sequence. PCR assays performed with RNA isolated from individually dissected cells showed that the LUQ-1 gene is expressed only in neuron L5 among the LUQ cells.
Collapse
Affiliation(s)
- L Wickham
- Department of Biochemistry, University of Montreal, Canada
| | | |
Collapse
|
19
|
Ono JK. Synaptic connections in the buccal ganglia of Aplysia mediated by an identified neuron containing a CCK/gastrin-like peptide co-localized with acetylcholine. Brain Res 1989; 493:212-24. [PMID: 2765897 DOI: 10.1016/0006-8993(89)91156-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The identified neuron, B13, located bilaterally in the buccal ganglion of the marine mollusc Aplysia californica, contains a classical neurotransmitter (acetylcholine) and a cholecystokinin/gastrin-like (CCK/G-li) peptide. The following study demonstrates that B13 makes direct synaptic connections with several identifiable postsynaptic follower neurons. These follower neurons also receive convergent input from previously identified cholinergic neurons, B4 and B5, which do not contain a CCK/G-li peptide. The cholinergic responses mediated by B4/B5 and B13 are similar, including in at least one buccal follower, a two-component inhibitory response not seen in previous studies of the buccal ganglia circuits. However, when the cholinergic responses are blocked by appropriate antagonists, a residual, slow depolarizing, chemically-mediated response is observed in two of the identifiable followers when action potentials are evoked in B13 but not when action potentials are evoked in B4 or B5.
Collapse
Affiliation(s)
- J K Ono
- Department of Biological Science, California State University, Fullerton 92634
| |
Collapse
|
20
|
Brezina V. Guanosine 5'-triphosphate analogue activates potassium current modulated by neurotransmitters in Aplysia neurones. J Physiol 1988; 407:15-40. [PMID: 2855739 PMCID: PMC1191189 DOI: 10.1113/jphysiol.1988.sp017401] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
1. Identified neurones in the abdominal ganglion of Aplysia californica were voltage clamped in order to investigate how guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S), a GTP analogue that irreversibly activates guanine nucleotide-binding (G) proteins, modifies activation by the neuropeptide FMRFamide (Phe-Met-Arg-Phe-NH2) of a slow K+ current resembling the serotonin- and adenosine 3',5'-cyclic monophosphate (cyclic AMP)-sensitive 'S' current, and a similar response to acetylcholine. 2. Ionophoretic or pressure injection of GTP-gamma-S into the cell triggered the slow and irreversible development of a large K+ current, rendered the K+ current responses to FMRFamide and acetylcholine irreversible, and finally, once the GTP-gamma-S-induced current had fully developed, occluded the neurotransmitter responses altogether. 3. The K+ currents activated by GTP-gamma-S and acetylcholine had properties identical to those previously found for the FMRFamide-induced 'S'-like K+ current: they were Ca2+ and voltage independent, relatively insensitive to block by extracellular tetraethylammonium (TEA) and 4-aminopyridine (when high concentrations of acetylcholine were used to overcome an additional block by these agents of the receptor), and suppressed in Ba2+-containing solution, by injection of TEA+ or Cs+ into the cell, and by serotonin and elevation of the intracellular concentration of cyclic AMP. 4. The K+ current responses to FMRFamide and acetylcholine were not additive when the agonist concentrations used were high enough to activate most of the available current. 5. Desensitization of either response did not affect the other, and the effect of acetylcholine, but not that of FMRFamide, could be blocked by the known acetylcholine-receptor blockers phenyltrimethylammonium and TEA. 6. These results suggest that FMRFamide and acetylcholine, acting through different receptors, activate the same 'S'-like K+ current by a mechanism involving a G protein. 7. In addition to activating the slow K+ current, FMRFamide and acetylcholine each activate a faster current in these cells, carried by Na+ in the case of FMRFamide, and by Cl- in the case of acetylcholine. Neither fast response was affected by GTP-gamma-S.
Collapse
Affiliation(s)
- V Brezina
- Department of Biology, University of California, Los Angeles 90024
| |
Collapse
|
21
|
Abstract
In the present study, we describe the structure of the central nervous system (CNS) of the marine gastropod Bulla gouldiana, and compare it with the structure of the CNS of the related mollusc, Aplysia californica. In addition, we performed an immunohistochemical analysis of a series of peptides, and the synaptic vesicle protein, synapsin I, in the central nervous system of B. gouldiana. The most common peptide in the B. gouldiana nervous system is the molluscan cardioexcitatory peptide (FMRFamide), which is present in a significant proportion of B. gouldiana neurons. A smaller number of neurons exhibit immunoreactivity to antisera raised against the calcitonin gene related peptide, vasopressin, vasoactive intestinal peptide, cholecystokinin, galanin and enkephalin. In some instances there is colocalization of two or more peptides. Very few neurons or axons exhibit synapsin I-like immunoreactivity. The patterns of immunoreactivity to these antisera is quite similar to the patterns that have been described in other gastropods, including Lymnaea stagnalis and Aplysia californica. These observations emphasize the importance of FMRFamide-like compounds in phylogenetically old nervous systems and indicate that compounds similar to mammalian peptides are present in the gastropod. Thus, the production of a wide variety of peptide molecules and their use in neuronal function appears to be a highly conserved phylogenetic process.
Collapse
Affiliation(s)
- M H Roberts
- Department of Neurology, State University of New York, Stony Brook 11794
| | | | | |
Collapse
|
22
|
Greenberg MJ, Payza K, Nachman RJ, Holman GM, Price DA. Relationships between the FMRFamide-related peptides and other peptide families. Peptides 1988; 9 Suppl 1:125-35. [PMID: 2908809 DOI: 10.1016/0196-9781(88)90236-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The relationships between peptide families are recognized in terms of structural similarity and immunological and biological activity. Most of the currently known FMRFamide-related peptides (FaRPs) of molluscs were tested in a radioimmunoassay (RIA) and in the two standard bioassays for FMRFamide: the radula protractor muscle of the whelk Busycon contrarium, and the isolated heart of the clam Mercenaria mercenaria. Some peptides were also tested on the heart of the snail Helix aspersa. The responses of the different assays to these peptides were generally similar, but substantial diversity precluded an absolute resolution of relationships, even among molluscan FaRPs. Nevertheless, this set of responses does constitute a standard against which to estimate the relative affinities of putative FaRPs from other animal groups. Many of the non-molluscan FaRPs (e.g., the pancreatic polypeptide-related peptides, gastrin/CCK, and the opioid peptides) are relatively inactive on the molluscan assays, but others (e.g., LPLRFamide, a peptide isolated from chicken brain; the opioid receptor-modulating peptides A18Fa and F8Fa; and gamma 1-MSH) were relatively potent. Several arthropod FaRPs have substantial FMRFamide-like sequence similarity and immunoreactivity, and they may be homologous members of the molluscan peptide family. However, those structural and functional aspects of peptide families that transcend phyletic lines probably reflect basic principles of binding between peptides and membrane proteins rather than homology.
Collapse
Affiliation(s)
- M J Greenberg
- Whitney Laboratory, University of Florida, St. Augustine 32086
| | | | | | | | | |
Collapse
|
23
|
Mackey SL, Glanzman DL, Small SA, Dyke AM, Kandel ER, Hawkins RD. Tail shock produces inhibition as well as sensitization of the siphon-withdrawal reflex of Aplysia: possible behavioral role for presynaptic inhibition mediated by the peptide Phe-Met-Arg-Phe-NH2. Proc Natl Acad Sci U S A 1987; 84:8730-4. [PMID: 3120198 PMCID: PMC299620 DOI: 10.1073/pnas.84.23.8730] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Recent studies have shown that, in addition to being modulated by presynaptic facilitation, the sensory neurons of the gill- and siphon-withdrawal reflex of Aplysia are also capable of being modulated by transient presynaptic inhibition produced by the peptide Phe-Met-Arg-Phe-NH2. These two modulatory effects involve different second-messenger systems: the facilitation is mediated through cAMP-dependent protein phosphorylation, and the inhibition is mediated through the lipoxygenase pathway of arachidonic acid. To explore the behavioral function of this inhibition, we have carried out a parametric analysis of the effect of tail shock on the siphon-withdrawal reflex. In addition to producing sensitization of the withdrawal reflex, tail shock also transiently inhibits the reflex. The inhibition is produced by relatively weak shock, whereas sensitization is more prominent and may mask the inhibition with stronger shock. Furthermore, inhibition is not observed after habituation training. Cellular studies suggest that the behavioral inhibition is mediated, at least in part, by presynaptic inhibition of transmitter release from the siphon sensory neurons. Moreover, we have identified an interneuron within the left pleural ganglion (LPL16) that shows Phe-Met-Arg-Phe-NH2 immunoreactivity, is activated by tail shock, and simulates the presynaptic inhibitory actions produced by tail shock. Therefore, our results suggest that presynaptic inhibition mediated by Phe-Met-Arg-Phe-NH2 and its lipoxygenase second messenger contributes to behavioral inhibition of the siphon-withdrawal reflex.
Collapse
Affiliation(s)
- S L Mackey
- Howard Hughes Medical Institute, Columbia University, College of Physicians and Surgeons, New York, NY
| | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- J Koester
- Center for Neurobiology and Behavior, Columbia University, New York, New York
| | | |
Collapse
|
25
|
Rothman BS, Sigvardt KA, Hawke DH, Brown RO, Shively JE, Mayeri E. Identification and primary structural analysis of peptide II, an end-product of precursor processing in cells R3-R14 of Aplysia. Peptides 1985; 6:1113-8. [PMID: 3834413 DOI: 10.1016/0196-9781(85)90436-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Peptide II, which is encoded on a gene for a precursor protein in abdominal ganglion neurons R3-R14, was purified from extracts of abdominal ganglia of Aplysia californica. Native peptide II comigrates with synthetic standards on HPLC under isocratic conditions. Amino acid sequence and composition analyses indicate that the sequence of peptide II is Glu-Ala-Glu-Glu-Pro-Ser-Phe-Met-Thr-Arg-Leu, as predicted from the precursor. The molluscan cardioexcitatory peptide Phe-Met-Arg-Phe-amide was also identified in abdominal ganglion extracts by similar means. The large amount of peptide II recovered (100 ng/ganglion), and its location on the precursor between two pairs of basic residues, strongly suggest that the precursor is processed into peptide II and at least two other peptides. Although cells R3-R11 have been postulated to play a role in cardiovascular control, peptide II was without effect at less than or equal to 10(-4) M concentrations on identified abdominal ganglion neurons, the gastroesophageal artery or the heart. The physiological role of peptide II therefore remains to be elucidated.
Collapse
|