1
|
Liu YN, Liu Z, Liu J, Hu Y, Cao B. Unlocking the potential of Shewanella in metabolic engineering: Current status, challenges, and opportunities. Metab Eng 2025; 89:1-11. [PMID: 39952391 DOI: 10.1016/j.ymben.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Shewanella species are facultative anaerobes with distinctive electrochemical properties, making them valuable for applications in energy conversion and environmental bioremediation. Due to their well-characterized electron transfer mechanisms and ease of genetic manipulation, Shewanella spp. have emerged as a promising chassis for metabolic engineering. In this review, we provide a comprehensive overview of the advancements in Shewanella-based metabolic engineering. We begin by discussing the physiological characteristics of Shewanella, with a particular focus on its extracellular electron transfer (EET) capability. Next, we outline the use of Shewanella as a metabolic engineering chassis, presenting a general framework for strain construction based on the Design-Build-Test-Learn (DBTL) cycle and summarizing key advancements in the engineering of Shewanella's metabolic modules. Finally, we offer a perspective on the future development of Shewanella chassis, highlighting the need for deeper mechanistic insights, rational strain design, and interdisciplinary collaboration to drive further progress.
Collapse
Affiliation(s)
- Yi-Nan Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Zhourui Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Jian Liu
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yidan Hu
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Bin Cao
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore.
| |
Collapse
|
2
|
Wu T, Zhang Z, Li T, Dong X, Wu D, Zhu L, Xu K, Zhang Y. The type III secretion system facilitates systemic infections of Pseudomonas aeruginosa in the clinic. Microbiol Spectr 2024; 12:e0222423. [PMID: 38088541 PMCID: PMC10783026 DOI: 10.1128/spectrum.02224-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The identification of decisive virulence-associated genes in highly pathogenic P. aeruginosa isolates in the clinic is essential for diagnosis and the start of appropriate treatment. Over the past decades, P. aeruginosa ST463 has spread rapidly in East China and is highly resistant to β-lactams. Given the poor clinical outcome caused by this phenotype, detailed information regarding its decisive virulence genes and factors affecting virulence expression needs to be deciphered. Here, we demonstrate that the T3SS effector ExoU has toxic effects on mammalian cells and is required for virulence in the murine bloodstream infection model. Moreover, a functional downstream SpcU is required for ExoU secretion and cytotoxicity. This work highlights the potential role of ExoU in the pathogenesis of disease and provides a new perspective for further research on the development of new antimicrobials with antivirulence ability.
Collapse
Affiliation(s)
- Tiantian Wu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenchuan Zhang
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Tong Li
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Dong
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Wu
- Research and Service Center, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Lixia Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaijin Xu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhang
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
3
|
Subfunctionalization probably drives the emergence of plant growth-promoting genes. Symbiosis 2022. [DOI: 10.1007/s13199-022-00872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Dangla-Pélissier G, Roux N, Schmidt V, Chambonnier G, Ba M, Sebban-Kreuzer C, de Bentzmann S, Giraud C, Bordi C. The horizontal transfer of Pseudomonas aeruginosa PA14 ICE PAPI-1 is controlled by a transcriptional triad between TprA, NdpA2 and MvaT. Nucleic Acids Res 2021; 49:10956-10974. [PMID: 34643711 PMCID: PMC8565334 DOI: 10.1093/nar/gkab827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/24/2021] [Accepted: 10/06/2021] [Indexed: 01/16/2023] Open
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. Genome sequences reveal that most P. aeruginosa strains contain a significant number of accessory genes gathered in genomic islands. Those genes are essential for P. aeruginosa to invade new ecological niches with high levels of antibiotic usage, like hospitals, or to survive during host infection by providing pathogenicity determinants. P. aeruginosa pathogenicity island 1 (PAPI-1), one of the largest genomic islands, encodes several putative virulence factors, including toxins, biofilm genes and antibiotic-resistance traits. The integrative and conjugative element (ICE) PAPI-1 is horizontally transferable by conjugation via a specialized GI-T4SS, but the mechanism regulating this transfer is currently unknown. Here, we show that this GI-T4SS conjugative machinery is directly induced by TprA, a regulator encoded within PAPI-1. Our data indicate that the nucleotide associated protein NdpA2 acts in synergy with TprA, removing a repressive mechanism exerted by MvaT. In addition, using a transcriptomic approach, we unravelled the regulon controlled by Ndpa2/TprA and showed that they act as major regulators on the genes belonging to PAPI-1. Moreover, TprA and NdpA2 trigger an atypical biofilm structure and enhance ICE PAPI-1 transfer.
Collapse
Affiliation(s)
| | - Nicolas Roux
- LISM, IMM, Aix-Marseille University, Marseille 13402, France
| | | | | | - Moly Ba
- LISM, IMM, Aix-Marseille University, Marseille 13402, France
| | | | | | - Caroline Giraud
- U2RM Stress/Virulence, Normandy University, UNICAEN, 14000 Caen, France
| | | |
Collapse
|
5
|
Jutras PV, Soldan R, Dodds I, Schuster M, Preston GM, van der Hoorn RAL. AgroLux: bioluminescent Agrobacterium to improve molecular pharming and study plant immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:600-612. [PMID: 34369027 DOI: 10.1111/tpj.15454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Agroinfiltration in Nicotiana benthamiana is widely used to transiently express heterologous proteins in plants. However, the state of Agrobacterium itself is not well studied in agroinfiltrated tissues, despite frequent studies of immunity genes conducted through agroinfiltration. Here, we generated a bioluminescent strain of Agrobacterium tumefaciens GV3101 to monitor the luminescence of Agrobacterium during agroinfiltration. By integrating a single copy of the lux operon into the genome, we generated a stable 'AgroLux' strain, which is bioluminescent without affecting Agrobacterium growth in vitro and in planta. To illustrate its versatility, we used AgroLux to demonstrate that high light intensity post infiltration suppresses both Agrobacterium luminescence and protein expression. We also discovered that AgroLux can detect Avr/Cf-induced immune responses before tissue collapse, establishing a robust and rapid quantitative assay for the hypersensitive response (HR). Thus, AgroLux provides a non-destructive, versatile and easy-to-use imaging tool to monitor both Agrobacterium and plant responses.
Collapse
Affiliation(s)
- Philippe V Jutras
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Park Road, Oxford, OX1 3RB, UK
| | - Riccardo Soldan
- Department of Plant Sciences, University of Oxford, South Park Road, Oxford, OX1 3RB, UK
| | - Isobel Dodds
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Park Road, Oxford, OX1 3RB, UK
| | - Mariana Schuster
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Park Road, Oxford, OX1 3RB, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, South Park Road, Oxford, OX1 3RB, UK
| | - Renier A L van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Park Road, Oxford, OX1 3RB, UK
| |
Collapse
|
6
|
Soldan R, Sanguankiattichai N, Bach-Pages M, Bervoets I, Huang WE, Preston GM. From macro to micro: a combined bioluminescence-fluorescence approach to monitor bacterial localization. Environ Microbiol 2021; 23:2070-2085. [PMID: 33103833 PMCID: PMC8614114 DOI: 10.1111/1462-2920.15296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/13/2023]
Abstract
Bacterial bioluminescence is widely used to study the spatiotemporal dynamics of bacterial populations and gene expression in vivo at a population level but cannot easily be used to study bacterial activity at the level of individual cells. In this study, we describe the development of a new library of mini‐Tn7‐lux and lux::eyfp reporter constructs that provide a wide range of lux expression levels, and which combine the advantages of both bacterial bioluminescence and fluorescent proteins to bridge the gap between macro‐ and micro‐scale imaging techniques. We demonstrate that a dual bioluminescence‐fluorescence approach using the lux operon and eYFP can be used to monitor bacterial movement in plants both macro‐ and microscopically and demonstrate that Pseudomonas syringae pv phaseolicola can colonize the leaf vascular system and systemically infect leaves of common bean (Phaseolus vulgaris). We also show that bacterial bioluminescence can be used to study the impact of plant immune responses on bacterial multiplication, viability and spread within plant tissues. The constructs and approach described in this study can be used to study the spatiotemporal dynamics of bacterial colonization and to link population dynamics and cellular interactions in a wide range of biological contexts.
Collapse
Affiliation(s)
- Riccardo Soldan
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | | | | - Indra Bervoets
- Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wei E Huang
- Department of Engineering, University of Oxford, Oxford, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Expression and function of the cdgD gene, encoding a CHASE-PAS-DGC-EAL domain protein, in Azospirillum brasilense. Sci Rep 2021; 11:520. [PMID: 33436847 PMCID: PMC7804937 DOI: 10.1038/s41598-020-80125-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
The plant growth-promoting bacterium Azospirillum brasilense contains several genes encoding proteins involved in the biosynthesis and degradation of the second messenger cyclic-di-GMP, which may control key bacterial functions, such as biofilm formation and motility. Here, we analysed the function and expression of the cdgD gene, encoding a multidomain protein that includes GGDEF-EAL domains and CHASE and PAS domains. An insertional cdgD gene mutant was constructed, and analysis of biofilm and extracellular polymeric substance production, as well as the motility phenotype indicated that cdgD encoded a functional diguanylate protein. These results were correlated with a reduced overall cellular concentration of cyclic-di-GMP in the mutant over 48 h compared with that observed in the wild-type strain, which was recovered in the complemented strain. In addition, cdgD gene expression was measured in cells growing under planktonic or biofilm conditions, and differential expression was observed when KNO3 or NH4Cl was added to the minimal medium as a nitrogen source. The transcriptional fusion of the cdgD promoter with the gene encoding the autofluorescent mCherry protein indicated that the cdgD gene was expressed both under abiotic conditions and in association with wheat roots. Reduced colonization of wheat roots was observed for the mutant compared with the wild-type strain grown in the same soil conditions. The Azospirillum-plant association begins with the motility of the bacterium towards the plant rhizosphere followed by the adsorption and adherence of these bacteria to plant roots. Therefore, it is important to study the genes that contribute to this initial interaction of the bacterium with its host plant.
Collapse
|
8
|
De Saeger J, Park J, Chung HS, Hernalsteens JP, Van Lijsebettens M, Inzé D, Van Montagu M, Depuydt S. Agrobacterium strains and strain improvement: Present and outlook. Biotechnol Adv 2020; 53:107677. [PMID: 33290822 DOI: 10.1016/j.biotechadv.2020.107677] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/03/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022]
Abstract
Almost 40 years ago the first transgenic plant was generated through Agrobacterium tumefaciens-mediated transformation, which, until now, remains the method of choice for gene delivery into plants. Ever since, optimized Agrobacterium strains have been developed with additional (genetic) modifications that were mostly aimed at enhancing the transformation efficiency, although an optimized strain also exists that reduces unwanted plasmid recombination. As a result, a collection of very useful strains has been created to transform a wide variety of plant species, but has also led to a confusing Agrobacterium strain nomenclature. The latter is often misleading for choosing the best-suited strain for one's transformation purposes. To overcome this issue, we provide a complete overview of the strain classification. We also indicate different strain modifications and their purposes, as well as the obtained results with regard to the transformation process sensu largo. Furthermore, we propose additional improvements of the Agrobacterium-mediated transformation process and consider several worthwhile modifications, for instance, by circumventing a defense response in planta. In this regard, we will discuss pattern-triggered immunity, pathogen-associated molecular pattern detection, hormone homeostasis and signaling, and reactive oxygen species in relationship to Agrobacterium transformation. We will also explore alterations that increase agrobacterial transformation efficiency, reduce plasmid recombination, and improve biocontainment. Finally, we recommend the use of a modular system to best utilize the available knowledge for successful plant transformation.
Collapse
Affiliation(s)
- Jonas De Saeger
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jihae Park
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Marine Sciences, Incheon National University, Incheon 406-840, South Korea
| | - Hoo Sun Chung
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Stephen Depuydt
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| |
Collapse
|
9
|
Rodman N, Martinez J, Fung S, Nakanouchi J, Myers AL, Harris CM, Dang E, Fernandez JS, Liu C, Mendoza AM, Jimenez V, Nikolaidis N, Brennan CA, Bonomo RA, Sieira R, Ramirez MS. Human Pleural Fluid Elicits Pyruvate and Phenylalanine Metabolism in Acinetobacter baumannii to Enhance Cytotoxicity and Immune Evasion. Front Microbiol 2019; 10:1581. [PMID: 31379769 PMCID: PMC6650585 DOI: 10.3389/fmicb.2019.01581] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/25/2019] [Indexed: 01/13/2023] Open
Abstract
Acinetobacter baumannii (Ab) is one of the most treacherous pathogens among those causing hospital-acquired pneumonia (HAP). A. baumannii possesses an adaptable physiology, seen not only in its antibiotic resistance and virulence phenotypes but also in its metabolic versatility. In this study, we observed that A. baumannii undergoes global transcriptional changes in response to human pleural fluid (PF), a key host-derived environmental signal. Differential gene expression analyses combined with experimental approaches revealed changes in A. baumannii metabolism, affecting cytotoxicity, persistence, bacterial killing, and chemotaxis. Over 1,220 genes representing 55% of the differentially expressed transcriptomic data corresponded to metabolic processes, including the upregulation of glutamate, short chain fatty acid, and styrene metabolism. We observed an upregulation by 1.83- and 2.61-fold of the pyruvate dehydrogenase complex subunits E3 and E2, respectively. We also found that pyruvate (PYR), in conjunction with PF, triggers an A. baumannii pathogenic behavior that adversely impacts human epithelial cell viability. Interestingly, PF also amplified A. baumannii cytotoxicity against murine macrophages, suggesting an immune evasion strategy implemented by A. baumannii. Moreover, we uncovered opposing metabolic strategies dependent on the degree of pathogenicity of the strains, where less pathogenic strains demonstrated greater utilization of PYR to promote persister formation in the presence of PF. Additionally, our transcriptomic analysis and growth studies of A. baumannii suggest the existence of an alternative phenylalanine (PA) catabolic route independent of the phenylacetic acid pathway, which converts PA to phenylpyruvate (PP) and shuttles intermediates into styrene metabolism. This alternative route promoted a neutrophil-evasive state, as PF-induced degradation of PP significantly reduced overall human neutrophil chemotaxis in ex vivo chemotactic assays. Taken together, these data highlight A. baumannii pathoadaptabililty in response to host signals and provide further insight into the role of bacterial metabolism in virulence traits, antibiotic persistence strategies, and host innate immune evasion.
Collapse
Affiliation(s)
- Nyah Rodman
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Jasmine Martinez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Sammie Fung
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Jun Nakanouchi
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Amber L. Myers
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Caitlin M. Harris
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Emily Dang
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Jennifer S. Fernandez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Christine Liu
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Anthony M. Mendoza
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Veronica Jimenez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Nikolas Nikolaidis
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Catherine A. Brennan
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Robert A. Bonomo
- Medical Service and Geriatrics Research, Education and Clinical Center (GRECC), Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, United States
| | - Rodrigo Sieira
- Fundacioìn Instituto Leloir-IIBBA CONICET, Buenos Aires, Argentina
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| |
Collapse
|
10
|
Ghosh R, Roth E, Abou-Aisha K, Saegesser R, Autenrieth C. The monofunctional cobalamin biosynthesis enzyme precorrin-3B synthase (CobZRR) is essential for anaerobic photosynthesis in Rhodospirillum rubrum but not for aerobic dark metabolism. MICROBIOLOGY-SGM 2018; 164:1416-1431. [PMID: 30222098 DOI: 10.1099/mic.0.000718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The in vivo physiological role of the gene cobZ, which encodes precorrin-3B synthase, which catalyzes the initial porphyrin ring contraction step of cobalamin biosynthesis via the cob pathway, has been demonstrated here for the first time. Cobalamin is known to be essential for an early step of bacteriochlorophyll biosynthesis in anoxygenic purple bacteria. The cobZ (cobZRR) gene of the purple bacterium Rhodospirillum rubrum was localized to a 23.5 kb insert of chromosomal DNA contained on the cosmid pSC4. pSC4 complemented several mutants of bacteriochlorophyll and carotenoid biosynthesis, due to the presence of the bchCX and crtCDEF genes at one end of the cosmid insert, flanking cobZRR. A second gene, citB/tcuB, immediately downstream of cobZRR, shows homologies to both a tricarballylate oxidoreductase (tcuB) and a gene (citB) involved in signal transduction during citrate uptake. CobZRR shows extensive homology to the N-terminal domain of the bifunctional CobZ from Rhodobacter capsulatus, and the R. rubrum citB/tcuB gene is homologous to the CobZ C-terminal domain. A mutant, SERGK25, containing a terminatorless kanamycin interposon inserted into cobZRR, could not grow by anaerobic photosynthesis, but grew normally under dark, aerobic and microaerophilic conditions with succinate and fructose as carbon sources. The anaerobic in vivo activity of CobZ indicates that it does not require oxygen as a substrate. The mutant excreted large amounts of protoporphyrin IX-monomethylester, a brown precursor of bacteriochlorophyll biosynthesis. The mutant was complemented either by the cobZRR gene in trans, or when exogenous cobalamin was added to the medium. A deletion mutant of tcuB/citB did not exhibit the cob phenotype. Thus, a role for tcuB/citB in cobalamin biosynthesis could not be confirmed.
Collapse
Affiliation(s)
- Robin Ghosh
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Erik Roth
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Khaled Abou-Aisha
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
- †Present address: Department of Microbiology and Biotechnology, German University in Cairo, Egypt
| | - Rudolf Saegesser
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Caroline Autenrieth
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| |
Collapse
|
11
|
Anand A, Bass SH, Wu E, Wang N, McBride KE, Annaluru N, Miller M, Hua M, Jones TJ. An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. PLANT MOLECULAR BIOLOGY 2018; 97:187-200. [PMID: 29687284 PMCID: PMC5945794 DOI: 10.1007/s11103-018-0732-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/17/2018] [Indexed: 05/20/2023]
Abstract
A simple and versatile ternary vector system that utilizes improved accessory plasmids for rapid maize transformation is described. This system facilitates high-throughput vector construction and plant transformation. The super binary plasmid pSB1 is a mainstay of maize transformation. However, the large size of the base vector makes it challenging to clone, the process of co-integration is cumbersome and inefficient, and some Agrobacterium strains are known to give rise to spontaneous mutants resistant to tetracycline. These limitations present substantial barriers to high throughput vector construction. Here we describe a smaller, simpler and versatile ternary vector system for maize transformation that utilizes improved accessory plasmids requiring no co-integration step. In addition, the newly described accessory plasmids have restored virulence genes found to be defective in pSB1, as well as added virulence genes. Testing of different configurations of the accessory plasmids in combination with T-DNA binary vector as ternary vectors nearly doubles both the raw transformation frequency and the number of transformation events of usable quality in difficult-to-transform maize inbreds. The newly described ternary vectors enabled the development of a rapid maize transformation method for elite inbreds. This vector system facilitated screening different origins of replication on the accessory plasmid and T-DNA vector, and four combinations were identified that have high (86-103%) raw transformation frequency in an elite maize inbred.
Collapse
Affiliation(s)
- Ajith Anand
- Corteva Agriscience™, Agriculture Division of DowDuPont™, 8305 NW 62nd Avenue, Johnston, IA 50131 USA
| | - Steven H. Bass
- Corteva Agriscience™, Agriculture Division of DowDuPont™, 4010 Point Eden Way, Hayward, CA 94545 USA
| | - Emily Wu
- Corteva Agriscience™, Agriculture Division of DowDuPont™, 8305 NW 62nd Avenue, Johnston, IA 50131 USA
| | - Ning Wang
- Corteva Agriscience™, Agriculture Division of DowDuPont™, 8305 NW 62nd Avenue, Johnston, IA 50131 USA
| | - Kevin E. McBride
- Corteva Agriscience™, Agriculture Division of DowDuPont™, 4010 Point Eden Way, Hayward, CA 94545 USA
| | - Narayana Annaluru
- Corteva Agriscience™, Agriculture Division of DowDuPont™, 8305 NW 62nd Avenue, Johnston, IA 50131 USA
| | - Michael Miller
- Corteva Agriscience™, Agriculture Division of DowDuPont™, 8305 NW 62nd Avenue, Johnston, IA 50131 USA
- Present Address: 1969 West Grand Canyon Drive, Chandler, AZ 85248 USA
| | - Mo Hua
- Corteva Agriscience™, Agriculture Division of DowDuPont™, 8305 NW 62nd Avenue, Johnston, IA 50131 USA
| | - Todd J. Jones
- Corteva Agriscience™, Agriculture Division of DowDuPont™, 8305 NW 62nd Avenue, Johnston, IA 50131 USA
| |
Collapse
|
12
|
Effective removal of a range of Ti/Ri plasmids using a pBBR1-type vector having a repABC operon and a lux reporter system. Appl Microbiol Biotechnol 2018; 102:1823-1836. [PMID: 29318333 DOI: 10.1007/s00253-017-8721-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/09/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Ti and Ri plasmids of pathogenic Agrobacterium strains are stably maintained by the function of a repABC operon and have been classified into four incompatibility groups, namely, incRh1, incRh2, incRh3, and incRh4. Removal of these plasmids from their bacterial cells is an important step in determining strain-specific virulence characteristics and to construct strains useful for transformation. Here, we developed two powerful tools to improve this process. We first established a reporter system to detect the presence and absence of Ti/Ri plasmids in cells by using an acetosyringone (AS)-inducible promoter of the Ti2 small RNA and luxAB from Vibrio harveyi. This system distinguished a Ti/Ri plasmid-free cell colony among plasmid-harboring cell colonies by causing the latter colonies to emit light in response to AS. We then constructed new "Ti/Ri eviction plasmids," each of which carries a repABC from one of four Ti/Ri plasmids that belonged to incRh1, incRh2, incRh3, and incRh4 groups in the suicidal plasmid pK18mobsacB and in a broad-host-range pBBR1 vector. Introduction of the new eviction plasmids into Agrobacterium cells harboring the corresponding Ti/Ri plasmids led to Ti/Ri plasmid-free cells in every incRh group. The Ti/Ri eviction was more effective by plasmids with the pBBR1 backbone than by those with the pK18mobsacB backbone. Furthermore, the highly stable cryptic plasmid pAtC58 in A. tumefaciens C58 was effectively evicted by the introduction of a pBBR1 vector containing the repABC of pAtC58. These results indicate that the set of pBBR1-repABC plasmids is a powerful tool for the removal of stable rhizobial plasmids.
Collapse
|
13
|
Li X, Pan SQ. Agrobacterium delivers VirE2 protein into host cells via clathrin-mediated endocytosis. SCIENCE ADVANCES 2017; 3:e1601528. [PMID: 28345032 PMCID: PMC5362186 DOI: 10.1126/sciadv.1601528] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/09/2017] [Indexed: 05/20/2023]
Abstract
Agrobacterium tumefaciens can cause crown gall tumors on a wide range of host plants. As a natural genetic engineer, the bacterium can transfer both single-stranded DNA (ssDNA) [transferred DNA (T-DNA)] molecules and bacterial virulence proteins into various recipient cells. Among Agrobacterium-delivered proteins, VirE2 is an ssDNA binding protein that is involved in various steps of the transformation process. However, it is not clear how plant cells receive the T-DNA or protein molecules. Using a split-green fluorescent protein approach, we monitored the VirE2 delivery process inside plant cells in real time. We observed that A. tumefaciens delivered VirE2 from the bacterial lateral sides that were in close contact with plant membranes. VirE2 initially accumulated on plant cytoplasmic membranes at the entry points. VirE2-containing membranes were internalized through clathrin-mediated endocytosis to form endomembrane compartments. VirE2 colocalized with the early endosome marker SYP61 but not with the late endosome marker ARA6, suggesting that VirE2 escaped from early endosomes for subsequent trafficking inside the cells. Dual endocytic motifs at the carboxyl-terminal tail of VirE2 were involved in VirE2 internalization and could interact with the μ subunit of the plant clathrin-associated adaptor AP2 complex (AP2M). Both the VirE2 cargo motifs and AP2M were important for the transformation process. Because AP2-mediated endocytosis is well conserved, our data suggest that the A. tumefaciens pathogen hijacks conserved endocytic pathways to facilitate the delivery of virulence factors. This might be important for Agrobacterium to achieve both a wide host range and a high transformation efficiency.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| | - Shen Q. Pan
- Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
14
|
Agrobacterium-delivered virulence protein VirE2 is trafficked inside host cells via a myosin XI-K-powered ER/actin network. Proc Natl Acad Sci U S A 2017; 114:2982-2987. [PMID: 28242680 DOI: 10.1073/pnas.1612098114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Agrobacterium tumefaciens causes crown gall tumors on various plants by delivering transferred DNA (T-DNA) and virulence proteins into host plant cells. Under laboratory conditions, the bacterium is widely used as a vector to genetically modify a wide range of organisms, including plants, yeasts, fungi, and algae. Various studies suggest that T-DNA is protected inside host cells by VirE2, one of the virulence proteins. However, it is not clear how Agrobacterium-delivered factors are trafficked through the cytoplasm. In this study, we monitored the movement of Agrobacterium-delivered VirE2 inside plant cells by using a split-GFP approach in real time. Agrobacterium-delivered VirE2 trafficked via the endoplasmic reticulum (ER) and F-actin network inside plant cells. During this process, VirE2 was aggregated as filamentous structures and was present on the cytosolic side of the ER. VirE2 movement was powered by myosin XI-K. Thus, exogenously produced and delivered VirE2 protein can use the endogenous host ER/actin network for movement inside host cells. The A. tumefaciens pathogen hijacks the conserved host infrastructure for virulence trafficking. Well-conserved infrastructure may be useful for Agrobacterium to target a wide range of recipient cells and achieve a high efficiency of transformation.
Collapse
|
15
|
Dangel AW, Tabita FR. Amino acid substitutions in the transcriptional regulator CbbR lead to constitutively active CbbR proteins that elevate expression of the cbb CO2 fixation operons in Ralstonia eutropha (Cupriavidus necator) and identify regions of CbbR necessary for gene activation. MICROBIOLOGY-SGM 2015; 161:1816-1829. [PMID: 26296349 DOI: 10.1099/mic.0.000131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
CbbR is a LysR-type transcriptional regulator that activates expression of the operons containing (cbb) genes that encode the CO2 fixation pathway enzymes in Ralstonia eutropha (Cupriavidus necator) under autotrophic growth conditions. The cbb operons are stringently downregulated during chemoheterotrophic growth on organic acids such as malate. CbbR constitutive proteins (CbbR*s), typically with single amino acid substitutions, were selected and isolated that activate expression of the cbb operons under chemoheterotrophic growth conditions. A large set of CbbR*s from all major domains of the CbbR molecule were identified, except for the DNA-binding domain. The level of gene expression conferred for many of these CbbR*s under autotrophic growth was greater than that conferred by wild-type CbbR. Several of these CbbR*s increase transcription two- to threefold more than wild-type CbbR. One particular CbbR*, a truncated protein, was useful in identifying the regions of CbbR that are necessary for transcriptional activation and, by logical extension, necessary for interaction with RNA polymerase. The reductive assimilation of carbon via CO2 fixation is an important step in the cost-effective production of useful biological compounds. Enhancing CO2 fixation in Ralstonia eutropha through greater transcriptional activation of the cbb operons could prove advantageous, and the use of CbbR*s is one way to enhance product formation.
Collapse
Affiliation(s)
- Andrew W Dangel
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | - F Robert Tabita
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| |
Collapse
|
16
|
Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense. Appl Environ Microbiol 2014; 81:1775-81. [PMID: 25548049 DOI: 10.1128/aem.03795-14] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aerobic methanotrophs oxidize methane at ambient temperatures and pressures and are therefore attractive systems for methane-based bioconversions. In this work, we developed and validated genetic tools for Methylomicrobium buryatense, a haloalkaliphilic gammaproteobacterial (type I) methanotroph. M. buryatense was isolated directly on natural gas and grows robustly in pure culture with a 3-h doubling time, enabling rapid genetic manipulation compared to many other methanotrophic species. As a proof of concept, we used a sucrose counterselection system to eliminate glycogen production in M. buryatense by constructing unmarked deletions in two redundant glycogen synthase genes. We also selected for a more genetically tractable variant strain that can be conjugated with small incompatibility group P (IncP)-based broad-host-range vectors and determined that this capability is due to loss of the native plasmid. These tools make M. buryatense a promising model system for studying aerobic methanotroph physiology and enable metabolic engineering in this bacterium for industrial biocatalysis of methane.
Collapse
|
17
|
Amino acid residues of RegA important for interactions with the CbbR-DNA complex of Rhodobacter sphaeroides. J Bacteriol 2014; 196:3179-90. [PMID: 24957624 DOI: 10.1128/jb.01842-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
CbbR and RegA (PrrA) are transcriptional regulators of the Calvin-Benson-Bassham (CBB) CO2 fixation pathway (cbbI and cbbII) operons of Rhodobacter sphaeroides. The CbbR and RegA proteins interact, but CbbR must be bound to the promoter DNA in order for RegA-CbbR protein-protein interactions to occur. RegA greatly enhances the ability of CbbR to bind the cbbI promoter or greatly enhances the stability of the CbbR/promoter complex. The N-terminal receiver domain and the DNA binding domain of RegA were shown to interact with CbbR. Residues in α-helix 7 and α-helix 8 of the DNA binding domain (helix-turn-helix) of RegA directly interacted with CbbR, with α-helix 7 positioned immediately above the DNA and α-helix 8 located in the major groove of the DNA. A CbbR protein containing only the DNA binding motif and the linker helix was capable of binding to RegA. In contrast, a truncated CbbR containing only the linker helix and recognition domains I and II (required for effector binding) was not able to interact with RegA. The accumulated results strongly suggest that the DNA binding domains of both proteins interact to facilitate optimal transcriptional control over the cbb operons. In vivo analysis, using constitutively active mutant CbbR proteins, further indicated that CbbR must interact with phosphorylated RegA in order to accomplish transcriptional activation.
Collapse
|
18
|
Hong Y, Ma Y, Wu L, Maki M, Qin W, Chen S. Characterization and analysis of nifH genes from Paenibacillus sabinae T27. Microbiol Res 2012; 167:596-601. [PMID: 22717371 DOI: 10.1016/j.micres.2012.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
Abstract
Paenibacillus sabinae T27 (CCBAU 10202=DSM 17841) is a gram-positive, spore-forming diazotroph with high nitrogenase activities. Three nifH clusters were cloned from P. sabinae T27. Phylogenetic analysis revealed that NifH1, NifH2 and NifH3 cluster with Cyanobacterium. Each of the coding regions of nifH1, nifH2 and nifH3 from P. sabinae T27 under the control of the nifH promoter of Klebsiella pneumoniae could partially restore nitrogenase activity of K. pneumoniae nifH(-) mutant strain 1795, which has no nitrogenase activity. This suggests that the three nifH genes from P. sabinae T27 have some function in nitrogen fixation. RT-PCR showed that all three nifH genes were expressed under nitrogen-fixing growth conditions. Using promoter vectors which have promoterless lacZ gene, three putative promoter regions of nifH genes were identified.
Collapse
Affiliation(s)
- Yuanyuan Hong
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | | | | | | | | | | |
Collapse
|
19
|
Argandoña M, Vargas C, Reina-Bueno M, Rodríguez-Moya J, Salvador M, Nieto JJ. An extended suite of genetic tools for use in bacteria of the Halomonadaceae: an overview. Methods Mol Biol 2012; 824:167-201. [PMID: 22160899 DOI: 10.1007/978-1-61779-433-9_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Halophilic gammaproteobacteria of the family Halomonadaceae (including the genera Aidingimonas, Carnimonas, Chromohalobacter, Cobetia, Halomonas, Halotalea, Kushneria, Modicisalibacter, Salinicola, and Zymobacter) have current and promising applications in biotechnology mainly as a source of compatible solutes (powerful stabilizers of biomolecules and cells, with exciting potentialities in biomedicine), salt-tolerant enzymes, biosurfactants, and extracellular polysaccharides, among other products. In addition, they display a number of advantages to be used as cell factories, alternative to conventional prokaryotic hosts like Escherichia coli or Bacillus, for the production of recombinant proteins: (1) their high salt tolerance decreases to a minimum the necessity for aseptic conditions, resulting in cost-reducing conditions, (2) they are very easy to grow and maintain in the laboratory, and their nutritional requirements are simple, and (3) the majority can use a large range of compounds as a sole carbon and energy source. In the last 15 years, the efforts of our group and others have made possible the genetic manipulation of this bacterial group. In this review, the most relevant and recent tools for their genetic manipulation are described, with emphasis on nucleic acid isolation procedures, cloning and expression vectors, genetic exchange mechanisms, mutagenesis approaches, reporter genes, and genetic expression analyses. Complementary sections describing the influence of salinity on the susceptibility of these bacteria to antimicrobials, as well as the growth media most routinely used and culture conditions, for these microorganisms, are also included.
Collapse
Affiliation(s)
- Montserrat Argandoña
- Department of Microbiology and Parasitology, University of Seville, Seville, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Sripriya R, Sangeetha M, Parameswari C, Veluthambi B, Veluthambi K. Improved Agrobacterium-mediated co-transformation and selectable marker elimination in transgenic rice by using a high copy number pBin19-derived binary vector. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:766-74. [PMID: 21497712 DOI: 10.1016/j.plantsci.2011.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 02/17/2011] [Accepted: 02/22/2011] [Indexed: 05/30/2023]
Abstract
A high copy number, selectable marker gene (SMG)-free Agrobacterium binary vector pBin19ΔnptII was constructed by deleting the nptII gene from pBin19. The binary vectors with the RK2 and pVS replication origins exist in 12 and 3 copies, respectively, in Agrobacterium. The tobacco osmotin gene (ap24) was cloned in pBin19ΔnptII and the resultant plasmid pBin19ΔnptII-ap24 was mobilized into the Agrobacterium tumefaciens strain C58C1 Rif(r) harbouring the single-copy cointegrate vector pGV2260::pSSJ1. The T-DNA of the cointegrate vector harboured the hph (SMG) and gus genes. Transformation of Oryza sativa L. var. Pusa Basmati1 with Agrobacterium tumefaciens (pGV2260::pSSJ1, pBin19ΔnptII-ap24) yielded 14 independent hyg+/GUS+ transgenic plants. Southern blot analysis with hph and ap24 probes revealed that 12 out of the 14 transgenic plants were co-transformed and harboured hph, gus and ap24 genes. The new multi-copy binary vector yielded 86% co-transformation efficiency. SMG elimination by genetic separation of the cointegrate T-DNA with the hph/gus genes and binary vector T-DNA with the ap24 gene was accomplished in four out of ten primary co-transformants that were forwarded to the T₁ generation.
Collapse
Affiliation(s)
- Rajasekaran Sripriya
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai 625021, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
21
|
Independent emergence of Yersinia ruckeri biotype 2 in the United States and Europe. Appl Environ Microbiol 2011; 77:3493-9. [PMID: 21441334 DOI: 10.1128/aem.02997-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biotype 2 (BT2) variants of the bacterium Yersinia ruckeri are an increasing disease problem in U.S. and European aquaculture and have been characterized as serovar 1 isolates that lack both peritrichous flagella and secreted phospholipase activity. The emergence of this biotype has been associated with an increased frequency of enteric redmouth disease (ERM) outbreaks in previously vaccinated salmonid fish. In this study, four independent specific natural mutations that cause the loss of both motility and secreted lipase activity were identified in BT2 strains from the United States, United Kingdom, and mainland Europe. Each of these was a unique mutation in either fliR, flhA, or flhB, all of which are genes predicted to encode essential components of the flagellar secretion apparatus. Our results demonstrate the existence of independent mutations leading to the BT2 phenotype; thus, this phenotype has emerged separately at least four times. In addition, BT2 strains from the United Kingdom were shown to have the same mutant allele found in U.S. BT2 strains, suggesting a common origin of this BT2 lineage. This differentiation of distinct BT2 lineages is of critical importance for the development and validation of alternative vaccines or other treatment strategies intended for the control of BT2 strains.
Collapse
|
22
|
Functional analysis of the fixL/fixJ and fixK genes in Azospirillum brasilense Sp7. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
23
|
Haber CL, Allen LN, Zhao S, Hanson RS. Methylotrophic bacteria: biochemical diversity and genetics. Science 2010; 221:1147-53. [PMID: 17811506 DOI: 10.1126/science.221.4616.1147] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bacteria that are able to use methane as a sole carbon and energy source also carry out a broad range of biotransformations, some of which have industrial and environmental significance. Genetic studies on methylotrophs, including the use of recombinant DNA techniques, show promise for the isolation and cloning of genes coding for specific functions.
Collapse
|
24
|
Michel MF, Brasileiro AC, Depierreux C, Otten L, Delmotte F, Jouanin L. Identification of different agrobacterium strains isolated from the same forest nursery. Appl Environ Microbiol 2010; 56:3537-45. [PMID: 16348358 PMCID: PMC185018 DOI: 10.1128/aem.56.11.3537-3545.1990] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several Agrobacterium strains isolated from the same forest nursery from 1982 to 1988 were compared by serological, biochemical, and DNA-DNA hybridization methods. Similarities among strains belonging to biovar 2 were observed by indirect immunofluorescence, whereas biovar 1 strains showed serological heterogeneity. Electrophoretic analysis of bacterial envelope-associated proteins showed that few bands appeared in the strains belonging to biovar 1, whereas many proteins appeared in the case of biovar 2 strains. Chromosomal DNA was analyzed with six random C58 chromosomal fragments. None of the six probes hybridized to the DNA of the two biovar 2 strains. One of the probes gave the same hybridization pattern with all biovar 1 strains, whereas the other probes yielded different patterns. The vir regions were closely related in the different pathogenic strains. The T-DNA and replication regions were less conserved and showed some variations among the strains.
Collapse
Affiliation(s)
- M F Michel
- Station d'Amélioration des Arbres Forestiers, Institut National de la Recherche Agronomique, Ardon, F-45160 Olivet
| | | | | | | | | | | |
Collapse
|
25
|
Gardner RC, Knauf VC. Transfer of Agrobacterium DNA to Plants Requires a T-DNA Border But Not the virE Locus. Science 2010; 231:725-7. [PMID: 17800798 DOI: 10.1126/science.231.4739.725] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Agrobacterium tumefaciens induces tumors in plants by transferring and integrating oncogenes (T-DNA) into the chromosomes of host plant cells. Agrobacterium strains were used to transfer complementary DNA copies of a potato spindle tuber viroid (PSTV) to plant cells at a wound site on tomato plant stems. Subsequently, infectious viroid RNA was found in the leaves of these plants, indicating systemic PSTV infection. This process utilized the T-DNA transfer mechanisms of Agrobacterium since PSTV infection required most virulence genes (vir) as well as one of the DNA sequences that flank either side of the Agrobacterium T-DNA. However, transfer still occurred from virE mutants of Agrobacterium, strains that fail to induce tumors even though a completely functional T-DNA is present. The virE gene seems to be directly involved in the integration of foreign DNA into plant chromosomes.
Collapse
|
26
|
Niepold F, Anderson D, Mills D. Cloning determinants of pathogenesis from Pseudomonas syringae pathovar syringae. Proc Natl Acad Sci U S A 2010; 82:406-10. [PMID: 16593537 PMCID: PMC397047 DOI: 10.1073/pnas.82.2.406] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposon mutagenesis and a cosmid genomic library of DNA from the bean pathogen Pseudomonas syringae pathovar syringae were used to identify and isolate sequences essential for pathogenesis. Strain PS9021, derived by Tn5 mutagenesis, was determined to be nonpathogenic on Phaseolus vulgaris cultivar Red Mexican and incapable of inducing a hypersensitive response in Nicotiana tabacum. This mutant also produced fluidal rather than firm colonies on selected agar media. A Tn5-containing EcoRI fragment from PS9021 was cloned and used to probe 1500 members of a genomic library constructed with DNA from the pathogenic parent strain and the wide host range cosmid pVK102. One member that hybridized to the probe contained a cosmid with a 30-kilobase-pair insert (pOSU3101) that complemented the mutant phenotypes when mobilized into PS9021. A restriction endonuclease cleavage site map of pOSU3101 was constructed and sequences essential for pathogenesis were determined by subcloning. Approximately 8.5 kilobase pairs of the insert were essential for restoration by complementation of pathogenesis and hypersensitive response and wild-type colony morphology in strain PS9021.
Collapse
Affiliation(s)
- F Niepold
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | | | | |
Collapse
|
27
|
Veluthambi K, Jayaswal RK, Gelvin SB. Virulence genes A, G, and D mediate the double-stranded border cleavage of T-DNA from the Agrobacterium Ti plasmid. Proc Natl Acad Sci U S A 2010; 84:1881-5. [PMID: 16593820 PMCID: PMC304545 DOI: 10.1073/pnas.84.7.1881] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agrobacterium tumefaciens transfers the T-DNA portion of its Ti plasmid to the nuclear genome of plant cells. Upon cocultivation of A. tumefaciens strain A348 with regenerating tobacco leaf protoplasts, restriction endonuclease fragments of the T-DNA were generated that are consistent with double-stranded cleavage of the T-DNA at the border sequences. The T-DNA border cleavage was also induced by acetosyringone, a compound that induces many of the virulence genes. T-DNA cleavage did not occur in Agrobacterium strains harboring Tn3-HoHo1 insertions in the virA, -D, or -G genes. Insertion mutations in virB, -C, or -E did not have any effect on the T-DNA cleavage. Complementation of the mutations in virA, -D, or -G with cosmids containing the respective wild-type genes restored the T-DNA cleavage. Since virA and -G are essential in regulating the expression of other vir genes in response to plant signal molecules, the virD gene product(s) appear to mediate double-stranded T-DNA border cleavage.
Collapse
Affiliation(s)
- K Veluthambi
- Department of Biological Sciences, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN 47907
| | | | | |
Collapse
|
28
|
Stachel SE, Nester EW, Zambryski PC. A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc Natl Acad Sci U S A 2010; 83:379-83. [PMID: 16593648 PMCID: PMC322862 DOI: 10.1073/pnas.83.2.379] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The virulence genes of Agrobacterium are required for this organism to genetically transform plant cells. We show that vir gene expression is specifically induced by a small (<1000 Da) diffusible plant cell metabolite present in limiting quantities in the exudates of a variety of plant cell cultures. Active plant cell metabolism is required for the synthesis of the vir-inducing factor, and the presence of bacteria does not stimulate this production. vir-inducing factor is (i) heat and cold stable; (ii) pH stable, although vir induction with the factor is sensitive above pH 6.0; and (iii) partially hydrophobic. Induction of vir gene expression was assayed by monitoring beta-galactosidase activity in Agrobacterium strains that carry gene fusions between each of the vir loci and the lacZ gene of Escherichia coli. vir-inducing factor (partially purified on a C-18 column) induces both the expression in Agrobacterium of six distinct loci and the production of T-DNA circular molecules, which are thought to be involved in the transformation process. vir-inducing factor potentially represents the signal that Agrobacterium recognizes in nature as a plant cell susceptible to transformation.
Collapse
Affiliation(s)
- S E Stachel
- Department of Microbiology and Immunology, SC-42, University of Washington, Seattle, WA 98195
| | | | | |
Collapse
|
29
|
O'brian MR, Maier RJ. Isolation of a cytochrome aa(3) gene from Bradyrhizobium japonicum. Proc Natl Acad Sci U S A 2010; 84:3219-23. [PMID: 16593835 PMCID: PMC304840 DOI: 10.1073/pnas.84.10.3219] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bradyhizobium japonicum strain LO501 is a Tn5-induced mutant that does not express the terminal oxidase cytochrome aa(3) (cytochrome-c oxidase, EC 1.9.3.1). Two and one-half kilobase pairs of LO501 genomic DNA that flanks the transposon was isolated and used as a hybridization probe to obtain the wild-type gene from a cosmid library. Two subcloned fragments from two of the isolated cosmids were ligated into broad host range vectors, and restriction maps of these fragments were generated. The resultant plasmids, pCA1 and pBL33, each contained DNA homologous to that mutated in strain LO501. The two plasmids were each introduced into strain LO501 by conjugal transfer, and it was found that pCA1, but not pBL33, complemented the oxidase mutant. The transconjugant strain LO501[pCA1] expressed wild-type levels of cytochrome aa(3), as discerned spectrophotometrically, and had restored N,N,N',N'-tetramethyl-p-phenylenediamine oxidase activity. Furthermore, the frequency of complementation of LO501 cells that received pCA1 by conjugation was 1.0, demonstrating that pCA1 complemented the mutant in trans. The results show that pCA1 contains the entire wild-type gene that was mutated in strain LO501, and this gene is required for cytochrome aa(3) expression.
Collapse
Affiliation(s)
- M R O'brian
- The McCollum-Pratt Institute and Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
30
|
Davidson MS, Summers AO. Wide-host-range plasmids function in the genus thiobacillus. Appl Environ Microbiol 2010; 46:565-72. [PMID: 16346383 PMCID: PMC239317 DOI: 10.1128/aem.46.3.565-572.1983] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmids S-a, RP4, R388, and several RP4 derivatives (pMD101, pDT387, and pDT566) were transmissible by conjugation to Thiobacillus novellus from Escherichia coli. Genetic markers were expressed in T. novellus, with the exception of chloramphenicol resistance and ampicillin resistance. Plasmids were not transmissible by conjugation from E. coli donors to Thiobacillus intermedius, T. perometabolis, T. neapolitanus, or T. acidophilus recipients, although they could be mated into these strains from T. novellus. All Thiobacillus species tested could transfer plasmids back to E. coli, with the exception of T. acidophilus. The donor-specific bacteriophages PRR1 and PRD1 were incapable of initiating the lytic cycle in RP4-bearing strains of T. novellus. The cosmid cloning vehicle pVK100 could be mobilized from E. coli to T. novellus with the aid of the "helper" plasmid pRK2013. pVK100 is stable in T. novellus, but pRK2013 is not maintained in this species. pRK2013 was also used to mobilize another cloning vector, R300B, to T. novellus. A previously unreported cryptic plasmid of approximately 24 megadaltons was observed in T. intermedius. No native plasmids were demonstrated in the other Thiobacillus species except in T. acidophilus, which contained cryptic plasmids ranging in size from 7.6 to 56 megadaltons (molecular mass).
Collapse
Affiliation(s)
- M S Davidson
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | | |
Collapse
|
31
|
Parke D. Application of p-Toluidine in Chromogenic Detection of Catechol and Protocatechuate, Diphenolic Intermediates in Catabolism of Aromatic Compounds. Appl Environ Microbiol 2010; 58:2694-7. [PMID: 16348758 PMCID: PMC195844 DOI: 10.1128/aem.58.8.2694-2697.1992] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the presence of p-toluidine and iron, protocatechuate and catechols yield color. Inclusion of p-toluidine in media facilitates the screening of microbial strains for alterations affecting aromatic catabolism. Such strains include mutants affected in the expression of oxygenases and Escherichia coli colonies carrying cloned or subcloned aromatic catabolic genes which encode enzymes giving rise to protocatechuate or catechol. The diphenolic detection system can also be applied to the creation of vectors relying on insertion of cloned DNA into one of the latter marker genes.
Collapse
Affiliation(s)
- D Parke
- Department of Biology, Yale University, P.O. Box 6666, New Haven, Connecticut 06511-8112
| |
Collapse
|
32
|
Sadowsky MJ, Cregan PB, Keyser HH. DNA Hybridization Probe for Use in Determining Restricted Nodulation among Bradyrhizobium japonicum Serocluster 123 Field Isolates. Appl Environ Microbiol 2010; 56:1768-74. [PMID: 16348217 PMCID: PMC184507 DOI: 10.1128/aem.56.6.1768-1774.1990] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several soybean plant introduction (PI) genotypes have recently been described which restrict nodulation of Bradyrhizobium japonicum serocluster 123 in an apparently serogroup-specific manner. While PI 371607 restricts nodulation of strains in serogroup 123 and some in serogroup 127, those in serogroup 129 are not restricted. When DNA regions within and around the B. japonicum I-110 common nodulation genes were used as probes to genomic DNA from the serogroup strains USDA 123, USDA 127, and USDA 129, several of the probes differentially hybridized to the nodulation-restricted and -unrestricted strains. One of the gene regions, cloned in plasmid pMJS12, was subsequently shown to hybridize to 4.6-kilobase EcoRI fragments from DNAs from nodulation-restricted strains and to larger fragments in nodulation-unrestricted strains. To determine if the different hybridization patterns could be used to predict nodulation restriction, we hybridized pMJS12 to EcoRI-digested genomic DNAs from uncharacterized serocluster 123 field isolates. Of the 36 strains examined, 15 were found to have single, major, 4.6-kilobase hybridizing EcoRI fragments. When tested for nodulation, 80% (12 of 15) of the strains were correctly predicted to be restricted for nodulation of the PI genotypes. In addition, hybridization patterns obtained with pMJS12 and nodulation phenotypes on PI 371607 indicated that there are at least three types of serogroup 127 strains. Our results suggest that the pMJS12 gene probe may be useful in selecting compatible host-strain combinations and in determining the suitability of field sites for the placement of soybean genotypes containing restrictive nodulation alleles.
Collapse
Affiliation(s)
- M J Sadowsky
- Department of Soil Science and Department of Microbiology, University of Minnesota, St. Paul, Minnesota 55108; Nitrogen Fixation and Soybean Genetics Laboratory, Agriculture Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705 ; and The NifTAL Project, University of Hawaii, Paia, Hawaii 96779
| | | | | |
Collapse
|
33
|
Naturally competent Acinetobacter baumannii clinical isolate as a convenient model for genetic studies. J Clin Microbiol 2010; 48:1488-90. [PMID: 20181905 DOI: 10.1128/jcm.01264-09] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii A118 was isolated from a patient's blood culture. It is susceptible to several antibiotics, is naturally competent, and supports replication and stable maintenance of four plasmid replicons. A. baumannii A118 took up a fluorophore-labeled oligonucleotide analog. These characteristics make this isolate a convenient model for genetic studies.
Collapse
|
34
|
Carreño-López R, Sánchez A, Camargo N, Elmerich C, Baca BE. Characterization of chsA, a new gene controlling the chemotactic response in Azospirillum brasilense Sp7. Arch Microbiol 2009; 191:501-7. [PMID: 19390839 DOI: 10.1007/s00203-009-0475-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 03/07/2009] [Accepted: 03/27/2009] [Indexed: 11/28/2022]
Abstract
We report, here, the characterization of a mutant strain of Azospirillum brasilense Sp7 impaired in surface motility and chemotactic response. Presence of flagella in the mutant strain was confirmed by western blot analysis, using antisera raised against the polar and lateral flagellins, and by electron microscopy. Genetic complementation and nucleotide sequencing led to the identification of a new gene, named chsA. The deduced translation product, ChsA protein, contained a PAS sensory domain and an EAL domain. As ChsA displayed characteristic signaling protein architecture, it is thought that this protein is a component of the signaling pathway controlling chemotaxis in Azospirillum.
Collapse
Affiliation(s)
- Ricardo Carreño-López
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | | | | | | |
Collapse
|
35
|
Rother D, Ringk J, Friedrich CG. Sulfur oxidation of Paracoccus pantotrophus: the sulfur-binding protein SoxYZ is the target of the periplasmic thiol-disulfide oxidoreductase SoxS. MICROBIOLOGY-SGM 2008; 154:1980-1988. [PMID: 18599826 DOI: 10.1099/mic.0.2008/018655-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The periplasmic thiol-disulfide oxidoreductase SoxS is essential for chemotrophic growth of Paracoccus pantotrophus with thiosulfate. To trap its periplasmic partner, the cysteine residues of the CysXaaXaaCys motif of SoxS (11 kDa) were changed to alanine by site-directed mutagenesis. The disrupted soxS gene of the homogenote mutant G OmegaS was complemented with plasmids carrying the mutated soxS[C13A] or soxS[C16A] gene. Strain G OmegaS(pRD179.6[C16A](S)) displayed a marginal thiosulfate-oxidizing activity, suggesting that Cys13(S) binds the target protein. Evidence is presented that SoxS specifically binds SoxY. (i) Immunoblot analysis using non-reducing SDS gel electrophoresis and anti-SoxS and anti-SoxYZ antibodies identified the respective antigens of strain G OmegaS(pRD179.6[C16A](S)) at the 25 kDa position, suggesting an adduct of about 14 kDa, close to the value expected for SoxY migration. (ii) A mutant unable to produce SoxYZ, such as strain G OmegaX(pRD187.7[C16A](S)), did not form a SoxS(C16A) adduct, while addition of homogeneous SoxYZ resulted in the 25 kDa adduct. (iii) The SoxY and SoxZ subunits were distinguished by site-directed mutagenesis of the cysteine residue in SoxZ. SoxYZ(C53S) formed the 25 kDa adduct with SoxS(C16A). These results demonstrate that the target of SoxS is the sulfur-binding protein SoxY of the SoxYZ complex. As SoxYZ is reversibly inactivated, SoxS may activate SoxYZ as a crucial function for chemotrophy of P. pantotrophus.
Collapse
Affiliation(s)
- Dagmar Rother
- Lehrstuhl für Technische Mikrobiologie, Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Josefina Ringk
- Lehrstuhl für Technische Mikrobiologie, Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Cornelius G Friedrich
- Lehrstuhl für Technische Mikrobiologie, Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
36
|
Guo M, Hou Q, Hew CL, Pan SQ. Agrobacterium VirD2-binding protein is involved in tumorigenesis and redundantly encoded in conjugative transfer gene clusters. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1201-1212. [PMID: 17918622 DOI: 10.1094/mpmi-20-10-1201] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Agrobacterium tumefaciens can transfer oncogenic T-DNA into plant cells; T-DNA transfer is mechanistically similar to a conjugation process. VirD2 is the pilot protein that guides the transfer, because it is covalently associated with single-stranded T-DNA to form the transfer substrate T-complex. We used the VirD2 protein as an affinity ligand to isolate VirD2-binding proteins (VBPs). By pull-down assays and peptide-mass-fingerprint matching, we identified an A. tumefaciens protein designated VBP1 that could bind VirD2 directly. Genome-wide sequence analysis showed that A. tumefaciens has two additional genes encoding proteins highly similar to VBP1, designated vbp2 and vbp3. Like VBP1, both VBP2 and VBP3 also could bind VirD2; all three VBPs contain a putative nucleotidyltransferase motif. Mutational analysis of vbp demonstrated that the three vbp genes could functionally complement each other. Consequently, only inactivation of all three vbp genes highly attenuated the bacterial ability to cause tumors on plants. Although vbp1 is harbored on the megaplasmid pAtC58, vbp2 and vbp3 reside on the linear chromosome. The vbp genes are clustered with conjugative transfer genes, suggesting linkage between the conjugation and virulence factor. The three VBPs appear to contain C-terminal positively charged residues, often present in the transfer substrate proteins of type IV secretion systems. Inactivation of the three vbp genes did not affect the T-strand production. Our data indicate that VBP is a newly identified virulence factor that may affect the transfer process subsequent to T-DNA production.
Collapse
Affiliation(s)
- Minliang Guo
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | | | | | | |
Collapse
|
37
|
Fu S, Zhang W, Guo A, Wang J. Identification of promoters of two dehydrogenase genes in Ketogulonicigenium vulgare DSM 4025 and their strength comparison in K. vulgare and Escherichia coli. Appl Microbiol Biotechnol 2007; 75:1127-32. [PMID: 17404730 DOI: 10.1007/s00253-007-0930-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 10/23/2022]
Abstract
Promoters of sorbose dehydrogenase gene sdh and sorbosone dehydrogenase gene sndh (Psdh and Psndh) in Ketogulonicigenium vulgare DSM 4025 were identified. The transcription initiation site (TIS) of Psdh was guanine 74 bp upstream of the start codon of sdh and the TIS of Psndh was adenine 113 bp upstream of the first codon of sndh. Comparing Psdh and Psndh, consensus sequences were found, which were TAVCVT (V=A, C or G) and THGAHC (H=A, C or T) for their putative -10 and -35 regions, respectively, and the spans between the 2 regions were 17 bp. Psdh and Psndh promoters may be constitutive in K. vulgare DSM 4025 when cultured in HJ medium. Semiquantitative RT-PCR analysis showed that the Psdh promoter was about 2.5 times stronger than Psndh in strength in K. vulgare DSM 4025. In Escherichia coli, Psdh and Psndh demonstrated strong activity with the former about two times stronger than the latter. DCIP decoloration method and reporter plasmids pSDH or pSNDH may be applied to discover promoters of genes in E. coli and to determine their strength in one step.
Collapse
Affiliation(s)
- Shulin Fu
- College of Life Science, Northwest Sci-Tec University of Agriculture and Forestry, Yangling, 712100, People's Republic of China
| | | | | | | |
Collapse
|
38
|
Dale JR, Wade R, Dichristina TJ. A conserved histidine in cytochrome c maturation permease CcmB of Shewanella putrefaciens is required for anaerobic growth below a threshold standard redox potential. J Bacteriol 2007; 189:1036-43. [PMID: 17142390 PMCID: PMC1797334 DOI: 10.1128/jb.01249-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 11/19/2006] [Indexed: 11/20/2022] Open
Abstract
Shewanella putrefaciens strain 200 respires a wide range of compounds as terminal electron acceptor. The respiratory versatility of Shewanella is attributed in part to a set of c-type cytochromes with widely varying midpoint redox potentials (E'(0)). A point mutant of S. putrefaciens, originally designated Urr14 and here renamed CCMB1, was found to grow at wild-type rates on electron acceptors with high E'0 [O2, NO3-, Fe(III) citrate, MnO2, and Mn(III) pyrophosphate] yet was severely impaired for growth on electron acceptors with low E'0 [NO2-, U(VI), dimethyl sulfoxide, TMAO (trimethylamine N-oxide), fumarate, gamma-FeOOH, SO3(2-), and S2O3(2-)]. Genetic complementation and nucleotide sequence analyses indicated that the CCMB1 respiratory mutant phenotype was due to mutation of a conserved histidine residue (H108Y) in a protein that displayed high homology to Escherichia coli CcmB, the permease subunit of an ABC transporter involved in cytochrome c maturation. Although CCMB1 retained the ability to grow on electron acceptors with high E'(0), the cytochrome content of CCMB1 was <10% of that of the wild-type strain. Periplasmic extracts of CCMB1 contained slightly greater concentrations of the thiol functional group (-SH) than did the wild-type strain, an indication that the E(h) of the CCMB1 periplasm was abnormally low. A ccmB deletion mutant was unable to respire anaerobically on any electron acceptor, yet retained aerobic respiratory capability. These results suggest that the mutation of a conserved histidine residue (H108) in CCMB1 alters the redox homeostasis of the periplasm during anaerobic growth on electron acceptors with low (but not high) E'0. This is the first report of the effects of Ccm deficiencies on bacterial respiration of electron acceptors whose E'0 nearly span the entire redox continuum.
Collapse
Affiliation(s)
- Jason R Dale
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA
| | | | | |
Collapse
|
39
|
Hodges LD, Vergunst AC, Neal-McKinney J, den Dulk-Ras A, Moyer DM, Hooykaas PJJ, Ream W. Agrobacterium rhizogenes GALLS protein contains domains for ATP binding, nuclear localization, and type IV secretion. J Bacteriol 2006; 188:8222-30. [PMID: 17012398 PMCID: PMC1698208 DOI: 10.1128/jb.00747-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens and Agrobacterium rhizogenes are closely related plant pathogens that cause different diseases, crown gall and hairy root. Both diseases result from transfer, integration, and expression of plasmid-encoded bacterial genes located on the transferred DNA (T-DNA) in the plant genome. Bacterial virulence (Vir) proteins necessary for infection are also translocated into plant cells. Transfer of single-stranded DNA (ssDNA) and Vir proteins requires a type IV secretion system, a protein complex spanning the bacterial envelope. A. tumefaciens translocates the ssDNA-binding protein VirE2 into plant cells, where it binds single-stranded T-DNA and helps target it to the nucleus. Although some strains of A. rhizogenes lack VirE2, they are pathogenic and transfer T-DNA efficiently. Instead, these bacteria express the GALLS protein, which is essential for their virulence. The GALLS protein can complement an A. tumefaciens virE2 mutant for tumor formation, indicating that GALLS can substitute for VirE2. Unlike VirE2, GALLS contains ATP-binding and helicase motifs similar to those in TraA, a strand transferase involved in conjugation. Both GALLS and VirE2 contain nuclear localization sequences and a C-terminal type IV secretion signal. Here we show that mutations in any of these domains abolished the ability of GALLS to substitute for VirE2.
Collapse
Affiliation(s)
- Larry D Hodges
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Tazoe M, Ichikawa K, Hoshino T. Flavin adenine dinucleotide-dependent 4-phospho-D-erythronate dehydrogenase is responsible for the 4-phosphohydroxy-L-threonine pathway in vitamin B6 biosynthesis in Sinorhizobium meliloti. J Bacteriol 2006; 188:4635-45. [PMID: 16788172 PMCID: PMC1482995 DOI: 10.1128/jb.01999-05] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vitamin B6 biosynthetic pathway in Sinorhizobium meliloti is similar to that in Escherichia coli K-12; in both organisms this pathway includes condensation of two intermediates, 1-deoxy-D-xylulose 5-phosphate and 4-phosphohydroxy-L-threonine (4PHT). Here, we report cloning of a gene designated pdxR that functionally corresponds to the pdxB gene of E. coli and encodes a dye-linked flavin adenine dinucleotide-dependent 4-phospho-D-erythronate (4PE) dehydrogenase. This enzyme catalyzes the oxidation of 4PE to 3-hydroxy-4-phosphohydroxy-alpha-ketobutyrate and is clearly different in terms of cofactor requirements from the pdxB gene product of E. coli, which is known to be an NAD-dependent enzyme. Previously, we revealed that in S. meliloti IFO 14782, 4PHT is synthesized from 4-hydroxy-l-threonine and that this synthesis starts with glycolaldehyde and glycine. However, in this study, we identified a second 4PHT pathway in S. meliloti that originates exclusively from glycolaldehyde (the major pathway). Based on the involvement of 4PE in the 4PHT pathway, the incorporation of different samples of 13C-labeled glycolaldehyde into pyridoxine molecules was examined using 13C nuclear magnetic resonance spectroscopy. On the basis of the spectral analyses, the synthesis of 4PHT from glycolaldehyde was hypothesized to involve the following steps: glycolaldehyde is sequentially metabolized to D-erythrulose, D-erythrulose 4-phosphate, and D-erythrose 4-phosphate by transketolase, kinase, and isomerase, respectively; and D-erythrose 4-phosphate is then converted to 4PHT by the conventional three-step pathway elucidated in E. coli, although the mechanism of action of the enzymes catalyzing the first two steps is different.
Collapse
Affiliation(s)
- Masaaki Tazoe
- Department of applied Microbiology, Nippon Roche Research Center, Kamakura, Kanagawa, Japan.
| | | | | |
Collapse
|
41
|
Cui Y, Tu R, Guan Y, Ma L, Chen S. Cloning, sequencing, and characterization of the Azospirillum brasilense fhuE gene. Curr Microbiol 2006; 52:169-77. [PMID: 16502288 DOI: 10.1007/s00284-005-0008-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
The fhuE gene of Escherichia coli encodes the FhuE protein, which is a receptor protein in the coprogen-mediated siderophore iron-transport system. A fhuE gene homologue from Azospirillum brasilense, a nitrogen-fixing soil bacterium that lives in association with the roots of cereal grasses, was cloned, sequenced, and characterized. The A. brasilense fhuE encodes a protein of 802 amino acids with a predicted molecular weight of approximately 87 kDa. The deduced amino-acid sequence showed a high level of homology to the sequences of all the known fhuE gene products. The fhuE mutant was sensitive to iron starvation and defective in coprogen-mediated iron uptake. The mutant failed to express one membrane protein of approximately 78 kDa that was induced by iron starvation in the wild type. Complementation studies showed that the A. brasilense fhuE gene, when present on a low-copy number plasmid, could restore the functions of the mutant. Mutation in fhuE gene did not affect nitrogen fixation.
Collapse
Affiliation(s)
- Yanhua Cui
- National Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100094, PRC
| | | | | | | | | |
Collapse
|
42
|
Plaggenborg R, Overhage J, Loos A, Archer JAC, Lessard P, Sinskey AJ, Steinbüchel A, Priefert H. Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Appl Microbiol Biotechnol 2006; 72:745-55. [PMID: 16421716 DOI: 10.1007/s00253-005-0302-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 11/09/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
The potential of two Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol was investigated. Genome sequence data of Rhodococcus sp. I24 suggested a coenzyme A-dependent, non-beta-oxidative pathway for ferulic acid bioconversion, which involves feruloyl-CoA synthetase (Fcs), enoyl-CoA hydratase/aldolase (Ech), and vanillin dehydrogenase (Vdh). This pathway was proven for Rhodococcus opacus PD630 by physiological characterization of knockout mutants. However, expression and functional characterization of corresponding structural genes from I24 suggested that degradation of ferulic acid in this strain proceeds via a beta-oxidative pathway. The vanillin precursor eugenol facilitated growth of I24 but not of PD630. Coniferyl aldehyde was an intermediate of eugenol degradation by I24. Since the genome sequence of I24 is devoid of eugenol hydroxylase homologous genes (ehyAB), eugenol bioconversion is most probably initiated by a new step in this bacterium. To establish eugenol bioconversion in PD630, the vanillyl alcohol oxidase gene (vaoA) from Penicillium simplicissimum CBS 170.90 was expressed in PD630 together with coniferyl alcohol dehydrogenase (calA) and coniferyl aldehyde dehydrogenase (calB) genes from Pseudomonas sp. HR199. The recombinant strain converted eugenol to ferulic acid. The obtained data suggest that genetically engineered strains of I24 and PD630 are suitable candidates for vanillin production from eugenol.
Collapse
Affiliation(s)
- Rainer Plaggenborg
- Institut für Molekulare Mikrobiologie und Biotechnologie der Westfälischen Wilhelms-Universität Münster, Corrensstr. 3, 48149 Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Dangel AW, Gibson JL, Janssen AP, Tabita FR. Residues that influence in vivo and in vitro CbbR function in Rhodobacter sphaeroides and identification of a specific region critical for co-inducer recognition. Mol Microbiol 2005; 57:1397-414. [PMID: 16102008 DOI: 10.1111/j.1365-2958.2005.04783.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CbbR is a LysR-type transcriptional regulator (LTTR) that is required to activate transcription of the cbb operons, responsible for CO2 fixation, in Rhodobacter sphaeroides. LTTR proteins often require a co-inducer to regulate transcription. Previous studies suggested that ribulose 1,5-bisphosphate (RuBP) is a positive effector for CbbR function in this organism. In the current study, RuBP was found to increase the electrophoretic mobility of the CbbR/cbb(I) promoter complex. To define and analyse the co-inducer recognition region of CbbR, constitutively active mutant CbbR proteins were isolated. Under growth conditions that normally maintain transcriptionally inactive cbb operons, the mutant CbbR proteins activated transcription. Fourteen of the constitutively active mutants resulted from a single amino acid substitution. One mutant was derived from amino acid substitutions at two separate residues that appeared to act synergistically. Different mutant proteins showed both sensitivity and insensitivity to RuBP and residues that conferred constitutive transcriptional activity could be highlighted on a three-dimensional model, with several residues unique to CbbR shown to be at locations critical to LTTR function. Many of the constitutive residues clustered in or near two specific loops in the LTTR tertiary structure, corresponding to a proposed site of co-inducer binding.
Collapse
Affiliation(s)
- Andrew W Dangel
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | | | | | | |
Collapse
|
44
|
Vargas C, Kallimanis A, Koukkou AI, Calderon MI, Canovas D, Iglesias-Guerra F, Drainas C, Ventosa A, Nieto JJ. Contribution of chemical changes in membrane lipids to the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens. Syst Appl Microbiol 2005; 28:571-81. [PMID: 16156114 DOI: 10.1016/j.syapm.2005.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The long-term response of the broad-salt growing halophile Chromohalobacter salexigens DSM 3043T to salt stress has been investigated with respect to adaptive changes in membrane lipid composition. This study included the wild-type and three salt-sensitive, ectoine-deficient strains: CHR62 (ectA::Tn1732, unable to grow above 0.75 M NaCl), CHR63 (ectC::Tn1732, unable to grow above 1.5 M NaCl), and CHR64, which was able to grow in minimal medium M63 up to 2.5 M NaCl, but its growth was slower than the wild-type strain at salinities above 1.5 M NaCl. This mutant accumulated ectoine and hydroxyectoine as major compatible solutes, but also the ectoine precursor, N-gamma-acetyldiaminobutyric acid, and was found to be affected in the ectoine synthase gene ectC. The main phospholipids of the wild-type strain were phosphatidylethanolamine, phosphatidylglycerol (PG), and cardiolipin (CL). Major fatty acids were detected as 16:0, 18:1, and 16:1, including significant amounts of cyc-19:0, and cyc-17:0. CL and cyclopropane fatty acids (CFA) levels were elevated when the wild-type strain was grown at high salinity (2.5 M NaCl). Membranes of the most salt-sensitive trains CHR62 and CHR63, but not of the less salt-sensitive strain CHR64, contained lower levels of CL. The proportion of cyc-19:0 in CHR64 was three-fold (at 2.0M NaCl) and 2.5-fold (at 2.5 M NaCl) lower than that of the wild type, suggesting that this mutant has a limited capacity to incorporate CFA into phospholipids at high salt. The addition of 1 mM ectoine to cultures of the wild-type strain increased the ratio PG/CL from 1.8 to 3.3 at 0.75 M NaCl, and from 1 to 6.5 at 2.5 M NaCl, and led to a slight decrease in CFA content. Addition of 1 mM ectoine to the mutants restored the steady-state levels of CL and CFA found in the wild-type strain supplemented with ectoine. These findings suggest that exogenous ectoine might attenuate the osmostress response involving changes in membrane lipids.
Collapse
Affiliation(s)
- Carmen Vargas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Merighi M, Majerczak DR, Coplin DL. A novel transcriptional autoregulatory loop enhances expression of the Pantoea stewartii subsp. stewartii Hrp type III secretion system. FEMS Microbiol Lett 2005; 243:479-87. [PMID: 15751134 DOI: 10.1016/j.femsle.2005.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The hrp type III secretion regulon of Pantoea stewartii is regulated by a cascade involving the HrpX/HrpY two-component system, the HrpS enhancer-binding protein and the HrpL alternate sigma factor. hrpXY is both constitutive and autoregulated; HrpY controls hrpS; and HrpS activates hrpL. These regulatory genes are arranged in the order hrpL, hrpXY and hrpS and constitute three operons. This study describes a novel autoregulatory loop involving HrpS. Genetic experiments using a chromosomal hrpS-lacZ fusion demonstrated that ectopic expression of HrpS increases hrpS transcription and that this effect is blocked by polar mutations in hrpXY and hrpL and by a nonpolar mutation in hrpY. RT-PCR and Northern blot analysis revealed a hrpL-hrpXY polycistronic mRNA. These results suggest that HrpS-mediated autoregulation is due to activation of hrpS by increased levels of HrpY resulting from read-through transcription of hrpXY from the hrpL promoter. This novel autoregulatory loop may serve to rapidly induce hrp genes during infection and to compensate for negative regulatory mechanisms that keep the regulon off in the insect vector.
Collapse
Affiliation(s)
- Massimo Merighi
- Department of Plant Pathology and the Plant Molecular Biology/Biotechnology Program, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210-1087, USA
| | | | | |
Collapse
|
46
|
Chen S, Liu L, Zhou X, Elmerich C, Li JL. Functional analysis of the GAF domain of NifA in Azospirillum brasilense: effects of Tyr→Phe mutations on NifA and its interaction with GlnB. Mol Genet Genomics 2005; 273:415-22. [PMID: 15887032 DOI: 10.1007/s00438-005-1146-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 03/17/2005] [Indexed: 10/25/2022]
Abstract
Regulation of NifA activity in Azospirillum brasilense depends on GlnB (a PII protein), and it was previously reported that the target of GlnB activity is the N-terminal domain of NifA. Furthermore, mutation of the Tyr residue at position 18 in the N-terminal domain resulted in a NifA protein that did not require GlnB for activity under nitrogen fixation conditions. We report here that a NifA double mutant in which the Tyr residues at positions 18 and 53 of NifA N-were simultaneously replaced by Phe (NifA-Y1853F) displays high nitrogenase activity, which is still regulatable by ammonia, but not by GlnB. The yeast two-hybrid technique was used to investigate whether GlnB can physically interact with wild-type and mutant NifA proteins. GlnB was found to interact directly with the N-terminal GAF domain of wild-type NifA, but not with its central or C-terminal domain. GlnB could still bind to the single NifA mutants Y18F and Y53F. In contrast, no interaction was detected between GlnB and the double mutant NifA-Y18/53F or between GlnB and NifA-Y43.
Collapse
Affiliation(s)
- Sanfeng Chen
- Department of Microbiology and National Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100094, China
| | | | | | | | | |
Collapse
|
47
|
Bardischewsky F, Quentmeier A, Rother D, Hellwig P, Kostka S, Friedrich CG. Sulfur Dehydrogenase of Paracoccus pantotrophus: The Heme-2 Domain of the Molybdoprotein Cytochrome c Complex Is Dispensable for Catalytic Activity. Biochemistry 2005; 44:7024-34. [PMID: 15865447 DOI: 10.1021/bi047334b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sulfur dehydrogenase, Sox(CD)(2), is an essential part of the sulfur-oxidizing enzyme system of the chemotrophic bacterium Paracoccus pantotrophus. Sox(CD)(2) is a alpha(2)beta(2) complex composed of the molybdoprotein SoxC (43 442 Da) and the hybrid diheme c-type cytochrome SoxD (37 637 Da). Sox(CD)(2) catalyzes the oxidation of protein-bound sulfur to sulfate with a unique six-electron transfer. Amino acid sequence analysis identified the heme-1 domain of SoxD proteins to be specific for sulfur dehydrogenases and to contain a novel ProCysMetXaaAspCys motif, while the heme-2 domain is related to various cytochromes c(2). Purification of sulfur dehydrogenase without protease inhibitor yielded a dimeric SoxCD(1) complex consisting of SoxC and SoxD(1) of 30 kDa, which contained only the heme-1 domain. The heme-2 domain was isolated as a new cytochrome SoxD(2) of about 13 kDa. Both hemes of SoxD in Sox(CD)(2) are redox-active with midpoint potentials at E(m)1 = 218 +/- 10 mV and E(m)2 = 268 +/- 10 mV, while SoxCD(1) and SoxD(2) both exhibit a midpoint potential of E(m) = 278 +/- 10 mV. Electrochemically induced FTIR difference spectra of Sox(CD)(2), SoxCD(1), and SoxD(2) were distinct. A carboxy group is protonated upon reduction of the SoxD(1) heme but not for SoxD(2). The specific activity of SoxCD(1) and Sox(CD)(2) was identical as was the yield of electrons with thiosulfate in the reconstituted Sox enzyme system. To examine the physiological significance of the heme-2 domain, a mutant was constructed that was deleted for the heme-2 domain, which produced SoxCD(1) and transferred electrons from thiosulfate to oxygen. These data demonstrated the crucial role of the heme-1 domain of SoxD for catalytic activity, electron yield, and transfer of the electrons to the cytoplasmic membrane, while the heme-2 domain mediated the alpha(2)beta(2) tetrameric structure of sulfur dehydrogenase.
Collapse
Affiliation(s)
- Frank Bardischewsky
- Lehrstuhl für Technische Mikrobiologie, Fachbereich Bio- und Chemieingenieurwesen, Universität Dortmund, Emil-Figge-Strasse 66, D-44221 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Lacroix B, Vaidya M, Tzfira T, Citovsky V. The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. EMBO J 2005; 24:428-37. [PMID: 15616576 PMCID: PMC545813 DOI: 10.1038/sj.emboj.7600524] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 11/26/2004] [Indexed: 11/08/2022] Open
Abstract
To genetically transform plants, Agrobacterium exports its transferred DNA (T-DNA) and several virulence (Vir) proteins into the host cell. Among these proteins, VirE3 is the only one whose biological function is completely unknown. Here, we demonstrate that VirE3 is transferred from Agrobacterium to the plant cell and then imported into its nucleus via the karyopherin alpha-dependent pathway. In addition to binding plant karyopherin alpha, VirE3 interacts with VirE2, a major bacterial protein that directly associates with the T-DNA and facilitates its nuclear import. The VirE2 nuclear import in turn is mediated by a plant protein, VIP1. Our data indicate that VirE3 can mimic this VIP1 function, acting as an 'adapter' molecule between VirE2 and karyopherin alpha and 'piggy-backing' VirE2 into the host cell nucleus. As VIP1 is not an abundant protein, representing one of the limiting factors for transformation, Agrobacterium may have evolved to produce and export to the host cells its own virulence protein that at least partially complements the cellular VIP1 function necessary for the T-DNA nuclear import and subsequent expression within the infected cell.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA
| | - Manjusha Vaidya
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA
| | - Tzvi Tzfira
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA
| |
Collapse
|
49
|
Boscari A, Mandon K, Poggi MC, Le Rudulier D. Functional expression of Sinorhizobium meliloti BetS, a high-affinity betaine transporter, in Bradyrhizobium japonicum USDA110. Appl Environ Microbiol 2004; 70:5916-22. [PMID: 15466533 PMCID: PMC522109 DOI: 10.1128/aem.70.10.5916-5922.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among the Rhizobiaceae, Bradyrhizobium japonicum strain USDA110 appears to be extremely salt sensitive, and the presence of glycine betaine cannot restore its growth in medium with an increased osmolarity (E. Boncompagni, M. Osteras, M. C. Poggi, and D. Le Rudulier, Appl. Environ. Microbiol. 65:2072-2077, 1999). In order to improve the salt tolerance of B. japonicum, cells were transformed with the betS gene of Sinorhizobium meliloti. This gene encodes a major glycine betaine/proline betaine transporter from the betaine choline carnitine transporter family and is required for early osmotic adjustment. Whereas betaine transport was absent in the USDA110 strain, such transformation induced glycine betaine and proline betaine uptake in an osmotically dependent manner. Salt-treated transformed cells accumulated large amounts of glycine betaine, which was not catabolized. However, the accumulation was reversed through rapid efflux during osmotic downshock. An increased tolerance of transformant cells to a moderate NaCl concentration (80 mM) was also observed in the presence of glycine betaine or proline betaine, whereas the growth of the wild-type strain was totally abolished at 80 mM NaCl. Surprisingly, the deleterious effect due to a higher salt concentration (100 mM) could not be overcome by glycine betaine, despite a significant accumulation of this compound. Cell viability was not significantly affected in the presence of 100 mM NaCl, whereas 75% cell death occurred at 150 mM NaCl. The absence of a potential gene encoding Na(+)/H(+) antiporters in B. japonicum could explain its very high Na(+) sensitivity.
Collapse
Affiliation(s)
- Alexandre Boscari
- Unité Interactions Plantes-Microorganismes et Santé Végétale, CNRS-INRA-Université de Nice Sophia Antipolis, UMR 6192, Faculté des Sciences, Parc Valrose, 06108 Nice Cédex, France
| | | | | | | |
Collapse
|
50
|
Panek HR, O'Brian MR. KatG is the primary detoxifier of hydrogen peroxide produced by aerobic metabolism in Bradyrhizobium japonicum. J Bacteriol 2004; 186:7874-80. [PMID: 15547258 PMCID: PMC529082 DOI: 10.1128/jb.186.23.7874-7880.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 09/02/2004] [Indexed: 12/12/2022] Open
Abstract
Bacteria are exposed to reactive oxygen species from the environment and from those generated by aerobic metabolism. Catalases are heme proteins that detoxify H(2)O(2), and many bacteria contain more than one catalase enzyme. Also, the nonheme peroxidase alkyl hydroperoxide reductase (Ahp) is the major scavenger of endogenous H(2)O(2) in Escherichia coli. Here, we show that aerobically grown Bradyrhizobium japonicum cells express a single catalase activity. Four genes encoding putative catalases in the B. japonicum genome were identified, including a katG homolog encoding a catalase-peroxidase. Deletion of the katG gene resulted in loss of catalase activity in cell extracts and of exogenous H(2)O(2) consumption by whole cells. The katG strain had a severe aerobic growth phenotype but showed improved growth in the absence of O(2). By contrast, a B. japonicum ahpCD mutant grew well aerobically and consumed H(2)O(2) at wild-type rates. A heme-deficient hemA mutant expressed about one-third of the KatG activity as the wild type but grew well aerobically and scavenged low concentrations of exogenous H(2)O(2). However, cells of the hemA strain were deficient in consumption of high concentrations of H(2)O(2) and were very sensitive to killing by short exposure to H(2)O(2). In addition, KatG activity did not decrease as a result of mutation of the gene encoding the transcriptional activator OxyR. We conclude that aerobic metabolism produces toxic levels of H(2)O(2) in B. japonicum, which is detoxified primarily by KatG. Furthermore, the katG level sufficient for detoxification does not require OxyR.
Collapse
Affiliation(s)
- Heather R Panek
- Department of Biochemistry and Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York at Buffalo, NY 14214, USA
| | | |
Collapse
|