1
|
Vaisbourd E, Bren A, Alon U, Glass DS. Preventing Multimer Formation in Commonly Used Synthetic Biology Plasmids. ACS Synth Biol 2025; 14:1309-1315. [PMID: 40101192 PMCID: PMC12012879 DOI: 10.1021/acssynbio.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/08/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Plasmids are an essential tool for basic research and biotechnology applications. To optimize plasmid-based circuits, it is crucial to control plasmid integrity, including the formation of plasmid multimers. Multimers are tandem repeats of entire plasmids formed by failed dimer resolution during replication. Multimers can affect the behavior of synthetic circuits, especially ones that include DNA-editing enzymes. However, occurrence of multimers is not commonly assayed. Here we survey four commonly used plasmid backbones for occurrence of multimers in cloning (JM109) and wild-type (MG1655) strains of Escherichia coli. We find that multimers occur appreciably only in MG1655, with the fraction of plasmids existing as multimers increasing with both plasmid copy number and culture passaging. In contrast, transforming multimers into JM109 can yield strains that contain no singlet plasmids. We present an MG1655 ΔrecA single-locus knockout that avoids multimer production. These results can aid synthetic biologists in improving design and reliability of plasmid-based circuits.
Collapse
Affiliation(s)
- Elizabeth Vaisbourd
- Department
of Molecular Cell Biology, Weizmann Institute
of Science, Rehovot, Israel 76100
| | - Anat Bren
- Department
of Molecular Cell Biology, Weizmann Institute
of Science, Rehovot, Israel 76100
| | - Uri Alon
- Department
of Molecular Cell Biology, Weizmann Institute
of Science, Rehovot, Israel 76100
| | - David S. Glass
- Department
of Molecular Cell Biology, Weizmann Institute
of Science, Rehovot, Israel 76100
| |
Collapse
|
2
|
Khananisho D, Cumming AJ, Kulakova D, Shilling PJ, Daley DO. Tips for efficiently maintaining pET expression plasmids. Curr Genet 2023; 69:277-287. [PMID: 37938343 PMCID: PMC10716060 DOI: 10.1007/s00294-023-01276-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
pET expression plasmids are widely used for producing recombinant proteins in Escherichia coli. Selection and maintenance of cells harboring a pET plasmid are possible using either a Tn3.1-type genetic fragment (which encodes a ß-lactamase and confers resistance to ß-lactam antibiotics) or a Tn903.1-type genetic fragment (which encodes an aminoglycoside-3'-phosphotransferase and confers resistance aminoglycoside antibiotics). Herein we have investigated how efficiently pET plasmids are maintained using these two fragments. The study reveals that pET plasmids are efficiently maintained with both Tn3.1 and Tn903.1 genetic fragments prior to the induction of recombinant protein production, and over short induction times (i.e., 2 h). However, over longer induction times (i.e., 20 h), the efficiency of plasmid maintenance depends on the host strain used, and the type of antibiotic selection cassette used. Based on our collective observations, we have 2 general tips for efficiently maintaining pET plasmids during recombinant production experiments. Tip #1: Use a strain with lowered levels of the T7 RNA polymerase, such as C41(DE3). pET plasmids will be efficiently maintained over long induction times with both the Tn3.1 and Tn903.1 genetic fragments, regardless of whether antibiotics are present during cultivation. Tip #2: If a strain with higher levels of T7 RNA polymerase strain is necessary, such as BL21(DE3)), keep induction times short or use a plasmid containing a Tn903.1-type fragment and select with kanamycin.
Collapse
Affiliation(s)
- Diana Khananisho
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Alister J Cumming
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Daria Kulakova
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Patrick J Shilling
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Daniel O Daley
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
3
|
Cumming A, Khananisho D, Harris R, Bayer CN, Nørholm MHH, Jamshidi S, Ilag LL, Daley DO. Antibiotic-Efficient Genetic Cassette for the TEM-1 β-Lactamase That Improves Plasmid Performance. ACS Synth Biol 2022; 11:241-253. [PMID: 34982550 PMCID: PMC8787818 DOI: 10.1021/acssynbio.1c00393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 11/30/2022]
Abstract
Antibiotic resistance cassettes are indispensable tools in recombinant DNA technology, synthetic biology, and metabolic engineering. The genetic cassette encoding the TEM-1 β-lactamase (denoted Tn3.1) is one of the most commonly used and can be found in more than 120 commercially available bacterial expression plasmids (e.g., the pET, pUC, pGEM, pQE, pGEX, pBAD, and pSEVA series). A widely acknowledged problem with the cassette is that it produces excessively high titers of β-lactamase that rapidly degrade β-lactam antibiotics in the culture media, leading to loss of selective pressure, and eventually a large percentage of cells that do not have a plasmid. To address these shortcomings, we have engineered a next-generation version that expresses minimal levels of β-lactamase (denoted Tn3.1MIN). We have also engineered a version that is compatible with the Standard European Vector Architecture (SEVA) (denoted Ap (pSEVA#1MIN--)). Expression plasmids containing either Tn3.1MIN or Ap (pSEVA#1MIN--) can be selected using a 5-fold lower concentration of β-lactam antibiotics and benefit from the increased half-life of the β-lactam antibiotics in the culture medium (3- to 10-fold). Moreover, more cells in the culture retain the plasmid. In summary, we present two antibiotic-efficient genetic cassettes encoding the TEM-1 β-lactamase that reduce antibiotic consumption (an integral part of antibiotic stewardship), reduce production costs, and improve plasmid performance in bacterial cell factories.
Collapse
Affiliation(s)
- Alister
J. Cumming
- Department
of Biochemistry and Biophysics, Stockholm
University, Stockholm SE106 91, Sweden
| | - Diana Khananisho
- Department
of Biochemistry and Biophysics, Stockholm
University, Stockholm SE106 91, Sweden
| | - Ramona Harris
- Department
of Biochemistry and Biophysics, Stockholm
University, Stockholm SE106 91, Sweden
| | - Carolyn N. Bayer
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Morten H. H. Nørholm
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- CloneOpt
AB, Upplands Väsby SE194 68, Sweden
- Mycropt
ApS, Kongens Lyngby 2800, Denmark
| | - Sara Jamshidi
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE106 91, Sweden
| | - Leopold L. Ilag
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE106 91, Sweden
| | - Daniel O. Daley
- Department
of Biochemistry and Biophysics, Stockholm
University, Stockholm SE106 91, Sweden
- CloneOpt
AB, Upplands Väsby SE194 68, Sweden
- Mycropt
ApS, Kongens Lyngby 2800, Denmark
| |
Collapse
|
4
|
Park Y, Espah Borujeni A, Gorochowski TE, Shin J, Voigt CA. Precision design of stable genetic circuits carried in highly-insulated E. coli genomic landing pads. Mol Syst Biol 2020; 16:e9584. [PMID: 32812710 PMCID: PMC7436927 DOI: 10.15252/msb.20209584] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/07/2020] [Accepted: 07/22/2020] [Indexed: 01/02/2023] Open
Abstract
Genetic circuits have many applications, from guiding living therapeutics to ordering process in a bioreactor, but to be useful they have to be genetically stable and not hinder the host. Encoding circuits in the genome reduces burden, but this decreases performance and can interfere with native transcription. We have designed genomic landing pads in Escherichia coli at high-expression sites, flanked by ultrastrong double terminators. DNA payloads >8 kb are targeted to the landing pads using phage integrases. One landing pad is dedicated to carrying a sensor array, and two are used to carry genetic circuits. NOT/NOR gates based on repressors are optimized for the genome and characterized in the landing pads. These data are used, in conjunction with design automation software (Cello 2.0), to design circuits that perform quantitatively as predicted. These circuits require fourfold less RNA polymerase than when carried on a plasmid and are stable for weeks in a recA+ strain without selection. This approach enables the design of synthetic regulatory networks to guide cells in environments or for applications where plasmid use is infeasible.
Collapse
Affiliation(s)
- Yongjin Park
- Synthetic Biology CenterDepartment of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Amin Espah Borujeni
- Synthetic Biology CenterDepartment of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Thomas E Gorochowski
- Synthetic Biology CenterDepartment of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
| | - Jonghyeon Shin
- Synthetic Biology CenterDepartment of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Christopher A Voigt
- Synthetic Biology CenterDepartment of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
| |
Collapse
|
5
|
Mei H, Arbeithuber B, Cremona MA, DeGiorgio M, Nekrutenko A. A High-Resolution View of Adaptive Event Dynamics in a Plasmid. Genome Biol Evol 2020; 11:3022-3034. [PMID: 31539047 PMCID: PMC6827461 DOI: 10.1093/gbe/evz197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2019] [Indexed: 11/30/2022] Open
Abstract
Coadaptation between bacterial hosts and plasmids frequently results in adaptive changes restricted exclusively to host genome leaving plasmids unchanged. To better understand this remarkable stability, we transformed naïve Escherichia coli cells with a plasmid carrying an antibiotic-resistance gene and forced them to adapt in a turbidostat environment. We then drew population samples at regular intervals and subjected them to duplex sequencing—a technique specifically designed for identification of low-frequency mutations. Variants at ten sites implicated in plasmid copy number control emerged almost immediately, tracked consistently across the experiment’s time points, and faded below detectable frequencies toward the end. This variation crash coincided with the emergence of mutations on the host chromosome. Mathematical modeling of trajectories for adaptive changes affecting plasmid copy number showed that such mutations cannot readily fix or even reach appreciable frequencies. We conclude that there is a strong selection against alterations of copy number even if it can provide a degree of growth advantage. This incentive is likely rooted in the complex interplay between mutated and wild-type plasmids constrained within a single cell and underscores the importance of understanding of intracellular plasmid variability.
Collapse
Affiliation(s)
- Han Mei
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University
| | | | - Marzia A Cremona
- Department of Statistics, The Pennsylvania State University.,Department of Operations and Decision Systems, Université Laval
| | - Michael DeGiorgio
- Department of Biology, The Pennsylvania State University.,Department of Statistics, The Pennsylvania State University.,Institute for CyberScience, The Pennsylvania State University
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University
| |
Collapse
|
6
|
Nora LC, Westmann CA, Martins‐Santana L, Alves LDF, Monteiro LMO, Guazzaroni M, Silva‐Rocha R. The art of vector engineering: towards the construction of next-generation genetic tools. Microb Biotechnol 2019; 12:125-147. [PMID: 30259693 PMCID: PMC6302727 DOI: 10.1111/1751-7915.13318] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/20/2022] Open
Abstract
When recombinant DNA technology was developed more than 40 years ago, no one could have imagined the impact it would have on both society and the scientific community. In the field of genetic engineering, the most important tool developed was the plasmid vector. This technology has been continuously expanding and undergoing adaptations. Here, we provide a detailed view following the evolution of vectors built throughout the years destined to study microorganisms and their peculiarities, including those whose genomes can only be revealed through metagenomics. We remark how synthetic biology became a turning point in designing these genetic tools to create meaningful innovations. We have placed special focus on the tools for engineering bacteria and fungi (both yeast and filamentous fungi) and those available to construct metagenomic libraries. Based on this overview, future goals would include the development of modular vectors bearing standardized parts and orthogonally designed circuits, a task not fully addressed thus far. Finally, we present some challenges that should be overcome to enable the next generation of vector design and ways to address it.
Collapse
Affiliation(s)
- Luísa Czamanski Nora
- Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| | - Cauã Antunes Westmann
- Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| | | | - Luana de Fátima Alves
- Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
- School of Philosophy, Science and Letters of Ribeirão PretoUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| | | | - María‐Eugenia Guazzaroni
- School of Philosophy, Science and Letters of Ribeirão PretoUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| | - Rafael Silva‐Rocha
- Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| |
Collapse
|
7
|
Modi RI, Adams J. COEVOLUTION IN BACTERIAL-PLASMID POPULATIONS. Evolution 2017; 45:656-667. [PMID: 28568831 DOI: 10.1111/j.1558-5646.1991.tb04336.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/1990] [Accepted: 09/27/1990] [Indexed: 11/30/2022]
Abstract
Evolutionary changes are described in plasmid-containing strains isolated after approximately 800 generations of growth in glucose-limited chemostat culture. The reproductive fitness increased dramatically over this period. Genetic changes associated with the increases in fitness were localized to both the bacterial and the plasmid chromosomes. In addition, some of the genetic changes on the bacterial and the plasmid chromosomes interact to minimize the deleterious effect of the plasmid. Thus, the changes observed may be considered coevolutionary. Reductions in the deleterious effects of the plasmid were shown to be associated with a decrease in plasmid copy number and an increase in the rate of segregational loss of the plasmid.
Collapse
Affiliation(s)
- Rajiv I Modi
- Department of Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Julian Adams
- Department of Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
8
|
Gaimster H, Summers D. Plasmids in the driving seat: The regulatory RNA Rcd gives plasmid ColE1 control over division and growth of its E. coli host. Plasmid 2014; 78:59-64. [PMID: 25446541 PMCID: PMC4393325 DOI: 10.1016/j.plasmid.2014.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 02/04/2023]
Abstract
Regulation by non-coding RNAs was found to be widespread among plasmids and other mobile elements of bacteria well before its ubiquity in the eukaryotic world was suspected. As an increasing number of examples was characterised, a common mechanism began to emerge. Non-coding RNAs, such as CopA and Sok from plasmid R1, or RNAI from ColE1, exerted regulation by refolding the secondary structures of their target RNAs or modifying their translation. One regulatory RNA that seemed to swim against the tide was Rcd, encoded within the multimer resolution site of ColE1. Required for high fidelity maintenance of the plasmid in recombination-proficient hosts, Rcd was found to have a protein target, elevating indole production by stimulating tryptophanase. Rcd production is up-regulated in dimer-containing cells and the consequent increase in indole is part of the response to the rapid accumulation of dimers by over-replication (known as the dimer catastrophe). It is proposed that indole simultaneously inhibits cell division and plasmid replication, stopping the catastrophe and allowing time for the resolution of dimers to monomers. The idea of a plasmid-mediated cell division checkpoint, proposed but then discarded in the 1980s, appears to be enjoying a revival.
Collapse
Affiliation(s)
- Hannah Gaimster
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, United Kingdom.
| | - David Summers
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
9
|
Field CM, Summers DK. Multicopy plasmid stability: revisiting the dimer catastrophe. J Theor Biol 2011; 291:119-27. [PMID: 21945338 DOI: 10.1016/j.jtbi.2011.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/18/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
In this study, we have constructed a stochastic simulation of the replication and distribution of the bacterial multicopy plasmid ColE1 in a population of exponentially growing cells. It is assumed that ColE1 is randomly distributed between daughter cells at division such that copy number is a critical determinant of plasmid loss. High copy number is threatened by plasmid dimers, which arises initially by homologous recombination and accumulate by replication in a process known as the 'dimer catastrophe'. Summers et al. (1993) modelled this process and demonstrated that the accumulation of dimers is limited by the metabolic load that they exert on their hosts. ColE1 also encodes the cer site, at which host-encoded proteins act to convert dimers to monomers by site-specific recombination. The cer site also encodes a regulatory RNA, Rcd, whose synthesis from plasmid dimers triggers a checkpoint that delays cell division, presumably allowing sufficient time for dimer resolution. Here we have developed the original dimer catastrophe model by incorporating copy number variance with a stochastic model of plasmid replication. We demonstrate that the Rcd checkpoint is necessary when the rate of dimer resolution is slow. Our results indicate that dimers over-replicate compared to monomers, suggesting a mechanism for their increased metabolic load. We find that the effect of dimers on plasmid stability is significantly less severe than suggested by the original model. Consequently, we propose that the primary role of dimer resolution and the Rcd checkpoint is to reduce the metabolic burden imposed by the plasmid in a recombinogenic host, rather than to ensure plasmid stability.
Collapse
Affiliation(s)
- C M Field
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom.
| | | |
Collapse
|
10
|
Bentley WE, Quiroga OE. Investigation of subpopulation heterogeneity and plasmid stability in recombinant escherichia coli via a simple segregated model. Biotechnol Bioeng 2010; 42:222-34. [PMID: 18612983 DOI: 10.1002/bit.260420210] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Many microbial and cell cultures exhibit phenomena that can best be described using a segregated modeling approach. Heterogeneties are more marked in recombinant cell cultures because subpopulations, which often exhibit different growth and productivity characteristics, are more easily identified by selective markers. A simple segregated mathematical model that simulates the growth of recombinant Escherichia coli cells is developed. Subpopulations of different growth rate, plasmid replication rate, and plasmid segregation probability are explicitly considered. Results indicate that a third mechanism of plasmid instability, referred to here as a "downward selective pressure," is significant when describing plasmid loss in batch and chemostat cultures. Also, the model agrees well with experimental data from cultures under antibiotic selective pressure. Finally, model simulations of chemostat cultures reveal the importance of initial conditions on culture stability and the possible presence of nonrandom partitioning functions.
Collapse
Affiliation(s)
- W E Bentley
- Center for Agricultural Biotechnology and Department of Chemical Engineering, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
11
|
Williams JA, Carnes AE, Hodgson CP. Plasmid DNA vaccine vector design: impact on efficacy, safety and upstream production. Biotechnol Adv 2009; 27:353-70. [PMID: 19233255 DOI: 10.1016/j.biotechadv.2009.02.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/02/2009] [Accepted: 02/07/2009] [Indexed: 10/21/2022]
Abstract
Critical molecular and cellular biological factors impacting design of licensable DNA vaccine vectors that combine high yield and integrity during bacterial production with increased expression in mammalian cells are reviewed. Food and Drug Administration (FDA), World Health Organization (WHO) and European Medical Agencies (EMEA) regulatory guidance's are discussed, as they relate to vector design and plasmid fermentation. While all new vectors will require extensive preclinical testing to validate safety and performance prior to clinical use, regulatory testing burden for follow-on products can be reduced by combining carefully designed synthetic genes with existing validated vector backbones. A flowchart for creation of new synthetic genes, combining rationale design with bioinformatics, is presented. The biology of plasmid replication is reviewed, and process engineering strategies that reduce metabolic burden discussed. Utilizing recently developed low metabolic burden seed stock and fermentation strategies, optimized vectors can now be manufactured in high yields exceeding 2 g/L, with specific plasmid yields of 5% total dry cell weight.
Collapse
|
12
|
Rational vector design for efficient non-viral gene delivery: challenges facing the use of plasmid DNA. Mol Biotechnol 2008; 39:97-104. [PMID: 18327557 DOI: 10.1007/s12033-008-9046-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although non-viral gene delivery is a very straightforward technology, there are currently no FDA-approved gene medicinal products available. Therefore, improving potency, safety, and efficiency of current plasmid DNA vectors will be a major task for the near future. This article will provide an overview on factors influencing production yield and quality as well as safety issues that emerge from the vector design itself. Special focus will be on generating bacterial pDNA vectors by circumventing the use of antibiotic resistance genes, to generate safer gene medicinal products as well as smaller, more efficient DNA vectors.
Collapse
|
13
|
Nordström K. Plasmid R1--replication and its control. Plasmid 2005; 55:1-26. [PMID: 16199086 DOI: 10.1016/j.plasmid.2005.07.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/04/2005] [Accepted: 07/12/2005] [Indexed: 11/25/2022]
Abstract
Plasmid R1 is a low-copy-number plasmid belonging to the IncFII group. The genetics, biochemistry, molecular biology, and physiology of R1 replication and its control are summarised and discussed in the present communication. Replication of R1 starts at a unique origin, oriR1, and proceeds unidirectionally according to the Theta mode. Plasmid R1 replicates during the entire cell cycle and the R1 copies in the cell are members of a pool from which a plasmid copy at random is selected for replication. However, there is an eclipse period during which a newly replicated copy does not belong to this pool. Replication of R1 is controlled by an antisense RNA, CopA, that is unstable and formed constitutively; hence, its concentration is a measure of the concentration of the plasmid. CopA-RNA interacts with its complementary target, CopT-RNA, that is located upstream of the RepA message on the repA-mRNA. CopA-RNA post-transcriptionally inhibits translation of the repA-mRNA. CopA- and CopT-RNA interact in a bimolecular reaction which results in an inverse proportionality between the relative rate of replication (replications per plasmid copy and cell cycle) and the copy number; the number of replications per cell and cell cycle, n, is independent of the actual copy number in the individual cells, the so-called +n mode of control. Single base-pair substitutions in the copA/copT region of the plasmid genome may result in mutants that are compatible with the wild type. Loss of CopA activity results in (uncontrolled) so-called runaway replication, which is lethal to the host but useful for the production of proteins from cloned genes. Plasmid R1 also has an ancillary control system, CopB, that derepresses the synthesis of repA-mRNA in cells that happen to contain lower than normal number of copies. Plasmid R1, as other plasmids, form clusters in the cell and plasmid replication is assumed to take place in the centre of the cells; this requires traffic from the cluster to the replication factories and back to the clusters. The clusters are plasmid-specific and presumably based on sequence homology.
Collapse
Affiliation(s)
- Kurt Nordström
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, P.O. Box 596, S-751 24 Uppsala, Sweden.
| |
Collapse
|
14
|
Napierala M, Bacolla A, Wells RD. Increased negative superhelical density in vivo enhances the genetic instability of triplet repeat sequences. J Biol Chem 2005; 280:37366-76. [PMID: 16166072 DOI: 10.1074/jbc.m508065200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The influence of negative superhelical density on the genetic instabilities of long GAA.TTC, CGG.CCG, and CTG.CAG repeat sequences was studied in vivo in topologically constrained plasmids in Escherichia coli. These repeat tracts are involved in the etiologies of Friedreich ataxia, fragile X syndrome, and myotonic dystrophy type 1, respectively. The capacity of these DNA tracts to undergo deletions-expansions was explored with three genetic-biochemical approaches including first, the utilization of topoisomerase I and/or DNA gyrase mutants, second, the specific inhibition of DNA gyrase by novobiocin, and third, the genetic removal of the HU protein, thus lowering the negative supercoil density (-sigma). All three strategies revealed that higher -sigma in vivo enhanced the formation of deleted repeat sequences. The effects were most pronounced for the Friedreich ataxia and the fragile X triplet repeat sequences. Higher levels of -sigma stabilize non-B DNA conformations (i.e. triplexes, sticky DNA, flexible and writhed DNA, slipped structures) at appropriate repeat tracts; also, numerous prior genetic instability investigations invoke a role for these structures in promoting the slippage of the DNA complementary strands. Thus, we propose that the in vivo modulation of the DNA structure, localized to the repeat tracts, is responsible for these behaviors. Presuming that these interrelationships are also found in humans, dynamic alterations in the chromosomal nuclear matrix may modulate the -sigma of certain DNA regions and, thus, stabilize/destabilize certain non-B conformations which regulate the genetic expansions-deletions responsible for the diseases.
Collapse
Affiliation(s)
- Marek Napierala
- Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University System Health Science Center, Houston, 77030-3303, USA
| | | | | |
Collapse
|
15
|
Napierala M, Parniewski P, Pluciennik A, Wells RD. Long CTG.CAG repeat sequences markedly stimulate intramolecular recombination. J Biol Chem 2002; 277:34087-100. [PMID: 12045198 DOI: 10.1074/jbc.m202128200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that homologous recombination is a powerful mechanism for generation of massive instabilities of the myotonic dystrophy CTG.CAG sequences. However, the frequency of recombination between the CTG.CAG tracts has not been studied. Here we performed a systematic study on the frequency of recombination between these sequences using a genetic assay based on an intramolecular plasmid system in Escherichia coli. The rate of intramolecular recombination between long CTG.CAG tracts oriented as direct repeats was extraordinarily high; recombinants were found with a frequency exceeding 12%. Recombination occurred in both RecA(+) and RecA(-) cells but was approximately 2-11 times higher in the recombination proficient strain. Long CTG.CAG tracts recombined approximately 10 times more efficiently than non-repeating control sequences of similar length. The recombination frequency was 60-fold higher for a pair of (CTG.CAG)(165) tracts compared with a pair of (CTG.CAG)(17) sequences. The CTG.CAG sequences in orientation II (CTG repeats present on a lagging strand template) recombine approximately 2-4 times more efficiently than tracts of identical length in the opposite orientation relative to the origin of replication. This orientation effect implies the involvement of DNA replication in the intramolecular recombination between CTG.CAG sequences. Thus, long CTG.CAG tracts are hot spots for genetic recombination.
Collapse
Affiliation(s)
- Marek Napierala
- Institute of Biosciences and Technology, Center for Genome Research, Texas A & M University System Health Science Center, Texas Medical Center, 2121 W. Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
16
|
Olavarrieta L, Hernández P, Krimer DB, Schvartzman JB. DNA knotting caused by head-on collision of transcription and replication. J Mol Biol 2002; 322:1-6. [PMID: 12215409 DOI: 10.1016/s0022-2836(02)00740-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Collision of transcription and replication is uncommon, but the reason for nature to avoid this type of collision is still poorly understood. In Escherichia coli pBR322 is unstable and rapidly lost without selective pressure. Stability can be rescued if transcription of the tetracycline-resistance gene (Tet(R)), progressing against replication, is avoided. We investigated the topological consequences of the collision of transcription and replication in pBR322-derived plasmids where head-on collision between the replication fork and the RNA polymerase transcribing the Tet(R) gene was allowed or avoided. The results obtained indicate that this type of collision triggers knotting of the daughter duplexes behind the fork. We propose this deleterious topological consequence could explain the instability of pBR322 and could be also one of the reasons for nature to avoid head-on collision of transcription and replication.
Collapse
MESH Headings
- Autoradiography
- Comet Assay
- DNA Replication
- DNA, Bacterial/biosynthesis
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/biosynthesis
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA-Directed RNA Polymerases/metabolism
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Genes, Bacterial/genetics
- Models, Genetic
- Nucleic Acid Conformation
- Plasmids/biosynthesis
- Plasmids/chemistry
- Plasmids/genetics
- Plasmids/metabolism
- Tetracycline Resistance/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- L Olavarrieta
- Departamento de Biología, Celular y del Desarrollo, Centro de Investigaciones Biológicas (CSIC), Velázquez 144, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
17
|
Park K, Han E, Paulsson J, Chattoraj DK. Origin pairing ('handcuffing') as a mode of negative control of P1 plasmid copy number. EMBO J 2001; 20:7323-32. [PMID: 11743008 PMCID: PMC125786 DOI: 10.1093/emboj/20.24.7323] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In one family of bacterial plasmids, multiple initiator binding sites, called iterons, are used for initiation of plasmid replication as well as for the control of plasmid copy number. Iterons can also pair in vitro via the bound initiators. This pairing, called handcuffing, has been suggested to cause steric hindrance to initiation and thereby control the copy number. To test this hypothesis, we have compared copy numbers of isogenic miniP1 plasmid monomer and dimer. The dimer copy number was only one-quarter that of the monomer, suggesting that the higher local concentration of origins in the dimer facilitated their pairing. Physical evidence consistent with iteron-mediated pairing of origins preferentially in the dimer was obtained in vivo. Thus, origin handcuffing can be a mechanism to control P1 plasmid replication.
Collapse
Affiliation(s)
- Kyusung Park
- Laboratory of Biochemistry, NCI, NIH, Bethesda, MD 20892-4255 and
Princeton University, Department of Molecular Biology, Princeton, NJ 08544, USA Present address: Invitrogen, 1610 Faraday Avenue, Carlsbad, CA 92008, USA Corresponding author e-mail:
| | | | - Johan Paulsson
- Laboratory of Biochemistry, NCI, NIH, Bethesda, MD 20892-4255 and
Princeton University, Department of Molecular Biology, Princeton, NJ 08544, USA Present address: Invitrogen, 1610 Faraday Avenue, Carlsbad, CA 92008, USA Corresponding author e-mail:
| | - Dhruba K. Chattoraj
- Laboratory of Biochemistry, NCI, NIH, Bethesda, MD 20892-4255 and
Princeton University, Department of Molecular Biology, Princeton, NJ 08544, USA Present address: Invitrogen, 1610 Faraday Avenue, Carlsbad, CA 92008, USA Corresponding author e-mail:
| |
Collapse
|
18
|
Patnaik PR. Optimizing initial plasmid copy number distribution for improved protein activity in a recombinant fermentation. Biochem Eng J 2000; 5:101-107. [PMID: 10817814 DOI: 10.1016/s1369-703x(99)00058-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recombinant bacterial cells in a fermentation broth rarely contain the same number of plasmids, even though this simplification is often used. Recent work has however indicated limitations of the simplified approach. Based on these studies, the distribution of plasmid copy numbers per cell has been represented macroscopically here in a Gaussian form for the fraction of biomass as a function of the copy number. Applying this distribution and an experimentally validated kinetic model to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) synthesis by Escherichia coli containing the plasmid pBR Eco gap, it is seen that GAPDH production in a batch fermentation is maximized by a particular initial (non-zero) copy number variance and an optimal duration. To implement this distribution in a bioreactor, it is suggested that the profile may be discretized, inocula corresponding to the mean copy number of each fraction prepared, and then combined to obtain the seed culture.
Collapse
Affiliation(s)
- PR Patnaik
- Institute of Microbial Technology, Sector 39-A, Chandigarh, India
| |
Collapse
|
19
|
Abstract
Plasmids control their replication so that the replication frequency per plasmid copy responds to the number of plasmid copies per cell. High sensitivity amplification in replication response to copy number deviations generally reduces variation in copy numbers between different single cells, thereby reducing the plasmid loss rate in a cell population. However, experiments show that plasmid R1 has a gradual, insensitive replication control predicting considerable copy number variation between single cells. The critical step in R1 copy number control is regulation of synthesis of a rate-limiting cis-acting replication protein, RepA. De novo synthesis of a large number of RepA molecules is required for replication, suggesting that copy number control is exercised at multiple steps. In this theoretical kinetic study we analyse R1 multistep copy number control and show that it results in the insensitive replication response found experimentally but that it at the same time effectively prohibits the existence of only one plasmid copy in a dividing cell. In combination with the partition system of R1, this can lead to very high segregational stability. The R1 control mechanism is compared to the different multistep copy number control of plasmid ColE1 that is based on conventional sensitivity amplification. This implies that while copy number control for ColE1 efficiently corrects for fluctuations that have already occurred, R1 copy number control prevents their emergence in cells that by chance start their cycle with only one plasmid copy. We also discuss how regular, clock-like, behaviour of single plasmid copies becomes hidden in experiments probing collective properties of a population of plasmid copies because the individual copies are out of phase. The model is formulated using master equations, taking a stochastic approach to regulation, but the mathematical formalism is kept to a minimum and the model is simplified to its bare essence. This simplicity makes it possible to extend the analysis to other replicons with similar design principles.
Collapse
Affiliation(s)
- J Paulsson
- Department of Cell and Molecular Biology, Biomedical center Box 596, Uppsala, SE-75124, Sweden
| | | |
Collapse
|
20
|
Abstract
Multicopy plasmids of Escherichia coli are distributed randomly at cell division and, as long as copy number remains high, plasmid-free cells arise only rarely. Copy number variation is minimized by plasmid-encoded control circuits, and the limited data available suggest that deviations are corrected efficiently under most circumstances. However, plasmid multimers confuse control circuits, leading to copy number depression. To make matters worse, multimers out-replicate monomers and accumulate clonally within the culture, creating a subpopulation of cells with a significantly increased rate of plasmid loss. Multimers of natural multicopy plasmids, such as ColE1, are resolved to monomers by a site-specific recombination system (Xer-cer) whose activity is limited to intramolecular recombination. Recombination requires the heterodimeric XerCD recombinase plus two accessory proteins (ArgR and PepA), which activate recombination and prevent intermolecular events. Evidence is accumulating that Xer-cer recombination is relatively slow, and there is a risk that cells might divide before multimer resolution is complete. The Rcd transcript encoded within cer may solve this problem by preventing the division of multimer-containing cells. Working in concert, the triumvirate of copy number control, multimer resolution and cell division control achieve an extremely high fidelity of plasmid maintenance.
Collapse
Affiliation(s)
- D Summers
- Department of Genetics, Cambridge, UK.
| |
Collapse
|
21
|
Paulsson J, Ehrenberg M. Trade-off between segregational stability and metabolic burden: a mathematical model of plasmid ColE1 replication control. J Mol Biol 1998; 279:73-88. [PMID: 9636701 DOI: 10.1006/jmbi.1998.1751] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A model of ColE1 copy number control has been developed where molecular details of replication are connected both to segregational stability and metabolic burden. Efficient replication control reduces copy number variation and increases segregational stability for a given average copy number. Copy number variation is predicted to depend on the type of inhibition mechanism as well as RNA I and RNA II turnover rate constants. It is shown that when both RNA I and RNA II transcription frequencies and the rate constant for degradation of free RNA I are very large, a hyperbolic inhibition mechanism must compensate with a 1.4 times greater average copy number to obtain the same segregational stability as an exponential inhibition mechanism. How sensitively the replication frequency responds to changes in RNA I concentration depends on the type of inhibition mechanism and the number of attempts to form an RNA II replication primer per plasmid and cell cycle. If RNA I is too stable, it will not follow changes in plasmid concentration closely, and when the transcription frequency for RNA I is only slightly higher than for RNA II, RNA I concentration becomes randomized. In both these cases, the proportionality between the single cell RNA I and plasmid concentrations is lost and this impairs copy number control. Thresholds in the rate for degradation of free RNA I as well as in RNA I and RNA II transcription frequencies have been computed, where an increase in these rate constants has a negligible effect on segregational stability but a corresponding decrease leads to segregational disaster. This indicates that there exists a well defined optimal set of rate constants where the regulation system works well without excessive metabolic load. A number of new experiments are suggested to address features of particular importance for the evolution of ColE1 copy number control.
Collapse
Affiliation(s)
- J Paulsson
- Department of Molecular Biology, BMC, Uppsala, Sweden
| | | |
Collapse
|
22
|
Paulsson J, Nordström K, Ehrenberg M. Requirements for rapid plasmid ColE1 copy number adjustments: a mathematical model of inhibition modes and RNA turnover rates. Plasmid 1998; 39:215-34. [PMID: 9571138 DOI: 10.1006/plas.1998.1338] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The random distribution of ColE1 plasmids between the daughter cells at cell division introduces large copy number variations. Statistic variation associated with limited copy number in single cells also causes fluctuations to emerge spontaneously during the cell cycle. Efficient replication control out of steady state is therefore important to tame such stochastic effects of small numbers. In the present model, the dynamic features of copy number control are divided into two parts: first, how sharply the replication frequency per plasmid responds to changes in the concentration of the plasmid-coded inhibitor, RNA I, and second, how tightly RNA I and plasmid concentrations are coupled. Single (hyperbolic)- and multiple (exponential)-step inhibition mechanisms are compared out of steady state and it is shown how the response in replication frequency depends on the mode of inhibition. For both mechanisms, sensitivity of inhibition is "bought" at the expense of a rapid turnover of a replication preprimer, RNA II. Conventional, single-step, inhibition kinetics gives a sloppy replication control even at high RNA II turnover rates, whereas multiple-step inhibition has the potential of working with unlimited precision. When plasmid concentration changes rapidly, RNA I must be degraded rapidly to be "up to date" with the change. Adjustment to steady state is drastically impaired when the turnover rate constants of RNA I decrease below certain thresholds, but is basically unaffected for a corresponding increase. Several features of copy number control that are shown to be crucial for the understanding of ColE1-type plasmids still remain to be experimentally characterized. It is shown how steady-state properties reflect dynamics at the heart of regulation and therefore can be used to discriminate between fundamentally different copy number control mechanisms. The experimental tests of the predictions made require carefully planned assays, and some suggestions for suitable experiments arise naturally from the present work. It is also discussed how the presence of the Rom protein may affect dynamic qualities of copy number control.
Collapse
Affiliation(s)
- J Paulsson
- Department of Molecular Biology, Uppsala University, Uppsala, S-75124, Sweden
| | | | | |
Collapse
|
23
|
Panda DK, Banerjee R, Das J. Construction of shuttle vectors for cloning inVibrio cholerae andEscherichia coli. J Biosci 1995. [DOI: 10.1007/bf02703840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Lee SY, Yim KS, Chang HN, Chang YK. Construction of plasmids, estimation of plasmid stability, and use of stable plasmids for the production of poly(3-hydroxybutyric acid) by recombinant Escherichia coli. J Biotechnol 1994; 32:203-11. [PMID: 7764567 DOI: 10.1016/0168-1656(94)90183-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Plasmids containing the Alcaligenes eutrophus poly(3-hydroxybutyric acid) (PHB) biosynthetic genes were constructed for the production of PHB in Escherichia coli and plasmid stability was investigated by repeated subculturing without antibiotic pressure. Both pSYL101 (high copy) and pSYL102 (medium copy) were unstable during the subcultures. Higher instability was observed when cells were accumulating PHB. Segregational instability was aggravated by the faster growth of plasmid-free cells and by appearance of non-dividing cells harboring large amount of PHB during the fed-batch culture. Two derivatives, pSYL103 and pSYL104, were then developed by cloning the parB locus of plasmid R1 into pSYL102 and pSYL101, respectively. They showed 100% stability even during PHB synthesis and accumulation over 110 generations. All four plasmids were structurally stable. The final cell mass, PHB concentration, and PHB per dry cell weight (P/X, w/w, %) of 101.4 g l-1, 81.2 g l-1, and 80.1%, respectively, were obtained in 39 h by high cell density culture of XL1-Blue (pSYL104). The final PHB concentration was lower using XL1-Blue (pSYL103), which suggested that high gene dosage was required for the synthesis and accumulation of PHB to a high concentration in E. coli.
Collapse
Affiliation(s)
- S Y Lee
- BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Yusung-gu, Taejon
| | | | | | | |
Collapse
|
25
|
McDermott PJ, Gowland P, Gowland PC. Adaptation of Escherichia coli growth rates to the presence of pBR322. Lett Appl Microbiol 1993; 17:139-43. [PMID: 7764088 DOI: 10.1111/j.1472-765x.1993.tb01443.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Changes in the growth rate of Escherichia coli K12 J62-1 in response to the presence of plasmid pBR322 have been investigated. Plasmid-free and plasmid-containing strains were grown in batch culture and their maximum specific growth rate (mu max) determined. The acquisition of pBR322 by the host resulted in a decreased mu max. Following repeated subculturing of the plasmid-containing strain on selective medium, restoration in mu max was observed. The copy number and structure of the plasmid were not significantly altered during the experiment. Growth rate measurements for a series of strains constructed using a combination of host cells and plasmids with and without culture histories, indicated that the site of the adaptive mutation was located on the host chromosome rather than on the plasmid.
Collapse
Affiliation(s)
- P J McDermott
- Biology Division, School of Sciences, Staffordshire University, Stoke-on-Trent, UK
| | | | | |
Collapse
|
26
|
Abstract
Multimer formation reduces plasmid copy number and is an established cause of segregational instability. Nevertheless, it is difficult to rationalize observations that low levels of dimers can cause severe instability, if we assume they are distributed evenly in cell populations. We report here that dimer distribution is in fact heterogeneous in recombination-proficient strains. Most cells in the population contain only monomers; dimers are confined to a small subpopulation from which plasmid-free daughters arise at high frequency. In a rec+ culture where 4% of pBR322 molecules are dimers, more than half are in dimer-only cells. We show that this situation is inevitable because dimers replicate at twice the rate of monomers. Runaway multimerization is avoided because dimer-containing cells grow more slowly than their monomer-containing counterparts. A computer simulation is used to show how dimers proliferate after formation by homologous recombination. The equilibrium concentration of dimers is proportional to the inter-plasmid recombination rate and is essentially independent of the rate at which homologous recombination converts dimers to monomers.
Collapse
|
27
|
Abstract
pBR322-derived plasmids that lack the bla gene and 40% of the gene for the replication inhibitor, RNAI, have been constructed. Since the RNAI gene totally overlaps with the gene for the replication primer, RNAII, this primer is similarly defective and also lacks its normal promoter. The primer is presumed to by synthesized either from the counter-tet promoter (plasmid pCL59) or from an inserted lacUV5 promoter (plasmid pCL59-65). Based mainly on the observation that the plasmid Rom protein, which normally assists in the RNAI/RNAII interaction, has no effect on the replication of the RNAI/RNAII-defective plasmids, we suggest that the defective RNAI is not functional while the defective RNAII primer, although less efficient, still allows plasmid replication. The defective plasmids are fully compatible with the intact parent plasmid, indicating that they do not share a common control of replication. In the absence of antibiotics, the bacteria lose the defective plasmid, beginning after 80 generations; under the same conditions, the parent plasmid is retained even after 140 generations. During exponential growth of their host, the number of defective plasmids in a culture increases exponentially with a doubling time either smaller or greater than that of the host cell growth, depending on the growth medium and, in the case of pCL59-65, on the presence or absence of lac inducer IPTG. As a result of these differences in host cell growth and plasmid replication, the plasmids are either gradually diluted out or their copy number continually increases. This shows that, without RNAI, plasmid replication is uncoupled from the host cell growth and not, as usual, adjusted to it. It also implies that the RNAI mechanism is the only means of replication control for ColE1-type plasmids that senses and adjusts the copy number; limiting host factors cannot provide a back-up control to stabilize copy numbers.
Collapse
Affiliation(s)
- C S Chiang
- Molecular and Cell Biology Programs, University of Texas at Dallas, Richardson 75083-0688
| | | |
Collapse
|
28
|
Chiang CS, Xu YC, Bremer H. Role of DnaA protein during replication of plasmid pBR322 in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1991; 225:435-42. [PMID: 1708087 DOI: 10.1007/bf00261684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The in vivo role of the Escherichia coli protein DnaA in the replication of plasmid pBR322 was investigated, using a plasmid derivative carrying an inducible dnaA+ gene. In LB medium without inducer, the replication of this plasmid, like that of pBR322, was inhibited by heat inactivation of chromosomal DnaA46 protein so that plasmid accumulation ceased 1 to 2 h after the temperature shift. This inhibition did not occur when the plasmid dnaA+ gene was expressed in the presence of the inducer isopropyl-1-thio-beta-D-galactopyranoside (IPTG). Inhibition was also not observed in glycerol minimal medium or in the presence of low concentrations of rifampicin or chloramphenicol. Deletion of the DnaA binding site and the primosome assembly sites (pas, rri) downstream of the replication origin did not affect the plasmid copy number during exponential growth at 30 degrees C, or after inactivation of DnaA by a shift to 42 degrees C in a dnaA46 host, or after oversupply of DnaA, indicating that these sites are not involved in a rate-limiting step for replication in vivo. The accumulation of the replication inhibitor, RNAI, was independent of DnaA activity, ruling out the possibility that DnaA acts as a repressor of RNAI synthesis, as has been suggested in the literature. Changes in the rate of plasmid replication in response to changes in DnaA activity (in LB medium) could be resolved into an early, rom-dependent, and a late, rom-independent component. Rom- plasmids show only the late effect. After heat inactivation of DnaC, plasmid replication ceased immediately.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C S Chiang
- Biology Programs, University of Texas at Dallas, Richardson 75080
| | | | | |
Collapse
|
29
|
Modi RI, Wilke CM, Rosenzweig RF, Adams J. Plasmid macro-evolution: selection of deletions during adaptation in a nutrient-limited environment. Genetica 1991; 84:195-202. [PMID: 1769564 DOI: 10.1007/bf00127247] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Under conditions where plasmid-carriage is deleterious to the cell, evolutionary changes may be expected which result in an attenuation of the deleterious effect of the plasmid. During long-term growth in glucose-limited continuous culture, initiated with a single clone of Escherichia coli containing a derivative of the plasmid pBR322, a structural change arose in the plasmid and predominated in the plasmid-containing sector of the population. This variant possessed a 2.25 kb deletion encompassing the tetracycline resistance operon as well as a region of about 1.5 kb upstream from this operon. Competition experiments involving strains carrying the plasmid with the spontaneous deletion, and strains carrying plasmids with artificially constructed deletions, revealed that deletion of this region of the plasmid, involving loss of tetracycline resistance, resulted in an increment in fitness of between 10 and 20%. From the magnitude of the growth advantage, we conclude that the attenuation of the deleterious effect of the plasmid was mainly due to a reduction in the plasmid mediated interference in the metabolism of the cell caused by a deletion of the tetracycline resistance gene.
Collapse
Affiliation(s)
- R I Modi
- Department of Biology, University of Michigan, Ann Arbor 48109
| | | | | | | |
Collapse
|
30
|
Bogosian G, Kane JF. Fate of recombinant Escherichia coli K-12 strains in the environment. ADVANCES IN APPLIED MICROBIOLOGY 1991; 36:87-131. [PMID: 1877384 DOI: 10.1016/s0065-2164(08)70452-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- G Bogosian
- Animal Sciences Division, Monsanto Company, St. Louis, Missouri 63198
| | | |
Collapse
|
31
|
Berry F, Sayadi S, Nasri M, Thomas D, Barbotin JN. Immobilized and free cell continuous cultures of a recombinant E. coli producing catechol 2,3-dioxygenase in a two-stage chemostat: improvement of plasmid stability. J Biotechnol 1990; 16:199-209. [PMID: 1366935 DOI: 10.1016/0168-1656(90)90036-b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The immobilization of recombinant strains of E. coli W3110/pTG205 in K-carrageenan gel beads improves the plasmid stability during continuous cultures in the absence of selection pressure. Since, xyl E gene (which encodes catechol 2,3-dioxygenase from Pseudomonas putida) transcription is controlled by the trp promoter, the effects of tryptophan (repressor) and 3 beta-indolyl acrylic acid (derepressor) on pTG 205 stability and enzyme production have been studied in both free and immobilized cell cultures. A two-stage continuous culture system running for 150 h is described. In the first stage an immobilized culture is performed in the presence of tryptophan with a significant plasmid stability. The cells released from the gel beads are continuously transferred in the second stage reactor where expression is induced by 3 beta-indolyl acrylic acid. In these conditions an efficient production of catechol 2,3-dioxygenase is observed.
Collapse
Affiliation(s)
- F Berry
- Laboratoire de Technologie Enzymatique, Université de Technologie de Compiègne, France
| | | | | | | | | |
Collapse
|
32
|
Byrd JJ, Colwell RR. Maintenance of plasmids pBR322 and pUC8 in nonculturable Escherichia coli in the marine environment. Appl Environ Microbiol 1990; 56:2104-7. [PMID: 2202256 PMCID: PMC184567 DOI: 10.1128/aem.56.7.2104-2107.1990] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Maintenance of plasmids pBR322 and pUC8 in Escherichia coli that was nonculturable after exposure to seawater was studied. E. coli JM83 and JM101, which contained plasmids pBR322 and pUC8, respectively, were placed in sterile artificial seawater for 21 days. Culturability was determined by plating on both nonselective and selective agar, and plasmid maintenance was monitored by direct isolation of plasmid nucleic acid from bacteria collected on Sterivex filters. E. coli JM83 became nonculturable after incubation for 6 days in seawater yet maintained plasmid pBR322 for the entire period of the study, i.e., 21 days. E. coli JM101 was nonculturable after incubation in seawater for 21 days and also maintained plasmid pUC8 throughout the duration of the microcosm experiment. Direct counts of bacterial cells did not change significantly during exposure to seawater, even though plate counts yielded no viable (i.e., platable) cells. We concluded that E. coli cells are capable of maintaining high-copy-number plasmids, even when no longer culturable, after exposure to the estuarine or marine environment.
Collapse
Affiliation(s)
- J J Byrd
- Department of Microbiology, University of Maryland, College Park 20742
| | | |
Collapse
|
33
|
Jacquet MA, Reiss C. Transcription in vivo directed by consensus sequences of E.coli promoters: their context heavily affects efficiencies and start sites. Nucleic Acids Res 1990; 18:1137-43. [PMID: 2157190 PMCID: PMC330427 DOI: 10.1093/nar/18.5.1137] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We studied in vivo transcription and gene expression directed by a series of synthetic sequences, bearing the consensus hexamer (CH) pair of E.coli promoters in various contexts. The results demonstrate that, for the contexts tested, the CH pair supports transcription activity and gene expression, whether the spacer linking them is AT or GC rich, or is as short as 14 bp or as large as 26 bp (standard size 17 bp). However, we find that the context influences transcription efficiency by as much as an order of magnitude, and is able to scatter transcription start sites over a region of as much as 30 bp, including start sites within a CH or even between the two sequences of the CH pair. The results demonstrate that, although the CH pair can be sufficient for directing transcription by E.coli RNAP, important determinants for promoter activity are at least in part contained in the context of the consensus sequences; they advocate a synergic interplay of signals borne by the CH pair and its context, extending over all parts of the promoter sequence. A two-step model is proposed, in which properly located consensus sequences provide RNAP with facilities required for stereospecific docking along the promoter sequence; the result would be a sharp change in the local environment of the double helix inducing local isothermal unwinding. The size of the loop (related to the AT constraint in the promoter) and the extend of the environmental change required for unwinding would determine the rate of transcriptionally competent complex formation, positioning and grouping of start sites.
Collapse
Affiliation(s)
- M A Jacquet
- Institut Jacques Monod, CNRS-Université Paris VII, France
| | | |
Collapse
|
34
|
Abstract
Bacterial plasmids are obligate and intracellular genetic elements that replicate and are maintained autonomously from the chromosome. They are ubiquitous. Some of them are relatively more promiscuous than others. Plasmid genetic systems that contribute to relative promiscuity or chastity in naturally occurring plasmids are described and discussed. Both the promiscuity and the chastity of plasmid-based genetic systems have applications in bacterial molecular genetics, in the production of recombinant DNA products and in the breeding and use of desirable bacteria. The role of these systems in such applications is considered.
Collapse
Affiliation(s)
- V N Iyer
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|