1
|
Zhang W, Miller CA, Wilson MJ. Assessment of the In Vitro Phosphatidylinositol Glycan Class A (PIG-A) Gene Mutation Assay Using Human TK6 and Mouse Hepa1c1c7 Cell Lines. J Xenobiot 2024; 14:1293-1311. [PMID: 39311152 PMCID: PMC11417843 DOI: 10.3390/jox14030073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Gene mutations linked to diseases like cancer may be caused by exposure to environmental chemicals. The X-linked phosphatidylinositol glycan class A (PIG-A) gene, required for glycosylphosphatidylinositol (GPI) anchor biosynthesis, is a key target locus for in vitro genetic toxicity assays. Various organisms and cell lines may respond differently to genotoxic agents. Here, we compared the mutagenic potential of directly genotoxic ethyl methane sulfonate (EMS) to metabolically activated pro-mutagenic polycyclic aromatic hydrocarbons (PAHs). The two classes of mutagens were compared in an in vitro PIG-A gene mutation test using the metabolically active murine hepatoma Hepa1c1c7 cell line and the human TK6 cell line, which has limited metabolic capability. Determination of cell viability is required for quantifying mutagenicity. Two common cell viability tests, the MTT assay and propidium iodide (PI) staining measured by flow cytometry, were evaluated. The MTT assay overestimated cell viability in adherent cells at high benzo[a]pyrene (B[a]P) exposure concentrations, so PI-based cytotoxicity was used in calculations. The spontaneous mutation rates for TK6 and Hepa1c1c7 cells were 1.87 and 1.57 per million cells per cell cycle, respectively. TK6 cells exposed to 600 µM and 800 µM EMS showed significantly higher mutation frequencies (36 and 47 per million cells per cell cycle, respectively). Exposure to the pro-mutagen benzo[a]pyrene (B[a]P, 10 µM) did not increase mutation frequency in TK6 cells. In Hepa1c1c7 cells, mutation frequencies varied across exposure groups (50, 50, 29, and 81 per million cells per cell cycle when exposed to 10 µM B[a]P, 5-methylcholanthrene (5-MC), chrysene, or 16,000 µM EMS, respectively). We demonstrate that the choice of cytotoxicity assay and cell line can determine the outcome of the Pig-A mutagenesis assay when assessing a specific mutagen.
Collapse
Affiliation(s)
- Wenhao Zhang
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (C.A.M.); (M.J.W.)
| | - Charles A. Miller
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (C.A.M.); (M.J.W.)
| | - Mark J. Wilson
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (C.A.M.); (M.J.W.)
- Chemical Insights Research Institute of Underwriters Laboratories Research Institutes, Marietta, GA 30067, USA
| |
Collapse
|
2
|
Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers? Crit Rev Toxicol 2020; 50:148-176. [PMID: 32053030 DOI: 10.1080/10408444.2020.1719974] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoparticles are ubiquitous in the environment and are widely used in medical science (e.g. bioimaging, diagnosis, and drug therapy delivery). Due to unique physicochemical properties, they are able to cross many barriers, which is not possible for traditional drugs. Nevertheless, exposure to NPs and their following interactions with organelles and macromolecules can result in negative effects on cells, especially, they can induce cytotoxicity, epigenicity, genotoxicity, and cell death. Lipid-based nanomaterials (LNPs) are one of the most important achievements in drug delivery mainly due to their superior physicochemical and biological characteristics, particularly its safety. Although they are considered as the completely safe nanocarriers in biomedicine, the lipid composition, the surfactant, emulsifier, and stabilizer used in the LNP preparation, and surface electrical charge are important factors that might influence the toxicity of LNPs. According to the author's opinion, their toxicity profile should be evaluated case-by-case regarding the intended applications. Since there is a lack of all-inclusive review on the various aspects of LNPs with an emphasis on toxicological profiles including cyto-genotoxiciy, this comprehensive and critical review is outlined.
Collapse
|
3
|
Heflich RH, Johnson GE, Zeller A, Marchetti F, Douglas GR, Witt KL, Gollapudi BB, White PA. Mutation as a Toxicological Endpoint for Regulatory Decision-Making. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:34-41. [PMID: 31600846 DOI: 10.1002/em.22338] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 05/23/2023]
Abstract
Mutations induced in somatic cells and germ cells are responsible for a variety of human diseases, and mutation per se has been considered an adverse health concern since the early part of the 20th Century. Although in vitro and in vivo somatic cell mutation data are most commonly used by regulatory agencies for hazard identification, that is, determining whether or not a substance is a potential mutagen and carcinogen, quantitative mutagenicity dose-response data are being used increasingly for risk assessments. Efforts are currently underway to both improve the measurement of mutations and to refine the computational methods used for evaluating mutation data. We recommend continuing the development of these approaches with the objective of establishing consensus regarding the value of including the quantitative analysis of mutation per se as a required endpoint for comprehensive assessments of toxicological risk. Environ. Mol. Mutagen. 61:34-41, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert H Heflich
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | | | - Andreas Zeller
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - George R Douglas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Kristine L Witt
- National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| |
Collapse
|
4
|
Mittelstaedt RA, Dobrovolsky VN, Revollo JR, Pearce MG, Wang Y, Dad A, McKinzie PB, Rosenfeldt H, Yucesoy B, Yeager R, Hu SC, Tang Y, Min S, Kang HK, Yang DJ, Basavarajappa M, Heflich RH. Evaluation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) mutagenicity using in vitro and in vivo Pig-a assays. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 837:65-72. [PMID: 30595212 DOI: 10.1016/j.mrgentox.2018.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a genotoxic carcinogen found in tobacco and tobacco smoke. Several in vitro and in vivo assays have been used for evaluating the genotoxicity of tobacco smoke and tobacco smoke constituents like NNK, yet it is not clear which in vitro assays are most appropriate for extrapolating the in vitro responses of these test agents to animal models and humans. The Pig-a gene mutation assay can be performed in vitro, in laboratory animals, and in humans, a potential benefit in estimating in vivo responses from in vitro data. In the current study we used Pig-a as a reporter of gene mutation both in vitro, in L5178Y/Tk+/- cells, and in vivo, in Sprague-Dawley rats. NNK significantly increased Pig-a mutant frequency in L5178Y/Tk+/- cells, but only at concentrations of 100 μg/ml and greater, and only in the presence of S9 activation. Pig-a mutations in L5178Y/Tk+/- cells were detected in 80% of the NNK-induced mutants, with the predominate mutation being G→A transition; vehicle control mutants contained deletions. In the in vivo study, rats were exposed to NNK daily for 90 days by inhalation, a common route of exposure to NNK for humans. Although elevated mutant frequencies were detected, these responses were not clearly associated with NNK exposure, so that overall, the in vivo Pig-a assays were negative. Thus, while NNK induces mutations in the in vitro Pig-a assay, the in vivo Pig-a assay has limited ability to detect NNK mutagenicity under conditions relevant to NNK exposure in smokers.
Collapse
Affiliation(s)
- Roberta A Mittelstaedt
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Vasily N Dobrovolsky
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Javier R Revollo
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Mason G Pearce
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Yiying Wang
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Azra Dad
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Page B McKinzie
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Hans Rosenfeldt
- U.S. Food and Drug Administration, Division of Nonclinical Science, Office of Science, Center for Tobacco Products, USA
| | - Berran Yucesoy
- U.S. Food and Drug Administration, Division of Nonclinical Science, Office of Science, Center for Tobacco Products, USA
| | - Raymond Yeager
- U.S. Food and Drug Administration, Division of Nonclinical Science, Office of Science, Center for Tobacco Products, USA
| | - Shu-Chieh Hu
- U.S. Food and Drug Administration, Inhalcore, Office of Scientific Coordination, National Center for Toxicological Research, USA
| | - Yunan Tang
- U.S. Food and Drug Administration, Inhalcore, Office of Scientific Coordination, National Center for Toxicological Research, USA
| | - Seonggi Min
- U.S. Food and Drug Administration, Inhalcore, Office of Scientific Coordination, National Center for Toxicological Research, USA
| | - Hyun-Ki Kang
- U.S. Food and Drug Administration, Inhalcore, Office of Scientific Coordination, National Center for Toxicological Research, USA
| | - Dong-Jin Yang
- U.S. Food and Drug Administration, Inhalcore, Office of Scientific Coordination, National Center for Toxicological Research, USA
| | - Mallikarjuna Basavarajappa
- U.S. Food and Drug Administration, Inhalcore, Office of Scientific Coordination, National Center for Toxicological Research, USA
| | - Robert H Heflich
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA.
| |
Collapse
|
5
|
Gollapudi BB, Lynch AM, Heflich RH, Dertinger SD, Dobrovolsky VN, Froetschl R, Horibata K, Kenyon MO, Kimoto T, Lovell DP, Stankowski LF, White PA, Witt KL, Tanir JY. The in vivo Pig-a assay: A report of the International Workshop On Genotoxicity Testing (IWGT) Workgroup. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 783:23-35. [DOI: 10.1016/j.mrgentox.2014.09.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 12/01/2022]
|
6
|
Jin B, Han SW, Lee DJ. Behavior in Solution and Mixing Ratio-Dependent Binding Modes of Carcinogenic Benzo[a]pyrene-7,8-dione to Calf Thymus DNA. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.10.3015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Casterton PL, Brathwaite WA, Crincoli CM. Mutagenicity and genotoxicity studies of arruva, an R,R-monatin salt isomer. Food Chem Toxicol 2014; 68:30-7. [PMID: 24613512 DOI: 10.1016/j.fct.2014.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 11/19/2022]
Abstract
Arruva, the R,R-isomer of monatin (sodium/potassium 2R,4R-2-amino-4-carboxy-4-hydroxy-5-(3-indolyl) pentanoate), an intense sweetener originally identified in root bark of the South African shrub Schlerochitin ilicifolius, was examined for its mutagenic and genotoxic potential via bacterial reverse mutation, mouse lymphoma and in vivo mouse micronucleus assays, all accomplished in the presence and absence of S9 metabolic activation. In the bacterial reverse mutation assay, arruva was determined to not cause reverse mutations in four Salmonella typhimurium strains and one Escherichia coli strain at concentrations up-cells did not exhibit concentration-related increases in mutant frequency at test concentrations up to 3200μg/ml. In the in vivo micronucleus test, arruva was administered to male mice via single gavage doses at 500, 1000 or 2000mg/kg bw. At 24 or 48h post-dose, the mice were euthanized and femoral bone marrow cells were collected for evaluation of micronucleated polychromatic erythrocyte (MPCE) presence. No statistically significant increases of MPEs were observed relative to the respective vehicle control groups. Under the conditions of these studies, arruva was concluded to be negative in all three assays, thereby indicating the absence of its potential mutagenicity or genotoxicity under the conditions tested.
Collapse
Affiliation(s)
- Phillip L Casterton
- Cargill, Inc., 15407 McGinty Road W., MS-163, Wayzata, MN 55391, United States.
| | - Witty A Brathwaite
- Cargill, Ltd., 300-240 Graham Avenue, Winnipeg, Manitoba R3C 4C5, Canada.
| | | |
Collapse
|
8
|
Bajpayee M, Pandey AK, Parmar D, Dhawan A. Current Status of Short-Term Tests for Evaluation of Genotoxicity, Mutagenicity, and Carcinogenicity of Environmental Chemicals and NCEs. Toxicol Mech Methods 2012; 15:155-80. [PMID: 20021080 DOI: 10.1080/15376520590945667] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The advent of the industrial revolution has seen a significant increase in the number of new chemical entities (NCEs) released in the environment. It becomes imperative to check the toxic potential of NCEs to nontarget species before they are released for commercial purposes because some of these may exert genotoxicity, mutagenicity, or carcinogenicity. Exposure to such compounds produces chemical changes in DNA, which are generally repaired by the DNA repair enzymes. However, DNA damage and its fixation may occur in the form of gene mutations, chromosomal damage, and numerical chromosomal changes and recombination. This may affect the incidence of heritable mutations in man and may be transferred to the progeny or lead to the development of cancer. Hence, adequate tests on NCEs have to be undertaken for the risk assessment and hazard prediction. Compounds that are positive in tests that detect such damages have the potential to be human mutagens/carcinogens. Only long-term animal bioassays, involving lifetime studies on animals, were used earlier to classify substances as mutagens/carcinogens. These tests were cumbersome and time consuming and required a lot of facilities and personnel. Short-term tests, therefore, were brought into practice. A "battery" of three to four of these short-term tests has been proposed now by a number of regulatory authorities for the classification of compounds as mutagenic or carcinogenic. This review deals with the current status of these short-term tests.
Collapse
Affiliation(s)
- Mahima Bajpayee
- Developmental Toxicology Division, Industrial Toxicology Research Center, M.G. Marg, LucknowIndia
| | | | | | | |
Collapse
|
9
|
Abstract
Using the combination of bacterial gene mutation assay and chromosomal aberrations test in mammalian cells may not detect a small proportion of mammalian specific mutagenic agents. Therefore, at the current time a third assay should be used, except for compounds for which there is little or no exposure (DOH (2000) Department of Health Guidance for the testing of chemicals for Mutagenicity. Committee on Mutagenicity of Chemicals in Food, Consumer Products and the Environment). The hypoxanthine phosphorybosyl transferase (HPRT) gene is on the X chromosome of mammalian cells, and it is used as a model gene to investigate gene mutations in mammalian cell lines. The assay can detect a wide range of chemicals capable of causing DNA damage that leads to gene mutation. The test follows a very similar methodology to the thymidine kinase (TK) mouse lymphoma assay (MLA), and both are included in the guidelines for mammalian gene mutation tests (OECD (1997) Organisation for Economic Co-operation and Development. Ninth addendum to the OECD Guidelines for the Testing of Chemicals. In Vitro Mammalian Cell Gene Mutation Test: 476). The HPRT methodology is such that mutations which destroy the functionality of the HPRT gene and or/protein are detected by positive selection using a toxic analogue, and HPRT ( - ) mutants are seen as viable colonies. Unlike bacterial reverse mutation assays, mammalian gene mutation assays respond to a broad spectrum of mutagens, since any mutation resulting in the ablation of gene expression/function produces a HPRT ( - ) mutant. Human cells are readily used, and mechanistic studies using the HPRT test methodology with modifications, such as knock-out cell lines for DNA repair, can provide details of the mode of action (MOA) of the test compound (24).This chapter provides the methodology for carrying out the assay in different cell lines in the presence and absence of metabolism with technical information and general advice on how to carry out the test.
Collapse
|
10
|
Guimarães NN, de Andrade HHR, Lehmann M, Dihl RR, Cunha KS. The genetic toxicity effects of lamivudine and stavudine antiretroviral agents. Expert Opin Drug Saf 2011; 9:771-81. [PMID: 20377473 DOI: 10.1517/14740331003702384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE OF THE FIELD The nucleoside reverse transcriptase inhibitors (NRTIs) are used in antiretroviral therapy worldwide for the treatment of HIV infections. These drugs act by blocking reverse transcriptase enzyme activity, causing pro-viral DNA chain termination. As a consequence, NRTIs could cause genomic instability and loss of heterozygosity. AREAS COVERED IN THIS REVIEW This review highlights the toxic and genotoxic effects of NRTIs, particularly lamivudine (3TC) and stavudine (d4T) analogues. In addition, a battery of short-term in vitro and in vivo systems are described to explain the potential genotoxic effects of these NRTIs as a single drug or a complexity of highly active antiretroviral therapy. WHAT THE READER WILL GAIN The readers will gain an understanding of a secondary effect that could be induced by 3TC and d4T treatments. TAKE HOME MESSAGE Considering that AIDS has become a chronic disease, more comprehensive toxic genetic studies are needed, with particular attention to the genetic alterations induced by NRTIs. These alterations play a primary role in carcinogenesis and are also involved in secondary and subsequent steps of carcinogenesis.
Collapse
Affiliation(s)
- Nilza Nascimento Guimarães
- Laboratório de Genética Toxicológica, Departamento de Bioquímica e Biologia Molecular (DBBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brasil
| | | | | | | | | |
Collapse
|
11
|
Singh N, Manshian B, Jenkins GJS, Griffiths SM, Williams PM, Maffeis TGG, Wright CJ, Doak SH. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 2009; 30:3891-914. [PMID: 19427031 DOI: 10.1016/j.biomaterials.2009.04.009] [Citation(s) in RCA: 686] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 04/13/2009] [Indexed: 01/13/2023]
Abstract
With the rapid expansion in the nanotechnology industry, it is essential that the safety of engineered nanomaterials and the factors that influence their associated hazards are understood. A vital area governing regulatory health risk assessment is genotoxicology (the study of genetic aberrations following exposure to test agents), as DNA damage may initiate and promote carcinogenesis, or impact fertility. Of late, considerable attention has been given to the toxicity of engineered nanomaterials, but the importance of their genotoxic potential on human health has been largely overlooked. This comprehensive review focuses on the reported abilities of metal nanoparticles, metal-oxide nanoparticles, quantum dots, fullerenes, and fibrous nanomaterials, to damage or interact with DNA, and their ecogenotoxicity is also considered. Many of the engineered nanomaterials assessed were found to cause genotoxic responses, such as chromosomal fragmentation, DNA strand breakages, point mutations, oxidative DNA adducts and alterations in gene expression profiles. However, there are clear inconsistencies in the literature and it is difficult to draw conclusions on the physico-chemical features of nanomaterials that promote genotoxicity, largely due to study design. Hence, areas that require that further attention are highlighted and recommendations to improve our understanding of the genotoxic potential of engineered nanomaterials are addressed.
Collapse
Affiliation(s)
- Neenu Singh
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Soriano C, Creus A, Marcos R. Gene-mutation induction by arsenic compounds in the mouse lymphoma assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2007; 634:40-50. [PMID: 17851118 DOI: 10.1016/j.mrgentox.2007.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/02/2007] [Accepted: 05/30/2007] [Indexed: 11/23/2022]
Abstract
Arsenic compounds are generally considered as poor inducers of gene mutations. To investigate the mutagenicity of several arsenic compounds at the thymidine kinase (Tk) gene, a reporter gene for mutation induction, we used the mouse lymphoma assay (MLA). This test is widely applied and detects a broad spectrum of mutational events, from point mutations to chromosome alterations. The selected arsenic compounds were two inorganic (sodium arsenite and arsenic trioxide) and four organic compounds (monomethylarsonic acid, dimethylarsinic acid, tetraphenylarsenium and arsenobetaine). The results show that sodium arsenite, arsenic trioxide, monomethylarsonic acid and dimethylarsinic acid are mutagenic, showing a clear dose-response pattern. On the other hand, tetraphenylarsenium and arsenobetaine are not mutagenic. Inorganic arsenic compounds are the more potent agents producing significant effects in the micromolar range, while the mutagenic organic arsenic compounds induce similar effects but in the millimolar range.
Collapse
Affiliation(s)
- Carolina Soriano
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Edifici Cn, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | | | | |
Collapse
|
13
|
Dobrovolsky VN, Shaddock JG, Mittelstaedt RA, Bishop ME, Lewis SM, Lee FW, Aidoo A, Leakey JEA, Dunnick JK, Heflich RH. Frequency of Hprt mutant lymphocytes and micronucleated erythrocytes in p53-haplodeficient mice treated perinatally with AZT and AZT in combination with 3TC. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:270-82. [PMID: 17358030 DOI: 10.1002/em.20280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Azidothymidine (AZT) is a nucleoside reverse transcriptase inhibitor (NRTI) that is used for reducing mother-to-child transmission of human immunodeficiency virus I. Combinations of AZT and 3'-thiacytidine (3TC) are even more effective than AZT alone. AZT, however, is a mutagen and carcinogen in rodent models and 3TC can increase the genotoxicity of AZT. Since p53 plays a key role in human and mouse tumorigenesis, p53-haplodeficient mice are currently being evaluated as a model for assessing the carcinogenicity of perinatal exposure to NRTIs. In the present study, male C57BL/6 p53(+/+) and p53(-/-) mice were mated with C3H p53(+/+) females; the pregnant females were treated on gestation day 12 through parturition with 40, 80, and 160 mg/kg of AZT or a combination of 160 mg/kg AZT and 100 mg/kg 3TC (AZT-3TC); the p53(+/+) and p53(+/-) offspring were treated daily after birth through postnatal day (PND) 28. The frequencies of micronucleated reticulocytes (MN-RETs) and micronucleated normochromatic erythrocytes (MN-NCEs) were determined on PND1, PND10, and PND28; the frequency of Hprt mutant lymphocytes was measured on PND28. The frequencies of MN-RETs and MN-NCEs were increased in treated animals at all time points; there were no differences in the responses of p53(+/+) and p53(+/-) animals treated with identical doses of NRTIs. After correction for clonal expansion, both AZT and AZT-3TC treatments induced small but significant increases in the frequency of Hprt mutant lymphocytes in p53(+/-) mice, but not in p53(+/+) mice. The data indicate that p53 haplodeficiency affects the genotoxicity of NRTIs; thus, p53(+/-) mice may be a sensitive model for evaluating the carcinogenicity of perinatal exposure to NRTIs.
Collapse
Affiliation(s)
- Vasily N Dobrovolsky
- US Food and Drug Administration, Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Garolla A, Pizzato C, Ferlin A, Carli MO, Selice R, Foresta C. Progress in the development of childhood cancer therapy. Reprod Toxicol 2006; 22:126-32. [PMID: 16781110 DOI: 10.1016/j.reprotox.2006.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 04/19/2006] [Accepted: 04/19/2006] [Indexed: 01/15/2023]
Abstract
Despite the continuous improvement of cancer treatment protocols, altered testicular function and infertility frequently represent major adverse effects of oncologic treatments. Thus, strong efforts are needed to avoid or at least to reduce these complications that are particularly relevant in young men without offspring. Furthermore in the last years, concerns have been raised about the possible mutagenic effect of chemotherapy on sperm. Alkylating agents are frequently and successfully used in the treatment of paediatric tumors despite their well-known gonadotoxic effect. While gonadal toxicity of cyclophosphamide has been well demonstrated, little and conflicting data are reported about the effects on testicular function of ifosfamide. The aim of this study was to compare long-term effects of ifosfamide versus cyclophosphamide based therapies, on testicular function, fertility and sperm aneuploidies in a group of 33 young males survivors of childhood cancer. Patients who had received cyclophosphamide showed a severe gonadal failure characterized by reduced testicular size, very low sperm count and some degree of Leydig cell impairment. On the contrary, in subjects who had received ifosfamide all parameters of testicular function including sperm aneuploidies were in the normal range, despite of different dose, protocol of infusion and pubertal stage at treatment. In conclusion, our results confirm data of literature reporting the high gonadal toxicity of cyclophosphamide and suggest that ifosfamide treatment seems to be safer for testicular function and fertility.
Collapse
Affiliation(s)
- Andrea Garolla
- Department of Histology, Microbiology and Medical Biotechnologies, Centre for Male Gamete Cryopreservation, University of Padova, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Seifried HE, Seifried RM, Clarke JJ, Junghans TB, San RHC. A compilation of two decades of mutagenicity test results with the Ames Salmonella typhimurium and L5178Y mouse lymphoma cell mutation assays. Chem Res Toxicol 2006; 19:627-44. [PMID: 16696565 DOI: 10.1021/tx0503552] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As previously reported [Cameron, T. P., Rogers-Back, A. M., Lawlor, T. E., Harbell, J. W., Seifried, H. E., and Dunkel, V. C. (1991) Gentoxicity of multifunctional acrylates in the Salmonella/mammalian-microsome assay and mouse lymphoma TK+/- assay. Environ. Mol. Mutagen. 17, 264-271], the National Cancer Institute (NCI) shares the responsibility of selecting the most significant chemicals for carcinogenicity testing by the National Toxicology Program (NTP) and has used data from Salmonella and mouse lymphoma mutagenicity assays to aid in the selection and prioritization of chemicals to be further evaluated in chronic 2 year rodent studies. In addition, a number of antineoplastic and anti-AIDS drugs in preclinical evaluation were tested for the NCI's Division of Cancer Treatment Toxicology Branch. In the NCI/NTP chemical selection process, it is no longer necessary to test chemicals prior to sending them to the NTP so the NCI program has ceased performing mutagenicity tests. Some of the testing data has been made available in summary form in the Chemical Carcinogenisis Research Information System (CCRIS), which is searchable on the NLM TOXNET system. The limitations in using this source are that only summary results are available and many negative test results are not included. A summary table that presents the results for each compound is provided in the Appendix with raw data provided in the Supporting Information. The Appendix table contains the compound name, CAS number, and a summary of the data from the Ames test and the mouse lymphoma assay.
Collapse
Affiliation(s)
- H E Seifried
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | |
Collapse
|
16
|
Jiang H, Vudathala DK, Blair IA, Penning TM. Competing roles of aldo-keto reductase 1A1 and cytochrome P4501B1 in benzo[a]pyrene-7,8-diol activation in human bronchoalveolar H358 cells: role of AKRs in P4501B1 induction. Chem Res Toxicol 2006; 19:68-78. [PMID: 16411658 DOI: 10.1021/tx0502488] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benzo[a]pyrene (BP) requires metabolic activation to electrophiles to exert its deleterious effects. We compared the respective roles of aldo-keto reductase 1A1 (AKR1A1, aldehyde reductase) and P4501B1 in the formation of BP-7,8-dione and BP-tetrols, respectively, in intact bronchoalveolar cells manipulated to express either enzyme. Metabolite formation was confirmed by HPLC/MS and quantitatively measured by HPLC/UV/beta-RAM. In TCDD-treated H358 cells (P4501B1 expression), the anti-BPDE hydrolysis product BP-tetrol-1 increased over 3-12 h to a constant level. In H358 AKR1A1 transfectants, formation of BP-7,8-dione was elevated for 3-12 h but significantly decreased after 24 h. Interestingly, BP-tetrols were also detected in AKR1A1 transfectants even though they do not constitutively express P4501A1/P4501B1 enzymes. Northern and Western blotting confirmed the induction of P4501B1 by BP-7,8-dione in parental cells and the induction of P4501B1 by BP-7,8-diol in AKR1A1-transfected cells. P4501B1 induction was blocked in AKR1A1 transfectants by the AKR1A1 inhibitor (sulfonylnitromethane), the o-quinone scavenger (N-acetyl-l-cysteine), or the cytosolic AhR antagonist (diflubenzuron). Attenuation of P4501B1 induction in these cells was verified by measuring a decrease in BP-tetrol formation. Our studies show that the formation of BP-7,8-dione by AKR1A1 in human bronchoalveolar cells leads to an induction of P4501B1 and that a functional consequence of this induction is elevated anti-BPDE production as detected by increased BP-tetrol formation. Therefore, the role of AKR1A1 in the activation of BP-7,8-diol is bifunctional; that is, it directly activates BP-7,8-diol to the reactive and redox-active PAH o-quinone (BP-7,8-dione) and it indirectly trans-activates the P4501B1 gene by generating the aryl hydrocarbon receptor (AhR) ligand BP-7,8-dione.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA
| | | | | | | |
Collapse
|
17
|
Waldren CA, Vannais DB, Ueno AM. A role for long-lived radicals (LLR) in radiation-induced mutation and persistent chromosomal instability: counteraction by ascorbate and RibCys but not DMSO. Mutat Res 2004; 551:255-65. [PMID: 15225598 DOI: 10.1016/j.mrfmmm.2004.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 03/07/2004] [Accepted: 03/12/2004] [Indexed: 10/26/2022]
Abstract
Miazaki, Watanabe, Kumagai and their colleagues reported that induction of HPRT(-) mutants by X-rays in cultured human cells was prevented by ascorbate added 30min after irradiation. They attributed extinction of induced mutation to neutralization by ascorbate of radiation-induced long-lived mutagenic radicals (LLR), found using spectroscopy to have half-lives of minutes or hours. We find that post-irradiation treatment with ascorbate reduces, but does not eliminate, induction of CD59(-) mutants in human-hamster hybrid A(L) cells exposed to high-LET carbon-ions (LET of 100KeV/microm). A(L) cells contain a standard set of Chinese hamster ovary (CHO) chromosomes and a single copy of human chromosome 11 containing the CD59 gene which encodes the CD59 cell surface antigen, a convenient marker for mutation. RibCys [2(R, S)-D-ribo-(1',2',3',4'-tetrahydroxybutyl)thiazolidine-4(R)-carboxylic acid] a 'prodrug' of l-cysteine which also scavenges LLR, had a similar but lesser effect on induced mutation. DMSO, which scavenges classical radicals like H* and OH* but not LLR, also reduced mutation, but only when it was present during irradiation. The lethality of carbon-ions was not altered by ascorbate, RibCys no matter when added. Post-radiation addition of ascorbate and RibCys also affected the quality of CD59(-) mutations induced by carbon-ions. The major change in mutant spectra was a reduction in the prevalence of small, intragenic mutations (mutations not detected by PCR) and in the prevalence of unstable, complicated mutants, which display high levels of persistent chromosomal instability. Thus, ascorbate and RibCys may suppress some kinds of mutations induced by ionizing radiation including those displaying aspects of radiation-induced genomic instability. Countering the effects of both classical radicals and LLR may be important in preventing genetic diseases.
Collapse
Affiliation(s)
- Charles A Waldren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins CO 80523, USA.
| | | | | |
Collapse
|
18
|
Nagy A, Perrimon N, Sandmeyer S, Plasterk R. Tailoring the genome: the power of genetic approaches. Nat Genet 2003; 33 Suppl:276-84. [PMID: 12610537 DOI: 10.1038/ng1115] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the last century, genetics has developed into one of the most powerful tools for addressing basic questions concerning inheritance, development, individual and social operations and death. Here we summarize the current approaches to these questions in four of the most advanced models organisms: Saccharomyces cerevisiae (yeast), Caenorhabditis elegans (worm), Drosophila melanogaster (fly) and Mus musculus (mouse). The genomes of each of these four models have been sequenced, and all have well developed methods of efficient genetic manipulations.
Collapse
Affiliation(s)
- Andras Nagy
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.
| | | | | | | |
Collapse
|
19
|
Kligerman AD, Doerr CL, Tennant AH, Harrington-Brock K, Allen JW, Winkfield E, Poorman-Allen P, Kundu B, Funasaka K, Roop BC, Mass MJ, DeMarini DM. Methylated trivalent arsenicals as candidate ultimate genotoxic forms of arsenic: induction of chromosomal mutations but not gene mutations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2003; 42:192-205. [PMID: 14556226 DOI: 10.1002/em.10192] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Arsenic is a prevalent human carcinogen whose mutagenicity has not been characterized fully. Exposure to either form of inorganic arsenic, As(III) or As(V), can result in the formation of at least four organic metabolites: monomethylarsonic acid, monomethylarsonous acid (MMA(III)), dimethylarsinic acid, and dimethylarsinous acid (DMA(III)). The methylated trivalent species, as well as some of the other species, have not been evaluated previously for the induction of chromosome aberrations, sister chromatid exchanges (SCE), or toxicity in cultured human peripheral blood lymphocytes; for mutagenicity in L5178Y/Tk(+/-) mouse lymphoma cells or in the Salmonella reversion assay; or for prophage-induction in Escherichia coli. Here we evaluated the arsenicals in these assays and found that MMA(III) and DMA(III) were the most potent clastogens of the six arsenicals in human lymphocytes and the most potent mutagens of the six arsenicals at the Tk(+/-) locus in mouse lymphoma cells. The dimethylated arsenicals were also spindle poisons, suggesting that they may be ultimate forms of arsenic that induce aneuploidy. Although the arsenicals were potent clastogens, none were potent SCE inducers, similar to clastogens that act via reactive oxygen species. None of the six arsenicals were gene mutagens in Salmonella TA98, TA100, or TA104; and neither MMA(III) nor DMA(III) induced prophage. Our results show that both methylated As(V) compounds were less cytotoxic and genotoxic than As(V), whereas both methylated As(III) compounds were more cytotoxic and genotoxic than As(III). Our data support the view that MMA(III) and DMA(III) are candidate ultimate genotoxic forms of arsenic and that they are clastogens and not gene mutagens. We suggest that the clastogenicity of the other arsenicals is due to their metabolism by cells to MMA(III) or DMA(III).
Collapse
Affiliation(s)
- Andrew D Kligerman
- Environmental Carcinogenesis Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Clarke JJ, Sokal DC, Cancel AM, Campen DB, Gudi R, Wagner VO, San RH, Jacobson-Kram D. Re-evaluation of the mutagenic potential of quinacrine dihydrochloride dihydrate. Mutat Res 2001; 494:41-53. [PMID: 11423344 DOI: 10.1016/s1383-5718(01)00178-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Quinacrine has been used for voluntary female non-surgical sterilization for its ability to produce tubal occlusion. Safety issues regarding quinacrine have been raised because it has been shown to intercalate with DNA. Therefore, safety issues need to be resolved by appropriate toxicology studies to support a review for human transcervical use. Such toxicology studies include mutagenicity assays. Here we report an evaluation of the genotoxicity of quinacrine dihydrochloride dihydrate (QH) using a battery of assays. In the bacterial mutagenicity assay, QH was strongly positive in Salmonella typhimurium tester strain TA1537 with and without S9-activation and in S. typhimurium tester strain TA98 with S9-activation; QH was also strongly positive in Escherichia coli WP2 uvrA without S9-activation. QH was not mutagenic in S. typhimurium tester strains TA100 and TA1535 with and without S9-activation. QH was mutagenic in the mouse lymphoma assay in the absence of S9-activation. QH was clastogenic in Chinese hamster ovary (CHO) cells, with and without S9-activation. QH was negative for polyploidy in the same chromosome aberration test. Using a triple intraperitoneal injection treatment protocol in both male and female mice, QH was negative in the in vivo mouse micronucleated erythrocyte (micronucleus) assay. These results confirm that QH is mutagenic and clastogenic in vitro and suggest a potential risk to human health due to QH exposure after intrauterine exposure.
Collapse
Affiliation(s)
- J J Clarke
- Genetic Toxicology Division, BioReliance Corporation, 9630 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kraemer SM, Vannais DB, Kronenberg A, Ueno A, Waldren CA. Gamma-ray mutagenesis studies in a new human-hamster hybrid, A(L)CD59(+/-), which has two human chromosomes 11 but is hemizygous for the CD59 gene. Radiat Res 2001; 156:10-9. [PMID: 11418068 DOI: 10.1667/0033-7587(2001)156[0010:grmsia]2.0.co;2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Kraemer, S. M., Vannais, D. B., Kronenberg, A., Ueno, A. and Waldren, C. A. Gamma-Ray Mutagenesis Studies in a New Human-Hamster Hybrid, A(L)CD59(+/-), which has Two Human Chromosomes 11 but is Hemizygous for the CD59 Gene. Radiat. Res. 156, 10-19 (2001). We have developed a human-CHO hybrid cell line, named A(L)CD59(+/-), which has two copies of human chromosome 11 but is hemizygous for the CD59 gene and the CD59 cell surface antigen that it encodes. Our previous studies used the A(L) and A(L)C hybrids that respectively contain one or two sets of CHO chromosomes plus a single copy of human chromosome 11. The CD59 gene at 11p13.5 and the CD59 antigen encoded by it are the principal markers used in our mutagenesis studies. The hybrid A(L)CD59(+/-) contains two copies of human chromosome 11, only one of which carries the CD59 gene. The incidence of CD59 (-) mutants (formerly called S1(-)) induced by (137)Cs gamma rays is about fivefold greater in A(L)CD59(+/-) cells than in A(L) cells. Evidence is presented that this increase in mutant yield is due to the increased induction of certain classes of large chromosomal mutations that are lethal to A(L) cells but are tolerated in the A(L)CD59(+/-) hybrid. In addition, significantly more of the CD59 (-) mutants induced by (137)Cs gamma rays in A(L)CD59(+/-) cells display chromosomal instability than in A(L) cells. On the other hand, the yield of gamma-ray-induced CD59 (-) mutants in A(L)CD59(+/-) cells is half that of the A(L)C hybrid, which also tolerates very large mutations but has only one copy of human chromosome 11. We interpret the difference in mutability as evidence that repair processes involving the homologous chromosomes 11 play a role in determining mutant yields. The A(L)CD59(+/-) hybrid provides a useful new tool for quantifying mutagenesis and shedding light on mechanisms of genetic instability and mutagenesis.
Collapse
Affiliation(s)
- S M Kraemer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Wortmannin, a known radiation sensitizer, has been used in experiments with synchronized cells to compare its effect on radiation survival and mutation induction within the cell cycle. PL61 cells (CHO cells with an inactivated HPRT gene containing a single active copy of a bacterial gpt gene) were synchronized by mitotic selection. Wortmannin administered before gamma irradiation caused a greater sensitization in G(1)-phase cells relative to late S/G(2)-phase cells. Preferential radiosensitization of G(1)-phase cells by wortmannin sets a limit to the proposed use of wortmannin in radiation therapy, since, in contrast to normal tissues, tumors usually have high proportions of S-phase cells. Wortmannin increased mutation frequencies in both G(1)- and S/G(2)-phase cells. Interestingly, relative increases in radiation-induced mutations in G(1) and S/G(2) phases were comparable. The results are discussed in terms of the contributions of different repair modes in the production of mutations.
Collapse
Affiliation(s)
- S B Chernikova
- Department of Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | |
Collapse
|
23
|
Domon OE, McGarrity LJ, Bishop M, Yoshioka M, Chen JJ, Morris SM. Evaluation of the genotoxicity of the phytoestrogen, coumestrol, in AHH-1 TK(+/-) human lymphoblastoid cells. Mutat Res 2001; 474:129-37. [PMID: 11239970 DOI: 10.1016/s0027-5107(00)00170-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Coumestrol, a phytoestrogen found in high levels in alfalfa and red clover, is of concern since endocrine disorders have been observed in farm animals exposed to high levels of phytoestrogens. Previous studies found that coumestrol was an effective inducer of DNA strand breaks, micronuclei, and mutations in the Hypoxanthine phosphoribosyl transferase (HPRT) gene of Chinese hamster ovary cells. In the experiments presented here, we extended the previous studies to examine the effect of coumestrol exposure on AHH-1 TK(+/-) human lymphoblastoid cells. Micronuclei were induced with the highest frequency occurring at day 2 after exposure. Flow cytometric analysis of annexin V-FITC-7-aminoactinomycin D stained cells indicated that the primary pathway of cell death was by apoptosis. Mutations were induced in the Thymidine Kinase (TK) gene and were due primarily to the induction of clones with the slow-growth phenotype. Subsequent molecular analysis revealed the loss of exon 4 in the coumestrol-induced clones, indicative of loss-of heterozygosity and consistent with a proposed inhibition of topoisomerase-II activity as a mechanism of action for coumestrol. Taken together, these results suggest that coumestrol exhibits both mutagenic and clastogenic properties in cultured human lymphoblastoid cells.
Collapse
Affiliation(s)
- O E Domon
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research (NCTR), US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | | | | | | | | | | |
Collapse
|
24
|
Schwartz JL, Jordan R, Sun J, Ma H, Hsieb AW. Dose-dependent changes in the spectrum of mutations induced by ionizing radiation. Radiat Res 2000; 153:312-7. [PMID: 10669553 DOI: 10.1667/0033-7587(2000)153[0312:ddcits]2.0.co;2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We examined the influence of dose on the spectrum of mutations induced at the hypoxanthine guanine phosphoribosyltransferase (Hprt) locus in Chinese hamster ovary (CHO) cells. Independent CHO-K1 cell mutants at the Hprt locus were isolated from cells exposed to 0, 0.5, 1.5, 3.0 and 6.0 Gy (137)Cs gamma rays, and the genetic changes responsible for the mutations were determined by multiplex polymerase chain reaction (PCR)-based exon deletion analysis. We observed dose-dependent changes in mutation spectra. At low doses, the principal radiation-induced mutations were point mutations. With increasing dose, multibase deletion mutations became the predominant mutation type such that by 6.0 Gy, there were almost three times more deletion mutations than point mutations. The dose response for induction of point mutations was linear while that for multibase deletions fit a linear-quadratic response. There was a biphasic distribution of deletion sizes, and different dose responses for small compared to large deletions. The frequency of large (>36 kb) total gene deletions increased exponentially, implying that they develop from the interaction between two independent events. In contrast, the dose response for deletion mutations of less than 10 kb was nearly linear, suggesting that these types of mutations develop mostly from single events and not the interactions between two independently produced lesions. The observation of dose-dependent changes in radiation-induced mutation spectra suggests that the types of alterations and therefore the risks from low-dose radiation exposure cannot be easily extrapolated from high-dose effects.
Collapse
Affiliation(s)
- J L Schwartz
- Department of Radiation Oncology, Box 356069, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
25
|
Goho S, Bell G. Mild environmental stress elicits mutations affecting fitness in Chlamydomonas. Proc Biol Sci 2000; 267:123-9. [PMID: 10687816 PMCID: PMC1690507 DOI: 10.1098/rspb.2000.0976] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cultures of Chlamydomonas were exposed to a range of relatively mild stresses for a period of 24 h. These stresses comprised high and low temperatures, osmotic stress, low pH, starvation and toxic stress. They were then allowed to recuperate for around ten vegetative generations under near-optimal conditions in unmodified minimal medium. Fitness was then assayed as the rate of division of isolated cells on agar. We found that there was a strong tendency for stressed cultures to have lower mean fitness and greater standardized variance in fitness than the negative controls which had been cultured throughout in unmodified minimal medium. The same tendency was shown, as expected, by positive controls which received mutagenic doses of ultraviolet irradiation. We concluded that the most reasonable interpretation of these observations is that mild stress increases the genomic rate of mutation. This appears to be the first time that this phenomenon has been noticed in eukaryotes. The response might be adaptive because lineages in which higher mutation rates are elicited by stress can be favourably selected through the production of a few mutants which are fortuitously well adapted to the stressful environment. Other interpretations are not excluded, however. Regardless of the mechanism involved, the elevation of mutation rates under stress will affect the rate of evolutionary response to environmental change and also the maintenance of sexuality.
Collapse
Affiliation(s)
- S Goho
- Biology Department, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
26
|
Nivard MJ, Aguirrezabalaga I, Ballering LA, Pastink A, Sierra LM, Vogel EW. Evaluation of the database on mutant frequencies and DNA sequence alterations of vermilion mutations induced in germ cells of Drosophila shows the importance of a neutral mutation detection system. Mutat Res 1999; 431:39-57. [PMID: 10656485 DOI: 10.1016/s0027-5107(99)00156-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The vermilion gene in Drosophila has extensively been used for the molecular analysis of mutations induced by chemicals in germ cells in vivo. The gene is located on the X-chromosome and is a useful target for the study of mutagenesis since all types of mutations are generated. We have critically evaluated this system with respect to sensitivity for mutation induction and selectivity for different types of mutations, using a database of more than 600 vermilion mutants induced in postmeiotic male germ cells by 18 mutagens. From most of these mutants the mutation has been analysed. These data showed 336 base substitutions, 96 intra-locus DNA rearrangements and 78 multi-locus deletions (MLD). Mutants containing a MLD were either heterozygous sterile or homozygous and hemizygous lethal. The distribution of both basepair (bp) changes and intra-locus rearrangements over the coding region of the vermilion gene was uniform with no preferences concerning 5' or 3' regions, certain exons, splice sites, specific amino acid changes or nonsense mutations. Possible hotspots for base substitutions seem to be related to the type of DNA damage rather than to the vermilion system. Gene mutations other than bp changes were examined on sequence characteristics flanking the deletion breakpoints. Induction frequencies of vermilion mosaic mutants were, in general, higher than those of vermilion complete mutants, suggesting that persistent lesions are the main contributors to the molecular spectra. Comparison of induction frequencies of vermilion mutants and sex-linked recessive lethal (SLRL) mutants for the 18 mutagens showed that the sensitivity of the vermilion gene against a mutagenic insult is representative for genes located on the X-chromosome. The effect of nucleotide excision repair (NER) on the formation of SLRL mutants correlated with an increase of transversions in the vermilion spectra under NER deficient conditions. Furthermore, the clastogenic potency of the mutagens, i.e., the efficiency to induce chromosomal-losses vs. SLRL forward mutations, shows a positive correlation with the percentage of DNA deletions in the molecular spectra of vermilion mutants.
Collapse
Affiliation(s)
- M J Nivard
- Medical Genetics Centre South-West Netherlands (MGC), Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Centre, The Netherlands.
| | | | | | | | | | | |
Collapse
|
27
|
Evans HH, DeMarini DM. Ionizing radiation-induced mutagenesis: radiation studies in Neurospora predictive for results in mammalian cells. Mutat Res 1999; 437:135-50. [PMID: 10556618 DOI: 10.1016/s1383-5742(99)00080-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ionizing radiation was the first mutagen discovered and was used to develop the first mutagenicity assay. In the ensuing 70+ years, ionizing radiation became a fundamental tool in understanding mutagenesis and is still a subject of intensive research. Frederick de Serres et al. developed and used the Neurospora crassa ad-3 system initially to explore the mutagenic effects of ionizing radiation. Using this system, de Serres et al. demonstrated the dependence of the frequency and spectra of mutations induced by ionizing radiation on the dose, dose rate, radiation quality, repair capabilities of the cells, and the target gene employed. This work in Neurospora predicted the subsequent observations of the mutagenic effects of ionizing radiation in mammalian cells. Modeled originally on the mouse specific-locus system developed by William L. Russell, the N. crassa ad-3 system developed by de Serres has itself served as a model for interpreting the results in subsequent systems in mammalian cells. This review describes the primary findings on the nature of ionizing radiation-induced mutagenesis in the N. crassa ad-3 system and the parallel observations made years later in mammalian cells.
Collapse
Affiliation(s)
- H H Evans
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4942, USA.
| | | |
Collapse
|
28
|
Waldren CA, Ueno AM, Schaeffer BK, Wood SG, Sinclair PR, Doolittle DJ, Smith CJ, Harvey WF, Shibuya ML, Gustafson DL, Vannais DB, Puck TT, Sinclair JF. Mutant yields and mutational spectra of the heterocyclic amines MeIQ and PhIP at the S1 locus of human-hamster AL cells with activation by chick embryo liver (CELC) co-cultures. Mutat Res 1999; 425:29-46. [PMID: 10082914 DOI: 10.1016/s0027-5107(98)00247-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cooking meat and fish at high temperature creates heterocyclic amines (HA) including 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Several HA are mutagens in the Ames' S9/Salmonella assay. While PhIP is a substantial Ames' test mutagen, it is 1000-fold less active than the extraordinarily potent MeIQ. In contrast, MeIQ is significantly less mutagenic than PhIP in several mammalian cell assays, especially in repair-deficient Chinese hamster ovary (CHO) cells. HA are suspect human carcinogens on the basis of (i) epidemiological evidence, (ii) induction of tumors in rodents and monkeys, (iii) DNA adduct formation and (iv) mutagenic capacity. In this study, MeIQ and PhIP were significant mutagens at the S1 locus of co-cultivated human/hamster hybrid AL cells following metabolic activation by beta-napthoflavone (betaNF)-induced chick embryonic liver cultures (CELC). MeIQ was more mutagenic than PhIP in the CELC+AL cell assay. The mutant response curves increase with dose and then plateau (PhIP), or decrease (MeIQ). The inflections in these response curves coincide with dose-dependent decreases in cytochrome CYP1A1 activity. Molecular analysis of S1- mutants indicates that a substantial fraction, >65%, of the mutations induced by PhIP are deletions of 4.2 to 133 (Mbp); half are larger than 21 Mbp. Mutations induced by MeIQ were smaller, most (56%) being less than 5.7 Mbp. When appropriate metabolic activation is combined with a target locus, which can detect both small and large chromosomal mutations, both MeIQ and PhIP are significant mutagens and clastogens in repair proficient mammalian cells.
Collapse
Affiliation(s)
- C A Waldren
- Department of Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dobrovolsky VN, Casciano DA, Heflich RH. Tk+/- mouse model for detecting in vivo mutation in an endogenous, autosomal gene. Mutat Res 1999; 423:125-36. [PMID: 10029690 DOI: 10.1016/s0027-5107(98)00234-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tk+/- transgenic mice were created using an embryonic stem cell line in which one allele of the endogenous thymidine kinase (Tk) gene was inactivated by targeted homologous recombination. Breeding Tk+/- parents produced viable Tk-/- knockout (KO) mice. Splenic lymphocytes from KO mice were used in reconstruction experiments for determining the conditions necessary for recovering Tk somatic cell mutants from Tk+/- mice. The cloning efficiency of KO lymphocytes was not affected by the toxic thymidine analogues 5-bromo-2'-deoxyuridine (BrdUrd) or trifluorothymidine (TFT), or by BrdUrd in the presence of lymphocytes from Tk+/- animals; however, it was easier to identify clones resistant to BrdUrd than to TFT when Tk+/- cells were present. Tk+/- mice were treated with vehicle or 100 mg/kg of N-ethyl-N-nitrosourea (ENU), and after 4 months, the frequency of Tk mutant lymphocytes was measured by resistance to BrdUrd. The frequency of Tk mutants was 22+/-5.9x10-6 in control animals and 80+/-31x10-6 in treated mice. In comparison, the frequency of Hprt mutant lymphocytes, as measured by resistance to 6-thioguanine, was 2.0+/-1.2x10-6 in control animals and 84+/-28x10-6 in the ENU-treated mice. Analysis of BrdUrd-resistant lymphocyte clones derived from the ENU-treated animals revealed point mutations in the non-targeted Tk allele. These results indicate that the selection of BrdUrd-resistant lymphocytes from Tk+/- mice may be used for assessing in vivo mutation in an endogenous, autosomal gene.
Collapse
Affiliation(s)
- V N Dobrovolsky
- Division of Genetic and Reproductive Toxicology, HFT-120, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | | | | |
Collapse
|
30
|
Penning TM, Burczynski ME, Hung CF, McCoull KD, Palackal NT, Tsuruda LS. Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: generation of reactive and redox active o-quinones. Chem Res Toxicol 1999; 12:1-18. [PMID: 9894013 DOI: 10.1021/tx980143n] [Citation(s) in RCA: 351] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- T M Penning
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA
| | | | | | | | | | | |
Collapse
|
31
|
Byrne J, Rasmussen SA, Steinhorn SC, Connelly RR, Myers MH, Lynch CF, Flannery J, Austin DF, Holmes FF, Holmes GE, Strong LC, Mulvihill JJ. Genetic disease in offspring of long-term survivors of childhood and adolescent cancer. Am J Hum Genet 1998; 62:45-52. [PMID: 9443870 PMCID: PMC1376803 DOI: 10.1086/301677] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Numerous case series have addressed the concern that cancer therapy may damage germ cells, leading to clinical disease in offspring of survivors. None has documented an increased risk. However, the methodological problems of small series make it difficult to draw firm conclusions regarding the potential of cancer treatments to damage the health of future offspring. We conducted a large interview study of adult survivors of childhood cancer treated before 1976. Genetic disease occurred in 3.4% of 2,198 offspring of survivors, compared with 3.1% of 4,544 offspring of controls (P=.33; not significant); there were no statistically significant differences in the proportion of offspring with cytogenetic syndromes, single-gene defects, or simple malformations. A comparison of survivors treated with potentially mutagenic therapy with survivors not so treated showed no association with sporadic genetic disease (P=.49). The present study provides reassurance that cancer treatment using older protocols does not carry a large risk for genetic disease in offspring conceived many years after treatment. With 80% power to detect an increase as small as 40% in the rate of genetic disease in offspring, this study did not do so. However, we cannot rule out the possibility that new therapeutic agents or specific combinations of agents at high doses may damage germ cells.
Collapse
Affiliation(s)
- J Byrne
- Department of Hematology/Oncology, Children's National Medical Center, Washington, DC 20010, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Flowers L, Ohnishi ST, Penning TM. DNA strand scission by polycyclic aromatic hydrocarbon o-quinones: role of reactive oxygen species, Cu(II)/Cu(I) redox cycling, and o-semiquinone anion radicals,. Biochemistry 1997; 36:8640-8. [PMID: 9214311 DOI: 10.1021/bi970367p] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In previous studies, benzo[a]pyrene-7,8-dione (BPQ), a polycyclic aromatic hydrocarbon (PAH) o-quinone, was found to be 200-fold more potent as a nuclease than (+/-)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9, 10-tetrahydrobenzo[a]pyrene, a suspect human carcinogen. The mechanism of strand scission mediated by naphthalene-1,2-dione (NPQ) and BPQ was further characterized using either phiX174 DNA or poly(dG).poly(dC) as the target DNA. Strand scission was extensive, dependent on the concentration of o-quinone (0-10 microM), and required the presence of NADPH (1 mM) and CuCl2 (10 microM). The production of reactive species, i.e., superoxide anion radical, o-semiquinone anion (SQ) radical, hydrogen peroxide (H2O2), hydroxyl radical (OH.), and Cu(I), was measured in the incubation mixtures. The formation of SQ radicals was measured by EPR spectroscopy under anaerobic conditions in the presence of NADPH. A Cu(II)/Cu(I) redox cycle was found to be critical for DNA cleavage. No strand scission occurred in the absence of Cu(II) or when Cu(I) was substituted, yet Cu(I) was required for OH* production. Both DNA strand scisson and OH. formation were decreased to an equal extent, albeit not completely, by the inclusion of OH. scavengers (mannitol, soduim benzoate, and formic acid) or Cu(I) chelators (bathocuproine and neocuproine). In contrast, although the SQ radical signals of NPQ and BPQ were quenched by DNA, no strand scission was observed. When calf thymus DNA was treated with PAH o-quinones, malondialdehyde (MDA) was released by acid hydrolysis. The formation of MDA was inhibited by OH. scavengers suggesting that OH* cleaved the 2'-deoxyribose moiety in the DNA to produce base propenals. These studies indicate that for PAH o-quinones to act as nucleases, NADPH, Cu(II), Cu(I), H2O2, and OH*, were necessary and that the primary species responsible for DNA fragmentation was OH., generated by a Cu(I)-catalyzed Fenton reaction. The genotoxicity of PAH o-quinones may play a role in the carcinogenicity and mutagenicity of the parent hydrocarbons.
Collapse
Affiliation(s)
- L Flowers
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA
| | | | | |
Collapse
|
33
|
Stankowski LF, San Sebastian JR, Sterner RT. 3-Chloro-p-toluidine hydrochloride: in vitro mutagenicity studies for human health hazards determinations. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1997; 50:451-62. [PMID: 9140464 DOI: 10.1080/00984109708984001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
3-Chloro-p-toluidine hydrochloride (CPT-HCl) is an aniline derivative used in the manufacture of the dye palatine fast yellow; it is also registered as a selective, low-volume-use (< 45 kg/yr) avicide. Three in vitro mutagenicity tests of CPT-HCl were performed according to methods recommended by the U.S. Environmental Protection Agency (EPA): the Ames/Salmonella assay, the Chinese hamster ovary/hypoxanthine-guanine phosphoribosyl-transferase (CHO/HPRT) mammalian cell forward gene mutation assay, and the CHO chromosome aberration assay. CPT-HCl did not display mutagenic activity using the Ames/Salmonella or CHO/HPRT assays. However, CPT-HCl induced statistically significant, concentration-dependent, metabolically activated increases in the proportion of aberrant cells and aberrations/cell in cultured CHO cells. Results are suggestive of minimal mutagenicity effects associated with exposure to anilines and their derivatives.
Collapse
Affiliation(s)
- L F Stankowski
- Pharmakon Research International, Inc., Waverly, Pennsylvania, USA
| | | | | |
Collapse
|
34
|
Han JS. Mutagenic activity and specificity of hydrogen peroxide in the ad-3 forward-mutation test in two-component heterokaryons of Neurospora crassa. Mutat Res 1997; 374:169-84. [PMID: 9100841 DOI: 10.1016/s0027-5107(96)00207-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the ad-3 forward-mutation test, hydrogen peroxide was at best a weak mutagen in nongrowing conidia from a DNA repair-proficient heterokaryon (H-12, uvs-2+/uvs-2+) but was a moderate mutagen in nongrowing conidia from a DNA-repair-deficient heterokaryon (H-59, uvs-2/uvs-2) over a narrow range of high concentrations. H-59 also was more sensitive than H-12 to the killing activity of hydrogen peroxide at high concentrations. Thus, a DNA-repair pathway, of which the gene product of the uvs-2+ allele is a part, appears to be involved in the repair of hydrogen peroxide-induced DNA lesions at low survival in these strains. There was slightly, but significantly, more killing by hydrogen peroxide of nongrowing conidia from H-12 and H-59 in the presence of O2 than in the absence of O2 (presence of N2). Thus, the killing activity of hydrogen peroxide was enhanced by O2. The Mutational Spectra of hydrogen peroxide-induced ad-3 mutants shows that hydrogen peroxide induced mainly gene/point mutations but also some multilocus deletion mutations in H-12 and H-59. Multiple-locus mutations occurred only in H-59, but the frequency was very low. The frequencies of the 3 kinds of intracistronic complementation pattern among ad-3BR mutants (gene/point mutations) suggest that hydrogen peroxide induced both base-pair substitutions and frameshift mutations in both strains.
Collapse
Affiliation(s)
- J S Han
- Department of Natural Medicinals and Biologics, Korean Food and Drug Administration, Seoul, South Korea
| |
Collapse
|
35
|
Stearns DM, Wetterhahn KE. Intermediates produced in the reaction of chromium(VI) with dehydroascorbate cause single-strand breaks in plasmid DNA. Chem Res Toxicol 1997; 10:271-8. [PMID: 9084906 DOI: 10.1021/tx9601521] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ascorbate (vitamin C) is a biological reductant of the human carcinogen chromium(VI). The product of this reaction is presumed to be dehydroascorbate. However, we have found that chromium(VI) can also react with dehydroascorbate. This reaction was monitored by UV/ visible and electron paramagnetic resonance (EPR) spectroscopies. In sodium acetate buffer at pH 3.8, the reaction of chromium(VI) and excess dehydroascorbate produced chromium(V) and chromium(IV) intermediates. At high reaction concentration, the chromium(V) intermediate formed an EPR silent dimer, which dissociated upon dilution to lower concentration. UV/ visible experiments at pH 3.8 demonstrated that manganese(II) catalyzed the disproportionation of chromium(IV) to chromium(V) and chromium(III). The ability of the reaction intermediates to induce strand breaks in pBR322 DNA was determined at pH 3.8 and pH 5.8. At pH 3.8, chromium(IV) appeared to be the major species responsible for induction of strand breaks because the time course for formation of strand breaks did not parallel that of chromium(V), and strand breaks were decreased in the presence of the chromium(IV) scavenger manganese(II). At pH 5.8, fewer strand breaks were observed; however, the time course for their formation followed that of chromium(V). There has been much effort devoted to identification of the intermediate responsible for the induction of strand breaks during reactions of chromium(VI) with biological reductants. The current results suggest that it is not a single type of species that universally produces the DNA strand breaks observed in different chromium(VI) systems and that the reactivity of intermediates will depend on the chosen experimental conditions. Understanding this variability in chromium(VI) reactions may help to resolve the conflicting results from in vitro studies that are aimed at deciphering mechanisms of chromium(VI)-induced cancers.
Collapse
Affiliation(s)
- D M Stearns
- Department of Chemistry, 6128 Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755-3564, USA
| | | |
Collapse
|
36
|
Abstract
Cytotoxic alkylating agents used as therapeutics include nitrogen mustards, ethyleneimines, alkyl sulfonates, nitrosoureas and triazenes. Their reactivity with DNA, RNA and proteins can cause cell death. Side-effects of treatment include tissue toxicity and secondary malignancies, likely due to the genetic damage induced. The full mutagenic potential of alkylating agents may only be realised after they undergo metabolic activation, principally by cytochromes P450. Mutagenicity is related to the ability of alkylating agents to form crosslinks and/or transfer an alkyl group to form monoadducts in DNA. The most frequent location of adducts in the DNA is at guanines. Expressed mutations involve different base substitutions, including all types of transitions and transversions. The mutational spectra of alkylating agents on mammalian cells is distinct from that induced in bacterial cells, reflecting the different codon usage by bacteria and differences in DNA repair and replication enzymes. Mutations are induced by busulfan, chlorambucil (CAB), cyclophosphamide (CP, or its metabolite), dacarbazine, mechlorethamine, melphalan, mitomycin-C (MMC), nitrosoureas and thiotepa. Although dose-dependent, the relationship is not always linear. The molarities at which alkylating agents induce cell killing and mutations vary over three orders of magnitude. The mutagenic efficiency, of alkylating agents also varies, with some agents inducing three times more mutations for equivalent cell killing. The induction of micronuclei, sister chromatid exchanges, or chromosome aberrations is variable, but has been observed for CP, CAB, MMC, melphalan and triethylenemelamine. There is insufficient information to determine whether any synergistic effects of alkylating agents used in combination will influence the cytotoxic and mutagenic damage equally. Understanding the potential synergy of alkylating agents at the cellular and molecular level should allow improvement of the therapeutic efficacy of alkylating agents without increasing the unwanted mutation induction.
Collapse
Affiliation(s)
- B J Sanderson
- School of Medicine, Flinders University of South Australia, Adelaide, Australia.
| | | |
Collapse
|
37
|
Abstract
A fraction of thymic lymphomas induced by high LET neutron radiation contains activating mutations (single-base substitutions) in the ras genes. To determine whether such mutations are the result of the interaction of high LET radiation with cellular DNA, we have utilized an in vitro model system to screen and isolate neutron-radiation-induced mutants. With that aim, we irradiated the PL61 hamster cell line with 0.4 MeV neutrons. This cell line contains linked copies of the gpt and neo(r) genes, which permits selection for large or small alterations, depending on the selection imposed. Mutants selected for large alterations represented 98.2% of the total. When selection for small mutations was imposed, 9 clones grew. The molecular and biochemical analysis of these clones revealed that 5 of them had identifiable mutations in the gpt gene, consisting of small insertions and deletions, but no single-base substitutions were detected. This represents the first sequence characterization of neutron-induced mutants. The results obtained are consistent with the notion that the ras point mutations identified in the neutron-induced tumors are most likely detected due to the strong selective advantage that they confer to the host cell, but they probably arose during tumour evolution, since they represent a negligible proportion of the total number of alterations induced by neutron radiation.
Collapse
Affiliation(s)
- A Garcia-Espana
- Department of Pathology and Kaplan Cancer Center, New York University Medical Center 10016, USA
| | | | | | | |
Collapse
|
38
|
Wijker CA, Lafleur MV, van Steeg H, Mohn GR, Retèl J. Gamma-radiation-induced mutation spectrum in the episomal lacI gene of Escherichia coli under oxic conditions. Mutat Res 1996; 349:229-39. [PMID: 8600354 DOI: 10.1016/0027-5107(95)00187-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study we have determined the mutation spectrum in the complete episomal lacI gene of Escherichia coli induced by gamma-radiation under oxic conditions. Mutants were generated by 60Co gamma-irradiation of an E. coli culture of stationary cells in LB medium, under continuous flushing with oxygen. Oligonucleotide probe analysis showed that 14% of the gamma-ray-induced mutations were located at the lacI gene hot spot at position 620-632, which is characterized by a triple repeat of the 5'-TGGC-3' sequence. Previously it was shown that about 70% of the spontaneous mutations were located at this site due to the loss or the addition of a TGGC sequence. The non-hot spot mutations were further characterized by automated sequence analysis. The results show that base pair (bp) substitutions were the main type of gamma-ray-induced mutations. Although all types of bp substitutions were observed, 74% of the bp substitutions involved C/G base pairs. C/G --> T/A and C/G --> A/T substitutions were predominant, both accounting for 35% of all bp substitutions, whereas A/T --> C/G substitutions were only seldomly observed (3%). A relatively large amount of -1 bp deletions (15% of all mutations) was detected in the gamma-ray-induced mutation spectrum, mainly affecting C/G base pairs, and 10% were deletions, ranging in size from 11 to 532 bp. It can be concluded that under oxic conditions gamma-radiation induces in E. coli mainly bp substitutions of all types but preferentially at C/G base pairs, and that the mutations tend to be randomly distributed within the lacI gene sequence.
Collapse
Affiliation(s)
- C A Wijker
- Department of Medical Oncology, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Dobrovolsky VN, Casciano DA, Heflich RH. Development of a novel mouse tk+/- embryonic stem cell line for use in mutagenicity studies. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1996; 28:483-489. [PMID: 8991081 DOI: 10.1002/(sici)1098-2280(1996)28:4<483::aid-em26>3.0.co;2-a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A tk+/- mouse embryonic stem (ES) cell line, designated 1G2, has been created in which one allele of the thymidine kinase (tk) gene was inactivated by targeted homologous recombination. This line is an analog of the mouse lymphoma tk+/- L5178Y cell line, which is used widely to assess the mutagenicity of chemical agents. Treatment of 1G2 cells with the alkylating agent N-ethyl-N-nitrosourea (ENU) resulted in a dose-related increase in trifluorothymidine-resistant colonies. Mutant frequencies of 152 and 296 per 10(6) cells were determined for 0.1 and 0.3 mg/ml doses of ENU, compared with a spontaneous mutant frequency of 15 per 10(6) cells. The data indicate that tk+/- 1G2 ES cells may be useful for the creation of a transgenic mouse model for assessing in vivo mutation using an endogenous autosomal gene.
Collapse
Affiliation(s)
- V N Dobrovolsky
- Division of Genetic Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | | | | |
Collapse
|
40
|
Abstract
The growth rates of 31 X-ray-induced hypoxanthine phosphoribosyl transferase (hprt) deficient mutants of CHO-K1 cells were measured. Mutants had been classified as (1) full-deletion, (2) partial deletion or rearrangement, or (3) unchanged by Southern blot analyses. No relationship between growth rate and deletion type was observed. Even where all hprt-specific bands were missing, proliferation rates in culture were normal. Additionally, in CHO-AT3-2 cells, which are heterozygous at the tk locus, no difference in growth rates between a spontaneous hprt mutant and its parent was observed, although double hprt-tk-/- mutants grew more slowly.
Collapse
Affiliation(s)
- B S Jacobson
- Department of Biology and Chemistry, Pacific Northwest Laboratory, Richland, WA 99352, USA
| | | |
Collapse
|
41
|
Klarmann B, Wixler V, Lorenz R, Hempel K. Mutant frequency at the H-2K class 1 and HPRT genes in T lymphocytes from the X-ray-exposed mouse. Int J Radiat Biol 1995; 67:421-30. [PMID: 7738405 DOI: 10.1080/09553009514550481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The frequency of H-2Kk and HPRT-deficient T cells was measured in the H-2Kb, kDd,k genotype mouse 8-10 weeks after X-ray exposure at doses up to 6 Gy to compare the mutant frequency (MF) of an autosomal gene with that of an X-chromosomal gene. H-2K mutants were enriched by magnetic cell separation (MACS) using the H-2Kk-specific monoclonal antibody H100.5/28 and were isolated by limiting dilution cloning. Finally, the mutant phenotype was verified by flow cytometric analysis in a representative number of clones. The frequency of HPRT-deficient T cells rises from 2.5 x 10(-6) at 0 Gy to a maximum of 1.13 x 10(-4) at 4 Gy, and decreases to 2.9 x 10(-5) at 6 Gy. The H-2K- MF in the non-irradiated mouse was 8.4 x 10(-7). It increases with dose to a maximum of 8.1 x 10(-6) at 4 Gy and declines to 3.3 x 10(-6) at 6 Gy. The H-2K- MF measured depends on the monoclonal antibody used for the isolation of mutants. In a pilot study with another H-2Kk-specific monoclonal antibody (11.4.1), the spontaneous MF was four times higher than in experiments with the H100.5/28 monoclonal antibody. The expression of other class 1 antigens was investigated in H-2K- clones. The H-2Dd antigen had also disappeared in six of 41 clones from irradiated animals. This gene is situated at a distance of 1500 kb from the K-locus. The H-2Kb antigen was present in every investigated clone. In the discussion a model is presented that explains the shape of the dose-response curve of MF by selection against mutants in vivo systems under homeostasis. The results of the present investigation indicate that observed X-ray mutagenicity depends on many factors and that several genes have to be explored before reliable risk estimates are possible.
Collapse
Affiliation(s)
- B Klarmann
- Institut für Medizinische Strählenkunde und Zellforschung, Universität Würzburg, Germany
| | | | | | | |
Collapse
|
42
|
Bao CY, Ma AH, Evans HH, Horng MF, Mencl J, Hui TE, Sedwick WD. Molecular analysis of hypoxanthine phosphoribosyltransferase gene deletions induced by alpha- and X-radiation in human lymphoblastoid cells. Mutat Res 1995; 326:1-15. [PMID: 7528877 DOI: 10.1016/0027-5107(94)00152-u] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mutations caused by exposure to X-radiation and to radon and its decay products were compared in the hprt gene of a human lymphoblastoid cell line. Thirty-one X-radiation-induced, 29 radon-induced, and 24 spontaneous mutants were recovered from cell cultures under identical conditions except for the exposure to radiation. Seven spontaneous point mutations were recovered and DNA sequenced. These mutations included three C:G-->T:A transitions. These spontaneous point mutations were located in the exon or splice donor regions of five of the nine hprt exons. Four X-radiation-induced and three radon-induced point mutations were also analyzed by DNA sequencing. The frequency of induced mutants at the D0 doses for radon and X-radiation respectively were 5 x 10(-6) and 4.5 x 10(-6). Deletions were the predominant mutations recovered from both radon- and X-irradiated cells. Eighty-one percent of the mutants from X-radiation-treated cultures, 86% of the radon-treated cultures, and 63% of the spontaneous mutants involved deletions. Deletions involving exon and intron DNA, as well as intron DNA alone, were found to inactivate the hprt gene and result in a selectable HPRT- phenotype. Among the deletion mutants, however, only 21% of the spontaneous mutants versus 55% of both the X-radiation- and radon-induced mutants exhibited loss of the entire hprt gene. More X-radiation-induced deletions than radon-induced deletions extended further than 800 bp in the telomeric direction from the hprt gene (six of 17 versus two of 17). The results show that at the human hprt locus of TK-6 cells the predominant kind of mutation indicative of exposure to both high LET alpha-radiation and low LET X-radiation is a large deletion, spanning the entire hemizygous hprt gene and extending into flanking sequences.
Collapse
Affiliation(s)
- C Y Bao
- Department of Medicine, Ireland Cancer Center of University Hospitals, Case Western Reserve University, Cleveland, OH 44106
| | | | | | | | | | | | | |
Collapse
|
43
|
Hou SM, Nori P, Fang JL, Vaca CE. Methylglyoxal induces hprt mutation and DNA adducts in human T-lymphocytes in vitro. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1995; 26:286-291. [PMID: 8575417 DOI: 10.1002/em.2850260404] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Methylglyoxal (MG) is a mutagen present in several foodstuffs, including coffee. We have used the 32P-postlabelling method to measure MG-deoxyguanosine adduct levels, and the T-cell cloning technique, to study the frequency of hprt (hypoxanthine-guanine phosphoribosyl transferase) mutant cells after treatment of human lymphocytes with MG in vitro. The mutant induction by single (18 hr) high-dose (1.0-1.5 mM) treatment was comparable to that induced by repeated (3 x 48 hr) low-dose (0.1-0.4 mM) treatment. The latter also correlated with the adduct levels measured in the same experiment. The relative cell survival measured by direct cloning after the final treatment agreed well with the growth curves monitored during the expression phase. Our results show that MG is capable of inducing hprt mutations as well as DNA adducts in human lymphocytes at doses with low cytotoxicity. However, significant adduct formation (two- to threefold) could be obtained only after the first exposure in cells subjected to a repeated treatment protocol, and the induced mutant frequency was low (two- to fourfold over background). Thus, MG seems to be a comparatively weak mutagen in this system.
Collapse
Affiliation(s)
- S M Hou
- Environmental Medicine Unit, NOVUM, Karolinska Institute, Huddinge, Sweden
| | | | | | | |
Collapse
|
44
|
Skandalis A, Curry J, O'Neill JP, Nicklas JA, Albertini RJ, Glickman BW. Analysis of point mutations in the hprt gene of cancer patients treated with radioimmunoglobulin therapy. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1995; 26:213-217. [PMID: 7588646 DOI: 10.1002/em.2850260305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The mutagenic impact of various environmental and therapeutic agents can now be directly assayed in humans by the T-lymphocyte cloning assay. We have previously reported that following radioimmunoglobulin therapy, cancer patients exhibited increased mutant frequency of the hprt locus and an increased yield of large intergenic deletions compared to unexposed controls. Here we report the results of the analysis of 26 independent hprt mutations in nine cancer patients who underwent radioimmunoglobulin therapy. The majority of mutations (52%) had lost exon sequences from the mRNA. The remaining mutations were 20% small deletions and frameshifts and 28% base substitutions. The type of mutations observed were similar to those seen in unexposed controls. The site distribution of the mutations, however, indicates that some sequence contexts may be more sensitive to radiation mutagenesis than others.
Collapse
Affiliation(s)
- A Skandalis
- Center for Environmental Health, University of Victoria, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Morris SM, Domon OE, Delclos KB, Chen JJ, Casciano DA. Induction of mutations at the hypoxanthine phosphoribosyl transferase (HPRT) locus in AHH-1 human lymphoblastoid cells. Mutat Res 1994; 310:45-54. [PMID: 7523883 DOI: 10.1016/0027-5107(94)90007-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cells from the human lymphoblastoid cell line, AHH-1, were exposed to two direct-acting mutagens, ethyl methanesulfonate (EMS) and ethyl nitrosourea (ENU), and to three carcinogens that require metabolic activation to an electrophile, benzo[a]pyrene (B(a)P), 6-aminochrysene (6-AC), and 6-nitrochrysene (6-NC); mutation induction at the HPRT locus was quantified by resistance to 6-thioguanine (6-TGr). Exposure of AHH-1 cells to either EMS or ENU resulted in a concentration-dependent increase in mutant frequency at the HPRT locus. When AHH-1 cells were exposed to B(a)P, the increase in mutant frequency at the HPRT locus was marginally significant linearly and significant quadratically. The 32P-postlabeling assay revealed the formation of DNA adducts derived from (+/-)anti-benzo[a]pyrene-trans-7,8-dihydrodiol-9,10-epoxide which may account for the increase in 6-TGr clones. Although DNA adducts could be detected by the 32P-postlabeling assay in both 6-NC- and 6-AC-treated AHH-1 cells, exposure to 6-AC or 6-NC did not result in a concentration-dependent increase in mutant frequency at the HPRT locus. Our results are consistent with the results of previous studies which indicate that EMS and ENU are effective inducers of 6-TGr clones as is B9(a)P when activated to an electrophile. In 6-NC- and 6-AC-exposed cells, low levels of N-hydroxy-6-aminochrysene-derived adducts were detected in only 6-NC-exposed cells. No 6-aminochrysene-1,2-dihydrodiol-derived adducts were detected following 6-NC or 6-AC exposure. Minimal metabolic activation of 6-NC or 6-AC by AHH-1 cells may account for the lack of a positive mutagenic response for either 6-AC or 6-NC.
Collapse
Affiliation(s)
- S M Morris
- Division of Genetic Toxicology, US Public Health Service, Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR 72079
| | | | | | | | | |
Collapse
|
46
|
Anderson RD, Berger NA. International Commission for Protection Against Environmental Mutagens and Carcinogens. Mutagenicity and carcinogenicity of topoisomerase-interactive agents. Mutat Res 1994; 309:109-42. [PMID: 7519727 DOI: 10.1016/0027-5107(94)90048-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drugs that interact with DNA topoisomerases I and II hold great promise for the treatment of cancer, however, like many other anti-cancer agents, they are a double-edged sword and may themselves cause mutation and cancer. In vitro studies show that clinically effective agents, such as etoposide, doxorubicin and others, stabilize a ternary complex where topoisomerase II is covalently linked to DNA. This complex represents an intermediate in the topoisomerase-II catalyzed DNA supercoil relaxation reaction. Camptothecin and its analogues stabilize a similar ternary complex, in vitro, consisting of topoisomerase I covalently linked to DNA at single-strand breaks. Short-term tests of genotoxicity confirm that topoisomerase-interactive agents are mutagenic and suggest common mechanisms by which they induce mutation and selectively kill tumor cells. These agents induce sister-chromatid exchange, chromosomal aberrations and mutations in specific mammalian genes. Their propensity to induce small colonies in the L5178/TK+/(-)-3.7.2C assay implies that topoisomerase-interactive agents induce large DNA rearrangements and deletions. These may result from topoisomerase-subunit exchange at drug-stabilized ternary complexes or from attempts by the cell to bypass the replication block caused by stabilized ternary complexes. Studies in bacterial mutation assays suggest that topoisomerase-interactive agents may also induce mutations, albeit at a lower rate, through simple DNA intercalation or via generation of oxygen free radicals. Second malignancies observed in patients previously treated with topoisomerase II interactive agents suggest these may be an important clinical consequence of their capacity to induce mutation. In particular, a unique form of acute myelogenous leukemia is observed at strikingly high frequencies after treatment with relatively high doses of the epipodophyllotoxins etoposide and teniposide. This form of AML has been reported after the uses of other classes of topoisomerase-interactive agents as well. Cancer induction is therefore a toxic consequence predicted by short-term tests of genotoxicity and should be weighed against the potential therapeutic benefits of topoisomerase-interactive agents.
Collapse
|
47
|
Morris SM, McGarrity LJ, Domon OE, Chen JJ, Hinson WG, Bucci TJ, Warbritton AR, Casciano DA. The role of programmed cell death in the toxicity of the mutagens, ethyl methanesulfonate and N-ethyl-N'-nitrosourea, in AHH-1 human lymphoblastoid cells. Mutat Res 1994; 306:19-34. [PMID: 7512200 DOI: 10.1016/0027-5107(94)90164-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In order to determine the pathway for cell death in alkylating agent-exposed human lymphoblastoid cells, AHH-1 cells were exposed to either ethyl methanesulfonate (EMS) or ethyl nitrosourea (ENU) and the effect on relative cell growth and plating efficiency quantified. Flow cytometric (FCM) assays were utilized to quantify cell viability and to determine if cell death occurred through necrosis or apoptosis. As expected, exposure to the simple ethylating agents resulted in concentration-dependent decreases in plating efficiencies at each time interval after exposure (Days 0, 2, 3 and 7). EMS exposure did not significantly affect the relative cell growth, in contrast to ENU exposure, which inhibited cell growth. The FCM viability assay, based on light scatter characteristics, revealed that exposure to either alkylating agent resulted in a significant reduction in the percentage of viable cells. The results of the FCM dye-exclusion assays revealed that while necrosis occurred in EMS- and ENU-exposed cells, the primary manner of cell death was apoptosis. AHH-1 cells were stained with propidium iodide and fluorescein diacetate, the population of cells sorted electronically and the cell type (necrotic, apoptotic or viable) confirmed morphologically. Our results clearly indicate that exposure to EMS or ENU results in the movement of AHH-1 cells into the pathway for apoptosis and cell death.
Collapse
Affiliation(s)
- S M Morris
- Division of Genetic Toxicology, HFT-120/DGT/NCTR, Jefferson, AR 72079
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Klein CB, Su L, Rossman TG, Snow ET. Transgenic gpt+ V79 cell lines differ in their mutagenic response to clastogens. Mutat Res 1994; 304:217-28. [PMID: 7506365 DOI: 10.1016/0027-5107(94)90214-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Several gpt+ transgenic cell lines were derived from hprt V79 cells to study mutagenesis mechanisms in mammalian cells. The G12 cell line was previously shown to be hypermutable by X-rays and UV at the gpt locus compared to the endogenous hprt gene of the parental V79 cells (Klein and Rossman, 1990), and is now shown to be highly mutable by the clastogenic anti-tumor agent bleomycin sulfate. A second transgenic cell line G10, which has a different gpt insertion site, was studied in comparison with G12. Both G12 and G10 cell lines carry the stable gpt locus at a single integration site in the Chinese hamster genome, and neither spontaneously deletes the integrated gpt sequence at a high frequency. Although spontaneous mutation to 6-thioguanine resistance in G10 cells is 3-4 times higher than in G12 cells, the cell lines differ to a much greater extent when mutated by clastogens. In comparison to G12 cells, the gpt locus in G10 cells is up to 13 times more sensitive to bleomycin mutagenesis and 5 times more responsive to X-ray mutagenesis. In contrast, there is much less difference in UV-induced mutagenesis and no differences in mutagenesis induced by alkylating agents such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). The dose-dependent decrease in survival of the transgenic cells is the same for all mutagens tested, and does not differ from that of V79 cells. Neither transgenic cell line is generally hypermutable, since mutagenesis at an endogenous gene, Na+K+/ATPase, is similar to that of the parental V79 cell line. Although both cell lines can be induced to delete the transgene following clastogen exposure, deletions are not the only recovered mutations, and the cell lines can also be used to study mutations within the PCR recoverable gpt gene. The utility of these transgenic cells to investigate genome position effects related to mammalian mutagenesis mechanisms is discussed.
Collapse
Affiliation(s)
- C B Klein
- Nelson Institute of Environmental Medicine, New York University Medical Center, A.J. Lanza Laboratory, Tuxedo 10987
| | | | | | | |
Collapse
|
49
|
Ikeda H. DNA topoisomerase-mediated illegitimate recombination. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 29A:147-65. [PMID: 7826856 DOI: 10.1016/s1054-3589(08)60544-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- H Ikeda
- Department of Molecular Biology, University of Tokyo, Japan
| |
Collapse
|
50
|
Fuscoe JC, Nelsen AJ, Pilia G. Detection of deletion mutations extending beyond the HPRT gene by multiplex PCR analysis. SOMATIC CELL AND MOLECULAR GENETICS 1994; 20:39-46. [PMID: 8197475 DOI: 10.1007/bf02257484] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A multiplex PCR assay was developed for the rapid analysis of deletion size at the hypoxanthine phosphoribosyltransferase (hprt) locus. The DNA sequence of mapped DNA segments flanking the hprt gene was determined. These cloned DNAs were derived from the ends of a set of overlapping yeast artificial chromosomes (YAC) defining a contig of 8 Mb at Xq26 and including hprt. We used "bubble" PCR to isolate an additional YAC end-clone. Seven primer pairs were derived from DNA sequence analysis of the clones and incorporated into a multiplex PCR assay. These primer pairs define loci located approximately 750 kb and 350 kb upstream of hprt and 300 kb, 540 kb, 900 kb, 1260 kb, and 1400 kb downstream of hprt. A primer pair for an unlinked and unselected gene sequence (K-ras) was also included in the multiplex reaction to serve as an internal positive control. Using this new assay, hprt mutant DNAs can be screened to determine the extent of deletion. Deletions larger than 2 Mb have been identified and show that large deletions can be tolerated at this hemizygous locus.
Collapse
Affiliation(s)
- J C Fuscoe
- Environmental Health Research and Testing, Inc., Research Triangle Park, North Carolina
| | | | | |
Collapse
|