1
|
Cortical involvement in celiac disease before and after long-term gluten-free diet: A Transcranial Magnetic Stimulation study. PLoS One 2017. [PMID: 28489931 DOI: 10.1371/journal.pone.0177560.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Transcranial Magnetic Stimulation in de novo patients with Celiac Disease previously revealed an imbalance in the excitability of cortical facilitatory and inhibitory circuits. After a median period of 16 months of gluten-free diet, a global increase of cortical excitability was reported, suggesting a glutamate-mediated compensation for disease progression. We have now evaluated cross-sectionally the changes of cortical excitability to TMS after a much longer gluten-free diet. METHODS Twenty patients on adequate gluten-free diet for a mean period of 8.35 years were enrolled and compared with 20 de novo patients and 20 healthy controls. Transcranial Magnetic Stimulation measures, recorded from the first dorsal interosseous muscle of the dominant hand, consisted of: resting motor threshold, cortical silent period, motor evoked potentials, central motor conduction time, mean short-latency intracortical inhibition and intracortical facilitation. RESULTS The cortical silent period was shorter in de novo patients, whereas in gluten-free diet participants it was similar to controls. The amplitude of motor responses was significantly smaller in all patients than in controls, regardless of the dietary regimen. Notwithstanding the diet, all patients exhibited a statistically significant decrease of mean short-latency intracortical inhibition and enhancement of intracortical facilitation with respect to controls; more intracortical facilitation in gluten-restricted compared to non-restricted patients was also observed. Neurological examination and celiac disease-related antibodies were negative. CONCLUSIONS In this new investigation, the length of dietary regimen was able to modulate the electrocortical changes in celiac disease. Nevertheless, an intracortical synaptic dysfunction, mostly involving excitatory and inhibitory interneurons within the motor cortex, may persist. The clinical significance of subtle neurophysiological changes in celiac disease needs to be further investigated.
Collapse
|
2
|
Pennisi M, Lanza G, Cantone M, Ricceri R, Ferri R, D’Agate CC, Pennisi G, Di Lazzaro V, Bella R. Cortical involvement in celiac disease before and after long-term gluten-free diet: A Transcranial Magnetic Stimulation study. PLoS One 2017; 12:e0177560. [PMID: 28489931 PMCID: PMC5425211 DOI: 10.1371/journal.pone.0177560] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/28/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Transcranial Magnetic Stimulation in de novo patients with Celiac Disease previously revealed an imbalance in the excitability of cortical facilitatory and inhibitory circuits. After a median period of 16 months of gluten-free diet, a global increase of cortical excitability was reported, suggesting a glutamate-mediated compensation for disease progression. We have now evaluated cross-sectionally the changes of cortical excitability to TMS after a much longer gluten-free diet. METHODS Twenty patients on adequate gluten-free diet for a mean period of 8.35 years were enrolled and compared with 20 de novo patients and 20 healthy controls. Transcranial Magnetic Stimulation measures, recorded from the first dorsal interosseous muscle of the dominant hand, consisted of: resting motor threshold, cortical silent period, motor evoked potentials, central motor conduction time, mean short-latency intracortical inhibition and intracortical facilitation. RESULTS The cortical silent period was shorter in de novo patients, whereas in gluten-free diet participants it was similar to controls. The amplitude of motor responses was significantly smaller in all patients than in controls, regardless of the dietary regimen. Notwithstanding the diet, all patients exhibited a statistically significant decrease of mean short-latency intracortical inhibition and enhancement of intracortical facilitation with respect to controls; more intracortical facilitation in gluten-restricted compared to non-restricted patients was also observed. Neurological examination and celiac disease-related antibodies were negative. CONCLUSIONS In this new investigation, the length of dietary regimen was able to modulate the electrocortical changes in celiac disease. Nevertheless, an intracortical synaptic dysfunction, mostly involving excitatory and inhibitory interneurons within the motor cortex, may persist. The clinical significance of subtle neurophysiological changes in celiac disease needs to be further investigated.
Collapse
Affiliation(s)
- Manuela Pennisi
- Spinal Unit, Emergency Hospital “Cannizzaro”, Catania, Italy
| | - Giuseppe Lanza
- Department of Neurology IC, I.R.C.C.S. “Oasi Maria SS.”, Troina, Enna, Italy
- * E-mail:
| | | | - Riccardo Ricceri
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Raffaele Ferri
- Department of Neurology IC, I.R.C.C.S. “Oasi Maria SS.”, Troina, Enna, Italy
| | | | - Giovanni Pennisi
- Department “Specialità Medico-Chirurgiche”, University of Catania, Catania, Italy
| | | | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Excitability of the motor cortex in de novo patients with celiac disease. PLoS One 2014. [PMID: 25062250 DOI: 10.1371/journal.pone.0102790.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Celiac disease (CD) may initially present as a neurological disorder or may be complicated by neurological changes. To date, neurophysiological studies aiming to an objective evaluation of the potential central nervous system involvement in CD are lacking. OBJECTIVE To assess the profile of cortical excitability to Transcranial Magnetic Stimulation (TMS) in a group of de novo CD patients. MATERIALS AND METHODS Twenty CD patients underwent a screening for cognitive and neuropsychiatric symptoms by means of the Mini Mental State Examination and the Structured Clinical Interview for DSM-IV Axis I Disorders, respectively. Instrumental exams, including electroencephalography and brain computed tomography, were also performed. Cortico-spinal excitability was assessed by means of single and paired-pulse TMS using the first dorsal interosseus muscle of the dominant hand. TMS measures consisted of resting motor threshold, motor evoked potentials, cortical silent period (CSP), intracortical inhibition (ICI) and facilitation (ICF). None of the CD was on gluten-free diet. A group of 20 age-matched healthy controls was used for comparisons. RESULTS CD showed a significantly shorter CSP (78.0 vs 125.0 ms, p<0.025), a reduced ICI (0.3 vs 0.2, p<0.045) and an enhanced ICF (1.1 vs 0.7, p<0.042) compared to controls. A dysthymic disorder was identified in five patients. The effect size between dysthymic and non-dysthymic CD patients indicated a low probability of interference with the CSP (Cohen's d -0.414), ICI (-0.278) and ICF (-0.292) measurements. CONCLUSION A pattern of cortical excitability characterized by "disinhibition" and "hyperfacilitation" was found in CD patients. Immune system dysregulation might play a central role in triggering changes of the motor cortex excitability.
Collapse
|
4
|
Benitez SG, Castro AE, Patterson SI, Muñoz EM, Seltzer AM. Hypoxic preconditioning differentially affects GABAergic and glutamatergic neuronal cells in the injured cerebellum of the neonatal rat. PLoS One 2014; 9:e102056. [PMID: 25032984 PMCID: PMC4102512 DOI: 10.1371/journal.pone.0102056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/13/2014] [Indexed: 12/13/2022] Open
Abstract
In this study we examined cerebellar alterations in a neonatal rat model of hypoxic-ischemic brain injury with or without hypoxic preconditioning (Pc). Between postnatal days 7 and 15, the cerebellum is still undergoing intense cellular proliferation, differentiation and migration, dendritogenesis and synaptogenesis. The expression of glutamate decarboxylase 1 (GAD67) and the differentiation factor NeuroD1 were examined as markers of Purkinje and granule cells, respectively. We applied quantitative immunohistochemistry to sagittal cerebellar slices, and Western blot analysis of whole cerebella obtained from control (C) rats and rats submitted to Pc, hypoxia-ischemia (L) and a combination of both treatments (PcL). We found that either hypoxia-ischemia or Pc perturbed the granule cells in the posterior lobes, affecting their migration and final placement in the internal granular layer. These effects were partially attenuated when the Pc was delivered prior to the hypoxia-ischemia. Interestingly, whole nuclear NeuroD1 levels in Pc animals were comparable to those in the C rats. However, a subset of Purkinje cells that were severely affected by the hypoxic-ischemic insult—showing signs of neuronal distress at the levels of the nucleus, cytoplasm and dendritic arborization—were not protected by Pc. A monoclonal antibody specific for GAD67 revealed a three-band pattern in cytoplasmic extracts from whole P15 cerebella. A ∼110 kDa band, interpreted as a potential homodimer of a truncated form of GAD67, was reduced in Pc and L groups while its levels were close to the control animals in PcL rats. Additionally we demonstrated differential glial responses depending on the treatment, including astrogliosis in hypoxiated cerebella and a selective effect of hypoxia-ischemia on the vimentin-immunolabeled intermediate filaments of the Bergmann glia. Thus, while both glutamatergic and GABAergic cerebellar neurons are compromised by the hypoxic-ischemic insult, the former are protected by a preconditioning hypoxia while the latter are not.
Collapse
Affiliation(s)
- Sergio G Benitez
- Laboratory of Neurobiology: Chronobiology Section, Institute of Histology and Embryology of Mendoza (IHEM), School of Medicine, National University of Cuyo, Mendoza, National Scientific and Technical Research Council (CONICET), National Agency for Scientific and Technological Promotion (ANPCyT), Mendoza, Argentina
| | - Analía E Castro
- Laboratory of Neurobiology: Chronobiology Section, Institute of Histology and Embryology of Mendoza (IHEM), School of Medicine, National University of Cuyo, Mendoza, National Scientific and Technical Research Council (CONICET), National Agency for Scientific and Technological Promotion (ANPCyT), Mendoza, Argentina
| | - Sean I Patterson
- Traumatic and Toxic Lesions in the Nervous System Section, Institute of Histology and Embryology of Mendoza (IHEM), School of Medicine, National University of Cuyo, Mendoza, National Scientific and Technical Research Council (CONICET), National Agency for Scientific and Technological Promotion (ANPCyT), Mendoza, Argentina
| | - Estela M Muñoz
- Laboratory of Neurobiology: Chronobiology Section, Institute of Histology and Embryology of Mendoza (IHEM), School of Medicine, National University of Cuyo, Mendoza, National Scientific and Technical Research Council (CONICET), National Agency for Scientific and Technological Promotion (ANPCyT), Mendoza, Argentina
| | - Alicia M Seltzer
- Neonatal Brain Development Section, Institute of Histology and Embryology of Mendoza (IHEM), School of Medicine, National University of Cuyo, Mendoza, National Scientific and Technical Research Council (CONICET), National Agency for Scientific and Technological Promotion (ANPCyT), Mendoza, Argentina
| |
Collapse
|
5
|
Pennisi G, Lanza G, Giuffrida S, Vinciguerra L, Puglisi V, Cantone M, Pennisi M, D'Agate CC, Naso P, Aprile G, Malaguarnera G, Ferri R, Bella R. Excitability of the motor cortex in de novo patients with celiac disease. PLoS One 2014; 9:e102790. [PMID: 25062250 PMCID: PMC4111288 DOI: 10.1371/journal.pone.0102790] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/20/2014] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Celiac disease (CD) may initially present as a neurological disorder or may be complicated by neurological changes. To date, neurophysiological studies aiming to an objective evaluation of the potential central nervous system involvement in CD are lacking. OBJECTIVE To assess the profile of cortical excitability to Transcranial Magnetic Stimulation (TMS) in a group of de novo CD patients. MATERIALS AND METHODS Twenty CD patients underwent a screening for cognitive and neuropsychiatric symptoms by means of the Mini Mental State Examination and the Structured Clinical Interview for DSM-IV Axis I Disorders, respectively. Instrumental exams, including electroencephalography and brain computed tomography, were also performed. Cortico-spinal excitability was assessed by means of single and paired-pulse TMS using the first dorsal interosseus muscle of the dominant hand. TMS measures consisted of resting motor threshold, motor evoked potentials, cortical silent period (CSP), intracortical inhibition (ICI) and facilitation (ICF). None of the CD was on gluten-free diet. A group of 20 age-matched healthy controls was used for comparisons. RESULTS CD showed a significantly shorter CSP (78.0 vs 125.0 ms, p<0.025), a reduced ICI (0.3 vs 0.2, p<0.045) and an enhanced ICF (1.1 vs 0.7, p<0.042) compared to controls. A dysthymic disorder was identified in five patients. The effect size between dysthymic and non-dysthymic CD patients indicated a low probability of interference with the CSP (Cohen's d -0.414), ICI (-0.278) and ICF (-0.292) measurements. CONCLUSION A pattern of cortical excitability characterized by "disinhibition" and "hyperfacilitation" was found in CD patients. Immune system dysregulation might play a central role in triggering changes of the motor cortex excitability.
Collapse
Affiliation(s)
- Giovanni Pennisi
- Department “G.F. Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
- * E-mail:
| | - Giuseppe Lanza
- Department of Neurology I.C., Oasi Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.), Troina (Enna), Italy
| | - Salvatore Giuffrida
- Department “G.F. Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Luisa Vinciguerra
- Department “G.F. Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Valentina Puglisi
- Department “G.F. Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | | | - Manuela Pennisi
- Department of Chemistry, University of Catania, Catania, Italy
| | | | - Pietro Naso
- Gastroenterology and Endoscopy Unit, University of Catania, Catania, Italy
| | - Giuseppe Aprile
- Gastroenterology and Endoscopy Unit, University of Catania, Catania, Italy
| | | | - Raffaele Ferri
- Department of Neurology I.C., Oasi Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.), Troina (Enna), Italy
| | - Rita Bella
- Department “G.F. Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Ninomiya S, Esumi S, Ohta K, Fukuda T, Ito T, Imayoshi I, Kageyama R, Ikeda T, Itohara S, Tamamaki N. Amygdala kindling induces nestin expression in the leptomeninges of the neocortex. Neurosci Res 2013; 75:121-9. [PMID: 23305954 DOI: 10.1016/j.neures.2012.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
Abstract
Nestin is an intermediate filament found in neurogenic progenitors and non-neuronal cells. Nestin-immunoreactivity (IR) in the brain often increases after brain damage. Here we show that amygdala kindling, which mimics the epileptic seizures, also induces nestin expression in the brain. Nestin-IR was greatly enhanced in the leptomeninges (pia and arachnoid maters) and neocortical parenchyma, but not much in the SVZ around the lateral ventricle, SGZ in the dentate gyrus, or the endothelial progenitor cells of blood vessels, fimbria, or choroid plexus after kindling. Electron microscopy revealed that nestin-IR in the leptomeninges was localized to granule cells, where it co-localized with GAD67-IR after electrical stimulation. The nestin-positive granule cells in the leptomeninges, especially around the emissary vein, were proliferative. However, nestin-IR in the neocortical parenchyma was expressed in NG2 glia and did not co-localize with GAD67-IR. Deletion of nestin-positive cells resulted in a high susceptibility to electrical stimulation. Consequently, almost all of the mice died or dropped out during kindling progression in 20 days, from naturally generated epileptic seizure or exhaustion. We speculate that the nestin-positive cells activated by amygdala kindling may involve in the protection of the brain from epilepsy.
Collapse
Affiliation(s)
- Shogo Ninomiya
- Department of Morphological Neural Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jackson JR, Eaton WW, Cascella NG, Fasano A, Kelly DL. Neurologic and psychiatric manifestations of celiac disease and gluten sensitivity. Psychiatr Q 2012; 83:91-102. [PMID: 21877216 PMCID: PMC3641836 DOI: 10.1007/s11126-011-9186-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Celiac Disease (CD) is an immune-mediated disease dependent on gluten (a protein present in wheat, rye or barley) that occurs in about 1% of the population and is generally characterized by gastrointestinal complaints. More recently the understanding and knowledge of gluten sensitivity (GS), has emerged as an illness distinct from celiac disease with an estimated prevalence 6 times that of CD. Gluten sensitive people do not have villous atrophy or antibodies that are present in celiac disease, but rather they can test positive for antibodies to gliadin. Both CD and GS may present with a variety of neurologic and psychiatric co-morbidities, however, extraintestinal symptoms may be the prime presentation in those with GS. However, gluten sensitivity remains undertreated and underrecognized as a contributing factor to psychiatric and neurologic manifestations. This review focuses on neurologic and psychiatric manifestations implicated with gluten sensitivity, reviews the emergence of gluten sensitivity distinct from celiac disease, and summarizes the potential mechanisms related to this immune reaction.
Collapse
Affiliation(s)
- Jessica R Jackson
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Box 21247, Baltimore, MD 21228, USA
| | | | | | | | | |
Collapse
|
8
|
Rotondo A, Serio R, Mulè F. Functional evidence for different roles of GABAA and GABAB receptors in modulating mouse gastric tone. Neuropharmacology 2010; 58:1033-7. [PMID: 20080114 DOI: 10.1016/j.neuropharm.2010.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/19/2009] [Accepted: 01/08/2010] [Indexed: 11/26/2022]
Abstract
The aims of the present study were to investigate, using mouse whole stomach in vitro, the effects of gamma-aminobutyric acid (GABA) and GABA receptor agonists on the spontaneous gastric tone, to examine the subtypes of GABA receptors involved in the responses and to determine the possible site(s) of action. GABA induced gastric relaxation, which was antagonized by the GABA(A)-receptor antagonist, bicuculline, potentiated by phaclofen, GABA(B)-receptor antagonist, but not affected by 1,2,5,6-Tetrahydropyridin-4-yl methylphosphinic acid hydrate (TPMPA), GABA(C)-receptor antagonist. Muscimol, GABA(A)-receptor agonist, mimicked GABA effects inducing relaxation, which was significantly reduced by bicuculline, N omega-nitro-L-arginine methyl ester (L-NAME), inhibitor of NO synthase or apamin, inhibitor of small conductance Ca(2+)-dependent K(+) channels, which blocks the purinergic transmission in this preparation. It was abolished by tetrodotoxin (TTX) or l-NAME plus apamin. Baclofen, a specific GABA(B)-receptor agonist, induced an increase in the gastric tone, which was antagonized by phaclofen and abolished by TTX or atropine. Bicuculline, but not phaclofen or TPMPA, per se induced an increase in gastric tone, which was prevented by L-NAME. In conclusion, our results suggest that GABA is involved in the regulation of mouse gastric tone, through modulation of intrinsic neurons. Activation of GABA(A)-receptors mediates relaxation through neural release of NO and neurotransmitters, activating Ca(2+)-dependent K(+) channels, likely purines, while activation of GABA(B)-receptors leads to contraction through acetylcholine release.
Collapse
Affiliation(s)
- Alessandra Rotondo
- Dipartimento di Biologia cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | | |
Collapse
|
9
|
Zizzo MG, Mulè F, Serio R. Functional evidence for GABA as modulator of the contractility of the longitudinal muscle in mouse duodenum: Role of GABAA and GABAC receptors. Neuropharmacology 2007; 52:1685-90. [PMID: 17517423 DOI: 10.1016/j.neuropharm.2007.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/19/2007] [Accepted: 03/28/2007] [Indexed: 11/23/2022]
Abstract
We investigated, in vitro, the effects of gamma-aminobutyric acid (GABA) on the spontaneous mechanical activity of the longitudinal smooth muscle in mouse duodenum. GABA induced an excitatory effect, consisting in an increase in the basal tone, which was antagonized by the GABA(A)-receptor antagonist, bicuculline, potentiated by (1,2,5,6-Tetrahydropyridin-4-yl)methylphosphinic acid hydrate (TPMPA), a GABA(C)-receptor antagonist and it was not affected by phaclofen, a GABA(B)-receptor antagonist. Muscimol, GABA(A) receptor agonist, induced a contractile effect markedly reduced by bicuculline, tetrodotoxin (TTX), hexamethonium and atropine. Cis-4-aminocrotonic acid (CACA), a specific GABA(C) receptor agonist, induced an inhibitory effect, consisting in the reduction of the amplitude of the spontaneous contractions and muscular relaxation, which was antagonised by TPMPA, GABA(C)-receptor antagonist, TTX or N(omega)-nitro-l-arginine methyl ester (L-NAME), nitric oxide (NO) synthase inhibitor, but not affected by hexamethonium. In conclusion, our study indicates that GABA is a modulator of mechanical activity of longitudinal muscle in mouse duodenum. GABA may act through neuronal presynaptic receptors, namely GABA(A) receptors, leading to the release of ACh from excitatory cholinergic neurons, and GABA(C) receptors increasing the release of NO from non-adrenergic, non-cholinergic inhibitory neurons.
Collapse
Affiliation(s)
- Maria Grazia Zizzo
- Dipartimento di Biologia Cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | | |
Collapse
|
10
|
Park SY, Shin CY, Song HJ, Min YS, La Hyen O, Lee JW, Kim DY, Je HD, Sohn UD. Electrically stimulated relaxation is not mediated by GABA in cat lower esophageal sphincter muscle. Arch Pharm Res 2006; 29:400-4. [PMID: 16756085 DOI: 10.1007/bf02968590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study examined the effect of Gamma-Amino butyric acid (GABA) and selective GABA receptor related drugs on the electrically stimulated relaxation in the lower esophageal sphincter muscle (LES) of a cat. Tetrodotoxin (10(-6) M) suppressed the electrically stimulated (0.5-5 Hz) relaxation of the LES. However, guanethidine (10(-6) M) and atropine (10(-6) M) had no effect indicating that the relaxations were neurally mediated via the nonadrenergic and noncholinergic (NANC) pathways. NG-nitro-L-arginine methyl ester (10(-4) M, L-NAME) also inhibited the relaxant response but did not completely abolish the electrically stimulated relaxation with 60 % inhibition, which suggests the involvement of nitric oxide as an inhibitory transmitter. This study examined the role of GABA, an inhibitory neurotransmitter, on neurally mediated LES relaxation. GABA (10(-3)-10(-5) M, non selective receptor agonist), muscimol (10(-3)-10(-5) M, GABA-A agonist), and baclofen (10(-3)-10(-5) M, GABA-B agonist) had no significant effect on the electrically stimulated relaxation. Moreover, bicuculline (10(-5) M, GABA-A antagonist) and phaclofen (10(-5) M, GABA-B antagonist) had no inhibitory effect on the electrically stimulated relaxation. This suggests that GABA and the GABA receptor are not involved in the electrically stimulated NANC relaxation in the cat LES.
Collapse
Affiliation(s)
- Sun Young Park
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul 156-756, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tian Q, Hu HZ, Ma LQ, Wang CD, Wang XM, Liang HM. Effect of γ-aminobutyric acid on spontaneous contraction of ileum smooth muscle in mice. Shijie Huaren Xiaohua Zazhi 2005; 13:1981-1984. [DOI: 10.11569/wcjd.v13.i16.1981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of γ-aminobutyric acid (GABA) on the spontaneous contraction of mouse ileac smooth muscle and the interactions between GABA and β-receptor and nitric oxide (NO).
METHODS: The contraction changes of the isolated smooth muscle stripswere recorded by tension transducer, and the change of the tension was used as the marker to evaluate the effects of GABA. The effects of ODQ, L-NNA, propranolol on the action of GABA were also analyzed. .
RESULTS: GABA inhibited the spontaneous contraction of mouse ileum at the concentrations ranging from 1×10-6 to 1×10-3 mol/L. The contraction amplitudes were decreased by (34.71±7.35)% and (22.23±4.69)%, respectively, when 1×10-6 and 1×10-3 mol/L GABA were used. Picrotoxin showed no significant effect on the inhibitory actions caused by GABA. The effects of GABA on the spontaneous contraction were decreased in the presence of L-NNA or ODQ. L-Arg (5×10-7 mol/L) decreased the effect of GABA at the concentration of 1×10-6 mol/L, but not at the concentration of 1×10-3 mol/L. Propranolol (3×10-6 mol/L) reduced the effect of GABA on the contraction of mouse ileac smooth muscle.
CONCLUSION: GABA inhibits the spontaneous contraction of mouse ileac smooth muscle. This effect, which is influenced by the excitation of β-receptor may need the participation of cGMP and NO.
Collapse
|
12
|
Hadjivassiliou M, Williamson CA, Woodroofe N. The immunology of gluten sensitivity: beyond the gut. Trends Immunol 2004; 25:578-82. [PMID: 15489185 DOI: 10.1016/j.it.2004.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Marios Hadjivassiliou
- Department of Neurology, The Royal Hallamshire Hospital, Glossop Road, Sheffield, UK, S10 2JF.
| | | | | |
Collapse
|
13
|
Bayer S, Jellali A, Crenner F, Aunis D, Angel F. Functional evidence for a role of GABA receptors in modulating nerve activities of circular smooth muscle from rat colon in vitro. Life Sci 2003; 72:1481-93. [PMID: 12535716 DOI: 10.1016/s0024-3205(02)02413-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the enteric nervous system, activation of neuronal GABA(A)- and GABA(B)-receptors has been shown to modulate neuronal activity. The consequences of this modulation depend on the location in the gastrointestinal tract or the animal species studied. These data illustrate the complexity of GABA-induced effects. Furthermore, the GABA(C)-receptor has been identified in a neuroendocrine cell line suggesting a modulating role of this third type of GABA receptor in intestinal functions. Therefore, the modulating role of GABA-receptor agonists was determined in circular preparations of rat distal colon during electrical nerve stimulation (NS) in vitro. Mechanical response to NS was characterized by a relaxation followed at the end of the stimulation by an off-contraction. In normal Krebs solution (basal conditions), muscimol and baclofen, respectively GABA(A)- and GABA(B)-agonists, induced a significant increase of the electrically induced off-contraction. The GABA(C) agonist, CACA, showed no significant effect on the response to NS. Excitatory effects of muscimol on the off-contraction were abolished in the presence of atropine. Furthermore, in the presence of atropine, muscimol increased the amplitude of the electrically induced relaxation; similarly the baclofen-induced increase of off-contraction amplitude was significantly lower than that observed in control conditions. Baclofen and muscimol effects on the off-contraction were abolished in the presence of hexamethonium or guanethidine. Furthermore, muscimol and baclofen did not induce any significant change on the response to NS in the presence of L-NAME and apamin together. Thus, it seems that in rat distal colon, GABA regulates significantly both excitatory (through GABA(A)- and GABA(B)-receptors) and inhibitory (through GABA(A)-receptors) neuronal activities. We also gave evidence for a possible interplay between GABAergic intrinsic neurons and adrenergic nerve terminals. Finally, it is shown for the first time the presence of the GABA vesicular transporter (VIAAT) around myenteric ganglia of rat colon.
Collapse
Affiliation(s)
- Sophie Bayer
- INSERM Unit 338. Groupe de Neurogastroentérologie. Pavillon Poincaré. Hôpital Civil, 67000, Strasbourg, France
| | | | | | | | | |
Collapse
|
14
|
Abstract
Enteric glial cells (EGCs) represent an extensive but relatively poorly described cell population within the gastrointestinal tract. Accumulating data suggest that EGCs represent the morphological and functional equivalent of CNS astrocytes within the enteric nervous system (ENS). The EGC network has trophic and protective functions toward enteric neurons and is fully implicated in the integration and the modulation of neuronal activities. Moreover, EGCs seem to be active elements of the ENS during intestinal inflammatory and immune responses, sharing with astrocytes the ability to act as antigen-presenting cells and interacting with the mucosal immune system via the expression of cytokines and cytokine receptors. Transgenic mouse systems have demonstrated that specific ablation of EGC by chemical ablation or autoimmune T-cell targeting induces an intestinal pathology that shows similarities to the early intestinal immunopathology of Crohn's disease. EGCs may also share with astrocytes the ability to regulate tissue integrity, thereby postulating that similar interactions to those observed for the blood-brain barrier may also be partly responsible for regulating mucosal and vascular permeability in the gastrointestinal tract. Disruption of the EGC network in Crohn's disease patients may represent one possible cause for the enhanced mucosal permeability state and vascular dysfunction that are thought to favor mucosal inflammation.
Collapse
Affiliation(s)
- Julie Cabarrocas
- Institut National de la Santé et de la Recherche Médicale U546, Pitié-Salpêtrière Hospital, Paris, France
| | | | | |
Collapse
|
15
|
Bayer S, Crenner F, Aunis D, Angel F. Effects of GABA on circular smooth muscle spontaneous activities of rat distal colon. Life Sci 2002; 71:911-25. [PMID: 12084388 DOI: 10.1016/s0024-3205(02)01771-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
GABAergic regulation of intestinal motility through the modulation of non-adrenergic non-cholinergic (NANC) neurons remains poorly understood especially in rat colon where very few studies have been undertaken. Therefore, the effects of GABA on circular preparations of rat distal colon were investigated using classical organ bath chambers to record spontaneous mechanical activities (SMA). SMA was characterized by the occurrence of rhythmic phasic contractions (type-I) or by spontaneously occurring large contractions superimposed on small rhythmic contractions (type-II). In the presence of atropine and guanethidine (NANC conditions), these large contractions were inhibited by bicuculline, a GABA(A)-receptor antagonist as well as by TTX, L-NAME and apamin together, or L 732-138, a NK1-receptor antagonist. In NANC conditions, GABA induced a transient monophasic relaxation or a biphasic effect characterized by a relaxation followed by a tonic contraction in both type-I and -II preparations. Both the inhibitory and excitatory effects of GABA were blocked by TTX and L-NAME + apamin; the GABA-induced contraction was also sensitive to L 732-138. The responses to GABA were mimicked by the GABA(A)-receptor agonist, muscimol, whereas baclofen and CACA, respectively GABA(B) and GABA(C)-receptors agonists showed no effect. These results demonstrated that only GABA(A)-receptors seem to be involved in the regulation of SMA in rat distal colon in NANC conditions. Release of NANC inhibitory transmitter (NO and probably ATP) and NANC excitatory transmitter (maybe substance P) might be involved.
Collapse
Affiliation(s)
- S Bayer
- INSERM Unité 338. Groupe de Neurogastroentérologie. Pavillon Poincaré. Hôpital Civil. 67000 Strasbourg, France
| | | | | | | |
Collapse
|
16
|
Buss K, Drewke C, Lohmann S, Piwonska A, Leistner E. Properties and interaction of heterologously expressed glutamate decarboxylase isoenzymes GAD(65kDa) and GAD(67kDa) from human brain with ginkgotoxin and its 5'-phosphate. J Med Chem 2001; 44:3166-74. [PMID: 11543686 DOI: 10.1021/jm010868f] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two isoforms of glutamate decarboxylase (GAD(65kDa) and GAD(67kDa)) from human brain, which had previously been overexpressed in Escherichia coli as fusion proteins containing a glutathione-S-transferase domain, were purified by affinity chromatography on glutathione Sepharose 4B. Both isoforms were also expressed in Saccharomyces cerevisiae. After modification of a HPLC based assay, the enzymes were characterized with respect to their biochemical properties. Comparison of kinetic data, pH, and temperature optima as well as of the mode of interaction with pyridoxal phosphate as a cofactor revealed several significant differences between the two isoenzymes reflecting their somewhat different physiological and molecular features. Investigation of the influence of 4'-O-methylpyridoxine (ginkgotoxin) (1), a neurotoxin occurring in Ginkgo biloba L., on the different isoenzymes, indicates that the phosphorylated form of the toxin, 4'-O-methylpyridoxine-5'-phosphate (2), decreases GAD(65kDa) activity, although in unphysiologically high concentrations, whereas GAD(67kDa) activity seems to be hardly affected.
Collapse
Affiliation(s)
- K Buss
- Institut für Pharmazeutische Biologie, Universität Bonn, Nussallee 6, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
17
|
Bosma PT, Blázquez M, Fraser EJ, Schulz RW, Docherty K, Trudeau VL. Sex steroid regulation of glutamate decarboxylase mRNA expression in goldfish brain is sexually dimorphic. J Neurochem 2001; 76:945-56. [PMID: 11181814 DOI: 10.1046/j.1471-4159.2001.00086.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Testosterone and oestradiol can modulate GABA synthesis in sexually regressed goldfish. Here we investigated their effects on the mRNA expression of two isoforms of the GABA synthesizing enzyme glutamate decarboxylase (GAD(65) and GAD(67), EC 4.1.1.15). Full-length GAD clones were isolated from a goldfish cDNA library and sequenced. Goldfish GAD(65) encodes a polypeptide of 583 amino acid residues, which is 77% identical to human GAD(65). Goldfish GAD(67) encodes a polypeptide of 587 amino acid residues and is 82% identical to human GAD(67). Goldfish GAD(65) and GAD(67) are 63% identical. Sexually regressed male and female goldfish were implanted with solid silastic pellets containing testosterone, oestradiol or no steroid. Semiquantitative PCR analysis showed that oestradiol significantly increased GAD(65) mRNA expression in female hypothalamus and telencephalon, while testosterone resulted in a significant increase only in telencephalon. GAD(67) mRNA levels were not affected by steroids in females. In contrast, both steroids induced significant decreases of GAD(65) and GAD(67) mRNA levels in male hypothalamus, but had no effect on GAD mRNA expression in male telencephalon. Our results indicate that modulation of GAD mRNA expression is a possible mechanism for steroid action on GABA synthesis, which may have opposite effects in males and females.
Collapse
Affiliation(s)
- P T Bosma
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | | | | | |
Collapse
|
18
|
Glassmeier G, Herzig KH, Höpfner M, Lemmer K, Jansen A, Scherubl H. Expression of functional GABAA receptors in cholecystokinin-secreting gut neuroendocrine murine STC-1 cells. J Physiol 1998; 510 ( Pt 3):805-14. [PMID: 9660895 PMCID: PMC2231074 DOI: 10.1111/j.1469-7793.1998.805bj.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/1997] [Accepted: 04/17/1998] [Indexed: 12/17/2022] Open
Abstract
1. Gastrointestinal neuroendocrine (NE) cells synthesize, store and secrete gamma-aminobutyric acid (GABA). Recently, an autocrine-paracrine function of GABA has been proposed for secretion from NE cells. 2. To search for functional GABAA receptors in NE gut cells, we performed whole-cell and perforated-patch-clamp studies in the intestinal cholecystokinin (CCK)-secreting NE cell line STC-1. 3. Application of GABA evoked currents in STC-1 cells. These effects were mimicked by muscimol, an agonist of GABAA receptors, and blocked by picrotoxin or bicuculline, antagonists of GABAA receptors. The GABA- or muscimol-activated currents reversed near 0 mV, which under the recording conditions used was consistent with the activation of the GABAA receptor-Cl- channel complex. 4. In contrast to the effect on most neurons, GABA as well as muscimol led to a (reversible) depolarization of the membrane potential of STC-1 cells. Membrane depolarization in turn activated voltage-gated Ca2+ channels and increased intracellular Ca2+ concentrations in STC-1 cells. 5. In accordance with the observed membrane depolarization and activation of voltage-gated Ca2+ channels, both GABA and muscimol stimulated Ca2+-dependent CCK release. In contrast, bicuculline inhibited the GABA-induced secretion of CCK. 6. Using the reverse transcription-polymerase chain reaction (RT-PCR), mRNA of the GABAA receptor subunits alpha2, alpha3, alpha5, beta1, beta3 and delta could be detected in STC-1 cells. 7. In summary, we have shown that the CCK-secreting gut NE cell line STC-1 expresses functional GABAA receptors and that GABA stimulates CCK release. Thus, GABA is involved in the fine tuning of CCK secretion from the gut NE cell line STC-1.
Collapse
Affiliation(s)
- G Glassmeier
- Department of Gastroenterology, Universitatsklinikum Benjamin Franklin, Freie Universitat Berlin, Germany
| | | | | | | | | | | |
Collapse
|