1
|
Guerriero C, Fanfarillo R, Mancini P, Sterbini V, Guarguaglini G, Sforna L, Michelucci A, Catacuzzeno L, Tata AM. M2 muscarinic receptors negatively modulate cell migration in human glioblastoma cells. Neurochem Int 2024; 174:105673. [PMID: 38185384 DOI: 10.1016/j.neuint.2023.105673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
Glioblastoma (GB) is a very aggressive human brain tumor. The high growth potential and invasiveness make this tumor surgically and pharmacologically untreatable. Our previous work demonstrated that the activation of the M2 muscarinic acetylcholine receptors (M2 mAChRs) inhibited cell proliferation and survival in GB cell lines and in the cancer stem cells derived from human biopsies. The aim of the present study was to investigate the ability of M2 mAChR to modulate cell migration in two different GB cell lines: U87 and U251. By wound healing assay and single cell migration analysis performed by time-lapse microscopy, we demonstrated the ability of M2 mAChRs to negatively modulate cell migration in U251 but not in the U87 cell line. In order to explain the different effects observed in the two cell lines we have evaluated the possible involvement of the intermediate conductance calcium-activated potassium (IKCa) channel. IKCa channel is present in the GB cells, and it has been demonstrated to modulate cell migration. Using the perforated patch-clamp technique we have found that selective activation of M2 mAChR significantly reduced functional density of the IKCa current in U251 but not in U87 cells. To understand whether the M2 mAChR mediated reduction of ion channel density in the U251 cell line was relevant for the cell migration impairment, we tested the effects of TRAM-34, a selective inhibitor of the IKCa channel, in wound healing assay. We found that it was able to markedly reduce U251 cell migration and significantly decrease the number of invadopodia-like structure formations. These results suggest that only in U251 cells the reduced cell migration M2 mAChR-mediated might involve, at least in part, the IKCa channel.
Collapse
Affiliation(s)
- Claudia Guerriero
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185, Rome, Italy.
| | - Rachele Fanfarillo
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185, Rome, Italy.
| | - Patrizia Mancini
- Department Experimental Medicine, Sapienza University of Rome, 00185, Rome, Italy.
| | | | | | - Luigi Sforna
- Department of Chemistry Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - Antonio Michelucci
- Department of Chemistry Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - Luigi Catacuzzeno
- Department of Chemistry Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - Ada Maria Tata
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185, Rome, Italy; Research Centre of Neurobiology Daniel Bovet, Sapienza University of Rome, 00185, Rome, Italy.
| |
Collapse
|
2
|
Di Bari M, Tombolillo V, Alessandrini F, Guerriero C, Fiore M, Asteriti IA, Castigli E, Sciaccaluga M, Guarguaglini G, Degrassi F, Tata AM. M2 Muscarinic Receptor Activation Impairs Mitotic Progression and Bipolar Mitotic Spindle Formation in Human Glioblastoma Cell Lines. Cells 2021; 10:cells10071727. [PMID: 34359896 PMCID: PMC8306299 DOI: 10.3390/cells10071727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Glioblastoma multiforme (GBM) is characterized by several genetic abnormalities, leading to cell cycle deregulation and abnormal mitosis caused by a defective checkpoint. We previously demonstrated that arecaidine propargyl ester (APE), an orthosteric agonist of M2 muscarinic acetylcholine receptors (mAChRs), arrests the cell cycle of glioblastoma (GB) cells, reducing their survival. The aim of this work was to better characterize the molecular mechanisms responsible for this cell cycle arrest. Methods: The arrest of cell proliferation was evaluated by flow cytometry analysis. Using immunocytochemistry and time-lapse analysis, the percentage of abnormal mitosis and aberrant mitotic spindles were assessed in both cell lines. Western blot analysis was used to evaluate the modulation of Sirtuin2 and acetylated tubulin—factors involved in the control of cell cycle progression. Results: APE treatment caused arrest in the M phase, as indicated by the increase in p-HH3 (ser10)-positive cells. By immunocytochemistry, we found a significant increase in abnormal mitoses and multipolar mitotic spindle formation after APE treatment. Time-lapse analysis confirmed that the APE-treated GB cells were unable to correctly complete the mitosis. The modulated expression of SIRT2 and acetylated tubulin in APE-treated cells provides new insights into the mechanisms of altered mitotic progression in both GB cell lines. Conclusions: Our data show that the M2 agonist increases aberrant mitosis in GB cell lines. These results strengthen the idea of considering M2 acetylcholine receptors a novel promising therapeutic target for the glioblastoma treatment.
Collapse
Affiliation(s)
- Maria Di Bari
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; (M.D.B.); (V.T.); (F.A.); (C.G.)
| | - Vanessa Tombolillo
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; (M.D.B.); (V.T.); (F.A.); (C.G.)
| | - Francesco Alessandrini
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; (M.D.B.); (V.T.); (F.A.); (C.G.)
| | - Claudia Guerriero
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; (M.D.B.); (V.T.); (F.A.); (C.G.)
| | - Mario Fiore
- Institute of Molecular Biology and Pathology, CNR, 00185 Rome, Italy; (M.F.); (I.A.A.); (G.G.); (F.D.)
| | - Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, CNR, 00185 Rome, Italy; (M.F.); (I.A.A.); (G.G.); (F.D.)
| | - Emilia Castigli
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06100 Perugia, Italy;
| | - Miriam Sciaccaluga
- Department of Medicine and Surgery, University of Perugia, 06100 Perugia, Italy;
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, CNR, 00185 Rome, Italy; (M.F.); (I.A.A.); (G.G.); (F.D.)
| | - Francesca Degrassi
- Institute of Molecular Biology and Pathology, CNR, 00185 Rome, Italy; (M.F.); (I.A.A.); (G.G.); (F.D.)
| | - Ada Maria Tata
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; (M.D.B.); (V.T.); (F.A.); (C.G.)
- Research Centre of Neurobiology Daniel Bovet, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
3
|
Español A, Salem A, Sanchez Y, Sales ME. Breast cancer: Muscarinic receptors as new targets for tumor therapy. World J Clin Oncol 2021; 12:404-428. [PMID: 34189066 PMCID: PMC8223712 DOI: 10.5306/wjco.v12.i6.404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
The development of breast cancer is a complex process that involves the participation of different factors. Several authors have demonstrated the overexpression of muscarinic acetylcholine receptors (mAChRs) in different tumor tissues and their role in the modulation of tumor biology, positioning them as therapeutic targets in cancer. The conventional treatment for breast cancer involves surgery, radiotherapy, and/or chemotherapy. The latter presents disadvantages such as limited specificity, the appearance of resistance to treatment and other side effects. To prevent these side effects, several schedules of drug administration, like metronomic therapy, have been developed. Metronomic therapy is a type of chemotherapy in which one or more drugs are administered at low concentrations repetitively. Recently, two chemotherapeutic agents usually used to treat breast cancer have been considered able to activate mAChRs. The combination of low concentrations of these chemotherapeutic agents with muscarinic agonists could be a useful option to be applied in breast cancer treatment, since this combination not only reduces tumor cell survival without affecting normal cells, but also decreases pathological neo-angiogenesis, the expression of drug extrusion proteins and the cancer stem cell fraction. In this review, we focus on the previous evidences that have positioned mAChRs as relevant therapeutic targets in breast cancer and analyze the effects of administering muscarinic agonists in combination with conventional chemotherapeutic agents in a metronomic schedule.
Collapse
Affiliation(s)
- Alejandro Español
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Agustina Salem
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Yamila Sanchez
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - María Elena Sales
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
4
|
|
5
|
Perry C, Sklan EH, Soreq H. CREB regulates AChE-R-induced proliferation of human glioblastoma cells. Neoplasia 2004; 6:279-86. [PMID: 15153340 PMCID: PMC1502102 DOI: 10.1593/neo.3424] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 12/09/2003] [Accepted: 12/11/2003] [Indexed: 11/18/2022]
Abstract
The cyclic adenosine monophosphate (AMP) response element-binding protein, CREB, often modulates stress responses. Here, we report that CREB suppresses the glioblastoma proliferative effect of the stress-induced acetylcholinesterase variant, AChE-R. In human U87MG glioblastoma cells, AChE-R formed a triple complex with protein kinase C (PKC) epsilon and the scaffold protein RACK1, enhanced PKCepsilon phosphorylation, and facilitated BrdU incorporation. Either overexpressed CREB, or antisense destruction of AChE-R mRNA, PKC, or protein kinase A (PKA) inhibitors-but not CREB combined with PKC inhibition suppressed-this proliferation, suggesting that CREB's repression of this process involves a PKC-mediated pathway, whereas impaired CREB regulation allows AChE-R-induced, PKA-mediated proliferation of glioblastoma tumors.
Collapse
Affiliation(s)
- Chava Perry
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Hematology, The Tel-Aviv Sourasky Medical Center-Tel Aviv and Tel-Aviv University, Tel-Aviv 64239, Israel
| | - Ella H Sklan
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Hermona Soreq
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
6
|
Guizzetti M, Bordi F, Dieguez-Acuña FJ, Vitalone A, Madia F, Woods JS, Costa LG. Nuclear factor kappaB activation by muscarinic receptors in astroglial cells: effect of ethanol. Neuroscience 2003; 120:941-50. [PMID: 12927200 DOI: 10.1016/s0306-4522(03)00401-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of muscarinic receptors leads to proliferation of astroglial cells and this effect is inhibited by ethanol. Among the intracellular pathways involved in the mitogenic action of muscarinic agonists, activation of the atypical protein kinase C zeta (PKC zeta) appears to be of most importance, and is also affected by low ethanol concentrations. PKC zeta has been reported to activate nuclear factor kappaB (NF-kappaB), a transcription factor that has been shown to play an important role in cell proliferation. The aim of this study was, therefore, to determine whether muscarinic receptors would activate NF-kappaB in astroglial cells, whether such activation would play a role in the mitogenic action of muscarinic agonists, and whether it would represent a possible target for ethanol. Carbachol activated NF-kappaB in human 1321N1 astrocytoma cells, as evidenced by translocation of the p65 subunit of NF-kappaB to the nucleus, phosphorylation and degradation of IkappaBalpha in the cytosol, and increase NF-kappaB binding to DNA. Carbachol also induced translocation of p65 to the nucleus in primary rat astrocytes. Carbachol-induced NF-kappaB activation was mediated by the M3 subtype of muscarinic receptors and appeared to involve Ca(2+) mobilization and activation of PKC epsilon and PKC zeta, but not PI3-kinase and mitogen-activated protein kinase. The NF-kappaB peptide inhibitor SN50, but not the inactive peptide SN50M, strongly inhibited carbachol-induced astrocytoma cells proliferation and p65 translocation to the nucleus. Increased DNA synthesis was also antagonized by the IkappaBalpha kinase inhibitor BAY 11-7082. Ethanol (25-100 mM) inhibited the translocation of p65 and the binding of NF-kappaB to DNA in both 1321N1 astrocytoma cells and primary rat cortical astrocytes. Together, these results suggest that activation of NF-kappaB by muscarinic receptors in astroglial cells is important for carbachol-induced DNA synthesis and that ethanol-mediated inhibition of cell proliferation may be due in part to inhibition of NF-kappaB activation.
Collapse
Affiliation(s)
- M Guizzetti
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way Northeast 100, Seattle, WA 98105, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Runx1/AML1, a chromosome 21q22 hematopoietic regulator, is frequently translocated in leukemia. Its protein product, a relatively weak transcriptional activator, becomes an effective transcriptional enhancer or repressor, when co-operating with transcriptional co-activators or co-repressors. Runx1/AML1 association with its partners is disrupted in leukemia. For example, Runx1/AML1 mutations and translocations (e.g. t(8;21), t(12;21) and t(3;21)) impair binding of Runx1/AML1-CBFbeta complexes to Runt motifs in myelopoietically active promoters, preventing normal hematopoiesis. However, Runx1/AML1-associated translocations are not leukemogenic in animal models, suggesting the involvement of yet unidentified regulatory proteins. New candidates are cholinesterases, inhibition of which increases leukemic risk in a manner potentially associated with Runx1/AML1.
Collapse
Affiliation(s)
- Chava Perry
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
8
|
Costa LG, Guizzetti M, Oberdoerster J, Yagle K, Costa-Mallen P, Tita B, Bordi F, Vitalone A, Palmery M, Valeri P. Modulation of DNA synthesis by muscarinic cholinergic receptors. Growth Factors 2001; 18:227-36. [PMID: 11519822 DOI: 10.3109/08977190109029112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Acetylcholine muscarinic receptors are a family of five G-protein-coupled receptors widely distributed in the central nervous system and in peripheral organs. Activation of certain subtypes of muscarinic receptors (M1, M3, M5) has been found to modulate DNA synthesis in a number of cell types. In several cell types acetylcholine, by activating endogenous or transfected muscarinic receptors, can indeed elicit cell proliferation. In other cell types, however, or under different experimental conditions, activation of muscarinic receptors has no effect, or inhibits DNA synthesis. A large number of intracellular pathways are being investigated to define the mechanisms involved in these effects of muscarinic receptors; these include among others, phospholipase D, protein kinases C and mitogen-activated-protein kinases. The ability of acetylcholine to modulate DNA synthesis through muscarinic receptors may be relevant in the context of brain development and neoplastic growth.
Collapse
Affiliation(s)
- L G Costa
- Department of Environmental Health, University of Washington, Seattle, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Grisaru D, Sternfeld M, Eldor A, Glick D, Soreq H. Structural roles of acetylcholinesterase variants in biology and pathology. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:672-86. [PMID: 10491113 DOI: 10.1046/j.1432-1327.1999.00693.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apart from its catalytic function in hydrolyzing acetylcholine, acetylcholinesterase (AChE) affects cell proliferation, differentiation and responses to various insults, including stress. These responses are at least in part specific to the three C-terminal variants of AChE which are produced by alternative splicing of the single ACHE gene. 'Synaptic' AChE-S constitutes the principal multimeric enzyme in brain and muscle; soluble, monomeric 'readthrough' AChE-R appears in embryonic and tumor cells and is induced under psychological, chemical and physical stress; and glypiated dimers of erythrocytic AChE-E associate with red blood cell membranes. We postulate that the homology of AChE to the cell adhesion proteins, gliotactin, glutactin and the neurexins, which have more established functions in nervous system development, is the basis of its morphogenic functions. Competition between AChE variants and their homologs on interactions with the corresponding protein partners would inevitably modify cellular signaling. This can explain why AChE-S exerts process extension from cultured amphibian, avian and mammalian glia and neurons in a manner that is C-terminus-dependent, refractory to several active site inhibitors and, in certain cases, redundant to the function of AChE-like proteins. Structural functions of AChE variants can explain their proliferative and developmental roles in blood, bone, retinal and neuronal cells. Moreover, the association of AChE excess with amyloid plaques in the degenerating human brain and with progressive cognitive and neuromotor deficiencies observed in AChE-transgenic animal models most likely reflects the combined contributions of catalytic and structural roles.
Collapse
Affiliation(s)
- D Grisaru
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University, Jerusalem, 91904 Israel
| | | | | | | | | |
Collapse
|
10
|
Whittle IR, Marston HM. Progressive focal neurological dysfunction following experimental implantation glioma. Neuroreport 1997; 8:1149-53. [PMID: 9175103 DOI: 10.1097/00001756-199703240-00018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One of the difficulties in understanding peritumoural brain dysfunction is the lack of defined clinical deficits in experimental glioma models. In this study progressive focal neurological dysfunction was measured using the staircase test in rodents subjected to striatal implantation of C6 glioma cells. After 22 days none of the animals, all of which had cortico-striatal tumours ranging in size from 93 to 140 mm3, showed any obvious gross behavioural abnormality. However, contralateral forelimb function was significantly worse than that before surgery by day 7 (p < 0.01) and worse than sham-implanted animals by day 12 (p < 0.01). Using this experimental paradigm the staircase test can be used to measure progressive focal neurological deterioration and evaluate both the mechanisms of, and therapies for peritumoural brain dysfunction.
Collapse
Affiliation(s)
- I R Whittle
- Department of Clinical Neurosciences, Western General Hospital, University of Edinburgh, UK
| | | |
Collapse
|
11
|
Lang L, Aloj L, Kiesewetter DO, Jagoda E, Lee JT, Paik CH, Carrasquillo JA, Eckelman WC. A review of new oncotropic tracers for PET imaging. Nucl Med Biol 1996; 23:669-72. [PMID: 8940707 DOI: 10.1016/0969-8051(96)00064-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have developed three biochemical probes to determine if they are sensitive probes of early biochemical change in a tumor. All three probes appear to have the appropriate properties for in vivo imaging, but must now be evaluated as probes for the sensitive detection of changes in early malignant disease.
Collapse
Affiliation(s)
- L Lang
- National Institutes of Health, Clinical Center, Bethesda, MD 20892-1180, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Marston HM, Faber ES, Crawford JH, Butcher SP, Sharkey J. Behavioural assessment of endothelin-1 induced middle cerebral artery occlusion in the rat. Neuroreport 1995; 6:1067-71. [PMID: 7632897 DOI: 10.1097/00001756-199505090-00029] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The behavioural effects of unilateral middle cerebral artery occlusion (MCAO) induced by perivascular injection of endothelin, and a unilateral excitotoxic lesion of the striatum, were explored using the staircase test of skilled paw-reaching in the rat. A profound bilateral impairment in pellet recovery, with a concomitant increase in pellet displacement, was observed in the MCAO group. By contrast the striatal lesion group exhibited a primarily contralateral impairment. The findings provide both further insight into the control of unilateral motor function and a reliable behavioural endpoint for the assessment of experimental stroke.
Collapse
Affiliation(s)
- H M Marston
- Fujisawa Institute of Neuroscience, Department of Pharmacology, University of Edinburgh, UK
| | | | | | | | | |
Collapse
|
13
|
Eckelman WC. The application of receptor theory to receptor-binding and enzyme-binding oncologic radiopharmaceuticals. Nucl Med Biol 1994; 21:759-69. [PMID: 9241652 DOI: 10.1016/0969-8051(94)90047-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The successful imaging of tumor biochemistry using a receptor binding radiotracer is related to the affinity constant and the receptor concentration. The target to nontarget ratio can be predicted by steady state equations using in vitro data, although this is a necessary but not sufficient upper limit. The prediction of the sensitivity of the radiopharmaceutical to changes in the tumor biochemistry is not possible with this evaluation.
Collapse
Affiliation(s)
- W C Eckelman
- PET Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Vandenberg SR, Herman MM, Rubinstein LJ. Embryonal central neuroepithelial tumors: current concepts and future challenges. Cancer Metastasis Rev 1987; 5:343-65. [PMID: 2882864 DOI: 10.1007/bf00055377] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
While the embryonal central neuroepithelial tumors present complex conceptual and clinical problems, advances in cell type identification by special neurohistological, immunohisto- and immunocytochemical techniques have permitted discrimination of distinct cytomorphogenetic entities. These are based in part on their resemblance to the normal phases of neurocytogenesis. Four of these tumors, medulloepithelioma, desmoplastic infantile ganglioglioma, pineoblastoma and medulloblastoma, are designated as multipotential in light of their capacity to undergo divergent differentiation. Cytomorphogenetic, clinical and experimental data implicate fetal neural cell targets for transformation and raise the possibility that aberrant developmental regulatory mechanisms may contribute to the biologic behavior of these tumors. Growth factors and some neuroregulatory neurotransmitters (such as serotonin) are known to act as modulators of normal neuromorphogenesis. They could play a regulatory role in central neuroepithelial tumors on the hypothesis that the aberrant behavior of the embryonal neoplasms could either be modified by functional receptor responses or result from abnormal receptor responses to these substances. Future challenges include the definition of new cytomorphogenetic entities and subgroups of the currently defined forms of embryonal CNS tumors based on the presence of specific growth factors and neuroregulatory neurotransmitters, or their receptors, the characterization of neoplastic receptor responses mediating any modulatory role of the presently known growth factors or neuroregulatory neurotransmitters on the growth and maturation potential of the embryonal central neuroepithelial tumors and the further definition of developmental, stage-specific modulators that might be operative in these tumors.
Collapse
|
15
|
|
16
|
Egozi Y, Sokolovsky M, Schejter E, Blatt I, Zakut H, Matzkel A, Soreq H. Divergent regulation of muscarinic binding sites and acetylcholinesterase in discrete regions of the developing human fetal brain. Cell Mol Neurobiol 1986; 6:55-70. [PMID: 3719620 PMCID: PMC11567358 DOI: 10.1007/bf00742976] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/1985] [Revised: 11/05/1985] [Accepted: 11/19/1985] [Indexed: 01/07/2023]
Abstract
The expression of muscarinic acetylcholine binding sites and of cholinesterases was studied in extracts prepared from discrete regions of the human fetal brain, between the gestational ages of 14 and 24 weeks. The specific binding of [3H]N-methyl-4-piperidyl benzilate [( 4H]-4NMPB) to muscarinic binding sites ranged between 0.05 and 1.30 pmol/mg protein in the different brain regions, with Kd values of 1.2 +/- 0.2 nM. Binding of the cholinergic agonist oxotremorine fitted, in most of the brain regions examined, with a two-site model for the muscarinic binding sites. The density of muscarinic binding sites increased with development in most regions, with different rates and onset times. It was higher by about sixfold in some areas destined to become cholinergic, such as the cortex and midbrain, than in noncholinergic areas such as the cerebellum. In other areas destined to become cholinergic, such as the hippocampus and the caudate putamen, the receptor density remained low. Average density values increased from 0.1 +/- 0.1 at 14 weeks up to 0.7 +/- 0.4 pmol/mg protein at 24 weeks. The variability in the specific activities of cholinesterase was relatively low, and extracts from different brain regions hydrolyzed from 5 to 30 nmol of [3H]acetylcholine/min/mg protein. These were mostly "true" acetylcholinesterase (EC 3.1.1.7) activities, inhibited by 10(-5) M BW284C51, with minor pseudocholinesterase (EC 3.1.1.8) activities, inhibited by 10(-5) M iso-OMPA. The enzyme from different brain regions and developmental stages displayed similar Km values toward [3H]acetylcholine (ca. 4 X 10(-4) M-1). The ontogenetic changes in cholinesterase specific activities had no unifying pattern and/or relationship to the cholinergic nature of the various brain areas. In most of the brain regions, the arbitrary ratio between the specific activity of cholinesterase and the density of muscarinic binding sites decreased with development, with average values and variability ranges of 83 +/- 50 and 19 +/- 19 at 14 and 24 weeks, respectively. Our findings suggest divergent regulation for cholinergic binding sites and cholinesterase in the fetal human brain and imply that the expression of muscarinic receptors is related to the development of cholinergic transmission, while acetylcholinesterase is also involved in other functions in the fetal human brain.
Collapse
|