1
|
van Heijningen S, Karapetsas G, van der Beek EM, van Dijk G, Schipper L. Early Life Exposure to a Diet With a Supramolecular Lipid Structure Close to That of Mammalian Milk Improves Early Life Growth, Skeletal Development, and Later Life Neurocognitive Function in Individually and Socially Housed Male C57BL/6J Mice. Front Neurosci 2022; 16:838711. [PMID: 35573304 PMCID: PMC9099012 DOI: 10.3389/fnins.2022.838711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Breastfeeding (duration) can be positively associated with infant growth outcomes as well as improved cognitive functions during childhood and later life stages. (Prolonged) exposure to optimal lipid quantity and quality, i.e., the supramolecular structure of lipids, in mammalian milk, may contribute to these beneficial effects through nutritional early-life programming. In this pre-clinical study, we exposed male C57BL/6J mice from post-natal Days 16 to 42 (i.e., directly following normal lactation), to a diet with large lipid droplets coated with bovine milk fat globule membrane-derived phospholipids, which mimic more closely the supramolecular structure of lipid droplets in mammalian milk. We investigated whether exposure to this diet could affect growth and brain development-related parameters. As these outcomes are also known to be affected by the post-weaning social environment in mice, we included both individually housed and pair-wise housed animals and studied whether effects of diet were modulated by the social environment. After Day 42, all the animals were fed standard semi-synthetic rodent diet. Growth and body composition were assessed, and the mice were subjected to various behavioral tests. Individual housing attenuated adolescent growth, reduced femur length, and increased body fat mass. Adult social interest was increased due to individual housing, while cognitive and behavioral alterations as a result of different housing conditions were modest. The diet increased adolescent growth and femur length, increased lean body mass, reduced adolescent anxiety, and improved adult cognitive performance. These effects of diet exposure were comparable between individually and socially housed mice. Hence, early life exposure to a diet with lipid droplets that mimic the supramolecular structure of those in mammalian milk may improve adolescent growth and alters brain function in both socially and individually housed mice. These findings suggest that lipid structure in infant milk formula may be a relevant target for nutritional solutions, targeting both healthy infants and infants facing growth challenges.
Collapse
Affiliation(s)
- Steffen van Heijningen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Giorgio Karapetsas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Eline M. van der Beek
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gertjan van Dijk
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Lidewij Schipper
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
- *Correspondence: Lidewij Schipper,
| |
Collapse
|
2
|
Custodio V, Rubio C, Paz C. Prenatal Ozone Exposure Induces Memory Deficiencies in Newborns Rats. Front Mol Neurosci 2019; 12:244. [PMID: 31680853 PMCID: PMC6802607 DOI: 10.3389/fnmol.2019.00244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022] Open
Abstract
Air pollution is fully acknowledged to represent a major public health issue. Toxic environmental substances, such as ozone, interfere with prenatal development. Animals exposed to ozone (O3) in utero develop biochemical and morphological alterations. This gas has been proven to decrease cognitive capacity in different species. In the present study, we assessed the possible alterations in memory and spatial learning in the offspring of female rats who were exposed to 1.0 ppm of O3 embryonic development. Two instruments were used to evaluate possible alterations: the T-maze and a Skinner box. MAPK, ERK, p-ERK, and NR2B proteins, which are widely regarded as responsible for the learning process in the hippocampus and cortex, were also assessed by immunohistochemistry. We found that male rats exposed to O3in utero displayed a significant delay to reach the correct response using the spatial learning test as compared to the control group. The female rats exposed to O3 showed a significant delay to reach the correct response as compared to the female control group in the Skinner box. We also found that while the male rats showed decrease in significant differences in the expression of NR2B, ERK and increase in MAPK. Females only showed increase in MAPK, p-ERK and decrease in ERK, when compared to their respective control group. It is possible that the deficits are associated to hormonal expression, inflammation and oxidative stress alterations. In summary, these results suggest that exposure to O3 can interfere with prenatal development, resulting in learning and memory deficiencies in rats.
Collapse
Affiliation(s)
- Verónica Custodio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Carmen Rubio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Carlos Paz
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| |
Collapse
|
3
|
Pinos H, Collado P, Salas M, Pérez-Torrero E. Early undernutrition decreases the number of neurons in the locus coeruleus of rats. Nutr Neurosci 2013; 9:233-9. [PMID: 17263090 DOI: 10.1080/10284150600937873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The effects of perinatal undernutrition on the number of neurons and apoptotic cells of the locus coeruleus (LC) of female and male rats at postpartum days 7, 12, 20, 30 and 60 were studied. Undernutrition reduces the number of neurons in both sexes without affecting cell death, as indicated by the ratio of apoptotic cells to neurons. The data suggest that in the undernourished groups lower rates of neurogenesis and proliferation (neurogenetic/proliferation rates) might avoid these animals achieving the number of LC neurons as in the control subjects. Although food restriction in both sexes apparently provokes the loss of cells, the effect does not appear to be equal in females and males, as shown by post weaning food rehabilitation. The results suggest that severe food deprivation may interfere with the ontogenetic processes underlying neuronal differentiation of the LC. Morphological damage in the LC due to undernutrition might alter the physiology of sexual and/or feeding behaviours in which this structure is implicated.
Collapse
Affiliation(s)
- Helena Pinos
- Departamento de Psicobiología, UNED, Juan del Rosal, 10, PO Box 60.148., CP 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
4
|
Shaffery JP, Allard JS, Manaye KF, Roffwarg HP. Selective rapid eye movement sleep deprivation affects cell size and number in kitten locus coeruleus. Front Neurol 2012; 3:69. [PMID: 22615706 PMCID: PMC3351802 DOI: 10.3389/fneur.2012.00069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/10/2012] [Indexed: 11/26/2022] Open
Abstract
Cells in the locus coeruleus (LC) constitute the sole source of norepinephrine (NE) in the brain and change their discharge rates according to vigilance state. In addition to its well established role in vigilance, NE affects synaptic plasticity in the postnatal critical period (CP) of development. One form of CP synaptic plasticity affected by NE results from monocular occlusion, which leads to physiological and cytoarchitectural alterations in central visual areas. Selective suppression of rapid eye movement sleep (REMS) in the CP kitten enhances the central effects of monocular occlusion. The mechanisms responsible for heightened cortical plasticity following REMS deprivation (REMSD) remain undetermined. One possible mediator of an increase in plasticity is continuous NE outflow, which presumably persists during extended periods of REMSD. Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the synthesis of NE and serves as a marker for NE-producing cells. We selectively suppressed REMS in kittens for 1 week during the CP. The number and size of LC cells expressing immunoreactivity to tyrosine hydroxylase (TH-ir) was assessed in age-matched REMS-deprived (RD)-, treatment–control (TXC)-, and home cage-reared (HCC) animals. Sleep amounts and slow wave activity (SWA) were also examined relative to baseline. Time spent in REMS during the study was lower in RD compared to TXC animals, and RD kittens increased SWA delta power in the latter half of the REMSD period. The estimated total number of TH-ir cells in LC was significantly lower in the RD than in the TXC kittens and numerically lower than in the HCC animals. The size of LC cells expressing TH-ir was greatest in the HCC group. HCC cells were significantly larger than TH-ir cells in the RD kittens. These data are consistent with presumed reduction in NE in forebrain areas, including visual cortex, caused by 1 week of REMSD.
Collapse
Affiliation(s)
- James P Shaffery
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center Jackson, MS, USA
| | | | | | | |
Collapse
|
5
|
Custodio V, González E, Rubio C, Paz C. Brain noradrenaline changes in rats prenatally exposed to ozone. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 30:92-94. [PMID: 21787636 DOI: 10.1016/j.etap.2010.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/19/2010] [Accepted: 03/26/2010] [Indexed: 05/31/2023]
Abstract
In the present study we considered the possible impairment of developmental noradrenergic maturity of the cerebellum, cerebral cortex and pons at 10-, 20- and 30-day-old rats arising from mothers subjected to 1ppm ozone concentration during pregnancy. The noradrenaline concentration was found to be significantly reduced in the cerebellum during the study, while in the cerebral cortex and the pons it was found to be reduced at days 10 and 30 respectively as compared to controls. We concluded that prenatal exposure of 1.0ppm ozone causes embryonic/fetal changes manifested in postnatal levels of noradrenaline concentrations in the brains of rats.
Collapse
Affiliation(s)
- Verónica Custodio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía M.V.S., Insurgentes Sur 3877, México 14269, D.F., Mexico
| | | | | | | |
Collapse
|
6
|
Szot P, Van Dam D, White SS, Franklin A, Staufenbiel M, De Deyn PP. Age-dependent changes in noradrenergic locus coeruleus system in wild-type and APP23 transgenic mice. Neurosci Lett 2009; 463:93-7. [DOI: 10.1016/j.neulet.2009.07.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/17/2009] [Accepted: 07/17/2009] [Indexed: 11/28/2022]
|
7
|
Davies MF, Tsui JY, Flannery JA, Li X, DeLorey TM, Hoffman BB. Augmentation of the noradrenergic system in alpha-2 adrenergic receptor deficient mice: anatomical changes associated with enhanced fear memory. Brain Res 2003; 986:157-65. [PMID: 12965240 DOI: 10.1016/s0006-8993(03)03248-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated sensitivity to the conditioned fear procedure of mice is influenced by the genetic deletion of alpha2A adrenoceptors (ARs). We observed a heightened freezing response in the discrete cue memory test in alpha2A AR knockout (alpha2A AR KO) mice and in D79N mice, a transgenic mouse strain with functionally impaired alpha2A ARs. No significant differences in contextual memory were observed between control and alpha2A AR KO or D79N mice suggesting a minimal role for the noradrenergic system in contextual memory. We speculated that the increased freezing response of the alpha2A AR KO and D79N mice in the discrete cue setting was due to increased release of norepinephrine evoked by the unconditioned footshock stimulus. In alpha2A AR KO mice we measured a doubling in the number of noradrenergic neurons in the locus coeruleus (LC) and a large increase in the cell volume of tyrosine hydroxylase positive neurons, likely due to selective preservation of large, multipolar neurons in the subcoeruleus. Hyperplasia of the noradrenergic neurons in the nucleus tractus solitarius, A5 and A7, was also observed. Alpha2A AR KO mice exhibit greater c-Fos expression in the LC compared to wild type mice suggesting that the LC neurons in the alpha2A AR KO mice were spontaneously more active. This study suggests that alpha2A ARs are involved in the development of the central noradrenergic system and raises the possibility that alterations in alpha2A AR expression may contribute to variations in fear and stress responses.
Collapse
|
8
|
Riederer P. Is there a subtype of developmental Parkinson's disease? Neurotox Res 2003; 5:27-34. [PMID: 12832222 PMCID: PMC7090941 DOI: 10.1007/bf03033370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2001] [Revised: 06/06/2002] [Accepted: 12/05/2002] [Indexed: 10/28/2022]
Abstract
Evidence accumulates suggesting that environmental factors including viral and risk factors associated with pregnancy and birth-giving, may increase the incidence of hypokinesia/parkinsonism in early life, or PD in later life. Such environmental pre-, peri- or postnatal stress may lead to disturbances in the developing brain and malformations in regions of particular interest and associated with PD. Genetic predisposition to hypoactivity plus environmental effects may lead to reorganization of brain circuitry including changes in monoaminergic and/or EAA systems, leading to a subtype of PD, i.e. genetic, drug induced, viral, developmental and other possible subtypes. The spectrum disorder of PD is going to be further substantiated into various etiopathologically verifyable subgroups.
Collapse
Affiliation(s)
- P Riederer
- Clinic and Polyclinic for Psychiatry and Psychotherapy, Clinical Neurochemistry, Centre of Excellence of the National Parkinson Foundation Miami, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany.
| |
Collapse
|
9
|
Le Saux F, Besson MJ, Maurin Y. Abnormal postnatal ontogeny of the locus coeruleus in the epileptic mutant mouse quaking. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 136:197-205. [PMID: 12101037 DOI: 10.1016/s0165-3806(02)00386-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The tonic-clonic convulsions of the quaking mutant mice have been shown to be associated with the hyperplasia of the nucleus locus coeruleus, the origin of most brain noradrenergic neurons. In the present study, the postnatal ontogeny of the locus coeruleus has been studied by tyrosine hydroxylase immunolabeling in the mutant mice quaking and their controls at postnatal days 1, 30 and 90. In the control mice, the number of immunoreactive neuronal cell bodies increased significantly in the rostral half of the locus coeruleus between birth and postnatal day 30, while it decreased significantly in the caudal half between birth and adulthood. Thus, during postnatal maturation, the distribution of locus coeruleus neurons was shifted in the rostral direction. In the quaking mutant mice, while the increase of immunolabeling between birth and postnatal day 30 was observed in the rostral half of the locus coeruleus, no diminution could be found in the caudal half between birth and adulthood. As a result, the rostral shift of tyrosine hydroxylase immunoreactivity was not observed. Consequently, in adult mice, the caudal part of the mutants locus coeruleus appeared to contain significantly more neurons than the corresponding region in the controls. These results indicate that the hyperplasia of the locus coeruleus of the quaking mice that we had previously reported results from an alteration of the postnatal maturation of this nucleus. This developmental abnormality might be a primary determinant of the inherited epilepsy of the quaking mutant mice.
Collapse
Affiliation(s)
- Françoise Le Saux
- INSERM U 495 Hôpital de la Salpêtrière, 47 Bld de l'Hopital, 75651 Paris Cedex 13, France
| | | | | |
Collapse
|
10
|
Park M, Kitahama K, Geffard M, Maeda T. Postnatal development of the dopaminergic neurons in the rat mesencephalon. Brain Dev 2000; 22 Suppl 1:S38-44. [PMID: 10984659 DOI: 10.1016/s0387-7604(00)00145-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The two mesencephalic dopaminergic systems in the developing rat brain were investigated immunohistochemically by dopamine and tyrosine hydroxylase and the results were quantitatively analyzed with a computer. The number of the dopaminergic neurons in the substantia nigra and the ventral tegmentum area did not change significantly during the postnatal development. Dopaminergic terminals in the lateral septum peaked at postnatal days (PD) 30, when the cell size in middle third of the ventral tegmentum area which was suggested as an origin of this projection system, increased largely. Patchy structures in the striatum were shown most distinctly at PD 7 and disappeared at PD 35 using dopamine antibody, but there were no changes in the cell size of the substantia nigra from PD 14 to 75. Dopaminergic neurons, in general, do not show a transient change in ontogeny.
Collapse
Affiliation(s)
- M Park
- Department of Anatomy, Shiga University of Medical Science, Seta, Otsu, 520-2192, Shiga, Japan.
| | | | | | | |
Collapse
|