1
|
Hemachandran S, Hu N, Kane CJ, Green SH. Cyclic AMP signaling promotes regeneration of cochlear synapses after excitotoxic or noise trauma. Front Cell Neurosci 2024; 18:1363219. [PMID: 38694536 PMCID: PMC11061447 DOI: 10.3389/fncel.2024.1363219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/27/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Cochlear afferent synapses connecting inner hair cells to spiral ganglion neurons are susceptible to excitotoxic trauma on exposure to loud sound, resulting in a noise-induced cochlear synaptopathy (NICS). Here we assessed the ability of cyclic AMP-dependent protein kinase (PKA) signaling to promote cochlear synapse regeneration, inferred from its ability to promote axon regeneration in axotomized CNS neurons, another system refractory to regeneration. Methods We mimicked NICS in vitro by applying a glutamate receptor agonist, kainic acid (KA) to organotypic cochlear explant cultures and experimentally manipulated cAMP signaling to determine whether PKA could promote synapse regeneration. We then delivered the cAMP phosphodiesterase inhibitor rolipram via implanted subcutaneous minipumps in noise-exposed CBA/CaJ mice to test the hypothesis that cAMP signaling could promote cochlear synapse regeneration in vivo. Results We showed that the application of the cell membrane-permeable cAMP agonist 8-cpt-cAMP or the cAMP phosphodiesterase inhibitor rolipram promotes significant regeneration of synapses in vitro within twelve hours after their destruction by KA. This is independent of neurotrophin-3, which also promotes synapse regeneration. Moreover, of the two independent signaling effectors activated by cAMP - the cAMP Exchange Protein Activated by cAMP and the cAMP-dependent protein kinase - it is the latter that mediates synapse regeneration. Finally, we showed that systemic delivery of rolipram promotes synapse regeneration in vivo following NICS. Discussion In vitro experiments show that cAMP signaling promotes synapse regeneration after excitotoxic destruction of cochlear synapses and does so via PKA signaling. The cAMP phosphodiesterase inhibitor rolipram promotes synapse regeneration in vivo in noise-exposed mice. Systemic administration of rolipram or similar compounds appears to provide a minimally invasive therapeutic approach to reversing synaptopathy post-noise.
Collapse
Affiliation(s)
| | | | | | - Steven H. Green
- Department of Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
2
|
Kubacka M, Mogilski S, Bednarski M, Pociecha K, Świerczek A, Nicosia N, Schabikowski J, Załuski M, Chłoń-Rzepa G, Hockemeyer J, Müller CE, Kieć-Kononowicz K, Kotańska M. Antiplatelet Effects of Selected Xanthine-Based Adenosine A 2A and A 2B Receptor Antagonists Determined in Rat Blood. Int J Mol Sci 2023; 24:13378. [PMID: 37686188 PMCID: PMC10487961 DOI: 10.3390/ijms241713378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The platelet aggregation inhibitory activity of selected xanthine-based adenosine A2A and A2B receptor antagonists was investigated, and attempts were made to explain the observed effects. The selective A2B receptor antagonist PSB-603 and the A2A receptor antagonist TB-42 inhibited platelet aggregation induced by collagen or ADP. In addition to adenosine receptor blockade, the compounds were found to act as moderately potent non-selective inhibitors of phosphodiesterases (PDEs). TB-42 showed the highest inhibitory activity against PDE3A along with moderate activity against PDE2A and PDE5A. The antiplatelet activity of PSB-603 and TB-42 may be due to inhibition of PDEs, which induces an increase in cAMP and/or cGMP concentrations in platelets. The xanthine-based adenosine receptor antagonists were found to be non-cytotoxic for platelets. Some of the compounds showed anti-oxidative properties reducing lipid peroxidation. These results may provide a basis for the future development of multi-target xanthine derivatives for the treatment of inflammation and atherosclerosis and the prevention of heart infarction and stroke.
Collapse
Affiliation(s)
- Monika Kubacka
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (M.K.); (S.M.)
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (M.K.); (S.M.)
| | - Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (M.B.); (N.N.)
| | - Krzysztof Pociecha
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (K.P.); (A.Ś.)
| | - Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (K.P.); (A.Ś.)
| | - Noemi Nicosia
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (M.B.); (N.N.)
- Division of Neuroscience, Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Jakub Schabikowski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (J.S.); (M.Z.); (K.K.-K.)
| | - Michał Załuski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (J.S.); (M.Z.); (K.K.-K.)
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland;
| | - Jörg Hockemeyer
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, D-53121 Bonn, Germany; (J.H.); (C.E.M.)
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, D-53121 Bonn, Germany; (J.H.); (C.E.M.)
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (J.S.); (M.Z.); (K.K.-K.)
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (M.B.); (N.N.)
| |
Collapse
|
3
|
Vitale SG, Palumbo M, Rapisarda AMC, Carugno J, Conde-López C, Mendoza N, Mendoza-Tesarik R, Tesarik J. Use of pentoxifylline during ovarian stimulation to improve oocyte and embryo quality: A retrospective study. J Gynecol Obstet Hum Reprod 2022; 51:102398. [DOI: 10.1016/j.jogoh.2022.102398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/08/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
|
4
|
Nabavi SM, Talarek S, Listos J, Nabavi SF, Devi KP, Roberto de Oliveira M, Tewari D, Argüelles S, Mehrzadi S, Hosseinzadeh A, D'onofrio G, Orhan IE, Sureda A, Xu S, Momtaz S, Farzaei MH. Phosphodiesterase inhibitors say NO to Alzheimer's disease. Food Chem Toxicol 2019; 134:110822. [PMID: 31536753 DOI: 10.1016/j.fct.2019.110822] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/18/2022]
Abstract
Phosphodiesterases (PDEs) consisted of 11 subtypes (PDE1 to PDE11) and over 40 isoforms that regulate levels of cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP), the second messengers in cell functions. PDE inhibitors (PDEIs) have been attractive therapeutic targets due to their involvement in diverse medical conditions, e.g. cardiovascular diseases, autoimmune diseases, Alzheimer's disease (AD), etc. Among them; AD with a complex pathology is a progressive neurodegenerative disorder which affect mostly senile people in the world and only symptomatic treatment particularly using cholinesterase inhibitors in clinic is available at the moment for AD. Consequently, novel treatment strategies towards AD are still searched extensively. Since PDEs are broadly expressed in the brain, PDEIs are considered to modulate neurodegenerative conditions through regulating cAMP and cGMP in the brain. In this sense, several synthetic or natural molecules inhibiting various PDE subtypes such as rolipram and roflumilast (PDE4 inhibitors), vinpocetine (PDE1 inhibitor), cilostazol and milrinone (PDE3 inhibitors), sildenafil and tadalafil (PDE5 inhibitors), etc have been reported showing encouraging results for the treatment of AD. In this review, PDE superfamily will be scrutinized from the view point of structural features, isoforms, functions and pharmacology particularly attributed to PDEs as target for AD therapy.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St, 20-093, Lublin, Poland.
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St, 20-093, Lublin, Poland.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| | - Marcos Roberto de Oliveira
- Departamento de Química (DQ), Instituto de Ciências Exatas e da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Grazia D'onofrio
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", Viale Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy.
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, 14623, USA.
| | - Saeedeh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Page C, Cazzola M. Bifunctional Drugs for the Treatment of Respiratory Diseases. Handb Exp Pharmacol 2017; 237:197-212. [PMID: 27787715 DOI: 10.1007/164_2016_69] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the last decade, there has been a steady increase in the use of fixed dose combinations for the treatment of a range of diseases, including cancer, AIDS, tuberculosis and other infectious diseases. It is now evident that patients with asthma or chronic obstructive pulmonary disease (COPD) can also benefit from the use of fixed dose combinations, including combinations of a long-acting β2-agonist (LABA) and an inhaled corticosteroid (ICS), and combinations of LABAs and long-acting muscarinic receptor antagonists (LAMAs). There are now also "triple inhaler" fixed dose combinations (containing a LABA, LAMA and ICS) under development and already being made available in clinical practice, with the first such triple combination having been approved in India. The use of combinations containing drugs with complementary pharmacological actions in the treatment of patients with asthma or COPD has led to the discovery and development of drugs having two different primary pharmacological actions in the same molecule that we have called "bifunctional drugs". In this review we have discussed the state of the art of bifunctional drugs that can be categorized as bifunctional bronchodilators, bifunctional bronchodilator/anti-inflammatory drugs, bifunctional anti-inflammatory drugs and bifunctional mucolytic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| | - Mario Cazzola
- Division of Respiratory Medicine and Research Unit of Respiratory Clinical Pharmacology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
6
|
Abstract
Theophylline is an orally acting xanthine that has been used since 1937 for the treatment of respiratory diseases including asthma and chronic obstructive pulmonary disease (COPD). However, in most treatment guidelines, xanthines have now been consigned to third-line therapy because of their narrow therapeutic window and propensity for drug-drug interactions. However, lower than conventional doses of theophylline considered to be bronchodilator are now known to have anti-inflammatory actions of relevance to the treatment of respiratory disease. The molecular mechanism(s) of action of theophylline are not well understood, but several potential targets have been suggested including non-selective inhibition of phosphodiesterases (PDE), inhibition of phosphoinositide 3-kinase, adenosine receptor antagonism and increased activity of certain histone deacetylases. Although theophylline has a narrow therapeutic window, other xanthines are in clinical use that are claimed to have a better tolerability such as doxofylline and bamifylline. Nonetheless, xanthines still play an important role in the treatment of asthma and COPD as they can show clinical benefit in patients who are refractory to glucocorticosteroid therapy, and withdrawal of xanthines from patients causes worsening of disease, even in patients taking concomitant glucocorticosteroids.More recently the orally active selective PDE4 inhibitor, roflumilast, has been introduced into clinical practice for the treatment of severe COPD on top of gold standard treatment. This drug has been shown to improve lung function in patients with severe COPD and to reduce exacerbations, but is dose limited by a range side effect, particularly gastrointestinal side effects.
Collapse
Affiliation(s)
- D Spina
- The Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - C P Page
- The Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK.
| |
Collapse
|
7
|
Soler F, Fernández-Belda F, Pérez-Schindler J, Hernández-Cascales J. Single inhibition of either PDE3 or PDE4 unmasks β2-adrenoceptor-mediated inotropic and lusitropic effects in the left but not right ventricular myocardium of rat. Eur J Pharmacol 2015; 765:429-36. [DOI: 10.1016/j.ejphar.2015.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/18/2015] [Accepted: 09/01/2015] [Indexed: 02/05/2023]
|
8
|
CNP-pGC-cGMP-PDE3-cAMP Signal Pathway Upregulated in Gastric Smooth Muscle of Diabetic Rats. Gastroenterol Res Pract 2015; 2015:305258. [PMID: 25883642 PMCID: PMC4390109 DOI: 10.1155/2015/305258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/01/2014] [Indexed: 12/26/2022] Open
Abstract
Our previous studies have shown that CNP-NPR-B/pGC-cGMP is upregulated in the diabetic rats. The present study was designed to determine whether the upregulation of CNP-NPR-B/pGC-cGMP signal pathway affects cGMP-PDE3-cAMP signal pathway in diabetic gastric smooth muscle. The gastric smooth muscle motility was observed by using isometric measurement. PDEs expressions in diabetic gastric smooth muscle tissue were observed by using immunohistochemistry, Western blotting, and RT-PCR methods. The results demonstrated that the inhibitory effect of CNP on the spontaneous contraction of gastric antral circular smooth muscle was potentiated in STZ-induced diabetic rat. CNP-induced increase of cGMP and cAMP was much higher in diabetic gastric smooth muscle tissue than in controls. The expression of PDE3 is downregulated while the levels of gene expression of PDE1, PDE2, PDE4, and PDE5 were not altered in the diabetic gastric smooth muscle tissue. The results suggest that the sensitivity of gastric smooth muscle to CNP is potentiated via activation of CNP-pGC-cGMP-PDE3-cAMP signal pathway in STZ-induced diabetic rats, which may be associated with diabetes-induced gastric motility disorder.
Collapse
|
9
|
Page CP. Phosphodiesterase inhibitors for the treatment of asthma and chronic obstructive pulmonary disease. Int Arch Allergy Immunol 2014; 165:152-64. [PMID: 25532037 DOI: 10.1159/000368800] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Xanthines like theophylline have long been recognised as being effective drugs for the treatment of asthma and chronic obstructive pulmonary disease (COPD). They are of interest as they possess both anti-inflammatory and bronchodilator activity in the same molecule. Since the discovery of phosphodiesterases (PDEs) in the late 1950s, it has been suggested that xanthines work, in part, by acting as non-selective PDE inhibitors. However, it has also been suggested that the ability of xanthines to non-selectively inhibit PDEs contributes to their many unwanted side effects, thus limiting their use since the arrival of inhaled drugs with more favourable safety profiles. As our understanding of PDEs has improved over the last 30 years, and with the recognition that the distribution of different PDEs varies across different cell types, this family of enzymes has been widely investigated as targets for novel drugs. In particular, PDE3 in airway smooth muscle and PDE4 and PDE7 in inflammatory cells have been targeted to provide new bronchodilators and anti-inflammatory agents, respectively. This review discusses the progress made in this field over the last decade in the development of selective PDE inhibitors to treat COPD and asthma.
Collapse
Affiliation(s)
- Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
10
|
Pharmacophore modeling, 3DQSAR, and docking-based design of polysubstituted quinolines derivatives as inhibitors of phosphodiesterase 4, and preliminary evaluation of their anti-asthmatic potential. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1048-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Doseyici S, Mehmetoglu I, Toker A, Yerlikaya FH, Erbay E. The effects of forskolin and rolipram on cAMP, cGMP and free fatty acid levels in diet induced obesity. Biotech Histochem 2014; 89:388-92. [PMID: 24520882 DOI: 10.3109/10520295.2014.883463] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Obesity is a major health problem. We investigated the effects of forskolin and rolipram in the diet of animals in which obesity had been induced. We used 50 female albino Wistar rats that were assigned randomly into five groups as follows: group 1, control; group 2, high fat diet; group 3, high fat diet + forskolin; group 4, high fat diet + rolipram; and group 5, high fat diet + rolipram + forskolin. The rats were fed for 10 weeks and rolipram and forskolin were administered during last two weeks. The animals were sacrificed and blood samples were obtained. Serum cAMP, cGMP and free fatty acids (FFA) levels were measured using ELISA assays. We also measured weight gain during the 10 week period. cAMP and FFA levels of groups 3, 4 and 5 were significantly higher than those of groups 1 and 2. We found no significant differences in serum cGMP levels among the groups. The weight gain in groups 3, 4 and 5 was significantly less than for group 2. We also found that the weight gain in group 5 was significantly less than in groups 3 and 4. We found that both forskolin and rolipram stimulated lipolysis and inhibited body weight increase by increasing cAMP levels. Also, combination therapy using the two agents may be more effective in preventing diet induced obesity than either agent alone. We found also that these agents did not effect cellular cGMP levels in diet induced obesity.
Collapse
Affiliation(s)
- S Doseyici
- Necmettin Erbakan University, Meram Medical Faculty, Department of Biochemistry , Konya , Turkey
| | | | | | | | | |
Collapse
|
12
|
MansouriMajd S, Teymourian H, Salimi A, Hallaj R. Fabrication of electrochemical theophylline sensor based on manganese oxide nanoparticles/ionic liquid/chitosan nanocomposite modified glassy carbon electrode. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.07.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Etazolate rescues behavioral deficits in chronic unpredictable mild stress model: modulation of hypothalamic-pituitary-adrenal axis activity and brain-derived neurotrophic factor level. Neurochem Int 2013; 63:465-75. [PMID: 23974048 DOI: 10.1016/j.neuint.2013.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/28/2013] [Accepted: 08/15/2013] [Indexed: 01/20/2023]
Abstract
Preliminary study in our laboratory showed that etazolate produced antidepressant- and anxiolytic-like effects in rodent models, however, the ability of etazolate to produce antidepressant- and anxiolytic-like effects and underlying mechanism(s) in chronic unpredictable mild stress (CUMS) model have not been adequately addressed. This study was aimed to investigate the beneficial effects of etazolate on CUMS-induced behavioral deficits (depression- and anxiety-like behaviors). In addition, the possible underlying mechanism(s) of etazolate in CUMS model was also investigated by measuring serum corticosterone (CORT) and brain-derived neurotrophic factor (BDNF) levels. Mice were subjected to a battery of stressors for 28 days. Etazolate (0.5 and 1 mg/kg, p.o.) and fluoxetine (20mg/kg, p.o.) were administered during the last 21 days (8-28th) of the CUMS paradigm. The results showed that 4-weeks CUMS produces significant depression-like behavior in tail suspension test (TST) and partial anxiety-like behavior in elevated plus maze (EPM) and open field test (OFT). Stressed mice have also shown a significant high serum CORT and low BDNF level. Chronic treatment with etazolate (0.5 and 1mg/kg., p.o.) and fluoxetine (20mg/kg., p.o.) produced significant antidepressant-like behavior in TST (decreased duration of immobility), whereas, partial anxiolytic-like behavior in EPM (increased percentage of open arm entries) and OFT (increased % central ambulation score, total ambulation score and time spent in center zone). In addition, etazolate and fluoxetine treatment significantly (p<0.05) increased the BDNF level and inhibited the hypothalamic-pituitary-adrenocortical (HPA) axis hyperactivity, as evidenced by low serum CORT level in stressed mice. In addition, etazolate and fluoxetine also showed significant antidepressant- and anxiolytic-like effects in normal control mice. In this study no significant changes were observed in locomotor activity in actophotometer test. Moreover, we did not find any effect of etazolate and fluoxetine on CORT and BDNF levels in normal control mice. In conclusion, the results of the present study suggested compelling evidences that etazolate has more marked effect on depression-like behavior in mice, which is atleast in part may be related to their modulating effects on the HPA axis and BDNF level.
Collapse
|
14
|
Synthesis and biological studies of a novel series of 4-(4-(1H-imidazol-1-yl)phenyl)-6-arylpyrimidin-2-amines. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0523-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
|
16
|
Dyke HJ. Novel 5,6-dihydropyrazolo[3,4-E][1,4]diazepin-4 (1H)-one derivatives for the treatment of asthma and chronic obstructive pulmonary disease. Expert Opin Ther Pat 2012; 17:1183-9. [PMID: 20618064 DOI: 10.1517/13543776.17.9.1183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This application claims dihydropyrazolodiazepinones as phospho-diesterase 4(PDE4) inhibitors for the treatment of asthma and chronic obstructive pulmonary disease. The compounds are shown to be potent inhibitors of PDE4B2, but no other biological data are provided. Thus, it is not clear whether these compounds provide any advantage over previously described PDE4 inhibitors or whether the issues frequently associated with PDE4 inhibitors have been addressed.
Collapse
Affiliation(s)
- Hazel J Dyke
- Argenta Discovery, 8/9 Spire Green Centre, Flex Meadow, Harlow, Essex, CM19 5TR, UK
| |
Collapse
|
17
|
Differential regulation of TNF-alpha and IL-1beta production from endotoxin stimulated human monocytes by phosphodiesterase inhibitors. Mediators Inflamm 2012; 1:411-7. [PMID: 18475493 PMCID: PMC2365371 DOI: 10.1155/s0962935192000620] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effect of selective PDE-I (vinpocetine), PDE-III (milrinone, CI-930), PDE-IV (rolipram, nitroquazone), and PDE-V (zaprinast) isozyme inhibitors on TNF-alpha and IL-1beta production from LPS stimulated human monocytes was investigated. The PDE-IV inhibitors caused a concentration dependent inhibition of TNF-alpha production, but only partially inhibited IL-1beta at high concentrations. High concentrations of the PDE-III inhibitors weakly inhibited TNF-alpha, but had no effect on IL-1beta production. PDE-V inhibition was associated with an augmentation of cytokine secretion. Studies with combinations of PDE isozyme inhibitors indicated that PDE-III and PDE-V inhibitors modulate rolipram's suppression of TNF production in an additive manner. These data confirm that TNF-alpha and IL-1beta production from LPS stimulated human monocytes are differentially regulated, and suggest that PDE-IV inhibitors have the potential to suppress TNF levels in man.
Collapse
|
18
|
Synthesis and evaluation of novel 2-pyridone derivatives as inhibitors of phosphodiesterase3 (PDE3): A target for heart failure and platelet aggregation. Bioorg Med Chem Lett 2012; 22:6010-5. [PMID: 22897945 DOI: 10.1016/j.bmcl.2012.05.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/16/2012] [Accepted: 05/02/2012] [Indexed: 01/24/2023]
|
19
|
Cheng FC, Chen WL, Wei JW, Huang KS, Yarbrough GG. The Neuroprotective Effects of BNG-1: A New Formulation of Traditional Chinese Medicines for Stroke. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 33:61-71. [PMID: 15844834 DOI: 10.1142/s0192415x05002667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BNG-1, a novel mixture of traditional Chinese medicines with a long history in the treatment of stroke, exhibited acute neuroprotection effect on rats with middle cerebral artery occlusion (MCAO). Anti-ischemic effects were seen in both animals receiving BNG-1 before the ischemic insult as well as in animals receiving the drug formulation after surgical occlusion of the artery. Anti-thrombic activity was seen in vitro to inhibit arachidonic acid-induced platelet aggregation and in vivo to prolong bleeding time in mice. BNG-1 was also found to inhibit several phosphodiesterase (PDE) isoforms with potency order of the following rank: PDE 1>PDE 3>PDE 6>PDE 2>PDE 4>PDE 5. Other pre-clinical results and emerging clinical data coupled with the present findings suggest that BNG-1 may be a safe and effective therapy for both the prevention and treatment of cerebral stroke. Moreover, the fundamental cellular mechanism underlying its therapeutic effects may result from phosphodiesterase inhibition.
Collapse
|
20
|
Quantitative structure–activity relationship and design of polysubstituted quinoline derivatives as inhibitors of phosphodiesterase 4. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9831-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Schudt C, Hatzelmann A, Beume R, Tenor H. Phosphodiesterase inhibitors: history of pharmacology. Handb Exp Pharmacol 2011:1-46. [PMID: 21695634 DOI: 10.1007/978-3-642-17969-3_1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first pharmacological investigations of phosphodiesterase (PDE) inhibitors were developed with the clinical efficacies of drugs isolated from coffee, cacao and tea but only later their relevant ingredients were identified as xanthines that act as PDE. With its diuretic, inotropic and bronchodilating clinical efficacy, use of theophylline anticipated the clinical goals, which were later approached with the first-generation of weakly selective PDE inhibitors in the period from 1980 to 1990. Pharmacological and clinical research with these early compounds provided a vast pool of information regarding desired and adverse actions - although most of these new drugs had to be discontinued due to severe adverse effects. The pharmacological models for cardiac, vascular and respiratory indications were analysed for their PDE isoenzyme profiles, and when biochemical and molecular biological approaches expanded our knowledge of the PDE superfamily, the purified isoenzymes that were now available opened the door for more systematic studies of inhibitors and for generation of highly selective isoenzyme-specific drugs. The development of simple screening models and clinically relevant indication models reflecting the growing knowledge about pathomechanisms of disease are summarised here for today's successful application of highly selective PDE3, PDE4 and PDE5 inhibitors. The interplay of serendipitous discoveries, the establishment of intelligent pharmacological models and the knowledge gain by research results with new substances is reviewed. The broad efficacies of new substances in vitro, the enormous biodiversity of the PDE isoenzyme family and the sophisticated biochemical pharmacology enabled Viagra to be the first success story in the field of PDE inhibitor drug development, but probably more success stories will follow.
Collapse
Affiliation(s)
- Christian Schudt
- Department of Biologics, Nycomed GmbH, 78467, Konstanz, Germany.
| | | | | | | |
Collapse
|
22
|
Gonzalez-Muñoz C, Fuente T, Medin-Aguerre S, Hernández-Cascales J. The increase in rat ventricular automaticity induced by salbutamol is mediated through β(1)- but not β(2)-adrenoceptors: role of phosphodiesterases. Life Sci 2011; 88:1095-101. [PMID: 21565204 DOI: 10.1016/j.lfs.2011.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 03/14/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
Abstract
AIMS While β(2)-adrenoceptor (AR) agonists are useful bronchodilators, they also produce cardiac arrhythmias. These agents are not fully selective and also activate β(1)-AR, but the involvement of β(1)-AR and β(2)-AR in the observed pro-arrhythmic effect has not been established. We studied the effect of β(1)-AR and β(2)-AR activation on ventricular automaticity and the role of phosphodiesterases (PDE) in regulating this effect. MAIN METHODS Experiments were performed in the spontaneously beating isolated right ventricle of the rat heart. We also measured cAMP production in this tissue. KEY FINDINGS The β(2)-AR agonist salbutamol (1-100 μM) produced a concentration-dependent increase in ventricular automaticity that was not affected by 50nM of the β(2)-AR antagonist ICI 118551. This effect was enhanced by the non-selective PDE inhibitor theophylline (100 μM) and by the selective PDE4 inhibitors rolipram (1 μM) and Ro 201724 (2 μM), but not modified by the selective PDE3 inhibitors cilostamide (0.3 μM) or milrinone (0.2 μM). The effects of salbutamol alone and in the presence of either theophylline or rolipram were virtually abolished by 0.1 μM β(1)-AR antagonist CGP 20712A. Salbutamol (10 μM) increased the cAMP concentration, and this effect was abolished by CGP 20712A (0.1 μM) but enhanced by theophylline (100 μM) or rolipram (1 μM). Cilostamide (0.3 μM) failed to modify the effect of salbutamol on cAMP concentration. SIGNIFICANCE These results indicate that the increase of ventricular automaticity elicited by salbutamol was exclusively mediated through β(1)-AR and enhanced by non-selective PDE inhibition with theophylline or selective PDE4 inhibition. However, PDE3 did not appear to regulate this effect.
Collapse
Affiliation(s)
- Carmen Gonzalez-Muñoz
- Department of Pharmacology, Medical School and Unit of Radiopharmacy, University Hospital Virgen de la Arrixaca, Murcia, Spain
| | | | | | | |
Collapse
|
23
|
Li Y, Wang H, Li J, Zheng J, Xu X, Yang R. Simultaneous Intracellular β-d-Glucosidase and Phosphodiesterase I Activities Measurements Based on A Triple-Signaling Fluorescent Probe. Anal Chem 2011; 83:1268-74. [DOI: 10.1021/ac102095j] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yinhui Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Hao Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xinhua Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
24
|
Al-Dajani MTM, Mohamed N, Wahab HA, Yeap CS, Fun HK. 2-Amino-6-(2,6-difluorobenzamido)pyridinium chloride. Acta Crystallogr Sect E Struct Rep Online 2010; 66:o2150. [PMID: 21588436 PMCID: PMC3007299 DOI: 10.1107/s1600536810029624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 07/26/2010] [Indexed: 12/02/2022]
Abstract
In the cation of the title compound, C12H10F2N3O+·Cl−, the dihedral angle between the pyridine and benzene rings is 16.1 (1)°. In the crystal structure, molecules linked into two-dimensional sheets parallel to the bc plane by intermolecular N—H⋯Cl, C—H⋯Cl and C—H⋯F hydrogen bonds.
Collapse
|
25
|
Al-Dajani MTM, Wahab HA, Mohamed N, Yeap CS, Fun HK. 2,6-Difluoro-benzoic acid. Acta Crystallogr Sect E Struct Rep Online 2010; 66:o2109. [PMID: 21588400 PMCID: PMC3007258 DOI: 10.1107/s1600536810028758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 07/19/2010] [Indexed: 11/12/2022]
Abstract
In the title compound, C7H4F2O2, the dihedral angle between the benzene ring and the carboxylate group is 33.70 (14)°. In the crystal structure, inversion dimers linked by pairs of O—H⋯O hydrogren bonds occur, generating R22(8) loops. The dimers are linked into sheets lying parallel to (102) by C—H⋯F hydrogen bonds.
Collapse
|
26
|
Abstract
Theophylline (3-methyxanthine) has been used to treat airway diseases for over 70 years. It was originally used as a bronchodilator but the relatively high doses required are associated with frequent side effects, so its use declined as inhaled β₂-agonists became more widely used. More recently it has been shown to have anti-inflammatory effects in asthma and COPD at lower concentrations. The molecular mechanism of bronchodilatation is inhibition of phosphodiesterase(PDE)3 and PDE4, but the anti-inflammatory effect may be due to histone deacetylase (HDAC) activation, resulting in switching off of activated inflammatory genes. Through this mechanism theophylline also reverses corticosteroid resistance and this may be of particular value in severe asthma and COPD where HDAC2 activity is markedly reduced. Theophylline is given systemically (orally as slow-release preparations for chronic treatment and intravenously for acute exacerbations of asthma) and blood concentrations are determined mainly by hepatic metabolism, which may be increased or decreased in several diseases and by concomitant drug therapy. Theophylline is now usually used as an add-on therapy in asthma patients not well controlled on inhaled corticosteroids and in COPD patients with severe disease not controlled by bronchodilator therapy. Side effects are related to plasma concentrations and include nausea, vomiting and headaches due to PDE inhibition and at higher concentrations to cardiac arrhythmias and seizures due to adenosine A₁-receptor antagonism.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|
27
|
Sadeghian H, Seyedi SM, Saberi MR, Nick RS, Hosseini A, Bakavoli M, Mansouri SMT, Parsaee H. Design, synthesis and pharmacological evaluation of 6-hydroxy-4-methylquinolin-2(1H)-one derivatives as inotropic agents. J Enzyme Inhib Med Chem 2010; 24:918-29. [PMID: 19555170 DOI: 10.1080/14756360802448063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Selective PDE3 inhibitors improve cardiac contractility and may be used in congestive heart failure. However, their proarrhythmic potential is the most important side effect. In this research we designed, synthesized and evaluated the potential cardiotonic activity of thirteen PDE3 inhibitors (4-[(4-methyl-2-oxo-1,2-dihydro-6-quinolinyl)oxy]butanamide analogs) using the spontaneously beating atria model. The design strategy was based on the structure of cilostamide, a selective PDE3 inhibitor. In each experiment, atrium of reserpine-treated rat was isolated and the contractile and chronotropic effects of a synthetic compounds were assessed. All experiments were carried out in comparison with IBMX, amrinone and cilostamide as standard compounds. The results showed that, among the new compounds, the best pharmacological profile was obtained with the compound 6-[4-(4-methylpiperazine-1-yl)-4-oxobutoxy]-4-methylquinolin-2(1H)-one, 4j, which displayed selectivity for increasing the force of contraction (165 +/- 4% change over the control) rather than the frequency rate (115 +/- 7% change over the control) at 100 microM and potent inhibitory activity of PDE3 with IC(50) = 0.20 microM.
Collapse
Affiliation(s)
- Hamid Sadeghian
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, IR Iran
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The pyeloureteral function is to transport urine from the kidneys into the ureter toward the urinary bladder for storage until micturition. A set of mechanisms collaborates to achieve this purpose: the basic process regulating ureteral peristalsis is myogenic, initiated by active pacemaker cells located in the renal pelvis. Great emphasis has been given to hydrodynamic factors, such as urine flow rate in determining the size and pattern of urine boluses which, in turn, affect the mechanical aspects of peristaltic rhythm, rate, amplitude, and baseline pressure. Neurogenic contribution is thought to be limited to play a modulatory role in ureteral peristalsis. The myogenic theory of ureteral peristalsis can be traced back to Engelmann (1) who was able to localize the peristaltic pressure wave's origin in the renal pelvis and suggested that the ureteral contraction impulse passes from one ureteral cell to another, the whole ureter working as a functional syncitium. Recent studies of ureteral biomechanics, smooth muscle cell electrophysiology, membrane ionic currents, cytoskeletal components and pharmacophysiology much improved our understanding of the mechanism of how the urine bolus is propelled, how this process is disturbed in pathological states, and what could be done to improve it.
Collapse
Affiliation(s)
- F Osman
- Department of Urology and Clinical Experimental Research Department, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
29
|
Nikpour M, Sadeghian H, Saberi MR, Nick RS, Seyedi SM, Hosseini A, Parsaee H, Bozorg ATD. Design, synthesis and biological evaluation of 6-(benzyloxy)-4-methylquinolin-2(1H)-one derivatives as PDE3 inhibitors. Bioorg Med Chem 2010; 18:855-62. [DOI: 10.1016/j.bmc.2009.11.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 11/28/2022]
|
30
|
Birowo P, Uckert S, Kedia GT, Scheller F, Meyer M, Taher A, Rahardjo D, Jonas U, Kuczyk MA. Evaluating the role of the serotoninergic system in the control of human seminal vesicle smooth muscle-an in vitro approach. J Sex Med 2009; 6:2672-9. [PMID: 19686430 DOI: 10.1111/j.1743-6109.2009.01423.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION It has been suggested that serotonin re-uptake inhibitors (SRIs) may retard the ejaculatory response by acting directly on the seminal vesicle (SV) and ductus deferens smooth muscle. However, until now, only a very few experimental studies have investigated such potential local (peripheral) effects. AIM To elucidate the effects of serotonin (5-HT) and the SRIs clomipramine, fluoxetine and imipramine on the tension induced by norepinephrine (NE) of isolated human SV smooth muscle, as well as on the production of tissue cyclic AMP and cyclic GMP. MAIN OUTCOME MEASURES To measure the inhibition exerted by serotonin and SRIs clomipramine, fluoxetine, and imipramine on the contractile response of isolated SV tissue. In addition, the effects of the drugs on the turn-over of cyclic nucleotides cAMP and cGMP were also elucidated. METHODS The effects of the cumulative addition of serotonin and the SRIs clomipramine, fluoxetine and imipramine (1 nM-10 microM) on the tension induced by the alpha(1)-adrenoceptor agonist NE (10 microM) of SV strip preparations were studied using the organ bath technique. Cyclic AMP and cyclic GMP were measured by means of specific radioimmunoassays. RESULTS The tension induced by NE was dose-dependently reversed by the drugs tested. The rank order of efficacy was: imipramine > or = fluoxetine > or = clomipramine > serotonin. Mean reversion of tension was measured between 66 +/- 6.6% and 52 +/- 6.6%. These effects were paralleled by a 1.3-fold to 2.7-fold increase in tissue cAMP in response to exposure to the drugs. In contrast, no significant enhancement in cGMP was noted. CONCLUSIONS The findings, for the first time, present evidence that SRIs may antagonize the sympathetic contraction of SV smooth muscle via stimulation of tissue cyclic AMP.
Collapse
Affiliation(s)
- Ponco Birowo
- Department of Urology & Uro-Oncology, Hannover Medical School, Hannover 30625, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Effects of Phosphodiesterase Inhibitors on Contraction Induced by Endothelin-1 of Isolated Human Prostatic Tissue. Urology 2009; 73:1397-401. [DOI: 10.1016/j.urology.2008.11.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/10/2008] [Accepted: 11/26/2008] [Indexed: 11/18/2022]
|
32
|
Gonzalez-Muñoz C, Fuente T, Hernández-Cascales J. Phosphodiesterases inhibition unmask a positive inotropic effect mediated by beta2-adrenoceptors in rat ventricular myocardium. Eur J Pharmacol 2009; 607:151-5. [PMID: 19239906 DOI: 10.1016/j.ejphar.2009.02.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 02/09/2009] [Accepted: 02/12/2009] [Indexed: 10/21/2022]
Abstract
The effects of salbutamol on contractility and cAMP levels were investigated in rat right ventricular myocardium. Salbutamol (1-300 microM), produced a concentration-dependent positive inotropic effect which was not affected by ICI 118551 (50 nM), a beta2-adrenoceptor antagonist but was abolished by CGP 20712A (1 microM) a beta1-adrenoceptor antagonist. However, in rats pretreated with pertussis toxin (30 microg/kg intraperitoneal injection) salbutamol increases contractility (Emax = 9.8 +/- 1.8%, - log EC50 = 6.25 +/- 0.07, n = 5). The combination of salbutamol + CGP 20712A, also produces a concentration-dependent enhancement of contractility (Emax = 43.0 +/- 7.5%, - log EC50 = 6.3 +/- 0.04, n = 6), in the presence of 30 microM of the non selective phosphodiesterase (PDE) inhibitor 3-isobutylmethylxantine (IBMX) which was prevented by ICI 118551 (50 nM). Also, salbutamol + CGP 20712A fail to increase cAMP tissue levels but enhance them in the presence of IBMX. This effect was also prevented by ICI 118551. These results indicate that PDEs blunt contractility and cAMP production mediated by beta2-adrenoceptors in rat ventricular myocardium. Gi protein, although less efficiently than PDEs, also limits inotropic effects of salbutamol mediated by beta2-adrenoceptors in this tissue.
Collapse
Affiliation(s)
- C Gonzalez-Muñoz
- Department of Pharmacology, Medical School, University of Murcia, Spain
| | | | | |
Collapse
|
33
|
Zheng S, Kaur G, Wang H, Li M, Macnaughtan M, Yang X, Reid S, Prestegard J, Wang B, Ke H. Design, synthesis, and structure-activity relationship, molecular modeling, and NMR studies of a series of phenyl alkyl ketones as highly potent and selective phosphodiesterase-4 inhibitors. J Med Chem 2009; 51:7673-88. [PMID: 19049349 DOI: 10.1021/jm701635j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Phosphodiesterase 4 catalyzes the hydrolysis of cyclic AMP and is a target for the development of anti-inflammatory agents. We have designed and synthesized a series of phenyl alkyl ketones as PDE4 inhibitors. Among them, 13 compounds were identified as having submicromolar IC(50) values. The most potent compounds have IC(50) values of in the mid- to low-nanomolar range. Compound 5v also showed preference for PDE4 with selectivity of >2000-fold over PDE7, PDE9, PDE2, and PDE5. Docking of 5v, 5zf, and 5za into the binding pocket of the PDE4 catalytic domain revealed a similar binding profile to PDE4 with rolipram except that the fluorine atoms of the difluoromethyl groups of 5v, 5za, and 5zf are within a reasonable range for hydrogen bond formation with the amide hydrogen of Thr 333 and the long alkyl chain bears additional van der Waals interactions with His 160, Asp 318, and Tyr 159.
Collapse
Affiliation(s)
- Shilong Zheng
- Department of Chemistry and Center for Biotechnology and Drug Discovery, Georgia State University, Atlanta, Georgia 30302-4098, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The cardiovascular system undergoes profound changes during pregnancy. Maternal intravascular volume begins to increase in the first trimester rising an average of 45% by term.1Cardiac output increases similarly2and is redistributed to organs whose functions are crucial for a successful pregnancy. In the guinea pig, uterine artery (UA) blood flow increases 3500%, while mesenteric and renal artery blood flows increase only 90% and 10% respectively.3Blood flow to the trunk actually diminishes. The mechanism underlying this redistribution is unknown. Coupled with the rise in cardiac output is a decrease in the systemic pressor response to angiotensin II (AII), norepinephrine(NE), and epinephrine.4–8There is also a decrease in the contraction response among some but not all vascular beds. For example, contraction of UA to NE and thromboxane is characteristically reduced by pregnancy, whereas the response of the carotid artery is unaltered8–10Since pregnancy does not alter neuroeffector mechanisms of NE such as release, receptor sensitivity, and accumulation11, changes in sympathetic control during pregnancy must be dependent on alterations at sites other than the neuroeffector junction. We have hypothesized that the mechanisms which alter vascular reactivity during pregnancy also mediate the redistribution of maternal cardiac output.9We have further hypothesized that many of these mechanisms involve endothelium-dependent factors which are modulated by sex hormones.
Collapse
|
35
|
Targeting liver myofibroblasts: a novel approach in anti-fibrogenic therapy. Hepatol Int 2008; 2:405-15. [PMID: 19669316 PMCID: PMC2716909 DOI: 10.1007/s12072-008-9093-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 07/21/2008] [Indexed: 02/06/2023]
Abstract
Chronic liver disease results in a liver-scarring response termed fibrosis. Excessive scarring leads to cirrhosis, which is associated with high morbidity and mortality. The only treatment for liver cirrhosis is liver transplantation; therefore, much attention has been directed toward therapies that will slow or reverse fibrosis. Although anti-fibrogenic therapies have been shown to be effective in experimental animal models, licensed therapies have yet to emerge. A potential problem for any anti-fibrogenic therapy in the liver is the existence of the body’s major drug metabolising cell (the hepatocyte) adjacent to the primary fibrosis-causing cell, the myofibroblast. This article reviews the development of a human recombinant single-chain antibody (scAb) that binds to the surface of myofibroblasts. This antibody binds specifically to myofibroblasts in fibrotic mouse livers. When conjugated with a compound that stimulates myofibroblast apoptosis, the antibody directs the specific apoptosis of myofibroblasts with greater specificity and efficacy than the free compound. The antibody also reduces the adverse effect of liver macrophage apoptosis and—in contrast to the free compound—reversed fibrosis in the sustained injury model used. These data suggest that specifically stimulating the apoptosis of liver myofibroblasts using a targeting antibody has potential in the treatment of liver fibrosis.
Collapse
|
36
|
Gonzalez-Muñoz C, Nieto-Cerón S, Cabezas-Herrera J, Hernández-Cascales J. Glucagon increases contractility in ventricle but not in atrium of the rat heart. Eur J Pharmacol 2008; 587:243-7. [DOI: 10.1016/j.ejphar.2008.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
|
37
|
Uckert S, Sormes M, Kedia G, Scheller F, Knapp WH, Jonas U, Stief CG. Effects of phosphodiesterase inhibitors on tension induced by norepinephrine and accumulation of cyclic nucleotides in isolated human prostatic tissue. Urology 2008; 71:526-30. [PMID: 18342202 DOI: 10.1016/j.urology.2007.10.051] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/21/2007] [Accepted: 10/25/2007] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To further evaluate the mechanism of action of phosphodiesterase (PDE) inhibitors on the human prostate, the effects of PDE4 and PDE5 inhibitors on the tension induced by norepinephrine (NE) and on the intracellular levels of cyclic nucleotides in isolated human prostatic tissue were investigated. METHODS Using the organ bath technique, the effects of increasing concentrations (1 nM to 10 microM) of the PDE5 inhibitors sildenafil, tadalafil, and vardenafil and the PDE4 inhibitors rolipram and RP 73401 on the tension induced by NE (40 microM) of prostate strip preparations were investigated. The accumulation of cyclic guanosine monophosphate and cyclic adenosine monophosphate in response to drug exposure was determined by radioimmunoassays. RESULTS The tension induced by NE was dose dependently reversed by the drugs with the following rank order of efficacy: tadalafil greater than RP 73401 greater than rolipram greater than or equal to vardenafil greater than sildenafil. The maximal reversion of tension values ranged from 52.3% (tadalafil) to 17% (sildenafil). Of the PDE inhibitors, only tadalafil induced a 50% reversion of the initial tension. The most prominent enhancement in tissue cyclic adenosine monophosphate was registered in response to RP 73401 (11-fold), and cyclic guanosine monophosphate levels were significantly elevated by tadalafil, vardenafil, and sildenafil (28-fold, 12-fold, and 3-fold, respectively). CONCLUSIONS Our results have demonstrated that drugs interfering with the cyclic nucleotide-mediated pathways can reverse the tension induced by NE in isolated prostatic tissue and elevate cyclic adenosine monophosphate and cyclic guanosine monophosphate. Our findings serve to explain how PDE inhibitors can affect symptoms of lower urinary tract symptoms and benign prostatic hyperplasia.
Collapse
Affiliation(s)
- Stefan Uckert
- Department of Urology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Gratzke C, Uckert S, Reich O, Schlenker B, Tilki D, Seitz M, Stief CG. [PDE5 inhibitors. A new option in the treatment of ureteral colic?]. Urologe A 2008; 46:1219-23. [PMID: 17604974 DOI: 10.1007/s00120-007-1409-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND PDE5 inhibitors represent the gold standard in the medical therapy of erectile dysfunction (ED). Promising results have been published regarding further urological indications such as treatment of ureteral colic. The aim of the present study was to evaluate the functional effects of the PDE5 inhibitors sildenafil (SIL), vardenafil (VAR), and tadalafil (TAD) on tissue tension and cyclic nucleotide levels of human ureteral smooth muscle segments in vitro. METHODS Relaxant responses of human ureteral smooth muscle were investigated in vitro using the organ bath technique. Cyclic nucleotides cAMP and cGMP were determined by specific radioimmunoassays. RESULTS Relaxing effects of ureteral muscle tension were observed in the rank order VAR>SIL>TAD. While only VAR significantly elevated cGMP levels 3.3-fold over control, no increase for cAMP levels was observed. CONCLUSIONS Our data provide evidence that cGMP is involved in the control of the normal function of the smooth musculature of the human ureter. Our findings suggest the potential of using selective inhibitors of PDE isoenzymes in the treatment of ureteral colic.
Collapse
Affiliation(s)
- C Gratzke
- Klinik und Poliklinik für Urologie, Ludwig-Maximilians-Universität, München.
| | | | | | | | | | | | | |
Collapse
|
39
|
Saeki T, Takase Y. Section Review Cardiovascular & Renal: Phosphodiesterase 5 inhibitors in development for cardiovascular therapy. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.5.11.1477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Stoclet JC, Keravis T, Komas N, Lugnier C. Section Review: Cardiovascular & Renal: Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiovascular diseases. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.11.1081] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Demoliou-Mason CD. Overview: Cardiovascular & Renal; Cyclic nucleotide phosphodiesterase inhibitors. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.5.5.417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Gajar SA, Tano T, Resende ÂC, Bitencourt JAF, de Lemos Neto M, Damião R, Criddle DN, Soares de Moura R. Inhibitory effect of sildenafil on the human isolated seminal vesicle. BJU Int 2007; 100:1322-5. [DOI: 10.1111/j.1464-410x.2007.07260.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
43
|
González-Cuello A, Sánchez L, Hernández J, Teresa Castells M, Victoria Milanés M, Laorden ML. Phosphodiesterase 4 inhibitors, rolipram and diazepam block the adaptive changes observed during morphine withdrawal in the heart. Eur J Pharmacol 2007; 570:1-9. [PMID: 17601555 DOI: 10.1016/j.ejphar.2007.05.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 05/08/2007] [Accepted: 05/15/2007] [Indexed: 11/21/2022]
Abstract
In this study, we investigated whether morphine dependence was inhibited by phosphodiesterase (PDE) 4 inhibitors rolipram and diazepam, since a role for the cyclic AMP systems in the development of morphine dependence was reported. Dependence of morphine was induced by a 7-day s.c. implantation of morphine pellets. Morphine withdrawal was precipitated on day 8 by an injection of naloxone. In order to determine the effect of rolipram or diazepam the animals were injected with these drugs for seven days and 30 min before the administration of naloxone. When opioid withdrawal was precipitated, enhancement of noradrenaline (NA) turnover in the heart was observed 30 min after naloxone administration. Moreover, morphine withdrawal induces Fos expression, increase in cyclic AMP and cyclic GMP levels. Co-administration of rolipram or diazepam with morphine during the pre-treatment period significantly reduces the signs of withdrawal symptoms, the enhancement of NA turnover, the increase in cyclic AMP and the Fos expression. However, these inhibitors did not modify the levels of cyclic GMP. These findings demonstrated that co-administration of rolipram or diazepam with morphine abolish the development of morphine dependence and suggest that these compounds prevent the up-regulation of the cyclic AMP pathway and the associated increase in cyclic AMP level after naloxone administration.
Collapse
Affiliation(s)
- Ana González-Cuello
- Department of Pharmacology, University School of Medicine, 30100 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Kaumann A, Semmler ABT, Molenaar P. The effects of both noradrenaline and CGP12177, mediated through human beta1 -adrenoceptors, are reduced by PDE3 in human atrium but PDE4 in CHO cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2007; 375:123-31. [PMID: 17318500 DOI: 10.1007/s00210-007-0140-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
(-)-Noradrenaline and (-)-CGP12177 activate beta(1)-adrenoceptors through a high (H)- and low-affinity (L) site, respectively. The positive inotropic effects of (-)-noradrenaline are blunted by phosphodiesterase4 (PDE4) but not PDE3, while both PDE isoenzymes, acting in concert, prevent the effects of (-)-CGP12177 through beta(1)-adrenoceptors in rat ventricle. We sought to unravel the role of PDE3 and PDE4 on signals through the H and L sites in human myocardium. The kinetics of matching positive inotropic effects of (-)-noradrenaline (20 nM) and (-)-CGP12177 (100 nM) were investigated on human atrial trabeculae in the absence and presence of the PDE3 inhibitor cilostamide (300 nM), PDE4 inhibitor rolipram (1 microM) or both. The influence of cilostamide and rolipram on agonist-evoked cyclic adenosine monophosphate (cAMP) increases were also compared in Chinese hamster ovary (CHO) cells expressing recombinant human beta1 -adrenoceptors. (-)-Noradrenaline and (-)-CGP12177 caused matching inotropic responses that faded during a 60-min time course. Cilostamide, but not rolipram, increased the positive inotropic effects and abolished the time dependent fade of both agonists. In CHO cells, rolipram, but not cilostamide, enhanced the cAMP signals caused by both (-)-noradrenaline and (-)-CGP12177. PDE3, but not PDE4, blunts the positive inotropic effects of both (-)-noradrenaline and (-)-CGP12177 through H and L sites, respectively, of human atrial beta1 -adrenoceptors. However, in CHO cells, PDE4 blunts the cAMP signals of both (-)-noradrenaline and (-)-CGP12177. Neither CHO cells nor the rat ventricle are appropriate models for the beta1 -adrenoceptor-evoked signalling to PDE3 observed in human atrium.
Collapse
Affiliation(s)
- Alberto Kaumann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
| | | | | |
Collapse
|
45
|
Vargas ML, Hernandez J, Kaumann AJ. Phosphodiesterase PDE3 blunts the positive inotropic and cyclic AMP enhancing effects of CGP12177 but not of noradrenaline in rat ventricle. Br J Pharmacol 2007; 147:158-63. [PMID: 16331293 PMCID: PMC1615855 DOI: 10.1038/sj.bjp.0706498] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
1.--The cardiostimulant effects of CGP12177, mediated through a beta(1)-adrenoceptor site with low affinity for (-)-propranolol, are potentiated by the nonselective PDE inhibitor IBMX but the role of PDE isoenzymes is unknown. We studied the effects of the PDE3-selective inhibitor cilostamide (300 nM) and PDE4-selective inhibitor rolipram (1 microM) on the positive inotropic and cyclic AMP-enhancing effects of CGP12177 and noradrenaline in right ventricular strips of rat. 2.--CGP12177 (under (-)-propranolol 200 nM) only increased contractile force in the presence of either cilostamide or rolipram with -logEC(50)M 6.7 (E(max)=23% over basal) and 7.1 (E(max)=50%) respectively. The combination of cilostamide and rolipram caused CGP12177 to enhance contractile force with -logEC(50)M=7.7 and E(max)=178%. 3.--The positive inotropic effects of noradrenaline (-logEC(50)M=6.9) were potentiated by rolipram (-logEC(50)M=7.4) but not by cilostamide (-logEC(50)M=7.0). 4.--In the presence of rolipram and (-)-propranolol, noradrenaline (2 microM) and CGP12177 (10 microM) produced matching inotropic effects but failed to increase cyclic AMP levels. 20 microM (-)-noradrenaline increased cyclic AMP levels, a response further enhanced by rolipram. 5.--Both PDE3 and PDE4 of rat ventricle appear to hydrolyse cyclic AMP generated through the low-affinity beta(1)-adrenoceptor site, thereby preventing inotropic responses of CGP12177. When (-)-noradrenaline interacts with the beta(1)-adrenoceptor, the generated cyclic AMP is hydrolysed only by PDE4, thereby reducing cardiostimulation.
Collapse
Affiliation(s)
| | - Jesus Hernandez
- Department of Pharmacology, University of Murcia, Murcia, Spain
| | - Alberto J Kaumann
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG
- Author for correspondence:
| |
Collapse
|
46
|
Dua P, Ingle A, Gude RP. Suramin augments the antitumor and antimetastatic activity of pentoxifylline inB16F10 melanoma. Int J Cancer 2007; 121:1600-8. [PMID: 17582610 DOI: 10.1002/ijc.22843] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rapid tumor growth and metastasis are 2 major problems associated with treatment of malignant melanoma. Therefore, drugs that can intervene these processes are of clinical importance. Pentoxifylline (PTX), a methyl xanthine derivative, has been shown to inhibit B16F10 melanoma tumor growth and metastasis. We hypothesized that suramin when combined with PTX enhances its antineoplastic effects, which we have examined using the B16F10 mouse melanoma model. Suramin in simultaneous or sequential combination potentiated the cytotoxic effects of PTX on B16F10 cells. PTX arrested cells in the G0-G1 phase and suramin augmented the effects. Both the drugs inhibited F10 adhesion to laminin, matrigel and collagen type IV and showed enhanced inhibition in combination The combination also demonstrated significantly higher inhibition in cell motility (p = 0.002) and invasion through matrigel (p = 0.005) as compared to the single agents. Suramin synergized with PTX in its effects on secretion of MMP-9 gelatinase. DBA2/J mice implanted with intradermal B16F10 tumor were used as a model to study tumor growth. Animals were intratumorally treated with 50 mg/kg of PTX, 10 mg/kg of suramin and their combinations. Simultaneous administration of the drugs inhibited tumor growth by 5- to 6-folds. Tumor growth was completely blocked in sequential regimen with regression in some cases. The number and size of metastatic nodules on lung was also reduced significantly by the combination treatment. In conclusion, the novel combination of PTX and suramin has synergistic antitumor and antimetastatic activity in B16F10 melanoma and may be a promising approach in treatment of patients suffering from malignant melanoma.
Collapse
Affiliation(s)
- Pooja Dua
- Gude Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | | | | |
Collapse
|
47
|
Abstract
Phosphodiesterases are a diverse family of enzymes that hydrolyse cyclic nucleotides and thus play a key role in regulating intracellular levels of the second messengers cAMP and cGMP, and hence cell function. Theophylline and papaverine have historically been used therapeutically and are known to be weak inhibitors of PDE, but to what extent this contributed toward their clinical efficacy was poorly defined. However, the discovery of 11 isoenzyme families and our increased understanding of their function at the cell and molecular level provides an impetus for the development of isoenzyme selective inhibitors for the treatment of various diseases. This review focuses on the development of PDE3 inhibitors for congestive heart failure, PDE4 inhibitors for inflammatory airways disease and most successfully, PDE5 inhibitors for erectile dysfunction.
Collapse
Affiliation(s)
- Victoria Boswell-Smith
- Sackler Institute of Pulmonary Pharmacology, Kings College London School of Biomedical Health and Life Sciences, 5th Floor, Hodgkin Building, Guys Campus, Kings College, London SE1 1UL, London
| | - Domenico Spina
- Sackler Institute of Pulmonary Pharmacology, Kings College London School of Biomedical Health and Life Sciences, 5th Floor, Hodgkin Building, Guys Campus, Kings College, London SE1 1UL, London
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Kings College London School of Biomedical Health and Life Sciences, 5th Floor, Hodgkin Building, Guys Campus, Kings College, London SE1 1UL, London
- Sackler Institute of Pulmonary Pharmacology, Kings College London School of Biomedical Health and Life Sciences, 5th Floor, Hodgkin Building, Guys Campus, Kings College, London SE1 1UL, London. E-mail:
| |
Collapse
|
48
|
Gratzke C, Uckert S, Kedia G, Reich O, Schlenker B, Seitz M, Becker AJ, Stief CG. In vitro effects of PDE5 inhibitors sildenafil, vardenafil and tadalafil on isolated human ureteral smooth muscle: a basic research approach. ACTA ACUST UNITED AC 2006; 35:49-54. [PMID: 17102958 DOI: 10.1007/s00240-006-0073-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Accepted: 10/24/2006] [Indexed: 10/23/2022]
Abstract
Cyclic nucleotide phosphodiesterase (PDE) isoenzymes are key proteins regulating intracellular cyclic nucleotide turnover and thus smooth muscle tension. Several in vitro studies have indicated that the cyclic GMP and cyclic AMP-mediated signaling may play a role in the control of human ureteral muscle. The aim of the present study was to evaluate the functional effects of PDE5 inhibitors sildenafil (Sil), vardenafil (Var) and tadalafil (Tad), as well as nitric oxide (NO)-donating agent sodium nitroprusside (SNP) and non-selective muscarinic antagonist butylscopolamine (BSC) on the tension induced by KCl and the turnover of cyclic nucleotides in isolated human ureteral smooth muscle. In vitro relaxant responses of human ureteral smooth muscle to the PDE5 inhibitors mentioned above were investigated using the organ bath technique. Cyclic nucleotides cAMP and cGMP were determined by means of specific radioimmunoassay following incubation of the tissue with Sil, Var, Tad and SNP. The tension induced by KCl of the ureteral tissue was dose dependently reversed by the drugs with the following rank order of efficacy: SNP > Var >or= Sil > Tad > BSC. R(max) values ranged from 25 +/- 9% (SNP) to 5 +/- 3% (BSC). Relaxant responses were paralleled by threefold to fourfold increase in tissue levels of cGMP. Our results indicate that PDE5 inhibitors can reverse the tension of isolated human ureteral smooth muscle via cGMP-mediated pathways. Nevertheless, further studies are indicated in order to evaluate as to whether there might be a use for PDE5 inhibitors in the treatment of ureteral stone disease.
Collapse
Affiliation(s)
- Christian Gratzke
- Department of Urology, Ludwig-Maximilians-University, University Hospital Grosshadern, Marchioninistr. 15, 81377, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sato Y, Akao T, He JX, Nojima H, Kuraishi Y, Morota T, Asano T, Tani T. Glycycoumarin from Glycyrrhizae Radix acts as a potent antispasmodic through inhibition of phosphodiesterase 3. JOURNAL OF ETHNOPHARMACOLOGY 2006; 105:409-14. [PMID: 16387459 DOI: 10.1016/j.jep.2005.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 11/11/2005] [Accepted: 11/22/2005] [Indexed: 05/06/2023]
Abstract
Glycyrrhizae Radix is used to treat abdominal pain as a component of Shakuyaku-kanzo-to, a traditional Chinese medicine formulation. We aim at clarifying the antispasmodic principles of Glycyrrhizae Radix, and consequently isolated glycycoumarin as a potent relaxant on the carbamylcholine (CCh)-induced contraction of mouse jejunum. In this paper we investigated the effects and the action mechanism of glycycoumarin on the contraction of mouse jejunum. Glycycoumarin inhibited the contraction induced by various types of stimulants, such as CCh, KCl, BaCl(2), and A23187 (calcium ionophore III) with IC(50) values of 2.93+/-0.94 micromol/l (1.08+/-0.35 microg/ml), 2.59+/-0.58 micromol/l (0.95+/-0.29 microg/ml), 4.09+/-1.82 micromol/l (1.51+/-0.67 microg/ml) and 7.39+/-5.19 micromol/l (2.72+/-1.91 microg/ml), respectively, with a potency similar to that of papaverine (a representative antispasmodic for smooth muscle). Furthermore, pretreatment with glycycoumarin enhanced the relaxation induced by forskolin on CCh-evoked contraction, similar to that by pretreatment with IBMX, a non-specific inhibitor of phosphodiesterases (PDEs). Pretreatment with glycycoumarin also enhanced the relaxation effect of rolipram, a specific inhibitor of PDE isozyme 4, as pretreatment with milrinone, a specific inhibitor of isozyme 3, did. Moreover, the effect of glycycoumarin was associated with dose-dependent accumulation of cAMP, but not cGMP, in mouse jejunum. These results indicate that glycycoumarin has an inhibitory effect on smooth muscle contraction induced by various types of stimulants through the inhibition of PDEs, especially isozyme 3, followed by the accumulation of intracellular cAMP.
Collapse
Affiliation(s)
- Yuji Sato
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lin RJ, Wu BN, Lo YC, An LM, Dai ZK, Lin YT, Tang CS, Chen IJ. A xanthine-based epithelium-dependent airway relaxant KMUP-3 (7-[2-[4-(4-nitrobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) increases respiratory performance and protects against tumor necrosis factor-alpha-induced tracheal contraction, involving nitric oxide release and expression of cGMP and protein kinase G. J Pharmacol Exp Ther 2006; 316:709-17. [PMID: 16234412 DOI: 10.1124/jpet.105.092171] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
KMUP-3 (7-[2-[4-(4-nitrobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) was investigated in guinea pig tracheal smooth muscle. Intratracheal instillation of tumor necrosis factor (TNF)-alpha (0.01 mg/kg/300 microl) induced bronchoconstriction, increases of lung resistance, and decreases of dynamic lung compliance. Instillation of KMUP-3 (0.5-2.0 mg/kg) reversed this situation. In isolated trachea precontracted with carbachol, KMUP-3 (10-100 microM)-caused relaxations were attenuated by epithelium removal and by pretreatments with an inhibitor of K(+) channel, tetraethylammonium (10 mm); K(ATP) channel, glibenclamide (1 microM); voltage-dependent K(+) channel, 4-aminopyridine (100 microM); Ca(2+)-dependent K(+) channel, charybdotoxin (0.1 microM) or apamin (1 microM); soluble guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1one (ODQ, 1 microM); nitric-oxide (NO) synthase, N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 microM); and adenylate cyclase, SQ 22536 [9-(terahydro-2-furanyl)-9H-purin-6-amine] (100 microM). KMUP-3 (0.01-100 microM) induced increases of cGMP and cAMP in primary culture of tracheal smooth muscle cells (TSMCs). The increase in cGMP by KMUP-3 was reduced by ODQ and L-NAME; the increase in cAMP was reduced by SQ 22536. Western blot analysis indicated that KMUP-3 (1 microM) induced expression of protein kinase A (PKA)(ri) and protein kinase G (PKG)(1alpha 1beta) in TSMCs.SQ 22536 inhibited KMUP-3-induced expression of (PKA)(ri). On the contrary, ODQ inhibited KMUP-3-induced expression of PKG(1alpha 1beta) In epithelium-intact trachea, KMUP-3 increased the NO release. Activation of sGC, NO release, and inhibition of phosphodiesterases in TSMCs by KMUP-3 may result in increases of intracellular cGMP and cAMP, which subsequently activate PKG and PKA, efflux of K(+) ion, and associated reduction in Ca(2+) influx in vitro, indicating the action mechanism to protect against TNF-alpha-induced airway dysfunction in vivo.
Collapse
Affiliation(s)
- Rong-Jyh Lin
- Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|