1
|
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Buschmann J, Cancellieri MA, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Na M, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. Update to RIFM fragrance ingredient safety assessment, eugenol, CAS Registry Number 97-53-0. Food Chem Toxicol 2022; 163 Suppl 1:113027. [PMID: 35439588 DOI: 10.1016/j.fct.2022.113027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/12/2022] [Indexed: 11/19/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel for Fragrance Safety, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel for Fragrance Safety, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - G A Burton
- Member Expert Panel for Fragrance Safety, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - J Buschmann
- Member Expert Panel for Fragrance Safety, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - M A Cancellieri
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel for Fragrance Safety, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member Expert Panel for Fragrance Safety, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel for Fragrance Safety, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel for Fragrance Safety, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Na
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel for Fragrance Safety, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel for Fragrance Safety, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel for Fragrance Safety, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Editor-in-Chief, Professor and Chairman, Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
2
|
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Buschmann J, Cancellieri MA, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Na M, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, 2-methoxy-4-vinylphenol, CAS Registry Number 7786-61-0. Food Chem Toxicol 2022; 161 Suppl 1:112872. [PMID: 35183652 DOI: 10.1016/j.fct.2022.112872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/30/2021] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE, 20502, Sweden
| | - G A Burton
- Member Expert Panel, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - J Buschmann
- Member Expert Panel, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP, 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel, The Journal of Dermatological Science (JDS), Editor-in-Chief, Professor and Chairman, Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
3
|
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Buschmann J, Cancellieri MA, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Na M, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, 2-methoxy-4-methylphenol, CAS Registry Number 93-51-6. Food Chem Toxicol 2021; 153 Suppl 1:112363. [PMID: 34182042 DOI: 10.1016/j.fct.2021.112363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/20/2021] [Indexed: 11/19/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE, 20502, Sweden
| | - G A Burton
- Member Expert Panel, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - J Buschmann
- Member Expert Panel, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - M A Cancellieri
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Na
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel, The Journal of Dermatological Science (JDS), Editor-in-Chief, Professor and Chairman, Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
4
|
Ehrlich O, Karamalakis A, Krylov AJ, Dudczig S, Hassell KL, Jusuf PR. Clove Oil and AQUI-S Efficacy for Zebrafish Embryo, Larva, and Adult Anesthesia. Zebrafish 2019; 16:451-459. [PMID: 31188070 DOI: 10.1089/zeb.2019.1737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Since the use of the zebrafish Danio rerio genetic model organism within the scientific research community continues to grow rapidly, continued procedural refinement to support high-quality, reproducible research and improve animal welfare remains an important focus. As such, anesthesia remains one of the most frequent procedures conducted. Here, we compared the effectiveness of clove oil (active ingredient eugenol) and AQUI-S (active ingredient iso-eugenol) with the currently most commonly used tricaine/MS-222 (ethyl 3-aminobenzoate methanesulfonate) and benzocaine anesthesia. We focused on embryos (1 day postfertilization), larvae (5 days postfertilization), and adults (9-11 months) and for the first time used exposure times that are the most relevant in research settings by using zebrafish as a genetic model system. For each age, tricaine and benzocaine achieved the most reproducible, robust anesthesia with the quickest induction and recovery. For some experimental procedures, specific clove oil concentrations in embryos and larvae may represent suitable alternatives. Although different aquatic species at specific ages respond differentially to these agents, the systematic study of comparable effective dosages for procedures most commonly employed represent an important step toward refinement.
Collapse
Affiliation(s)
- Ophelia Ehrlich
- School of Biosciences, University of Melbourne, Parkville, Australia
| | | | | | - Stefanie Dudczig
- School of Biosciences, University of Melbourne, Parkville, Australia
| | | | | |
Collapse
|
5
|
Validation of the 3D Skin Comet assay using full thickness skin models: Transferability and reproducibility. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 827:27-41. [DOI: 10.1016/j.mrgentox.2018.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/18/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022]
|
6
|
Kirkland D, Kasper P, Martus HJ, Müller L, van Benthem J, Madia F, Corvi R. Updated recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 795:7-30. [DOI: 10.1016/j.mrgentox.2015.10.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/09/2023]
|
7
|
Api AM, Belsito D, Bhatia S, Bruze M, Calow P, Dagli ML, Dekant W, Fryer AD, Kromidas L, La Cava S, Lalko JF, Lapczynski A, Liebler DC, Miyachi Y, Politano VT, Ritacco G, Salvito D, Schultz TW, Shen J, Sipes IG, Wall B, Wilcox DK. RIFM fragrance ingredient safety assessment, Eugenol, CAS Registry Number 97-53-0. Food Chem Toxicol 2015; 97S:S25-S37. [PMID: 26702986 DOI: 10.1016/j.fct.2015.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 11/29/2022]
Abstract
The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Reproductive toxicity was determined to have the most conservative systemic exposure derived NO[A]EL of 230 mg/kg/day. A gavage multigenerational continuous breeding study conducted in rats on a suitable read across analog resulted in a MOE of 12,105 while considering 22.6% absorption from skin contact and 100% from inhalation. A MOE of >100 is deemed acceptable.
Collapse
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA.
| | - D Belsito
- Member RIFM Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY 10032, USA
| | - S Bhatia
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - M Bruze
- Member RIFM Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo SE-20502, Sweden
| | - P Calow
- Member RIFM Expert Panel, Humphrey School of Public Affairs, University of Minnesota, 301 19th Avenue South, Minneapolis, MN 55455, USA
| | - M L Dagli
- Member RIFM Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo CEP 05508-900, Brazil
| | - W Dekant
- Member RIFM Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078 Würzburg, Germany
| | - A D Fryer
- Member RIFM Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | - L Kromidas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - S La Cava
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - J F Lalko
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - D C Liebler
- Member RIFM Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN 37232-0146, USA
| | - Y Miyachi
- Member RIFM Expert Panel, Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - V T Politano
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - D Salvito
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - T W Schultz
- Member RIFM Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN 37996-4500, USA
| | - J Shen
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - I G Sipes
- Member RIFM Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA
| | - B Wall
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - D K Wilcox
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| |
Collapse
|
8
|
La Torre A, Mandalà C, Pezza L, Caradonia F, Battaglia V. Evaluation of essential plant oils for the control ofPlasmopara viticola. JOURNAL OF ESSENTIAL OIL RESEARCH 2014. [DOI: 10.1080/10412905.2014.889049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Javahery S, Nekoubin H, Moradlu AH. Effect of anaesthesia with clove oil in fish (review). FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1545-1552. [PMID: 22752268 DOI: 10.1007/s10695-012-9682-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/19/2012] [Indexed: 05/24/2023]
Abstract
Clove oil is an effective, local and natural anaesthetic. Many hatcheries and research studies use clove oil to immobilize fish for handling, sorting, tagging, artificial reproduction procedures and surgery and to suppress sensory systems during invasive procedures. Clove oil may be more appropriate for use in commercial aquaculture situations. Improper clove oil use can decrease fish viability, distort physiological data or result in mortalities. Because animals may be anaesthetized by unskilled labourers and released in natural water bodies, training in the proper use of clove oil may decrease variability in recovery and experimental results and increase fish survival. Here, we briefly describe many aspects of clove oil, including the legal uses of it, anaesthesia mechanism and what is currently known about the preparation and behavioural and pathologic effects of the anaesthetic. We outline methods and precautions for administration and changes in fish behaviour during progressively deeper anaesthesia and discuss the physiological effects of clove oil, its potential for compromising fish health and effectiveness of water quality parameters.
Collapse
Affiliation(s)
- Susan Javahery
- Department of Fishery, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Hamed Nekoubin
- Department of Fishery, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Abdolmajid Haji Moradlu
- Department of Fishery, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
10
|
Brzovic V, Miletic I, Zeljezic D, Mladinic M, Kasuba V, Ramic S, Anic I. In vitro genotoxicity of root canal sealers. Int Endod J 2009; 42:253-63. [PMID: 19228216 DOI: 10.1111/j.1365-2591.2008.01510.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIM To evaluate the effect of leakage on differences in genotoxicity of root canal sealers ex vivo according to their main components using two different cytogenetic assays. METHODOLOGY Six materials of different composition (GuttaFlow, Epiphany, Diaket, IRM, SuperEBA and Hermetic) were tested on human peripheral blood lymphocytes using the comet assay and chromosomal aberration analysis. Prepared materials were eluted in physiological solution for 1 h, 1 day, 5 and 30 days. Thereafter cultures were treated with 8 microg, 4 microg and 2 microg of each sealer. Frequencies of chromatide and chromosome breaks and accentric fragments were determined. Comet assay was used to evaluate primary DNA damage by measuring tail length and tail intensity. Chi-square, Fisher's PLSD (Protected Least Significant Difference) and Kruskall-Wallis non parametric tests were used for statistical analysis. RESULTS After 1-h elution only the highest dose of Diaket, Hermetic and SuperEBA significantly (P = 0.035, P = 0.048, P = 0.037 respectively) affected the measured cytogenetic parameters. The migration ability of DNA was more strongly affected than induction of chromosomal aberrations. After elutions longer than 24 h none of the tested sealers exhibited a genotoxic effect. CONCLUSION Under the conditions used in the study all sealers had acceptable biocompatibility in terms of genotoxicity.
Collapse
Affiliation(s)
- V Brzovic
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | | | | | | | | |
Collapse
|
11
|
Buyukleyla M, Rencuzogullari E. The effects of thymol on sister chromatid exchange, chromosome aberration and micronucleus in human lymphocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:943-947. [PMID: 19046601 DOI: 10.1016/j.ecoenv.2008.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 10/06/2008] [Accepted: 10/12/2008] [Indexed: 05/27/2023]
Abstract
The genotoxic effects of thymol were investigated in human peripheral lymphocytes treated with 25, 50, 75, and 100 microg/ml concentrations of thymol for 24 and 48h treatment periods by using sister chromatid exchange (SCE), chromosome aberration (CA), and micronucleus (MN) tests. Nuclear division index (NDI), replication index (RI), and mitotic index (MI) were also calculated in order to determine the cytotoxicity of thymol. Thymol significantly increased the SCE, especially at the lower concentrations. Thymol also increased the SCE at the highest concentrations without statistical significance. Thymol induced both the structural CA and frequency of MN at all concentrations. Thymol dose-dependently decreased the NDI for two treatment periods. Thymol decreased the RI for the 24h treatment time without any statistical significance. However, thymol decreased the RI for the 48h treatment time in a dose-dependent manner. Thymol also decreased the MI at the higher concentration without dose-dependent effect.
Collapse
Affiliation(s)
- Mehmet Buyukleyla
- Department of Biology, Natural and Applied Science Institute, Cukurova University, 01330 Adana, Turkey
| | | |
Collapse
|
12
|
Flavouring Group Evaluation 60 (FGE.60): Consideration of eugenol and related hydroxyallylbenzene derivatives evaluated by JECFA (65th meeting) structurally related to ring- substituted phenolic substances evaluated by EFSA in FGE.22 (2006). EFSA J 2009. [DOI: 10.2903/j.efsa.2009.965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
13
|
Azirak S, Rencuzogullari E. The in vivo genotoxic effects of carvacrol and thymol in rat bone marrow cells. ENVIRONMENTAL TOXICOLOGY 2008; 23:728-735. [PMID: 18361405 DOI: 10.1002/tox.20380] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The aim of this study was to investigate the in vivo genotoxic effects of carvacrol and thymol in bone marrow cells of rats. In the present study, both carvacrol (10, 30, 50, and 70 mg/kg b.w.) and thymol (40, 60, 80, and 100 mg/kg b.w.) significantly induced the structural and total chromosome abnormalities (CA) for all treatment periods (6, 12, and 24 h) when compared with control in bone marrow cells of rats intraperitonally administered. Both carvacrol and thymol showed similar effects with the positive control urethane on induction of the percentage of structural and total CA at the highest concentrations except the effects of carvacrol for 6 h treatment (70 mg/kg b.w. and 100 mg/kg b.w., respectively). In addition, carvacrol induced the numerical CA at all concentrations when compared to control and at two highest concentrations (50 and 70 mg/kg b.w.) when compared to solvent control. Thymol also induced the numerical CA especially at the highest concentration (100 mg/kg b.w.) for all treatment periods. It was shown that there was a dose-dependent effect on induction of structural, numerical and total CA for both carvacrol and thymol. Carvacrol and thymol decreased the mitotic index (MI) in all the concentrations and treatment times when compared with control. Carvacrol showed the similar effects with EC on decreasing the MI at 70 mg/kg b.w. for 6 h, at 30 and 50 mg/kg b.w. for 12 h and at all concentrations for 24 h treatment periods. Thymol also showed a similar effect with urethane (ethyl carbamate, EC) on decreasing the MI at 60, 80, and 100 mg/kg b.w. for 6 h and at all concentrations for 24 h treatment periods. Test substances decreased the MI in a dose-dependent manner.
Collapse
Affiliation(s)
- Sebile Azirak
- Department of Biology, Cukurova University, Natural and Applied Science Institute, 01330, Adana, Turkey
| | | |
Collapse
|
14
|
Kirkland D, Kasper P, Müller L, Corvi R, Speit G. Recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests: A follow-up to an ECVAM workshop. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 653:99-108. [DOI: 10.1016/j.mrgentox.2008.03.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 03/17/2008] [Accepted: 03/28/2008] [Indexed: 12/27/2022]
|
15
|
Grush J, Noakes DLG, Moccia RD. The efficacy of clove oil as an anesthetic for the zebrafish, Danio rerio (Hamilton). Zebrafish 2008; 1:46-53. [PMID: 18248205 DOI: 10.1089/154585404774101671] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The anesthetic effects of clove-oil-derived eugenol were studied in the zebrafish, Danio rerio (Hamilton). Acute lethality and the effects of exposures to various dosages of eugenol were measured. The estimated 96-h LC50 for eugenol was 21 ppm. Times to induction and recovery from anesthesia were measured and compared with MS-222 under similar conditions. Eugenol induced anesthesia faster and at lower concentrations when compared to MS-222. The recovery times for fish exposed to eugenol were generally longer compared to similar concentrations of MS-222. Doses of 60-100 ppm eugenol produced rapid anesthesia with an acceptably short time for recovery. These findings suggest that eugenol could be an effective anesthetic for use with this species, and when compared to MS-222, its benefits include a lower cost, lower required dosage, improved safety, and potentially lower mortality rates.
Collapse
Affiliation(s)
- J Grush
- Departments of Zoology, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
16
|
Gahyva SMM, Siqueira Junior JF. Direct genotoxicity and mutagenicity of endodontic substances and materials as evaluated by two prokaryotic test systems. J Appl Oral Sci 2005; 13:387-92. [DOI: 10.1590/s1678-77572005000400014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 07/20/2005] [Indexed: 11/22/2022] Open
Abstract
Substances and materials used in endodontic therapy come into close contact with the periradicular tissues via apical foramen and foramina. Consequently, they should possess biocompatibility. There are currently few studies describing the genotoxic and mutagenic potentials of substances and materials used in endodontics. The purpose of this study was to evaluate the direct genotoxic and mutagenic properties of several substances and materials used in different phases of the endodontic treatment. For this intent, two prokaryotic test systems were used: the SOS chromotest and the Ames test. No metabolization with S9 was investigated, since only the direct effects of the substances and materials were surveyed. Most of the substances and materials tested presented mild to moderate cytotoxicity and genotoxicity as revealed by the SOS chromotest. Formocresol was the only tested substance to present severe genotoxicity to the tester bacterial strains. However, no substance or material tested showed direct mutagenicity as revealed by the Ames test.
Collapse
|
17
|
Munerato MC, Sinigaglia M, Reguly ML, de Andrade HHR. Genotoxic effects of eugenol, isoeugenol and safrole in the wing spot test of Drosophila melanogaster. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 582:87-94. [PMID: 15781214 DOI: 10.1016/j.mrgentox.2005.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 12/24/2004] [Accepted: 01/07/2005] [Indexed: 11/26/2022]
Abstract
In the present study, the phenolic compounds eugenol, isoeugenol and safrole were investigated for genotoxicity in the wing spot test of Drosophila melanogaster. The Drosophila wing somatic mutation and recombination test (SMART) provides a rapid means to evaluate agents able to induce gene mutations and chromosome aberrations, as well as rearrangements related to mitotic recombination. We applied the SMART in its standard version with normal bioactivation and in its variant with increased cytochrome P450-dependent biotransformation capacity. Eugenol and safrole produced a positive recombinagenic response only in the improved assay, which was related to a high CYP450-dependent activation capacity. This suggests, as previously reported, the involvement of this family of enzymes in the activation of eugenol and safrole rather than in its detoxification. On the contrary, isoeugenol was clearly non-genotoxic at the same millimolar concentrations as used for eugenol in both the crosses. The responsiveness of SMART assays to recombinagenic compounds, as well as the reactive metabolites from eugenol and safrole were considered responsible for the genotoxicity observed.
Collapse
Affiliation(s)
- Maria Cristina Munerato
- Departamento de Odontologia Conservadora, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|
18
|
Huang FM, Hsieh YS, Tai KW, Chou MY, Chang YC. Induction of c-fos and c-jun protooncogenes expression by formaldehyde-releasing and epoxy resin-based root-canal sealers in human osteoblastic cells. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 59:460-5. [PMID: 11774303 DOI: 10.1002/jbm.10022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An important requirement for a root-canal sealer is biologic compatibility; most evaluations have focused on general toxicological and local tissue irritating properties. There is only scant information about mutagenicity or carcinogenicity testing for root-canal sealer. It has been shown that c-fos and c-jun are induced rapidly by a variety of chemical and physical stimuli. Numerous works have extensively investigated the induction mechanisms of c-fos and c-jun protooncogenes by these agents; however, little is known about the induction of cellular signaling events and specific gene expression after cell exposure to root-canal sealers. Therefore, we used osteoblastic cell line U2-OS to examine the effect of zinc-oxide eugenol-based (N2 and Endomethasome), epoxy resin-based (AH Plus), and calcium hydroxide-based (Sealapex) root-canal sealers on the expression of c-fos and c-jun protooncogenes to understand in more detail the molecular mechanisms of root-canal sealer-induced genotoxicity. The cytotoxicity decreased in an order of N2 > Endomethasome > AH Plus > Sealapex. In addition, N2, Endomethasome, and AH Plus rapidly induced c-jun and c-fos mRNA levels in cells. However, Sealapex did not induce c-jun and c-fos mRNA expression at detectable levels all time points. Taken together, persistent induction of c-jun and c-fos protooncogenes by formaldehyde-releasing and epoxy resin-based root-canal sealers may be distributed systemically via apex to cause some unexpected adverse effects on human beings. These data should be taken into consideration when choosing a root-canal sealer.
Collapse
Affiliation(s)
- Fu-Mei Huang
- Department of Dentistry, Chung Shan Medical and Dental College Hospital, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
19
|
Lazutka JR, Mierauskiene J, Slapsyte G, Dedonyte V. Genotoxicity of dill (Anethum graveolens L.), peppermint (Menthaxpiperita L.) and pine (Pinus sylvestris L.) essential oils in human lymphocytes and Drosophila melanogaster. Food Chem Toxicol 2001; 39:485-92. [PMID: 11313115 DOI: 10.1016/s0278-6915(00)00157-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genotoxic properties of the essential oils extracted from dill (Anethum graveolens L.) herb and seeds, peppermint (Menthaxpiperita L.) herb and pine (Pinus sylvestris L.) needles were studied using chromosome aberration (CA) and sister chromatid exchange (SCE) tests in human lymphocytes in vitro, and Drosophila melanogaster somatic mutation and recombination test (SMART) in vivo. In the CA test, the most active essential oil was from dill seeds, then followed essential oils from dill herb, peppermint herb and pine needles, respectively. In the SCE test, the most active essential oils were from dill herb and seeds followed by essential oils from pine needles and peppermint herb. Essential oils from dill herb and seeds and pine needles induced CA and SCE in a clear dose-dependent manner, while peppermint essential oil induced SCE in a dose-independent manner. All essential oils were cytotoxic for human lymphocytes. In the SMART test, a dose-dependent increase in mutation frequency was observed for essential oils from pine and dill herb. Peppermint essential oil induced mutations in a dose-independent manner. Essential oil from dill seeds was almost inactive in the SMART test.
Collapse
Affiliation(s)
- J R Lazutka
- Department of Botany and Genetics, Vilnius University, 21 Ciurlionis St, 2009, Vilnius, Lithuania.
| | | | | | | |
Collapse
|
20
|
Abstract
The naturally occurring flavouring agents trans-anethole and eugenol were evaluated for antigenotoxic effects in mice. The test doses of trans-anethole (40-400 mg/kg body weight) and eugenol (50-500 mg/kg weight) were administered by gavage 2 and 20 h before the genotoxins were injected intraperitoneally. Anti-genotoxic effects were assessed in the mouse bone marrow micronucleus test. Pretreatment with trans-anethole and eugenol led to significant antigenotoxic effects against cyclophosphamide (CPH), procarbazine (PCB), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and urethane (URE). In addition, trans-anethole inhibited the genotoxicity of ethyl methane sulfonate (EMS). Both trans-anethole and eugenol exerted dose-related antigenotoxic effects against PCB and URE. There was no significant increase in genotoxicity when trans-anethole (40-400 mg/kg body weight) and eugenol (50-500 mg/kg body weight) were administered alone.
Collapse
Affiliation(s)
- S K Abraham
- School of Life Sciences, Jawaharlal Nehru University, -110067, New Delhi, India.
| |
Collapse
|
21
|
Rompelberg CJ, Evertz SJ, Bruijntjes-Rozier GC, van den Heuvel PD, Verhagen H. Effect of eugenol on the genotoxicity of established mutagens in the liver. Food Chem Toxicol 1996; 34:33-42. [PMID: 8603795 DOI: 10.1016/0278-6915(95)00091-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The influence of in vivo treatment with eugenol on established mutagens was studied to determine whether eugenol has antigenotoxic potential. The effects of eugenol in rats was investigated in the unscheduled DNA synthesis (UDS) assay with established mutagens and the Salmonella typhimurium mutagenicity assay. In addition, the effect of in vivo treatment with eugenol on benzo[a]pyrene (B[a]P)-induced genotoxicity in human hepatoma cell line Hep G2 was investigated in the single-cell gel electrophoresis assay. The mutagenicity of B[a]P in the S. typhimurium mutagenicity assay was lower in liver S-9 fractions from control rats. Incubation of liver S-9 fractions from eugenol-treated rats with dimethylbenzanthracene (DMBA) had no antimutagenic effect. Eugenol did not modify UDS activity in hepatocytes isolated from rats pretreated with eugenol orally after exposure of these cells in vitro to DMBA and aflatoxin B1. Four different treatment schemes of combinations of B[a]P and eugenol were examined in Hep G2 cells: pre-treatment with eugenol; simultaneous treatment with eugenol and B[a]P; a combination of these (pretreatment/simultaneous treatment); and post-treatment with eugenol. An increase in the genotoxicity of B[a]P was found in Hep G2 cells. No effect of eugenol on the genotoxicity of B[a]P was found with the pre- and post-treatments. It is concluded that the effect of eugenol on genotoxicity induced by established mutagens is not univocal; in vivo treatment of rats with eugenol resulted in a reduction of the mutagenicity of B[a]P in the S. typhimurium mutagenicity assay, while in the UDS assay no effect of eugenol was found. In vitro treatment of cultured cells with eugenol resulted in an increase in genotoxicity of B[a]P. These findings indicate that there is only limited support for the antigenotoxic potential of eugenol in vivo.
Collapse
Affiliation(s)
- C J Rompelberg
- TNO Nutrition and Food Research Institute, Zeist, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Chen SJ, Wu BN, Yeh JL, Lo YC, Chen IS, Chen IJ. C-fiber-evoked autonomic cardiovascular effects after injection of Piper betle inflorescence extracts. JOURNAL OF ETHNOPHARMACOLOGY 1995; 45:183-188. [PMID: 7542715 DOI: 10.1016/0378-8741(94)01213-j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Piper betle inflorescence extracts contain eugenol (6.2%) and safrole (78.9%). Intravenous injections of water extracts of P. betle inflorescence (PBE), eugenol, and safrole in rats induced hypotensive and bradycardiac effects, whereas both intraarterial and intrathecal injections of PBE, eugenol and safrole resulted in hypotensive and tachycardiac effects. Moreover, the effects of intravenous injections of PBE were reversed or inhibited by the pretreatment with bilateral vagotomy, atropine (1 mg/kg, i.p.) and capsaicin (100 mg/kg, s.c.). Effects of intraarterial injections of PBE on blood pressure were inhibited by the pretreatment with substance P (SP) antagonist (1 nmol, i.t.) and clonidine (2.5 micrograms, i.t.), while heart rate was only inhibited by the pretreatment with SP antagonist (1 nmol, i.t.). In addition, the tachycardia resulting from intrathecal injections of PBE was inhibited by pretreatment with propranolol (0.3 mg/kg, i.v.). Eugenol and safrole induced the same pattern on blood pressure and heart rate changes as PBE in rats after various treatments. This report suggests that acute administration of betel inflorescence extracts by different routes may activate C-fiber-evoked parasympathetic and sympathetic cardiovascular reflexes in rats.
Collapse
Affiliation(s)
- S J Chen
- Department of Pharmacology, Graduate Institute of Medicine, Kaohsiung Medical College, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
23
|
Rompelberg CJ, Stenhuis WH, de Vogel N, van Osenbruggen WA, Schouten A, Verhagen H. Antimutagenicity of eugenol in the rodent bone marrow micronucleus test. Mutat Res 1995; 346:69-75. [PMID: 7885402 DOI: 10.1016/0165-7992(95)90053-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The antimutagenic effect of eugenol on the mutagenicity of cyclophosphamide (CP), mitomycin C (MMC), ethyl methanesulfonate (EMS) and benzo[a]pyrene (B[a]P) was assessed in the rodent bone marrow micronucleus test using male Swiss mice. Oral administration of eugenol (0.4% in the diet) for 15 days was found to decrease significantly the frequency of micronucleated polychromatic erythrocytes (MPEs) elevated by CP. No effect was found on the frequency of MPEs elevated by MMC, EMS and B[a]P. The results provide some support for antimutagenic potency of eugenol in vivo.
Collapse
Affiliation(s)
- C J Rompelberg
- TNO Nutrition and Food Research Institute, AJ Zeist, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Jeng JH, Hahn LJ, Lu FJ, Wang YJ, Kuo MY. Eugenol triggers different pathobiological effects on human oral mucosal fibroblasts. J Dent Res 1994; 73:1050-5. [PMID: 8006231 DOI: 10.1177/00220345940730050601] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pathobiological effects of eugenol (4-allyl-2-methoxyphenol), a major constituent of betel quid (BQ), were studied on oral mucosal fibroblasts. At a concentration higher than 3 mmol/L, eugenol was cytotoxic to oral mucosal fibroblasts in a concentration- and time-dependent manner. Cell death was associated with intracellular depletion of glutathione (GSH). Most of the GSH was depleted prior to the onset of cell death. At concentrations of 3 mmol/L and 4 mmol/L, eugenol depleted about 45% and 77% of GSH after one-hour incubation. In addition, eugenol decreased cellular ATP level in a concentration- and time-dependent manner. Eugenol also inhibited lipid peroxidation. Inhibition of lipid peroxidation was partially explained by its dose-dependent inhibition of xanthine oxidase activity. The IC50 of eugenol on xanthine oxidase activity was about 0.3 mmol/L. No DNA strand break activity for eugenol was found at concentrations between 0.5 and 3 mmol/L. Taken together, frequent exposure of oral mucosa to a high concentration of eugenol during the chewing of BQ might be involved in the pathogenesis of oral submucous fibrosis and oral cancer via its cytotoxicity. In contrast, eugenol at a concentration less than 1 mmol/L might protect cells from the genetic attack of reactive oxygen species via inhibition of xanthine oxidase activity and lipid peroxidation.
Collapse
Affiliation(s)
- J H Jeng
- School of Dentistry, College of Medicine, National Taiwan University, Taipei, ROC
| | | | | | | | | |
Collapse
|
25
|
Stea S, Savarino L, Ciapetti G, Cenni E, Stea S, Trotta F, Morozzi G, Pizzoferrato A. Mutagenic potential of root canal sealers: evaluation through Ames testing. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1994; 28:319-28. [PMID: 8077247 DOI: 10.1002/jbm.820280306] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mutagenic potential of 12 commercially available dental cements and of two 'pure substances' (zinc oxide and eugenol) used in root canal filling were examined. The cements were prepared according to the manufacturers' indications and set for defined times. Ames tests were performed in their extracts by using Salmonella typhimurium strains TA 98 and TA 100. The results showed that most cements present strong bactericidal activity that disappears or decreases remarkably in time. One of the tested cements showed mutagenicity with both Salmonella strains. Two cements yielded doubtful results. The remaining cements and the two 'pure substances' showed no mutagenic potential. The authors conclude that it is convenient to examine endodontic cements with the Ames test and to eliminate those that present mutagenicity in time.
Collapse
Affiliation(s)
- S Stea
- Laboratorio di Biocompatibilità dei Materiali da Impianto, Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ellahueñe MF, Pérez-Alzola LP, Orellana-Valdebenito M, Muñoz C, Lafuente-Indo N. Genotoxic evaluation of eugenol using the bone marrow micronucleus assay. Mutat Res 1994; 320:175-80. [PMID: 7508083 DOI: 10.1016/0165-1218(94)90044-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Eugenol, a widely used chemical in clinical dentistry, was evaluated for genotoxicity using the bone marrow micronucleus (Mn) assay in mice. Three doses (100, 400 or 600 mg/kg) were administered intraperitoneally (i.p.). The animals were killed 30 h post-treatment and the frequency of Mn in 1000 polychromatic erythrocytes (PCE) was determined. Corn oil and methyl methanesulfonate (MMS) were used as negative and positive controls, respectively. Only 400 and 600 mg/kg doses showed significant induction of Mn. We also studied the effect of eugenol at different recovery times (24, 30 or 48 h) with a dose of 400 mg/kg. A positive Mn response was seen at all three post-treatment times, but the differences between them were not significant. For treatment and control groups, the cytotoxicity was in the normal range, measured as the ratio of PCE/NCE (normochromatic erythrocytes).
Collapse
Affiliation(s)
- M F Ellahueñe
- Laboratorio de Genética Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago
| | | | | | | | | |
Collapse
|
27
|
Shelby MD, Erexson GL, Hook GJ, Tice RR. Evaluation of a three-exposure mouse bone marrow micronucleus protocol: results with 49 chemicals. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1993; 21:160-179. [PMID: 8444144 DOI: 10.1002/em.2850210210] [Citation(s) in RCA: 203] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Forty-nine chemicals were tested in a mouse bone marrow micronucleus test that employed three daily exposures by intraperitoneal injection. Bone marrow samples were obtained 24 hr following the final exposure. Twenty-five rodent carcinogens and 24 noncarcinogens were selected randomly from the 44 carcinogens and 29 noncarcinogens used by Tennant et al. (Science 236:933-941, 1987) to evaluate the performance of four in vitro genetic toxicity tests. As in that study of in vitro tests, the micronucleus tests were conducted with coded chemicals and test results (positive or negative) were determined prior to decoding. This study was conducted as part of an effort to assess the ability of the micronucleus test to discriminate between rodent carcinogens and noncarcinogens and to determine its potential role, in combination with other short-term tests, in identifying genotoxic chemicals that present a carcinogenic hazard. Nine chemicals were judged to be positive in the micronucleus test. This relatively low number of positive results, along with published and unpublished results from rodent micronucleus and chromosome aberration assays on several of these 49 chemicals, contributed to the conclusion that a single micronucleus test protocol is not adequate to detect all chemicals capable of inducing chromosomal damage in the bone marrow. However, a combination of two relatively simple assays such as the Salmonella and micronucleus tests can provide important information on the genetic toxicity of test chemicals and may provide guidance on the need for and the nature and extent of future toxicity studies.
Collapse
Affiliation(s)
- M D Shelby
- NIEHS, Research Triangle Park, North Carolina 27709
| | | | | | | |
Collapse
|
28
|
Allavena A, Martelli A, Robbiano L, Brambilla G. Evaluation in a battery of in vivo assays of four in vitro genotoxins proved to be noncarcinogens in rodents. ACTA ACUST UNITED AC 1992; 12:31-41. [PMID: 1354898 DOI: 10.1002/tcm.1770120105] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
2-Chlorethanol, 8-hydroxyquinoline, 2,6-toluenediamine, and eugenol, previously found to behave as genotoxins in in vitro systems and as noncarcinogens in rodents, were evaluated for their ability to induce genotoxic effects in vivo. Rats were given by gavage a single or two successive doses equal to one-half the corresponding LD50, killed at different times after treatment, and examined for the following end points: the frequency of both micronucleated polychromatic erythrocytes in the bone marrow and micronucleated hepatocytes (after partial hepatectomy); the in vivo-in vitro induction of DNA fragmentation, as measured by the alkaline elution technique, and of unscheduled DNA synthesis, as measured by autoradiography, in hepatocyte primary cultures. The two latter end points were also evaluated after in vitro exposure of hepatocytes to log-spaced subtoxic concentrations. 2-Chloroethanol, 8-hydroxyquinoline, and eugenol never produced effects indicative of genotoxic activity. The same happened with 2,6-toluenediamine, with the exception of a significant increase over controls in the amounts of DNA damage and repair displayed by hepatocyte cultures obtained from rats given two 1/2 LD50 separated by a 24 h interval. Our results, which, apart the above mentioned exception, are in concordance with the rodent carcinogenicity results, contribute to underline the role of in vivo short-term tests for the detection of potential genotoxic carcinogens.
Collapse
Affiliation(s)
- A Allavena
- Institute of Pharmacology, University of Genoa, Italy
| | | | | | | |
Collapse
|
29
|
Scott D, Galloway SM, Marshall RR, Ishidate M, Brusick D, Ashby J, Myhr BC. International Commission for Protection Against Environmental Mutagens and Carcinogens. Genotoxicity under extreme culture conditions. A report from ICPEMC Task Group 9. Mutat Res 1991; 257:147-205. [PMID: 2005937 DOI: 10.1016/0165-1110(91)90024-p] [Citation(s) in RCA: 159] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- D Scott
- Cancer Research Campaign Laboratories, Paterson Institute for Cancer Research, Manchester, Great Britain
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The naturally-occurring alkenylbenzene, eugenol, was examined for its ability to form DNA adducts in the livers of mice that had been treated with up to 10 mg of the compound. No adducts were detected by 32P-postlabelling with a limit of detection of 1 adduct in 10(9) nucleotides. Under these conditions adducts were readily detected in liver DNA from the structurally-related hepatocarcinogen safrole.
Collapse
Affiliation(s)
- D H Phillips
- Chester Beatty Laboratories, Institute of Cancer Research, London, Great Britain
| |
Collapse
|