1
|
Crego AC, Amaya KA, Palmer JA, Smith KS. A role for the dorsolateral striatum in prospective action control. iScience 2024; 27:110044. [PMID: 38883824 PMCID: PMC11176669 DOI: 10.1016/j.isci.2024.110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
The dorsolateral striatum (DLS) is important for performing actions persistently, even when it becomes suboptimal, reflecting a function that is reflexive and habitual. However, there are also ways in which persistent behaviors can result from a more prospective, planning mode of behavior. To help tease apart these possibilities for DLS function, we trained animals to perform a lever press for reward and then inhibited the DLS in key test phases: as the task shifted from a 1-press to a 3-press rule (upshift), as the task was maintained, as the task shifted back to the one-press rule (downshift), and when rewards came independent of pressing. During DLS inhibition, animals always favored their initially learned strategy to press just once, particularly so during the free-reward period. DLS inhibition surprisingly changed performance speed bidirectionally depending on the task shifts. DLS inhibition thus encouraged habitual behavior, suggesting it could normally help adapt to changing conditions.
Collapse
Affiliation(s)
- Adam C.G. Crego
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Kenneth A. Amaya
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Jensen A. Palmer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Kyle S. Smith
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
2
|
Cavallaro J, Yeisley J, Akdoǧan B, Salazar RE, Floeder JR, Balsam PD, Gallo EF. Dopamine D2 receptors in nucleus accumbens cholinergic interneurons increase impulsive choice. Neuropsychopharmacology 2023; 48:1309-1317. [PMID: 37221325 PMCID: PMC10354036 DOI: 10.1038/s41386-023-01608-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Impulsive choice, often characterized by excessive preference for small, short-term rewards over larger, long-term rewards, is a prominent feature of substance use and other neuropsychiatric disorders. The neural mechanisms underlying impulsive choice are not well understood, but growing evidence implicates nucleus accumbens (NAc) dopamine and its actions on dopamine D2 receptors (D2Rs). Because several NAc cell types and afferents express D2Rs, it has been difficult to determine the specific neural mechanisms linking NAc D2Rs to impulsive choice. Of these cell types, cholinergic interneurons (CINs) of the NAc, which express D2Rs, have emerged as key regulators of striatal output and local dopamine release. Despite these relevant functions, whether D2Rs expressed specifically in these neurons contribute to impulsive choice behavior is unknown. Here, we show that D2R upregulation in CINs of the mouse NAc increases impulsive choice as measured in a delay discounting task without affecting reward magnitude sensitivity or interval timing. Conversely, mice lacking D2Rs in CINs showed decreased delay discounting. Furthermore, CIN D2R manipulations did not affect probabilistic discounting, which measures a different form of impulsive choice. Together, these findings suggest that CIN D2Rs regulate impulsive decision-making involving delay costs, providing new insight into the mechanisms by which NAc dopamine influences impulsive behavior.
Collapse
Affiliation(s)
| | - Jenna Yeisley
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Başak Akdoǧan
- Department of Psychology, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Ronald E Salazar
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Joseph R Floeder
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Peter D Balsam
- Department of Psychology, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
- Department of Neuroscience and Behavior, Barnard College, New York, NY, USA
| | - Eduardo F Gallo
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
3
|
Cavallaro J, Yeisley J, Akdoǧan B, Floeder J, Balsam PD, Gallo EF. Dopamine D2 receptors in nucleus accumbens cholinergic interneurons increase impulsive choice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524596. [PMID: 36711450 PMCID: PMC9882257 DOI: 10.1101/2023.01.20.524596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Impulsive choice, often characterized by excessive preference for small, short-term rewards over larger, long-term rewards, is a prominent feature of substance use and other neuropsychiatric disorders. The neural mechanisms underlying impulsive choice are not well understood, but growing evidence implicates nucleus accumbens (NAc) dopamine and its actions on dopamine D2 receptors (D2Rs). Because several NAc cell types and afferents express D2Rs, it has been difficult to determine the specific neural mechanisms linking NAc D2Rs to impulsive choice. Of these cell types, cholinergic interneurons (CINs) of the NAc, which express D2Rs, have emerged as key regulators of striatal output and local dopamine release. Despite these relevant functions, whether D2Rs expressed specifically in these neurons contribute to impulsive choice behavior is unknown. Here, we show that D2R upregulation in CINs of the mouse NAc increases impulsive choice as measured in a delay discounting task without affecting reward magnitude sensitivity or interval timing. Conversely, mice lacking D2Rs in CINs showed decreased delay discounting. Furthermore, CIN D2R manipulations did not affect probabilistic discounting, which measures a different form of impulsive choice. Together, these findings suggest that CIN D2Rs regulate impulsive decision-making involving delay costs, providing new insight into the mechanisms by which NAc dopamine influences impulsive behavior.
Collapse
Affiliation(s)
| | - Jenna Yeisley
- Department of Biological Sciences, Fordham University, Bronx, NY
| | - Başak Akdoǧan
- Department of Psychology, Columbia University, New York, NY.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY
| | - Joseph Floeder
- Department of Biological Sciences, Fordham University, Bronx, NY
| | - Peter D. Balsam
- Department of Psychology, Columbia University, New York, NY.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY.,Department of Neuroscience and Behavior, Barnard College, New York, NY
| | - Eduardo F. Gallo
- Department of Biological Sciences, Fordham University, Bronx, NY
| |
Collapse
|
4
|
Crego ACG, Amaya KA, Palmer JA, Smith KS. Task history dictates how the dorsolateral striatum controls action strategy and vigor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523640. [PMID: 36711550 PMCID: PMC9882068 DOI: 10.1101/2023.01.11.523640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The dorsolateral striatum (DLS) is linked to the learning and honing of action routines. However, the DLS is also important for performing behaviors that have been successful in the past. The learning function can be thought of as prospective, helping to plan ongoing actions to be efficient and often optimal. The performance function is more retrospective, helping the animal continue to behave in a way that had worked previously. How the DLS manages this all is curious. What happens when a learned behavior becomes sub-optimal due to environment changes. In this case, the prospective function of the DLS would cause animals to (adaptively) learn and plan more optimal actions. In contrast, the retrospective function would cause animals to (maladaptively) favor the old behavior. Here we find that, during a change in learned task rules, DLS inhibition causes animals to adjust less rapidly to the new task (and to behave less vigorously) in a 'maladaptive' way. Yet, when the task is changed back to the initially learned rules, DLS inhibition instead causes a rapid and vigorous adjustment of behavior in an 'adaptive' way. These results show that inhibiting the DLS biases behavior towards initially acquired strategies, implying a more retrospective outlook in action selection when the DLS is offline. Thus, an active DLS could encourage planning and learning action routines more prospectively. Moreover, the DLS control over behavior can appear to be either advantageous/flexible or disadvantageous/inflexible depending on task context, and its control over vigor can change depending on task context. Significant Statement Basal ganglia networks aid behavioral learning (a prospective planning function) but also favor the use of old behaviors (a retrospective performance function), making it unclear what happens when learned behaviors become suboptimal. Here we inhibit the dorsolateral striatum (DLS) as animals encounter a change in task rules, and again when they shift back to those learned task rules. DLS inhibition reduces adjustment to new task rules (and reduces behavioral vigor), but it increases adjustment back to the initially learned task rules later (and increases vigor). Thus, in both cases, DLS inhibition favored the use of the initially learned behavioral strategy, which could appear either maladaptive or adaptive. We suggest that the DLS might promote a prospective orientation of action control.
Collapse
|
5
|
Ge M, Balleine BW. The role of the bed nucleus of the stria terminalis in the motivational control of instrumental action. Front Behav Neurosci 2022; 16:968593. [DOI: 10.3389/fnbeh.2022.968593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022] Open
Abstract
We review recent studies assessing the role of the bed nucleus of the stria terminalis (BNST) in the motivational control of instrumental conditioning. This evidence suggests that the BNST and central nucleus of the amygdala (CeA) form a circuit that modulates the ventral tegmental area (VTA) input to the nucleus accumbens core (NAc core) to control the influence of Pavlovian cues on instrumental performance. In support of these claims, we found that activity in the oval region of BNST was increased by instrumental conditioning, as indexed by phosphorylated ERK activity (Experiment 1), but that this increase was not due to exposure to the instrumental contingency or to the instrumental outcome per se (Experiment 2). Instead, BNST activity was most significantly incremented in a test conducted when the instrumental outcome was anticipated but not delivered, suggesting a role for BNST in the motivational effects of anticipated outcomes on instrumental performance. To test this claim, we examined the effect of NMDA-induced cell body lesions of the BNST on general Pavlovian-to-instrumental transfer (Experiment 3). These lesions had no effect on instrumental performance or on conditioned responding during Pavlovian conditioning to either an excitory conditioned stimulus (CS) or a neutral CS (CS0) but significantly attenuated the excitatory effect of the Pavlovian CS on instrumental performance. These data are consistent with the claim that the BNST mediates the general excitatory influence of Pavlovian cues on instrumental performance and suggest BNST activity may be central to CeA-BNST modulation of a VTA-NAc core circuit in incentive motivation.
Collapse
|
6
|
Abstract
The following essay addresses the evolution of the term "anhedonia" as a key construct in biological psychiatry, especially as it pertains to positive emotional and motivational states central to mental health and well-being. In its strictest definition, anhedonia was intended to convey an inability to experience "pleasure" derived from ingestion of sweet tastes or the experience of pleasant odors and tactile sensations, among a host of positive sensations. However, this definition has proved to be too restrictive to capture the complexity of key psychological factors linked to major depression, schizophrenia, and substance use disorders it was originally intended to address. Despite the appeal of the elegant simplicity of the term anhedonia, its limitations soon became apparent when used to explain psychological constructs including aspects of learning, memory, and incentive motivation that are major determinants of success in securing the necessities of life. Accordingly, the definition of anhedonia has morphed into a much broader term that includes key roles in the disturbance of motivation in the form of anergia, impaired incentive motivation, along with deficits in associative learning and key aspects of memory, on which the ability to predict the consequences of one's actions are based. Here we argue that it is this latter capacity, namely predicting the likely consequences of motivated behavior, which can be termed "anticipation," that is especially important in the key deficits implied by the general term anhedonia in the context of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Anthony G Phillips
- Department of Psychiatry, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Soyon Ahn
- Department of Psychiatry, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Cocaine Triggers Astrocyte-Mediated Synaptogenesis. Biol Psychiatry 2021; 89:386-397. [PMID: 33069367 PMCID: PMC7854999 DOI: 10.1016/j.biopsych.2020.08.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Synaptogenesis is essential in forming new neurocircuits during development, and this is mediated in part by astrocyte-released thrombospondins (TSPs) and activation of their neuronal receptor, α2δ-1. Here, we show that this developmental synaptogenic mechanism is utilized during cocaine experience to induce spinogenesis and the generation of AMPA receptor-silent glutamatergic synapses in the adult nucleus accumbens shell (NAcSh). METHODS Using multidisciplinary approaches including astrocyte Ca2+ imaging, genetic mouse lines, viral-mediated gene transfer, and operant behavioral procedures, we monitor the response of NAcSh astrocytes to cocaine administration and examine the role of astrocytic TSP-α2δ-1 signaling in cocaine-induced silent synapse generation as well as the behavioral impact of astrocyte-mediated synaptogenesis and silent synapse generation. RESULTS Cocaine administration acutely increases Ca2+ events in NAcSh astrocytes, while decreasing astrocytic Ca2+ blocks cocaine-induced generation of silent synapses. Furthermore, knockout of TSP2, or pharmacological inhibition or viral-mediated knockdown of α2δ-1, prevents cocaine-induced generation of silent synapses. Moreover, disrupting TSP2-α2δ-1-mediated spinogenesis and synapse generation in NAcSh decreases cue-induced cocaine seeking after withdrawal from cocaine self-administration and cue-induced reinstatement of cocaine seeking after drug extinction. CONCLUSIONS These results establish that silent synapses are generated by an astrocyte-mediated synaptogenic mechanism in response to cocaine experience and embed critical cue-associated memory traces that promote cocaine relapse.
Collapse
|
8
|
Amaya KA, Smith KS. Spatially restricted inhibition of cholinergic interneurons in the dorsolateral striatum encourages behavioral exploration. Eur J Neurosci 2021; 53:2567-2579. [PMID: 33462844 DOI: 10.1111/ejn.15117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
When pursuing desirable outcomes, one must make the decision between exploring possible actions to obtain those outcomes and exploiting known strategies to maximize efficiency. The dorsolateral striatum (DLS) has been extensively studied with respect to how actions can develop into habits and has also been implicated as an area involved in governing exploitative behavior. Surprisingly, prior work has shown that DLS cholinergic interneurons (ChIs) are not involved in the canonical habit formation function ascribed to the DLS but are instead modulators of behavioral flexibility after initial learning. To further probe this, we evaluated the role of DLS ChIs in behavioral exploration during a brief instrumental training experiment. Through designer receptors exclusively activated by designer drugs (DREADDs) in ChAT-Cre rats, ChIs in the DLS were inhibited during specific phases of the experiment: instrumental training, free-reward delivery, at both times, or never. Without ChI activity during instrumental training, animals biased their responding toward an "optimal" strategy while continuing to work efficiently. This effect was observed again when contingencies were removed as animals with ChIs offline during that phase, regardless of ChI inhibition previously, decreased responding more than animals with ChIs intact. These findings build upon a growing body of literature implicating ChIs in the striatum as gate-keepers of behavioral flexibility and exploration.
Collapse
Affiliation(s)
- Kenneth A Amaya
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Kyle S Smith
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
9
|
Opposing Ventral Striatal Medium Spiny Neuron Activities Shaped by Striatal Parvalbumin-Expressing Interneurons during Goal-Directed Behaviors. Cell Rep 2020; 31:107829. [DOI: 10.1016/j.celrep.2020.107829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/28/2020] [Accepted: 06/06/2020] [Indexed: 12/19/2022] Open
|
10
|
Li Y, Ruan Y, He Y, Cai Q, Pan X, Zhang Y, Liu C, Pu Z, Yang J, Chen M, Huang L, Zhou J, Chen JF. Striatopallidal adenosine A 2A receptors in the nucleus accumbens confer motivational control of goal-directed behavior. Neuropharmacology 2020; 168:108010. [PMID: 32061899 DOI: 10.1016/j.neuropharm.2020.108010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/25/2022]
Abstract
The ability to learn the reward-value and action-outcome contingencies in dynamic environment is critical for flexible adaptive behavior and development of effective pharmacological control of goal-directed behaviors represents an important challenge for improving the deficits in goal-directed behavior which may underlie seemingly disparate symptoms across psychiatric disorders. Adenosine A2A receptor (A2AR) is emerging as a novel neuromodulatory target for controlling goal-directed behavior for its unique neuromodulatory features: the ability to integrate dopamine and glutamate signaling, the "brake" constraint of various cognitive processes and the balanced control of goal-directed and habit actions. However, the contribution and circuit mechanisms of the striatopallidal A2ARs in nucleus accumbens (NAc) to control of goal-directed behavior remain to be determined. Here, we employed newly developed opto-A2AR and the focal A2AR knockdown strategies to demonstrate the causal role of NAc A2AR in control of goal-directed behavior. Furthermore, we dissected out multiple distinct behavioral mechanisms underlying which NAc A2ARs control goal-directed behavior: (i) NAc A2ARs preferentially control goal-directed behavior at the expense of habit formation. (ii) NAc A2ARs modify the animals' sensitivity to the value of the reward without affecting the action-outcome contingency. (iii) A2AR antagonist KW6002 promotes instrumental actions by invigorating motivation. (iv) NAc A2ARs facilitate Pavlovian incentive value transferring to instrumental action. (v) NAc A2ARs control goal-directed behavior probably not through NAc-VP pathway. These insights into the behavioral and circuit mechanisms for NAc A2AR control of goal-directed behavior facilitate translational potential for A2AR antagonists in reversal of deficits in goal-directed decision-making associated with multiple neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Yang Ruan
- The Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Yan He
- The Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Qionghui Cai
- The Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Xinran Pan
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang, 325027, China; The Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Yu Zhang
- The Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Chengwei Liu
- The Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Zhilan Pu
- The Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Jingjing Yang
- The Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Mozi Chen
- The Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Linshan Huang
- The Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Jianhong Zhou
- The Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Jiang-Fan Chen
- The Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
11
|
Lerner TN. Interfacing behavioral and neural circuit models for habit formation. J Neurosci Res 2020; 98:1031-1045. [PMID: 31916623 DOI: 10.1002/jnr.24581] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
Habits are an important mechanism by which organisms can automate the control of behavior to alleviate cognitive demand. However, transitions to habitual control are risky because they lead to inflexible responding in the face of change. The question of how the brain controls transitions into habit is thus an intriguing one. How do we regulate when our repeated actions become automated? When is it advantageous or disadvantageous to release actions from cognitive control? Decades of research have identified a variety of methods for eliciting habitual responding in animal models. Progress has also been made to understand which brain areas and neural circuits control transitions into habit. Here, I discuss existing research on behavioral and neural circuit models for habit formation (with an emphasis on striatal circuits), and discuss strategies for combining information from different paradigms and levels of analysis to prompt further progress in the field.
Collapse
Affiliation(s)
- Talia N Lerner
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
12
|
Pattabhiraman H, Ward RD. Retroactive interference of a learnt action-outcome association by exposure to a stimulus-outcome learning experience. Behav Processes 2020; 170:104020. [DOI: 10.1016/j.beproc.2019.104020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022]
|
13
|
Chumbley J, Steinhoff A. A computational perspective on social attachment. Infant Behav Dev 2019; 54:85-98. [PMID: 30641469 DOI: 10.1016/j.infbeh.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 11/28/2022]
Abstract
Humans depend on social relationships for survival and wellbeing throughout life. Yet, individuals differ markedly in their ability to form and maintain healthy social relationships. Here we use a simple mathematical model to formalize the contention that a person's attachment style is determined by what they learn from relationships early in life. For the sake of argument, we therefore discount individual differences in the innate personality or attachment style of a child, assuming instead that all children are simply born with an equivalent, generic, hardwired desire and instinct for social proximity, and a capacity to learn. In line with the evidence, this innate endowment incorporates both simple bonding instincts and a capacity for cognitively sophisticated beliefs and generalizations. Under this assumption, we then explore how distinct attachment styles might emerge through interaction with the child's early caregivers. Our central question is, how an apparently adaptive capacity to learn can yield enduring maladaptive attachment styles that generalize to new relationships. We believe extensions of our model will ultimately help clarify the complex interacting mechanisms - both acquired and innate - that underpin individual differences in attachment styles. While our model is relatively abstract, we also attempt some connection to known biological mechanisms of attachment.
Collapse
Affiliation(s)
- Justin Chumbley
- Jacobs Center for Productive Youth Development, University of Zurich, Switzerland.
| | - Annekatrin Steinhoff
- Jacobs Center for Productive Youth Development, University of Zurich, Switzerland
| |
Collapse
|
14
|
Hori Y, Ihara N, Sugai C, Ogura J, Honda M, Kato K, Isomura Y, Hanakawa T. Ventral striatum links motivational and motor networks during operant-conditioned movement in rats. Neuroimage 2019; 184:943-953. [PMID: 30296556 DOI: 10.1016/j.neuroimage.2018.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/09/2018] [Accepted: 10/04/2018] [Indexed: 01/20/2023] Open
Abstract
Voluntary actions require motives. It is already known that the medial prefrontal cortex (MPFC) assess the motivational values. However, it remains unclear how the motivational process gains access to the motor execution system in the brain. Here we present evidence that the ventral striatum (VS) plays a hub-like role in mediating motivational and motor processing in operant behavior. We used positron emission tomography (PET) to detect the neural activation areas associated with motivational action. Using obtained regions, partial correlation analysis was performed to examine how the motivational signals propagate to the motor system. The results revealed that VS activity propagated to both MPFC and primary motor cortex through the thalamus. Moreover, muscimol injection into the VS suppressed the motivational behavior, supporting the idea of representations of motivational signals in VS that trigger motivational behavior. These results suggest that the VS-thalamic pathway plays a pivotal role for both motivational processing through interactions with the MPFC and for motor processing through interactions with the motor BG circuits.
Collapse
Affiliation(s)
- Yuki Hori
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira City, Tokyo 187-8551, Japan; Department of Functional Brain Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira City, Tokyo 187-8551, Japan
| | - Naoki Ihara
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira City, Tokyo 187-8551, Japan; Department of Functional Brain Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira City, Tokyo 187-8551, Japan
| | - Chiaki Sugai
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira City, Tokyo 187-8551, Japan; Department of Functional Brain Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira City, Tokyo 187-8551, Japan
| | - Jun Ogura
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira City, Tokyo 187-8551, Japan
| | - Manabu Honda
- Department of Functional Brain Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira City, Tokyo 187-8551, Japan
| | - Koichi Kato
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira City, Tokyo 187-8551, Japan; Department of Functional Brain Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira City, Tokyo 187-8551, Japan
| | - Yoshikazu Isomura
- Brain Science Institute, Tamagawa University, Machida City, Tokyo 194-8610, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira City, Tokyo 187-8551, Japan; Department of Functional Brain Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira City, Tokyo 187-8551, Japan.
| |
Collapse
|
15
|
Smith RJ, Laiks LS. Behavioral and neural mechanisms underlying habitual and compulsive drug seeking. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:11-21. [PMID: 28887182 PMCID: PMC5837910 DOI: 10.1016/j.pnpbp.2017.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/24/2017] [Accepted: 09/03/2017] [Indexed: 01/31/2023]
Abstract
Addiction is characterized by compulsive drug use despite negative consequences. Here we review studies that indicate that compulsive drug use, and in particular punishment resistance in animal models of addiction, is related to impaired cortical control over habitual behavior. In humans and animals, instrumental behavior is supported by goal-directed and habitual systems that rely on distinct corticostriatal networks. Chronic exposure to addictive drugs or stress has been shown to bias instrumental response strategies toward habit learning, and impair prefrontal cortical (PFC) control over responding. Moreover, recent work has implicated prelimbic PFC hypofunction in the punishment resistance that has been observed in a subset of animals with an extended history of cocaine self-administration. This may be related to a broader role for prelimbic PFC in mediating adaptive responding and behavioral flexibility, including exerting goal-directed control over behavior. We hypothesize that impaired cortical control and reduced flexibility between habitual and goal-directed systems may be critically involved in the development of maladaptive, compulsive drug use.
Collapse
Affiliation(s)
- Rachel J. Smith
- Corresponding author at: 3474 TAMU, College Station, TX 77843
| | | |
Collapse
|
16
|
The Bilateral Prefronto-striatal Pathway Is Necessary for Learning New Goal-Directed Actions. Curr Biol 2018; 28:2218-2229.e7. [PMID: 30056856 DOI: 10.1016/j.cub.2018.05.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 11/22/2022]
Abstract
The acquisition of new goal-directed actions requires the encoding of action-outcome associations. At a neural level, this encoding has been hypothesized to involve a prefronto-striatal circuit extending between the prelimbic cortex (PL) and the posterior dorsomedial striatum (pDMS); however, no research identifying this pathway with any precision has been reported. We started by mapping the prelimbic input to the dorsal and ventral striatum using a combination of retrograde and anterograde tracing with CLARITY and established that PL-pDMS projections share some overlap with projections to the nucleus accumbens core (NAc) in rats. We then tested whether each of these pathways were functionally required for goal-directed learning; we used a pathway-specific dual-virus chemogenetic approach to selectively silence pDMS-projecting or NAc-projecting PL neurons during instrumental training and tested rats for goal-directed action. We found that silencing PL-pDMS projections abolished goal-directed learning, whereas silencing PL-NAc projections left goal-directed learning intact. Finally, we used a three-virus approach to silence bilateral and contralateral pDMS-projecting PL neurons and again blocked goal-directed learning. These results establish that the acquisition of new goal-directed actions depends on the bilateral PL-pDMS pathway driven by intratelencephalic cortical neurons.
Collapse
|
17
|
Tsutsui-Kimura I, Natsubori A, Mori M, Kobayashi K, Drew MR, de Kerchove d'Exaerde A, Mimura M, Tanaka KF. Distinct Roles of Ventromedial versus Ventrolateral Striatal Medium Spiny Neurons in Reward-Oriented Behavior. Curr Biol 2017; 27:3042-3048.e4. [PMID: 28966085 DOI: 10.1016/j.cub.2017.08.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/21/2017] [Accepted: 08/24/2017] [Indexed: 01/17/2023]
Abstract
The ventral striatum (VS) is a key brain center regulating reward-oriented behavior [1-4]. The VS can be anatomically divided into medial (VMS) and lateral (VLS) portions based on cortical input patterns. The VMS receives inputs from medial pallium-originated limbic structures (e.g., the medial prefrontal cortex [mPFC]), and the VLS receives inputs from the lateral pallium-originated areas (e.g., the insula) [5, 6]. This anatomical feature led us to hypothesize a functional segregation within the VS in terms of the regulation of reward-oriented behavior. Here, we engineered a fiber photometry system [4] and monitored population-level Ca2+ activities of dopamine D2-receptor-expressing medium spiny neurons (D2-MSNs), one of the major cell types in the striatum, during a food-seeking discrimination task. We found that VLS D2-MSNs were activated at the time of cue presentation. In stark contrast, VMS D2-MSNs were inhibited at this time point. Optogenetic counteraction of those changes in the VLS and VMS impaired action initiation and increased responding toward non-rewarded cues, respectively. During lever-press reversal training, VMS inhibition at the time of cue presentation temporarily ceased and optogenetic activation of VMS D2-MSNs facilitated acquisition of the new contingency. These data indicate that the opposing inhibition and excitation in VMS and VLS are important for selecting and initiating a proper action in a reward-oriented behavior. We propose distinct subregional roles within the VS in the execution of successful reward-oriented behavior.
Collapse
Affiliation(s)
- Iku Tsutsui-Kimura
- Department of Neuropsychiatry School of Medicine, Keio University, Tokyo 160-8582, Japan; Research Fellow of Japan Society for the Promotion of Science (RPD), Tokyo 160-8582, Japan
| | - Akiyo Natsubori
- Department of Neuropsychiatry School of Medicine, Keio University, Tokyo 160-8582, Japan; Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Marina Mori
- Department of Neuropsychiatry School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Michael R Drew
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, WELBIO, ULB Neuroscience Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Masaru Mimura
- Department of Neuropsychiatry School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry School of Medicine, Keio University, Tokyo 160-8582, Japan.
| |
Collapse
|
18
|
Effects of striatal lesions on components of choice: Reward discrimination, preference, and relative valuation. Behav Brain Res 2016; 315:130-40. [PMID: 27544873 DOI: 10.1016/j.bbr.2016.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 11/22/2022]
Abstract
The striatum is a key structure involved in reward processing and choice. Recently, we have developed a paradigm to explore how components of reward processing work together or independently during choice behavior. These components include reward discrimination, preference and relative valuation, and the goal of the present study was to determine how the striatum is involved in these dissociable components during this novel free choice paradigm. We tested choice utilizing two different outcome series with one being a more straightforward single-option discrimination anchored by a 0 reward outcome, and the other as a multi-option outcome discrimination of greater difficulty. We compared the free choice reward task to a sequential reward task and an extinction task. Striatal lesions impaired responding only in the free choice version with alterations in both appetitive and consummatory measures. Ventral striatal lesions had greater impact altering discrimination, preference and relative valuation in both the single and multi-option week studies. A major factor involved in these deficits was a significant aversion to the multi-option that contained a larger outcome option but with a longer delay to reward. Dorsal striatal lesions caused less impairment even leading to enhanced choice behavior compared to control animals during the more difficult multi-option free choice series. Overall, the results suggest that the context of action is crucial when linking striatal function to choice behavior and its diverse components. The implications include the idea that striatal involvement in decision-making is increased when responses are self-paced and diverse in a more naturalistic environment.
Collapse
|
19
|
Memory Systems of the Basal Ganglia. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-12-802206-1.00035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Wood J, Ahmari SE. A Framework for Understanding the Emerging Role of Corticolimbic-Ventral Striatal Networks in OCD-Associated Repetitive Behaviors. Front Syst Neurosci 2015; 9:171. [PMID: 26733823 PMCID: PMC4681810 DOI: 10.3389/fnsys.2015.00171] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/23/2015] [Indexed: 11/13/2022] Open
Abstract
Significant interest in the mechanistic underpinnings of obsessive-compulsive disorder (OCD) has fueled research on the neural origins of compulsive behaviors. Converging clinical and preclinical evidence suggests that abnormal repetitive behaviors are driven by dysfunction in cortico-striatal-thalamic-cortical (CSTC) circuits. These findings suggest that compulsive behaviors arise, in part, from aberrant communication between lateral orbitofrontal cortex (OFC) and dorsal striatum. An important body of work focused on the role of this network in OCD has been instrumental to progress in the field. Disease models focused primarily on these regions, however, fail to capture an important aspect of the disorder: affective dysregulation. High levels of anxiety are extremely prevalent in OCD, as is comorbidity with major depressive disorder. Furthermore, deficits in processing rewards and abnormalities in processing emotional stimuli are suggestive of aberrant encoding of affective information. Accordingly, OCD can be partially characterized as a disease in which behavioral selection is corrupted by exaggerated or dysregulated emotional states. This suggests that the networks producing OCD symptoms likely expand beyond traditional lateral OFC and dorsal striatum circuit models, and highlights the need to cast a wider net in our investigation of the circuits involved in generating and sustaining OCD symptoms. Here, we address the emerging role of medial OFC, amygdala, and ventral tegmental area projections to the ventral striatum (VS) in OCD pathophysiology. The VS receives strong innervation from these affect and reward processing regions, and is therefore poised to integrate information crucial to the generation of compulsive behaviors. Though it complements functions of dorsal striatum and lateral OFC, this corticolimbic-VS network is less commonly explored as a potential source of the pathology underlying OCD. In this review, we discuss this network's potential role as a locus of OCD pathology and effective treatment.
Collapse
Affiliation(s)
- Jesse Wood
- Translational Neuroscience Program, Department of Psychiatry, University of PittsburghPittsburgh, PA, USA
- Center for Neuroscience, University of PittsburghPittsburgh, PA, USA
| | - Susanne E. Ahmari
- Translational Neuroscience Program, Department of Psychiatry, University of PittsburghPittsburgh, PA, USA
- Center for Neuroscience, University of PittsburghPittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of PittsburghPittsburgh, PA, USA
| |
Collapse
|
21
|
Peterson JR, Hill CC, Marshall AT, Stuebing SL, Kirkpatrick K. I can't wait: Methods for measuring and moderating individual differences in impulsive choice. ACTA ACUST UNITED AC 2015; 13:89-99. [PMID: 27695664 DOI: 10.1515/jafio-2015-0024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Impulsive choice behavior occurs when individuals make choices without regard for future consequences. This behavior is often maladaptive and is a common symptom in many disorders, including drug abuse, compulsive gambling, and obesity. Several proposed mechanisms may influence impulsive choice behavior. These mechanisms provide a variety of pathways that may provide the basis for individual differences that are often evident when measuring choice behavior. This review provides an overview of these different pathways to impulsive choice, and the behavioral intervention strategies being developed to moderate impulsive choice. Because of the compelling link between impulsive choice behavior and the near-epidemic pervasiveness of obesity in the United States, we focus on the relationship between impulsive choice behavior and obesity as a test case for application of the multiple pathways approach. Choosing immediate gratification over healthier long term food choices is a contributing factor to the obesity crisis. Behavioral interventions can lead to more self controlled choices in a rat pre-clinical model, suggesting a possible gateway for translation to human populations. Designing and implementing effective impulsive choice interventions is crucial to improving the overall health and well-being of impulsive individuals.
Collapse
|
22
|
Orbitofrontal lesions eliminate signalling of biological significance in cue-responsive ventral striatal neurons. Nat Commun 2015; 6:7195. [PMID: 26006060 PMCID: PMC4445428 DOI: 10.1038/ncomms8195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 04/16/2015] [Indexed: 01/14/2023] Open
Abstract
The ventral striatum has long been proposed as an integrator of biologically significant associative information to drive actions. While inputs from the amygdala and hippocampus have been much studied, the role of prominent inputs from orbitofrontal cortex (OFC) are less well understood. Here we recorded single unit activity from ventral striatum core in rats with sham or ipsilateral neurotoxic lesions of lateral OFC, as they performed an odor-guided spatial choice task. Consistent with prior reports, we found that spiking activity recorded in sham rats during cue sampling was related to both reward magnitude and reward identity, with higher firing rates observed for cues that predicted more reward. Lesioned rats also showed differential activity to the cues, but this activity was unbiased towards larger rewards. These data support a role for OFC in shaping activity in the ventral striatum to represent the biological significance of associative information in the environment.
Collapse
|
23
|
Mai B, Sommer S, Hauber W. Dopamine D1/D2 Receptor Activity in the Nucleus Accumbens Core But Not in the Nucleus Accumbens Shell and Orbitofrontal Cortex Modulates Risk-Based Decision Making. Int J Neuropsychopharmacol 2015; 18:pyv043. [PMID: 25908669 PMCID: PMC4648164 DOI: 10.1093/ijnp/pyv043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND It is well known that brain dopamine (DA) signals support risk-based decision making; however, the specific terminal regions of midbrain DA neurons through which DA signals mediate risk-based decision making are unknown. METHODS Using microinfusions of the D1/D2 receptor antagonist flupenthixol, we sought to explore the role of D1/D2 receptor activity in the rat orbitofrontal cortex (OFC) and core and shell regions of the nucleus accumbens (AcbC and AcbS, respectively) in the regulation of risky choices. A risk-discounting task was used that involves choices between a certain small-reward lever that always delivered 1 pellet or a risky large-reward lever which delivered 4 pellets but had a decreasing probability of receiving the reward across 4 subsequent within-session trial blocks (100%, 50%, 25%, 12.5%). To validate task sensitivity to experimental manipulations of DA activity, we also examined the effects of systemic amphetamine and flupenthixol. RESULTS Systemic amphetamine increased while systemic flupenthixol reduced risky choices. Results further demonstrate that rats that received intra-AcbC flupenthixol were able to track increasing risk associated with the risky lever but displayed a generally reduced preference for the risky lever across all trial blocks, including in the initial trial block (large reward at 100%). Microinfusions of flupenthixol into the AcbS or OFC did not alter risk-based decision making. CONCLUSIONS Our data suggest that intra-AcbC D1/D2 receptor signaling does not support the ability to track shifts in reward probabilities but does bias risk-based decision making. That is, it increased the rats' preference for the response option known to be associated with higher risk-related costs.
Collapse
Affiliation(s)
| | | | - Wolfgang Hauber
- Department Animal Physiology, University of Stuttgart, Stuttgart, Germany (Mrs Mai, Sommer, and Dr Hauber).
| |
Collapse
|
24
|
Exton-McGuinness MTJ, Lee JLC. Reduction in Responding for Sucrose and Cocaine Reinforcement by Disruption of Memory Reconsolidation. eNeuro 2015; 2:ENEURO.0009-15.2015. [PMID: 26464973 PMCID: PMC4596086 DOI: 10.1523/eneuro.0009-15.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/21/2022] Open
Abstract
Stored memories are dynamic and, when reactivated, can undergo a process of destabilization and reconsolidation to update them with new information. Reconsolidation has been shown for a variety of experimental settings; most recently for well-learned instrumental memories, a class of memory previously thought not to undergo reconsolidation. Here we tested, in rats, whether a weakly-trained lever-pressing memory destabilized following a shift in reinforcement contingency. We show that lever-pressing memory for both sucrose and cocaine reinforcement destabilized under appropriate conditions, and that the reconsolidation of this memory was impaired by systemic administration of the NMDA receptor (NMDAR) antagonist [5R,10S]-[+]-5-methyl-10,1-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801). We went on to investigate the potential role of the nucleus accumbens (NAc) in the reconsolidation of sucrose-reinforced instrumental memories, showing that co-infusion of the NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP-5) and the dopamine-1 receptor (D1R) antagonist 7-chloro-3-methyl-1-phenyl-1,2,4,5-tetrahydro-3-benzazepin-8-ol (SCH23390) into the NAc prior to memory reactivation impaired reconsolidation; however, there was no effect when these drugs were infused alone. Further investigation of this effect suggests the combined infusion disrupted the reconsolidation of pavlovian components of memory, and we hypothesize that coactivation of accumbal D1Rs and NMDARs may contribute to both the destabilization and reconsolidation of appetitive memory. Our work demonstrates that weakly-trained instrumental memories undergo reconsolidation under similar parameters to well-trained ones, and also suggests that receptor coactivation in the NAc may contribute to memory destabilization. Furthermore, it provides an important demonstration of the therapeutic potential of reconsolidation-based treatments that target the instrumental components of memory in maladaptive drug seeking.
Collapse
Affiliation(s)
| | - Jonathan L C Lee
- School of Psychology, University of Birmingham , B15 2TT, United Kingdom
| |
Collapse
|
25
|
Salgado S, Kaplitt MG. The Nucleus Accumbens: A Comprehensive Review. Stereotact Funct Neurosurg 2015; 93:75-93. [PMID: 25720819 DOI: 10.1159/000368279] [Citation(s) in RCA: 308] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022]
Affiliation(s)
- Sanjay Salgado
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, N.Y., USA
| | | |
Collapse
|
26
|
Feja M, Hayn L, Koch M. Nucleus accumbens core and shell inactivation differentially affects impulsive behaviours in rats. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:31-42. [PMID: 24810333 DOI: 10.1016/j.pnpbp.2014.04.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 11/28/2022]
Abstract
Impulsivity is a multifactorial phenomenon, determined by deficits in decision-making (impulsive choice) and impulse control (impulsive action). Recent findings indicate that impulsive behaviour is not only top-down controlled by cortical areas, but also modulated at subcortical level. The nucleus accumbens (NAc) might be a key substrate in cortico-limbic-striatal circuits involved in impulsive behaviour. Dissociable effects of the NAc subregions in various behavioural paradigms point to a potential functional distinction between NAc core and shell concerning different types of impulsivity. The present study used reversible inactivation of the rats' NAc core and shell via bilateral microinfusion of the GABAA receptor agonist muscimol (0.05μg/0.3μl) and fluorophore-conjugated muscimol (FCM, 0.27μg/0.3μl) in order to study their contribution to different aspects of impulse control in a 5-choice serial reaction time task (5-CSRTT) and impulsive choice in a delay-based decision-making T-maze task. Acute inactivation of NAc core as well as shell by muscimol increased impulsive choice, with higher impairments of the rats' waiting capacity in the T-maze following core injections compared to shell. Intra-NAc shell infusion of muscimol also induced specific impulse control deficits in the 5-CSRTT, while deactivation of the core caused severe general impairments in task performance. FCM did not affect animal behaviour. Our findings reveal clear involvement of NAc shell in both forms of impulsivity. Both subareas play a key role in the regulation of impulsive decision-making, but show functional dichotomy regarding impulse control with the core being more implicated in motivational and motor aspects.
Collapse
Affiliation(s)
- Malte Feja
- Department of Neuropharmacology, Brain Research Institute, Center for Cognitive Sciences, University of Bremen, PO Box 330440, 28359 Bremen, Germany.
| | - Linda Hayn
- Department of Neuropharmacology, Brain Research Institute, Center for Cognitive Sciences, University of Bremen, PO Box 330440, 28359 Bremen, Germany.
| | - Michael Koch
- Department of Neuropharmacology, Brain Research Institute, Center for Cognitive Sciences, University of Bremen, PO Box 330440, 28359 Bremen, Germany.
| |
Collapse
|
27
|
Griffiths KR, Morris RW, Balleine BW. Translational studies of goal-directed action as a framework for classifying deficits across psychiatric disorders. Front Syst Neurosci 2014; 8:101. [PMID: 24904322 PMCID: PMC4033402 DOI: 10.3389/fnsys.2014.00101] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/09/2014] [Indexed: 11/13/2022] Open
Abstract
The ability to learn contingencies between actions and outcomes in a dynamic environment is critical for flexible, adaptive behavior. Goal-directed actions adapt to changes in action-outcome contingencies as well as to changes in the reward-value of the outcome. When networks involved in reward processing and contingency learning are maladaptive, this fundamental ability can be lost, with detrimental consequences for decision-making. Impaired decision-making is a core feature in a number of psychiatric disorders, ranging from depression to schizophrenia. The argument can be developed, therefore, that seemingly disparate symptoms across psychiatric disorders can be explained by dysfunction within common decision-making circuitry. From this perspective, gaining a better understanding of the neural processes involved in goal-directed action, will allow a comparison of deficits observed across traditional diagnostic boundaries within a unified theoretical framework. This review describes the key processes and neural circuits involved in goal-directed decision-making using evidence from animal studies and human neuroimaging. Select studies are discussed to outline what we currently know about causal judgments regarding actions and their consequences, action-related reward evaluation, and, most importantly, how these processes are integrated in goal-directed learning and performance. Finally, we look at how adaptive decision-making is impaired across a range of psychiatric disorders and how deepening our understanding of this circuitry may offer insights into phenotypes and more targeted interventions.
Collapse
Affiliation(s)
- Kristi R Griffiths
- Behavioural Neuroscience Laboratory, Brain and Mind Research Institute, University of Sydney Camperdown, Sydney, NSW, Australia
| | - Richard W Morris
- Behavioural Neuroscience Laboratory, Brain and Mind Research Institute, University of Sydney Camperdown, Sydney, NSW, Australia
| | - Bernard W Balleine
- Behavioural Neuroscience Laboratory, Brain and Mind Research Institute, University of Sydney Camperdown, Sydney, NSW, Australia
| |
Collapse
|
28
|
Hart G, Leung BK, Balleine BW. Dorsal and ventral streams: the distinct role of striatal subregions in the acquisition and performance of goal-directed actions. Neurobiol Learn Mem 2014; 108:104-18. [PMID: 24231424 PMCID: PMC4661143 DOI: 10.1016/j.nlm.2013.11.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/03/2013] [Accepted: 11/04/2013] [Indexed: 11/28/2022]
Abstract
Considerable evidence suggests that distinct neural processes mediate the acquisition and performance of goal-directed instrumental actions. Whereas a cortical-dorsomedial striatal circuit appears critical for the acquisition of goal-directed actions, a cortical-ventral striatal circuit appears to mediate instrumental performance, particularly the motivational control of performance. Here we review evidence that these distinct mechanisms of learning and performance constitute two distinct 'streams' controlling instrumental conditioning. From this perspective, the regulation of the interaction between these 'streams' becomes a matter of considerable importance. We describe evidence that the basolateral amygdala, which is heavily interconnected with both the dorsal and ventral subregions of the striatum, coordinates this interaction providing input to the final common path to action as a critical component of the limbic-motor interface.
Collapse
Affiliation(s)
- Genevra Hart
- Brain and Mind Research Institute, University of Sydney, NSW, Australia
| | - Beatrice K Leung
- Brain and Mind Research Institute, University of Sydney, NSW, Australia
| | - Bernard W Balleine
- Brain and Mind Research Institute, University of Sydney, NSW, Australia.
| |
Collapse
|
29
|
Selective inhibition of phosphodiesterase 10A impairs appetitive and aversive conditioning and incentive salience attribution. Neuropharmacology 2013; 75:437-44. [DOI: 10.1016/j.neuropharm.2013.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/27/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022]
|
30
|
Fatal attraction: ventral striatum predicts costly choice errors in humans. Neuroimage 2013; 89:1-9. [PMID: 24291504 DOI: 10.1016/j.neuroimage.2013.11.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 11/07/2013] [Accepted: 11/18/2013] [Indexed: 11/23/2022] Open
Abstract
Animals approach rewards and cues associated with reward, even when this behavior is irrelevant or detrimental to the attainment of these rewards. Motivated by these findings we study the biology of financially-costly approach behavior in humans. Our subjects passively learned to predict the occurrence of erotic rewards. We show that neuronal responses in ventral striatum during this Pavlovian learning task stably predict an individual's general tendency towards financially-costly approach behavior in an active choice task several months later. Our data suggest that approach behavior may prevent some individuals from acting in their own interests.
Collapse
|
31
|
Differential reward coding in the subdivisions of the primate caudate during an oculomotor task. J Neurosci 2013; 32:15963-82. [PMID: 23136434 DOI: 10.1523/jneurosci.1518-12.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The basal ganglia play a pivotal role in reward-oriented behavior. The striatum, an input channel of the basal ganglia, is composed of subdivisions that are topographically connected with different cortical and subcortical areas. To test whether reward information is differentially processed in the different parts of the striatum, we compared reward-related neuronal activity along the dorsolateral-ventromedial axis in the caudate nucleus of monkeys performing an asymmetrically rewarded oculomotor task. In a given block, a target in one position was associated with a large reward, whereas the other target was associated with a small reward. The target position-reward value contingency was switched between blocks. We found the following: (1) activity that reflected the block-wise reward contingency emerged before the appearance of a visual target, and it was more prevalent in the dorsal, rather than central and ventral, caudate; (2) activity that was positively related to the reward size of the current trial was evident, especially after reward delivery, and it was more prevalent in the ventral and central, rather than dorsal, caudate; and (3) activity that was modulated by the memory of the outcomes of the previous trials was evident in the dorsal and central caudate. This multiple reward information, together with the target-direction information, was represented primarily by individual caudate neurons, and the different reward information was represented in caudate subpopulations with distinct electrophysiological properties, e.g., baseline firing and spike width. These results suggest parallel processing of different reward information by the basal ganglia subdivisions defined by extrinsic connections and intrinsic properties.
Collapse
|
32
|
Khamassi M, Humphries MD. Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies. Front Behav Neurosci 2012. [PMID: 23205006 PMCID: PMC3506961 DOI: 10.3389/fnbeh.2012.00079] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Behavior in spatial navigation is often organized into map-based (place-driven) vs. map-free (cue-driven) strategies; behavior in operant conditioning research is often organized into goal-directed vs. habitual strategies. Here we attempt to unify the two. We review one powerful theory for distinct forms of learning during instrumental conditioning, namely model-based (maintaining a representation of the world) and model-free (reacting to immediate stimuli) learning algorithms. We extend these lines of argument to propose an alternative taxonomy for spatial navigation, showing how various previously identified strategies can be distinguished as “model-based” or “model-free” depending on the usage of information and not on the type of information (e.g., cue vs. place). We argue that identifying “model-free” learning with dorsolateral striatum and “model-based” learning with dorsomedial striatum could reconcile numerous conflicting results in the spatial navigation literature. From this perspective, we further propose that the ventral striatum plays key roles in the model-building process. We propose that the core of the ventral striatum is positioned to learn the probability of action selection for every transition between states of the world. We further review suggestions that the ventral striatal core and shell are positioned to act as “critics” contributing to the computation of a reward prediction error for model-free and model-based systems, respectively.
Collapse
Affiliation(s)
- Mehdi Khamassi
- Institut des Systèmes Intelligents et de Robotique, Université Pierre et Marie Curie Paris, France ; Centre National de la Recherche Scientifique, UMR7222 Paris, France
| | | |
Collapse
|
33
|
Nees F, Vollstädt-Klein S, Fauth-Bühler M, Steiner S, Mann K, Poustka L, Banaschewski T, Büchel C, Conrod PJ, Garavan H, Heinz A, Ittermann B, Artiges E, Paus T, Pausova Z, Rietschel M, Smolka MN, Struve M, Loth E, Schumann G, Flor H. A target sample of adolescents and reward processing: same neural and behavioral correlates engaged in common paradigms? Exp Brain Res 2012; 223:429-39. [DOI: 10.1007/s00221-012-3272-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 09/12/2012] [Indexed: 11/30/2022]
|
34
|
Nishizawa K, Fukabori R, Okada K, Kai N, Uchigashima M, Watanabe M, Shiota A, Ueda M, Tsutsui Y, Kobayashi K. Striatal indirect pathway contributes to selection accuracy of learned motor actions. J Neurosci 2012; 32:13421-32. [PMID: 23015433 PMCID: PMC6621362 DOI: 10.1523/jneurosci.1969-12.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/04/2012] [Accepted: 07/27/2012] [Indexed: 11/21/2022] Open
Abstract
The dorsal striatum, which contains the dorsolateral striatum (DLS) and dorsomedial striatum (DMS), integrates the acquisition and implementation of instrumental learning in cooperation with the nucleus accumbens (NAc). The dorsal striatum regulates the basal ganglia circuitry through direct and indirect pathways. The mechanism by which these pathways mediate the learning processes of instrumental actions remains unclear. We investigated how the striatal indirect (striatopallidal) pathway arising from the DLS contributes to the performance of conditional discrimination. Immunotoxin targeting of the striatal neuronal type containing dopamine D(2) receptor in the DLS of transgenic rats resulted in selective, efficient elimination of the striatopallidal pathway. This elimination impaired the accuracy of response selection in a two-choice reaction time task dependent on different auditory stimuli. The impaired response selection was elicited early in the test sessions and was gradually restored as the sessions continued. The restoration from the deficits in auditory discrimination was prevented by excitotoxic lesion of the NAc but not by that of the DMS. In addition, lesion of the DLS mimicked the behavioral consequence of the striatopallidal removal at the early stage of test sessions of discriminative performance. Our results demonstrate that the DLS-derived striatopallidal pathway plays an essential role in the execution of conditional discrimination, showing its contribution to the control of selection accuracy of learned motor responses. The results also suggest the presence of a mechanism that compensates for the learning deficits during the repetitive sessions, at least partly, demanding accumbal function.
Collapse
Affiliation(s)
- Kayo Nishizawa
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Ryoji Fukabori
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kana Okada
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Nobuyuki Kai
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Motokazu Uchigashima
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Akira Shiota
- Utsunomiya Branch, PhoenixBio, Utsunomiya 321-0973, Japan, and
| | - Masatsugu Ueda
- Utsunomiya Branch, PhoenixBio, Utsunomiya 321-0973, Japan, and
| | - Yuji Tsutsui
- Faculty of Symbiotic Systems Science, Fukushima University, Fukushima 960-1296, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| |
Collapse
|
35
|
Gruber AJ, McDonald RJ. Context, emotion, and the strategic pursuit of goals: interactions among multiple brain systems controlling motivated behavior. Front Behav Neurosci 2012; 6:50. [PMID: 22876225 PMCID: PMC3411069 DOI: 10.3389/fnbeh.2012.00050] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/19/2012] [Indexed: 11/16/2022] Open
Abstract
Motivated behavior exhibits properties that change with experience and partially dissociate among a number of brain structures. Here, we review evidence from rodent experiments demonstrating that multiple brain systems acquire information in parallel and either cooperate or compete for behavioral control. We propose a conceptual model of systems interaction wherein a ventral emotional memory network involving ventral striatum (VS), amygdala, ventral hippocampus, and ventromedial prefrontal cortex triages behavioral responding to stimuli according to their associated affective outcomes. This system engages autonomic and postural responding (avoiding, ignoring, approaching) in accordance with associated stimulus valence (negative, neutral, positive), but does not engage particular operant responses. Rather, this emotional system suppresses or invigorates actions that are selected through competition between goal-directed control involving dorsomedial striatum (DMS) and habitual control involving dorsolateral striatum (DLS). The hippocampus provides contextual specificity to the emotional system, and provides an information rich input to the goal-directed system for navigation and discriminations involving ambiguous contexts, complex sensory configurations, or temporal ordering. The rapid acquisition and high capacity for episodic associations in the emotional system may unburden the more complex goal-directed system and reduce interference in the habit system from processing contingencies of neutral stimuli. Interactions among these systems likely involve inhibitory mechanisms and neuromodulation in the striatum to form a dominant response strategy. Innate traits, training methods, and task demands contribute to the nature of these interactions, which can include incidental learning in non-dominant systems. Addition of these features to reinforcement learning models of decision-making may better align theoretical predictions with behavioral and neural correlates in animals.
Collapse
Affiliation(s)
- Aaron J Gruber
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge AB, Canada
| | | |
Collapse
|
36
|
Davis MM, Olausson P, Greengard P, Taylor JR, Nairn AC. Regulator of calmodulin signaling knockout mice display anxiety-like behavior and motivational deficits. Eur J Neurosci 2012; 35:300-8. [PMID: 22250817 DOI: 10.1111/j.1460-9568.2011.07956.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Regulator of calmodulin (CaM) signaling (RCS), when phosphorylated by protein kinase A (PKA) on Ser55, binds to CaM and inhibits CaM-dependent signaling. RCS expression is high in the dorsal striatum, nucleus accumbens and amygdala, suggesting that the protein is involved in limbic-striatal function. To test this hypothesis, we examined RCS knockout (KO) mice in behavioral models dependent on these brain areas. Mice were tested for food-reinforced instrumental conditioning and responding under a progressive ratio (PR) schedule of reinforcement and in models of anxiety (elevated plus maze and open field). While RCS KO mice showed normal acquisition of a food-motivated instrumental response, they exhibited a lower breakpoint value when tested on responding under a PR schedule of reinforcement. RCS KO mice also displayed decreased exploration in both the open arms of an elevated plus maze and in the center region of an open field, suggesting an enhanced anxiety response. Biochemical studies revealed a reduction in the levels of dopamine and cAMP-regulated phosphoprotein (DARPP-32) in the striatum of RCS KO mice. DARPP-32 is important in reward-mediated behavior, suggestive of a possible role for DARPP-32 in mediating some of the effects of RCS. Together these results implicate a novel PKA-regulated phosphoprotein, RCS, in the etiology of motivational deficits and anxiety.
Collapse
Affiliation(s)
- Maya M Davis
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06508, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
I propose a reconceptualization of key phenomena important in the study of emotion-those phenomena that reflect functions and circuits related to survival, and that are shared by humans and other animals. The approach shifts the focus from questions about whether emotions that humans consciously feel are also present in other animals, and toward questions about the extent to which circuits and corresponding functions that are present in other animals (survival circuits and functions) are also present in humans. Survival circuit functions are not causally related to emotional feelings but obviously contribute to these, at least indirectly. The survival circuit concept integrates ideas about emotion, motivation, reinforcement, and arousal in the effort to understand how organisms survive and thrive by detecting and responding to challenges and opportunities in daily life.
Collapse
Affiliation(s)
- Joseph LeDoux
- Center for Neural Science and Department of Psychology, New York University, New York, NY 10003, USA.
| |
Collapse
|
38
|
Differential effect of NMDA receptor antagonist in the nucleus accumbens on reconsolidation of morphine -related positive and aversive memory in rats. Eur J Pharmacol 2012; 674:321-6. [DOI: 10.1016/j.ejphar.2011.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 11/01/2011] [Accepted: 11/04/2011] [Indexed: 12/14/2022]
|
39
|
Pozzi L, Sacchetti G, Agnoli L, Mainolfi P, Invernizzi RW, Carli M. Distinct Changes in CREB Phosphorylation in Frontal Cortex and Striatum During Contingent and Non-Contingent Performance of a Visual Attention Task. Front Behav Neurosci 2011; 5:65. [PMID: 22016726 PMCID: PMC3191343 DOI: 10.3389/fnbeh.2011.00065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 09/21/2011] [Indexed: 01/26/2023] Open
Abstract
The cyclic-adenosine monophosphate response element-binding protein (CREB) family of transcription factors has been implicated in numerous forms of behavioral plasticity. We investigated CREB phosphorylation along some nodes of corticostriatal circuitry such as frontal cortex (FC) and dorsal (caudate-putamen, CPu) and ventral (nucleus accumbens, NAC) striatum in response to the contingent or non-contingent performance of the five-choice serial reaction time task (5-CSRTT) used to assess visuospatial attention. Three experimental manipulations were used; an attentional performance group (contingent, "master"), a group trained previously on the task but for whom the instrumental contingency coupling responding with stimulus detection and reward was abolished (non-contingent, "yoked") and a control group matched for food deprivation and exposure to the test apparatus (untrained). Rats trained on the 5-CSRTT (both master and yoked) had higher levels of CREB protein in the FC, CPu, and NAC compared to untrained controls. Despite the divergent behavior of "master" and "yoked" rats CREB activity in the FC was not substantially different. In rats performing the 5-CSRTT ("master"), CREB activity was completely abolished in the CPu whereas in the NAC it remained unchanged. In contrast, CREB phosphorylation in CPu and NAC increased only when the contingency changed from goal-dependent to goal-independent reinforcement ("yoked"). The present results indicate that up-regulation of CREB protein expression across cortical and striatal regions possibly reflects the extensive instrumental learning and performance whereas increased CREB activity in striatal regions may signal the unexpected change in the relationship between instrumental action and reinforcement.
Collapse
Affiliation(s)
- Laura Pozzi
- Laboratory of Neurochemistry and Behaviour, Department of Neuroscience, Institute for Pharmacological Research "Mario Negri" Milano, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Effects of sensitization on the detection of an instrumental contingency. Pharmacol Biochem Behav 2011; 100:48-58. [PMID: 21820464 DOI: 10.1016/j.pbb.2011.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/04/2011] [Accepted: 07/15/2011] [Indexed: 11/22/2022]
Abstract
While prior exposure to drugs of abuse permanently changes many behaviors, the underlying psychological mechanisms are relatively obscure. Here, the effects of sensitization on the detection of an action-outcome relationship were assessed, using a particularly stringent contingency degradation procedure. Rats were trained to leverpress until the probability of reinforcement for a response on one lever, or alternative reinforcement for a response on a second lever was reduced to 0.05 per second. Sensitization was then carried out (1mg/kg d-amphetamine/day for 7 days). Then, one reinforcer was also made available for a lack of response on either lever (p=0.05/s), maintaining its contiguity with the original response but eliminating its contingent relationship. Sensitized animals were more active, particularly early in the contingency degradation phase, but reduced responding directed at the degraded action-outcome contingency at a similar rate as controls. However, controls also reduced responding directed at the nondegraded contingency until very late in training, while sensitized animals maintained nondegraded responding at baseline levels. It was suggested that the relatively specific response shown by sensitized animals may reflect either improved action-outcome utilization or discrimination of relevant task features.
Collapse
|
41
|
Boureau YL, Dayan P. Opponency revisited: competition and cooperation between dopamine and serotonin. Neuropsychopharmacology 2011; 36:74-97. [PMID: 20881948 PMCID: PMC3055522 DOI: 10.1038/npp.2010.151] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 11/08/2022]
Abstract
Affective valence lies on a spectrum ranging from punishment to reward. The coding of such spectra in the brain almost always involves opponency between pairs of systems or structures. There is ample evidence for the role of dopamine in the appetitive half of this spectrum, but little agreement about the existence, nature, or role of putative aversive opponents such as serotonin. In this review, we consider the structure of opponency in terms of previous biases about the nature of the decision problems that animals face, the conflicts that may thus arise between Pavlovian and instrumental responses, and an additional spectrum joining invigoration to inhibition. We use this analysis to shed light on aspects of the role of serotonin and its interactions with dopamine.
Collapse
Affiliation(s)
- Y-Lan Boureau
- The Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, London, UK
| |
Collapse
|
42
|
Shiflett MW, Balleine BW. At the limbic-motor interface: disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation. Eur J Neurosci 2010; 32:1735-43. [PMID: 21044174 DOI: 10.1111/j.1460-9568.2010.07439.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although it has long been hypothesized that the nucleus accumbens (NAc) acts as an interface between limbic and motor regions, direct evidence for this modulatory role on behavior is lacking. Using a disconnection procedure in rats, we found that basolateral amygdala (BLA) input to the core and medial shell of the NAc separately mediate two distinct incentive processes controlling the performance of goal-directed instrumental actions, respectively: (i) the sensitivity of instrumental responding to changes in the experienced value of the goal or outcome, produced by specific satiety-induced outcome devaluation; and (ii) the effect of reward-related cues on action selection, observed in outcome-specific Pavlovian-instrumental transfer. These results reveal, therefore, that dissociable neural circuits involving BLA inputs to the NAc core and medial shell mediate distinct components of the incentive motivational processes controlling choice and decision-making in instrumental conditioning.
Collapse
Affiliation(s)
- Michael W Shiflett
- Department of Psychology and Brain Research Institute, UCLA, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
43
|
Galtress T, Kirkpatrick K. The role of the nucleus accumbens core in impulsive choice, timing, and reward processing. Behav Neurosci 2010; 124:26-43. [PMID: 20141278 DOI: 10.1037/a0018464] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present series of experiments aimed to pinpoint the source of nucleus accumbens core (AcbC) effects on delay discounting. Rats were trained with an impulsive choice procedure between an adjusting smaller sooner reward and a fixed larger later reward. The AcbC-lesioned rats produced appropriate choice behavior when the reward magnitude was equal. An increase in reward magnitude resulted in a failure to increase preference for the larger later reward in the AcbC-lesioned rats, whereas a decrease in the larger later reward duration resulted in normal alterations in choice behavior in AcbC-lesioned rats. Subsequent experiments with a peak timing (Experiments 2 and 3) and a behavioral contrast (Experiment 4) indicated that the AcbC-lesioned rats suffered from decreased incentive motivation during changes in reward magnitude (Experiments 2 and 4) and when expected rewards were omitted (Experiments 2 and 3), but displayed intact anticipatory timing of reward delays (Experiments 2 and 3). The results indicate that the nucleus accumbens core is critical for determining the incentive value of rewards, but does not participate in the timing of reward delays.
Collapse
|
44
|
Gill TM, Castaneda PJ, Janak PH. Dissociable roles of the medial prefrontal cortex and nucleus accumbens core in goal-directed actions for differential reward magnitude. ACTA ACUST UNITED AC 2010; 20:2884-99. [PMID: 20308201 DOI: 10.1093/cercor/bhq036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) are 2 structures within a larger corticolimbic network mediating goal-directed actions, especially when the procurement of different goals is sensitive to impulsive tendencies. The present study investigated the role of these structures in goal-directed action for differential reward by training rats to respond for sucrose reward at a nosepoke operandum such that longer duration nosepokes (up to 2 s) resulted in correspondingly larger volumes of reward. After 16 weeks of training, neurotoxic lesions of either the mPFC or the NAc-core were performed, followed by reassessment of sustained response behavior. Lesions of mPFC increased choice impulsivity by shifting responding away from large rewards toward rewards of smaller sizes. The total volume of reward earned remained unchanged, thereby dissociating the lesion effects on response parameters from overall motivation for reward. In contrast, NAc-core lesions decreased the total amount of responding and total volume of reward earned without altering choice impulsivity across differing nosepoke durations and reward sizes. These results suggest that the mPFC mediates the ability to maintain behavioral responding over longer durations for larger magnitude rewards, while the NAc-core mediates the initiation of responding, perhaps by affecting motivational drive, independent of reward magnitude.
Collapse
Affiliation(s)
- T Michael Gill
- Ernest Gallo Clinic and Research Center, University of California-San Francisco, 5858 Horton Street, Emeryville, CA 94608, USA.
| | | | | |
Collapse
|
45
|
Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats. Behav Brain Res 2010; 210:74-83. [PMID: 20153781 PMCID: PMC3038258 DOI: 10.1016/j.bbr.2010.02.017] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 02/05/2010] [Accepted: 02/05/2010] [Indexed: 12/03/2022]
Abstract
Impairments in reversal learning have been attributed to orbitofrontal cortex (OFC) dysfunction in many species. However, the role of subcortical areas interconnected with the OFC such as the striatum remains poorly understood. This study directly evaluated the contribution of core and shell sub-regions of the nucleus accumbens (NAc), dorsomedial (DMS) and dorsolateral (DLS) striatum to reversal learning of an instrumental two-lever spatial discrimination task in rats. Selective NAc core, DMS and DLS lesions were achieved with microinjections of quinolinic acid and NAc shell lesions with ibotenic acid. Damage to NAc core or shell did not affect retention of a previously acquired instrumental spatial discrimination. In contrast, DLS and DMS lesions produced changes in aspects of discrimination performance such as the latency to collect earned food pellets. Neither NAc core or shell lesions nor DLS lesions affected the main indices of reversal performance. Conversely, DMS lesion rats showed a significant impairment in reversal learning. DMS damage increased the number of errors to reach criteria that were perseverative in nature. The deficit in reversal learning in DMS lesion rats was not associated with an impairment to extinguish instrumental responding. There were no effects on spontaneous locomotor activity. Our data are in agreement with recent work showing that lesions of the medial striatum in marmoset monkeys produce perseverative impairments during a serial visual discrimination reversal task and support the hypothesis that dorsomedial striatal dysfunction contributes to pathological perseveration, which is a common feature of many psychiatric disorders.
Collapse
|
46
|
Balleine BW, O'Doherty JP. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 2010; 35:48-69. [PMID: 19776734 PMCID: PMC3055420 DOI: 10.1038/npp.2009.131] [Citation(s) in RCA: 1210] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/29/2009] [Accepted: 07/30/2009] [Indexed: 11/08/2022]
Abstract
Recent behavioral studies in both humans and rodents have found evidence that performance in decision-making tasks depends on two different learning processes; one encoding the relationship between actions and their consequences and a second involving the formation of stimulus-response associations. These learning processes are thought to govern goal-directed and habitual actions, respectively, and have been found to depend on homologous corticostriatal networks in these species. Thus, recent research using comparable behavioral tasks in both humans and rats has implicated homologous regions of cortex (medial prefrontal cortex/medial orbital cortex in humans and prelimbic cortex in rats) and of dorsal striatum (anterior caudate in humans and dorsomedial striatum in rats) in goal-directed action and in the control of habitual actions (posterior lateral putamen in humans and dorsolateral striatum in rats). These learning processes have been argued to be antagonistic or competing because their control over performance appears to be all or none. Nevertheless, evidence has started to accumulate suggesting that they may at times compete and at others cooperate in the selection and subsequent evaluation of actions necessary for normal choice performance. It appears likely that cooperation or competition between these sources of action control depends not only on local interactions in dorsal striatum but also on the cortico-basal ganglia network within which the striatum is embedded and that mediates the integration of learning with basic motivational and emotional processes. The neural basis of the integration of learning and motivation in choice and decision-making is still controversial and we review some recent hypotheses relating to this issue.
Collapse
Affiliation(s)
- Bernard W Balleine
- Brain and Mind Research Institute, University of Sydney, Camperdown, NSW, Australia.
| | | |
Collapse
|
47
|
Anselme P. The uncertainty processing theory of motivation. Behav Brain Res 2009; 208:291-310. [PMID: 20035799 DOI: 10.1016/j.bbr.2009.12.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/13/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
Abstract
Most theories describe motivation using basic terminology (drive, 'wanting', goal, pleasure, etc.) that fails to inform well about the psychological mechanisms controlling its expression. This leads to a conception of motivation as a mere psychological state 'emerging' from neurophysiological substrates. However, the involvement of motivation in a large number of behavioural parameters (triggering, intensity, duration, and directedness) and cognitive abilities (learning, memory, decision, etc.) suggest that it should be viewed as an information processing system. The uncertainty processing theory (UPT) presented here suggests that motivation is the set of cognitive processes allowing organisms to extract information from the environment by reducing uncertainty about the occurrence of psychologically significant events. This processing of information is shown to naturally result in the highlighting of specific stimuli. The UPT attempts to solve three major problems: (i) how motivations can affect behaviour and cognition so widely, (ii) how motivational specificity for objects and events can result from nonspecific neuropharmacological causal factors (such as mesolimbic dopamine), and (iii) how motivational interactions can be conceived in psychological terms, irrespective of their biological correlates. The UPT is in keeping with the conceptual tradition of the incentive salience hypothesis while trying to overcome the shortcomings inherent to this view.
Collapse
Affiliation(s)
- Patrick Anselme
- Centre de Neurosciences Cognitives et Comportementales, Université de Liège, Liège, Belgium.
| |
Collapse
|
48
|
Lex B, Hauber W. The role of nucleus accumbens dopamine in outcome encoding in instrumental and Pavlovian conditioning. Neurobiol Learn Mem 2009; 93:283-90. [PMID: 19931626 DOI: 10.1016/j.nlm.2009.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 10/12/2009] [Accepted: 11/15/2009] [Indexed: 10/20/2022]
Abstract
Considerable evidence suggests that dopamine in the core subregion of the nucleus accumbens is not only involved in Pavlovian conditioning but also supports instrumental performance. However, it is largely unknown whether NAc dopamine is required for outcome encoding which plays an important role both in Pavlovian stimulus-outcome learning and instrumental action-outcome learning. Therefore, we tested rats with 6-hydroxydopamine (6-OHDA) induced dopamine depletion of the NAc core for their sensitivity to outcome devaluation in a Pavlovian and an instrumental task. Results indicate that 6-OHDA-lesioned animals were sensitive to outcome devaluation in an instrumental task. This finding provides support to the notion that NAc core dopamine may not be crucial in encoding action-outcome associations. However, during instrumental conditioning lever pressing rates in 6-OHDA-lesioned animals were markedly lower which could reflect an impaired behavioral activation. By contrast, after outcome-specific devaluation in a Pavlovian task, performance in 6-OHDA-lesioned animals was impaired, i.e. their magazine-directed responding was non-selectively reduced. One possibility to explain non-selective responding is that NAc core DA depletion impaired the ability of conditioned stimuli to activate the memory of the current value of the reinforcer.
Collapse
Affiliation(s)
- Bjoern Lex
- Abteilung Tierphysiologie, Biologisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
| | | |
Collapse
|
49
|
Lewis SJ, Barker RA. Understanding the dopaminergic deficits in Parkinson’s disease: Insights into disease heterogeneity. J Clin Neurosci 2009; 16:620-5. [DOI: 10.1016/j.jocn.2008.08.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 08/18/2008] [Indexed: 11/28/2022]
|
50
|
The validity of using an approach-avoidance test to measure the strength of aversion to carbon dioxide in rats. Appl Anim Behav Sci 2008. [DOI: 10.1016/j.applanim.2008.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|