1
|
Ashby DM, Dias C, Aleksandrova LR, Lapish CC, Wang YT, Phillips AG. Disruption of Long-Term Depression Potentiates Latent Inhibition: Key Role for Central Nucleus of the Amygdala. Int J Neuropsychopharmacol 2021; 24:580-591. [PMID: 33693669 PMCID: PMC8299826 DOI: 10.1093/ijnp/pyab011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Latent inhibition (LI) reflects an adaptive form of learning impaired in certain forms of mental illness. Glutamate receptor activity is linked to LI, but the potential role of synaptic plasticity remains unspecified. METHODS Accordingly, the present study examined the possible role of long-term depression (LTD) in LI induced by prior exposure of rats to an auditory stimulus used subsequently as a conditional stimulus to signal a pending footshock. We employed 2 mechanistically distinct LTD inhibitors, the Tat-GluA23Y peptide that blocks endocytosis of the GluA2-containing glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, or the selective glutamate n-methyl-d-aspartate receptor 2B antagonist, Ro25-6981, administered prior to the acquisition of 2-way conditioned avoidance with or without tone pre-exposure. RESULTS Systemic LTD blockade with the Tat-GluA23Y peptide strengthened the LI effect by further impairing acquisition of conditioned avoidance in conditional stimulus-preexposed rats compared with normal conditioning in non-preexposed controls. Systemic Ro25-6981 had no significant effects. Brain region-specific microinjections of the Tat-GluA23Y peptide into the nucleus accumbens, medial prefrontal cortex, or central or basolateral amygdala demonstrated that disruption of glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor endocytosis in the central amygdala also potentiated the LI effect. CONCLUSIONS These data revealed a previously unknown role for central amygdala LTD in LI as a key mediator of cognitive flexibility required to respond to previously irrelevant stimuli that acquire significance through reinforcement. The findings may have relevance both for our mechanistic understanding of LI and its alteration in disease states such as schizophrenia, while further elucidating the role of LTD in learning and memory.
Collapse
Affiliation(s)
- Donovan M Ashby
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carine Dias
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Lily R Aleksandrova
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Christopher C Lapish
- Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States
| | - Yu Tian Wang
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Anthony G Phillips
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Gruber AJ, McDonald RJ. Context, emotion, and the strategic pursuit of goals: interactions among multiple brain systems controlling motivated behavior. Front Behav Neurosci 2012; 6:50. [PMID: 22876225 PMCID: PMC3411069 DOI: 10.3389/fnbeh.2012.00050] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/19/2012] [Indexed: 11/16/2022] Open
Abstract
Motivated behavior exhibits properties that change with experience and partially dissociate among a number of brain structures. Here, we review evidence from rodent experiments demonstrating that multiple brain systems acquire information in parallel and either cooperate or compete for behavioral control. We propose a conceptual model of systems interaction wherein a ventral emotional memory network involving ventral striatum (VS), amygdala, ventral hippocampus, and ventromedial prefrontal cortex triages behavioral responding to stimuli according to their associated affective outcomes. This system engages autonomic and postural responding (avoiding, ignoring, approaching) in accordance with associated stimulus valence (negative, neutral, positive), but does not engage particular operant responses. Rather, this emotional system suppresses or invigorates actions that are selected through competition between goal-directed control involving dorsomedial striatum (DMS) and habitual control involving dorsolateral striatum (DLS). The hippocampus provides contextual specificity to the emotional system, and provides an information rich input to the goal-directed system for navigation and discriminations involving ambiguous contexts, complex sensory configurations, or temporal ordering. The rapid acquisition and high capacity for episodic associations in the emotional system may unburden the more complex goal-directed system and reduce interference in the habit system from processing contingencies of neutral stimuli. Interactions among these systems likely involve inhibitory mechanisms and neuromodulation in the striatum to form a dominant response strategy. Innate traits, training methods, and task demands contribute to the nature of these interactions, which can include incidental learning in non-dominant systems. Addition of these features to reinforcement learning models of decision-making may better align theoretical predictions with behavioral and neural correlates in animals.
Collapse
Affiliation(s)
- Aaron J Gruber
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge AB, Canada
| | | |
Collapse
|
3
|
Opposing effects of 5,7-DHT lesions to the core and shell of the nucleus accumbens on the processing of irrelevant stimuli. Int J Neuropsychopharmacol 2012; 15:485-96. [PMID: 21557885 PMCID: PMC3325501 DOI: 10.1017/s1461145711000599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
There is good evidence that forebrain serotonergic systems modulate cognitive flexibility. Latent inhibition (LI) is a cross-species phenomenon which manifests as poor conditioning to a stimulus that has previously been experienced without consequence and is widely considered an index of the ability to ignore irrelevant stimuli. While much research has focused on dopaminergic mechanisms underlying LI, there is also considerable evidence of serotonergic modulation. However, the neuroanatomical locus of these effects remains poorly understood. Previous work has identified the nucleus accumbens (NAc) as a key component of the neural circuit underpinning LI and furthermore, this work has shown that the core and shell subregions of the NAc contribute differentially to the expression of LI. To examine the role of the serotonergic input to NAc in LI, we tested animals with 5,7-dihydroxytryptamine (5,7-DHT) lesions to the core and shell subregions on LI assessed under experimental conditions that produce LI in shams and subsequently with weak stimulus pre-exposure designed to prevent the emergence of LI in shams. We found that serotonergic deafferentation of the core disrupted LI whereas 5,7-DHT lesions to the shell produced the opposite effect and potentiated LI.
Collapse
|
4
|
Schiller D, Weiner I. Basolateral amygdala lesions in the rat produce an abnormally persistent latent inhibition with weak preexposure but not with context shift. Behav Brain Res 2005; 163:115-21. [PMID: 15921766 DOI: 10.1016/j.bbr.2005.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 04/18/2005] [Accepted: 04/20/2005] [Indexed: 11/27/2022]
Abstract
Latent inhibition (LI) refers to retarded conditioning to a stimulus as a consequence of its nonreinforced preexposure. We have recently reported that basolateral amygdala (BLA) lesions lead to an abnormally persistent LI under conditions that normally disrupt LI, namely, extended conditioning. This study tested whether BLA lesions would induce abnormally persistent LI under two additional conditions disrupting LI in controls, namely, context shift and weak preexposure. LI was measured in an active avoidance procedure. In the first experiment, rats received 100 nonreinforced preexposures and were conditioned either in the same or in a different context from that of the preexposure stage. In the second experiment, rats received 50 nonreinforced preexposures and were conditioned in the same context as that of preexposure. Sham-operated rats showed LI in the same but not in the different context condition or with low number of preexposures. BLA lesions produced abnormally persistent LI with low number of preexposures but not with context shift. It is suggested that the BLA is involved in LI modulation based on the impact of preexposure and conditioning but not on contextual information.
Collapse
Affiliation(s)
- Daniela Schiller
- Department of Psychology, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| | | |
Collapse
|
5
|
White NM, Chai SC, Hamdani S. Learning the morphine conditioned cue preference: Cue configuration determines effects of lesions. Pharmacol Biochem Behav 2005; 81:786-96. [PMID: 16009410 DOI: 10.1016/j.pbb.2005.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2005] [Revised: 06/01/2005] [Accepted: 06/04/2005] [Indexed: 11/29/2022]
Abstract
The morphine conditioned cue preference was investigated using two different apparatus configurations. In one configuration, with a clear Plexiglas partition separating the drug-paired and unpaired compartments, rats could see the cues in both compartments while in either one. In the other configuration, with an opaque wood partition separating the two compartments, rats could see the cues in only one compartment at a time. The experiment had three phases: a session of pre-exposure to the entire apparatus; four 2-day training trials during each of which rats received pairings of 5 mg/Kg morphine sulphate with one compartment and saline with the other (compartments and order counterbalanced), and a test session in which the undrugged rats moved freely between the compartments while the time spent in each was measured. Four groups of rats were trained using the opaque partition in all three phases. Normal rats and rats with amygdala or nucleus accumbens lesions exhibited preferences for their morphine-paired compartments; rats with fimbria-fornix lesions had no preferences. Four additional groups were trained using the clear partition during pre-exposure, the opaque partition during training and the clear partition during testing. Normal rats and rats with fimbria-fornix lesions exhibited preferences, rats with amygdala or nucleus accumbens lesions had no preferences. This interaction between lesioned structures and the apparatus configuration is accounted for by the idea that different types of learning produced the preference for morphine-paired cues in the two apparatus configurations. Each type was learned in a different memory system and so was impaired by different lesions. These findings contribute to understanding the nature of the learning processes that produce the morphine CCP.
Collapse
Affiliation(s)
- Norman M White
- Department of Psychology, McGill University, 1205 Dr Penfield Avenue, Montreal, Canada QC H3A 1B1.
| | | | | |
Collapse
|
6
|
Gal G, Schiller D, Weiner I. Latent inhibition is disrupted by nucleus accumbens shell lesion but is abnormally persistent following entire nucleus accumbens lesion: The neural site controlling the expression and disruption of the stimulus preexposure effect. Behav Brain Res 2005; 162:246-55. [PMID: 15970218 DOI: 10.1016/j.bbr.2005.03.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 03/18/2005] [Accepted: 03/24/2005] [Indexed: 11/21/2022]
Abstract
Latent inhibition (LI) is the proactive interference of repeated nonreinforced preexposure to a stimulus with subsequent performance on a learning task involving that stimulus. The present experiments investigated the role of the nucleus accumbens (NAC) in LI. LI was measured in a thirst motivated conditioned emotional response procedure with low or high number of conditioning trials, and in two-way active avoidance procedure with the stages of preexposure and conditioning taking place in the same or different contexts. Sham-lesioned rats showed LI with low but not high number of conditioning trials and if preexposure and conditioning took place in the same context but not if the context was changed between the stages. Lesion to the shell subregion of the NAC disrupted LI but LI was preserved in rats with a combined lesion to the NAC shell and core subregions. Moreover, rats with a combined shell-core lesion persisted in showing LI in spite of high number of conditioning trials and in spite of context change. These results show that the NAC is not essential for the acquisition of LI but rather plays a key role in regulating the expression of LI. Moreover, they suggest that the two subregions of the NAC contribute competitively and cooperatively to this process, selecting the response appropriate to the stimulus-no event or the stimulus-reinforcement association in conditioning.
Collapse
Affiliation(s)
- Gilad Gal
- Department of Psychology, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
7
|
Young AMJ, Kumari V, Mehrotra R, Hemsley DR, Andrew C, Sharma T, Williams SCR, Gray JA. Disruption of learned irrelevance in acute schizophrenia in a novel continuous within-subject paradigm suitable for fMRI. Behav Brain Res 2005; 156:277-88. [PMID: 15582114 DOI: 10.1016/j.bbr.2004.05.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 05/28/2004] [Accepted: 05/28/2004] [Indexed: 11/30/2022]
Abstract
Learned irrelevance (LIrr) is closely related to latent inhibition (LI). In LI a to-be-conditioned stimulus (CS) is prexposed alone prior to the opportunity to learn an association between the CS and an unconditioned stimulus (UCS). In LIrr preexposure consists of intermixed presentations of both CS and UCS in a random relationship to each other. In both paradigms preexposure leads in normal subjects to reduced or retarded learning of the CS-UCS association. Acute schizophrenics fail to show LI. LI is usually demonstrated as a one-off, between-groups difference in trials to learning, so posing problems for neuroimaging. We have developed a novel, continuous, within-subject paradigm in which normal subjects show robust and repeated LIrr. We show that this paradigm is suitable for functional magnetic resonance imaging (fMRI) and gives rise, in normal subjects, to activation in the hippocampal formation, consistent with data from animal experiments on LI. We also report, consistent with previous studies of LI, loss (indeed, significant reversal) of LIrr in acute (first 2 weeks of current psychotic episode) schizophrenics. Chronic schizophrenics failed to demonstrate learning, precluding measurement in this group of LIrr. These findings establish the likely value of the new paradigm for neuroimaging studies of attentional dysfunction in acute schizophrenia.
Collapse
Affiliation(s)
- Andrew M J Young
- School of Psychology, University of Leicester, University Road, Leicester LE1 7RH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Stevenson CW, Gratton A. Role of basolateral amygdala dopamine in modulating prepulse inhibition and latent inhibition in the rat. Psychopharmacology (Berl) 2004; 176:139-45. [PMID: 15114433 DOI: 10.1007/s00213-004-1879-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 03/12/2004] [Indexed: 10/26/2022]
Abstract
RATIONALE The dopamine (DA) projection to the basolateral amygdala (BLA) modulates nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) DA transmission. Given the involvement of the BLA, and of NAc and mPFC DA, in select forms of information processing, we sought to determine the role of BLA DA in modulating prepulse inhibition (PPI) and latent inhibition (LI). OBJECTIVE The effects of BLA D1 (SCH 23390) and D2/D3 (raclopride) receptor blockade on PPI and LI were examined. METHODS Separate groups of male Long-Evans rats received bilateral intra-BLA infusions of SCH 23390 (3.2 or 6.4 microg/0.5 microl per side), raclopride (2.5 or 5.0 microg/0.5 microl per side) or saline prior to testing. In two experiments, the effects of BLA DA receptor antagonism on PPI of the acoustic startle response (ASR) and LI of conditioned taste aversion were determined. A control group received bilateral intra-striatal infusions of SCH 23390 or raclopride prior to PPI testing. RESULTS Intra-BLA SCH 23390 or raclopride had no effect on the ASR. Intra-BLA SCH 23390 enhanced and raclopride disrupted PPI, both in a dose-related manner. Intra-striatal SCH 23390 or raclopride had no effect on PPI or ASR magnitude. Finally, BLA DA receptor blockade had no effect on LI. CONCLUSIONS These results indicate that PPI is modulated by BLA DA and suggest that this modulation occurs independently of changes in NAc and/or mPFC DA transmission. They also suggest that BLA DA is not involved in modulating LI and add to evidence indicating that PPI and LI are mediated by different neural substrates.
Collapse
Affiliation(s)
- C W Stevenson
- Douglas Hospital Research Centre, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal (Verdun), QC, Canada
| | | |
Collapse
|
9
|
Chai SC, White NM. Effects of fimbria-fornix, hippocampus, and amygdala lesions on discrimination between proximal locations. Behav Neurosci 2004; 118:770-84. [PMID: 15301603 DOI: 10.1037/0735-7044.118.4.770] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The conditioned cue preference (CCP) task was used to study the information required to discriminate between spatial locations defined by adjacent arms of an 8-arm radial maze. Normal rats learned the discrimination after 3 unreinforced preexposure (PE) sessions and 4 food paired-unpaired training trials. Fimbria-fornix lesions made before, but not after, PE, and hippocampus lesions made at either time, blocked the discrimination, suggesting that the 2 structures processed different information. Lateral amygdala lesions made before PE facilitated the discrimination. This amygdala-mediated interference with the discrimination was the result of a conditioned approach response that did not discriminate between the 2 arm locations. A hippocampus/fimbria-fornix system and an amygdala system process different information about the same learning situation simultaneously and in parallel.
Collapse
Affiliation(s)
- Sin-Chee Chai
- Department of Psychology, McGill University, Montreal, PQ, Canada.
| | | |
Collapse
|
10
|
Schiller D, Weiner I. Lesions to the basolateral amygdala and the orbitofrontal cortex but not to the medial prefrontal cortex produce an abnormally persistent latent inhibition in rats. Neuroscience 2004; 128:15-25. [PMID: 15450350 DOI: 10.1016/j.neuroscience.2004.06.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2004] [Indexed: 11/23/2022]
Abstract
Repeated nonreinforced preexposure to a stimulus interferes with the establishment of conditioned responding to this stimulus when it is subsequently paired with reinforcement. This stimulus-preexposure effect is known as latent inhibition (LI). Rather remarkably, LI appears to be resistant to the effects of numerous lesions, including the prefrontal cortex (PFC) and the basolateral amygdala (BLA). However, intact behavioral expression of LI following damage to given brain regions does not preclude the possibility that such regions participate in the regulation of LI expression in the intact brain. The present study showed that lesions of the BLA and the orbitofrontal cortex (OFC) but not of the medial PFC (mPFC) led to an abnormally persistent LI which emerged under conditions that disrupted LI in control rats. LI was measured in a thirst motivated conditioned emotional response procedure by comparing suppression of drinking in response to a tone in rats which received 0 (nonpreexposed) or 40 tone presentations (preexposed) followed by either two or five tone-shock pairings. Control rats showed LI with 40 preexposures and two conditioning trials, but raising the number of conditioning trials to five disrupted LI. OFC- and BLA-lesioned rats showed LI under the former condition but in addition persisted in exhibiting LI under the latter condition. Rats with lesion of the mPFC did not show persistent LI. Thus, although LI does not depend on the integrity of BLA and OFC (because it is present in BLA- and OFC- lesioned rats even under conditions disrupting the phenomenon in normal rats), these regions play an important role in the modulation of its expression, more specifically, in the control of the non-expression of LI when the impact of conditioning increases beyond a certain level.
Collapse
Affiliation(s)
- D Schiller
- Department of Psychology, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, P.O.B. 39040, Israel
| | | |
Collapse
|
11
|
Weiner I. The "two-headed" latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology (Berl) 2003; 169:257-97. [PMID: 12601500 DOI: 10.1007/s00213-002-1313-x] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Accepted: 10/16/2002] [Indexed: 01/24/2023]
Abstract
RATIONALE Latent inhibition (LI), namely, poorer performance on a learning task involving a previously pre-exposed non-reinforced stimulus, is disrupted in the rat by the dopamine (DA) releaser amphetamine which produces and exacerbates psychotic (positive) symptoms, and this is reversed by treatment with typical and atypical antipsychotic drugs (APDs) which on their own potentiate LI. These phenomena are paralleled by disrupted LI in normal amphetamine-treated humans, in high schizotypal humans, and in schizophrenia patients in the acute stages of the disorder, as well as by potentiated LI in normal humans treated with APDs. Consequently, disrupted LI is considered to provide an animal model of positive symptoms of schizophrenia with face, construct and predictive validity. OBJECTIVES To review most of the rodent data on the neural substrates of LI as well as on the effects of APDs on this phenomenon with an attempt to interpret and integrate these data within the framework of the switching model of LI; to show that there are two distinct LI models, disrupted and abnormally persistent LI; to relate these findings to the clinical condition. RESULTS The nucleus accumbens (NAC) and its DA innervation form a crucial component of the neural circuitry of LI, and are involved at the conditioning stage. There is a clear functional differentiation between the NAC shell and core subregions whereby damage to the shell disrupts LI and damage to the core renders LI abnormally persistent under conditions that disrupt LI in normal rats. The effects of shell and core lesions parallel those produced by lesions to the major sources of input to the NAC: entorhinal cortex lesion, like shell lesion, disrupts LI, whereas hippocampal lesion, like core lesion, produces persistent LI with changes in context, and basolateral amygdala (BLA) lesion, like core lesion, produces persistent LI with extended conditioning. Systemically induced blockade of glutamatergic as well as DA transmission produce persistent LI via effects exerted at the conditioning stage, whereas enhancement of DA transmission disrupts LI via effects at the conditioning stage. Serotonergic manipulations can disrupt or potentiate LI via effects at the pre-exposure stage. Both typical and atypical APDs potentiate LI via effects at conditioning whereas atypical APDs in addition disrupt LI via effects at pre-exposure. Schizophrenia patients can exhibit disrupted or normal LI as a function of the state of the disorder (acute versus chronic), as well as persistent LI. CONCLUSIONS Different drug and lesion manipulations produce two poles of abnormality in LI, namely, disrupted LI under conditions which lead to LI in normal rats, and abnormally persistent LI under conditions which disrupt it in normal rats. Disrupted and persistent LI are differentially responsive to APDs, with the former reversed by both typical and atypical APDs and the latter selectively reversed by atypical APDs. It is suggested that this "two-headed LI model" mimics two extremes of deficient cognitive switching seen in schizophrenia, excessive and retarded switching between associations, mediated by dysfunction of different brain circuitries, and can serve to model positive symptoms of schizophrenia and typical antipsychotic action, as well as negative symptoms of schizophrenia and atypical antipsychotic action.
Collapse
Affiliation(s)
- Ina Weiner
- Department of Psychology, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
12
|
Murphy CA, Russig H, Pezze MA, Ferger B, Feldon J. Amphetamine withdrawal modulates FosB expression in mesolimbic dopaminergic target nuclei: effects of different schedules of administration. Neuropharmacology 2003; 44:926-39. [PMID: 12726824 DOI: 10.1016/s0028-3908(03)00074-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Different patterns of psychostimulant intake can elicit widely varying behavioral and neurochemical consequences. Accordingly, rats were studied during withdrawal from either of two schedules of amphetamine administration, one consisting of 6 days of low-dose (1.5 mg/kg, i.p.) daily intermittent (INT) amphetamine (AMPH) injections, and the other of 6 days of moderately high-dose (1-5 mg/kg, i.p.) escalating (ESC) AMPH injections, for the effects of these treatments on numbers of FosB-positive nuclei and monoamine utilization in dopaminergic target areas. Withdrawal from AMPH pretreatment according to the ESC schedule markedly increased FosB expression in the nucleus accumbens shell and basolateral amygdala. In contrast, withdrawal from INT-AMPH administration did not increase FosB expression in any of the regions examined. Post-mortem neurochemical analyses of these same brain regions did not reveal effects of withdrawal from either INT or ESC administration of AMPH. These results suggest that withdrawal from a moderately high-dose AMPH regimen modifies patterns of gene expression in mesocorticolimbic dopaminergic target nuclei without significantly affecting basal monoamine levels. The strength of these effects in the nucleus accumbens shell and basolateral nucleus of the amygdala are consistent with behavioral and clinical data indicating the importance of these areas in the neuroadaptive changes which characterize addiction and withdrawal states.
Collapse
Affiliation(s)
- Carol A Murphy
- Behavioral Neurobiology Laboratory, Swiss Federal Institute of Technology (ETH-Zurich), Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland.
| | | | | | | | | |
Collapse
|
13
|
Richardson R, Fan M, Parnas AS. Latent inhibition of conditioned odor potentiation of startle: a developmental analysis. Dev Psychobiol 2003; 42:261-8. [PMID: 12621652 DOI: 10.1002/dev.10099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We conducted a two-part study of age and latent inhibition in the rat. In the first part of the study, rats given odor-shock pairings at 23 or 75 days of age exhibited a potentiated startle response in the presence of the odor the following day. This effect did not occur in rats trained at 16 or 20 days of age. Odor pre-exposure on the day prior to conditioning markedly reduced the odor potentiation of startle effect in 23- and 75-day-old rats but had no effect in 16 and 20-day-olds. In the second part of the study, rats were pre-exposed to the odor at 16 or 20 days of age and then conditioned at 23 days of age. When tested the day after conditioning, these pre-exposed rats exhibited a disruption in the odor potentiation of startle effect. We compare our results with other studies of latent inhibition, and with recent studies on whether conditioned responses are appropriate to the animal's age at training or their age at test.
Collapse
Affiliation(s)
- Rick Richardson
- School of Psychology, The University of New South Wales, Sydney 2052, Australia.
| | | | | |
Collapse
|
14
|
Jeanblanc J, Hoeltzel A, Louilot A. Dissociation in the involvement of dopaminergic neurons innervating the core and shell subregions of the nucleus accumbens in latent inhibition and affective perception. Neuroscience 2002; 111:315-23. [PMID: 11983317 DOI: 10.1016/s0306-4522(02)00019-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mesencephalic dopaminergic neurons have been found to be involved in affective processes. Their implication in cognitive processes appears less well understood. The use of latent inhibition paradigms is a means of studying these kinds of processes. In this study, we investigated the involvement of dopaminergic projections in the core, the dorsomedial shell and the ventromedial shell of the nucleus accumbens, in latent inhibition in olfactory aversive learning. Variations in extracellular dopamine levels induced by an aversively conditioned olfactory stimulus were monitored in the three parts of the nucleus accumbens in the left hemisphere, after pre-exposure to the olfactory stimulus using in vivo voltammetry in freely moving rats. The parallel between dopamine changes and place preference or aversion toward the stimulus were analyzed in pre-exposed and non-pre-exposed animals. Results showed that dopaminergic neurons innervating the nucleus accumbens are differentially involved in the latent inhibition phenomenon. Dopaminergic neurons innervating the core and the dorsomedial shell subregions of the nucleus accumbens appeared to be involved in latent inhibition processes, unlike those reaching the ventromedial shell. Nonetheless dopamine in the ventromedial shell was found to be involved in affective perception of the stimulus.The present data suggest that dopaminergic neurons innervating the three nucleus accumbens subregions are functionally related to networks involved in parallel processing of the cognitive and affective values of environmental information, and that interaction between these systems, at some levels, may lead to a given behavioral output. These data may provide new insights into the pathophysiology of schizophrenic psychoses.
Collapse
Affiliation(s)
- J Jeanblanc
- INSERM U 405 and Institute of Physiology, University Louis Pasteur, Faculty of Medicine, 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | | |
Collapse
|
15
|
Coutureau E, Léna I, Daugé V, Di Scala G. The entorhinal cortex-nucleus accumbens pathway and latent inhibition: a behavioral and neurochemical study in rats. Behav Neurosci 2002; 116:95-104. [PMID: 11895187 DOI: 10.1037/0735-7044.116.1.95] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Latent inhibition (LI) refers to the decrease in conditioned response produced by the repeated nonrein-forced preexposure to the to-be-conditioned stimulus. Experiment I investigated the effects of electrolytic lesions of the entorhinal cortex on LI in a conditioned emotional response procedure. Entorhinal cortex lesions attenuated LI. Experiments 2 and 3 investigated whether this attenuation of LI could result from a modification in nucleus accumbens (NAcc) dopamine (DA) release. Rats with entorhinal cortex lesions displayed normal spontaneous and amphetamine-induced locomotor activity, as well as normal basal and amphetamine-induced release of DA within the NAcc (assessed by microdialysis). Taken together, these results show that entorhinal cortex lesions disrupt LI in a way that is unlikely to be due to an alteration of DA release within the NAcc.
Collapse
Affiliation(s)
- Etienne Coutureau
- Laboratoire de Neurosciences Comportementales et Cognitives, Centre National de la Recherche Scientifique, Université Louis Pasteur, Strasbourg, France.
| | | | | | | |
Collapse
|
16
|
Coutureau E, Blundell PJ, Killcross S. Basolateral amygdala lesions disrupt latent inhibitionin rats. Brain Res Bull 2001; 56:49-53. [PMID: 11604248 DOI: 10.1016/s0361-9230(01)00592-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Latent inhibition (LI) refers to the retardation of acquisition of conditioned responding produced by repeated non-reinforced preexposure to the conditioned stimulus (CS) prior to its pairing with the unconditioned stimulus (US) during conditioning. LI has recently been shown to depend upon the integrity of temporal lobe structures, including regions of the hippocampal formation such as the entorhinal cortex. The present study investigated the effects of excitotoxic lesions of another temporal lobe structure, the basolateral nucleus of the amygdala (BLA), on LI. LI was studied in a within-subjects appetitive conditioning preparation in which an auditory CS was paired with food US. In this procedure, preexposure to the CS results in slower acquisition of magazine approach behaviour. Lesions of the BLA reduced the effect of preexposure, disrupting LI. This result suggests that the BLA can play a crucial role in LI. The possible involvement of interactions between BLA and entorhinal cortex in LI is discussed.
Collapse
Affiliation(s)
- E Coutureau
- School of Psychology, Cardiff University, Cardiff, UK.
| | | | | |
Collapse
|
17
|
Joseph MH, Peters SL, Moran PM, Grigoryan GA, Young AM, Gray JA. Modulation of latent inhibition in the rat by altered dopamine transmission in the nucleus accumbens at the time of conditioning. Neuroscience 2001; 101:921-30. [PMID: 11113341 DOI: 10.1016/s0306-4522(00)00437-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Latent inhibition describes a process by which pre-exposure of a stimulus without consequence retards the learning of subsequent conditioned associations with that stimulus. It is well established that latent inhibition in rats is impaired by increased dopamine function and potentiated by reduced dopamine function. Previous evidence has suggested that these effects are modulated via the meso-accumbens dopamine projections. We have now undertaken three experiments to examine this issue directly, especially in the light of one study in which latent inhibition was reported to be unaffected by direct injection of amphetamine into the accumbens. Latent inhibition was studied using the effect of pre-exposure of a tone stimulus on the subsequent formation of a conditioned emotional response to the tone. 6-Hydroxydopamine-induced lesions of dopamine terminals in the nucleus accumbens resulted in potentiation of latent inhibition. Bilateral local injections of the dopamine antagonist haloperidol into the nucleus accumbens (0.5 microg/side) before conditioning also potentiated latent inhibition. Moreover, such injections were able to reverse the disruptive effect of systemic amphetamine (1mg/kg, i.p.) on latent inhibition. Bilateral local injection of amphetamine (5 microg/side) into the nucleus accumbens before conditioning was able to disrupt latent inhibition, provided that it was preceded by a systemic injection of amphetamine (1mg/kg) 24h earlier.We conclude that the attenuation of latent inhibition by increased dopamine function in the nucleus accumbens is brought about by impulse-dependent release of the neurotransmitter occurring at the time of conditioning. The previously reported failure to disrupt latent inhibition with intra-accumbens amphetamine is probably due to impulse-independent release of dopamine. The implications of these conclusions for theories linking disrupted latent inhibition to the attentional deficits in schizophrenia, and to the dopamine theory of this disorder, are discussed.
Collapse
Affiliation(s)
- M H Joseph
- MRC Behavioural Neurochemistry Group and Department of Psychology, Institute of Psychiatry, Denmark Hill, SE5 8AF, London, UK.
| | | | | | | | | | | |
Collapse
|
18
|
Schauz C, Koch M. Blockade of NMDA receptors in the amygdala prevents latent inhibition of fear-conditioning. Learn Mem 2000; 7:393-9. [PMID: 11112798 PMCID: PMC311350 DOI: 10.1101/lm.33800] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The association between a conditioned stimulus (CS) and an unconditioned stimulus (US) in fear-conditioning depends on N-methyl-D-aspartate (NMDA) receptors in the basolateral amygdala complex (BLA). Latent inhibition (LI) is the retardation in learning due to nonreinforced presentation of the prospective CS before conditioning. Disruption of LI in rats is an animal model of schizophrenia, reflecting the deficits of schizophrenic patients in neglecting irrelevant information. We investigated whether the BLA is involved in LI of fear-potentiated startle. Infusions of the NMDA receptor antagonist D,L-2-amino-5-phosphonopentanoic acid (AP-5; 12.5 nmoles) into the BLA before preexposure of rats to the neutral stimulus prevent LI of fear-conditioning. We also demonstrated by the same method that a complex of thalamic nuclei, comprising the medial part of the medial geniculate nucleus, the posterior intralaminar nucleus, and the suprageniculate nucleus, is involved in fear-conditioning, but not in LI. This suggests that the presentation of an innocuous stimulus during preexposure leads to an NMDA receptor-dependent change of neurotransmission in the BLA, but not in the thalamus. Our data show that the BLA but not the thalamus regulates in LI of fear-potentiated startle. Furthermore, it supports the hypothesis that the inability of schizophrenic patients to ignore irrelevant stimuli may be caused by hypofunction of the glutamatergic transmission in the brain and suggests an involvement of the amygdala in the neuropathology of schizophrenia.
Collapse
Affiliation(s)
- C Schauz
- Animal Physiology, University of Tübingen, 72076 Tübingen, Germany
| | | |
Collapse
|
19
|
Moser PC, Hitchcock JM, Lister S, Moran PM. The pharmacology of latent inhibition as an animal model of schizophrenia. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:275-307. [PMID: 11011070 DOI: 10.1016/s0165-0173(00)00026-6] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nature of the primary symptoms of schizophrenia and our lack of knowledge of its underlying cause both contribute to the difficulty of generating convincing animal models of schizophrenia. A more recent approach to investigating the biological basis of schizophrenia has been to use information processing models of the disease to link psychotic phenomena to their neural basis. Schizophrenics are impaired in a number of experimental cognitive tasks that support this approach, including sensory gating tasks and models of selective attention such as latent inhibition (LI). LI refers to a process in which noncontingent presentation of a stimulus attenuates its ability to enter into subsequent associations, and it has received much attention because it is widely considered to relate to the cognitive abnormalities that characterise acute schizophrenia. Several claims have been made for LI having face and construct validity for schizophrenia. In this review of the pharmacological studies carried out with LI we examine its claim to predictive validity and the role of methodological considerations in drug effects. The data reviewed demonstrate that facilitation of low levels of LI is strongly related to demonstrated antipsychotic activity in man and all major antipsychotic drugs, both typical and atypical, have been shown to potentiate LI using a variety of protocols. Very few compounds without antipsychotic activity are active in this model. In contrast, disruption of LI occurs with a wide range of drugs and the relationship with psychotomimetic potential is less clear. Although reversal of disrupted LI has also been used as a model for antipsychotic acticity, mostly using amphetamine-induced disruption, insufficient studies have been carried out to evaluate its claim to predictive validity. However, like facilitation, it is sensitive to both typical and atypical antipsychotic agents. The data we have reviewed here demonstrate that facilitation of LI and, perhaps to a lesser extent, reversal of disrupted LI fulfil the criteria for predictive validity.
Collapse
Affiliation(s)
- P C Moser
- Sanofi-Synthélabo, 31 Av. P.V. Couturier, 92225 Cédex, Bagneux, France.
| | | | | | | |
Collapse
|
20
|
The Latent Inhibition Model of Schizophrenia. CONTEMPORARY ISSUES IN MODELING PSYCHOPATHOLOGY 2000. [DOI: 10.1007/978-1-4757-4860-4_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Abstract
Organisms exposed to a stimulus which has no significant consequences, show subsequently latent inhibition (LI), namely, retarded conditioning to this stimulus. LI is considered to index the capacity to ignore irrelevant stimuli and its disruption has recently received increasing interest as an animal model of cognitive deficits in schizophrenia. Initial studies indicated that LI is disrupted by systemic or intra-accumbens injections of amphetamine and hippocampal lesions, and potentiated by systemic administration of neuroleptics. On the basis of these findings, the switching model of LI proposed that LI depends on the subicular input to the nucleus accumbens (NAC). Subsequent studies supported and refined this proposition. Lesion studies show that LI is indeed disrupted by severing the subicular input to the NAC, and further implicate the entorhinal/ventral subicular portion of this pathway projecting to the shell subterritory of the NAC. There is a functional dissociation between the shell and core subterritories of the NAC, with lesions of the former but not of the latter disrupting LI. This suggests that the shell is necessary for the expression and the core for the disruption of LI. The involvement of the NAC has been also demonstrated by findings that LI is disrupted by intra-accumbens injection of amphetamine and potentiated by DA depletion or blockade in this structure. Disruption and potentiation of LI by systemic administration of amphetamine and neuroleptics, respectively, have been firmly established, and in addition, have been shown to be sensitive to parametric manipulations of the LI procedure. LI is unaffected by lesions and DA manipulations of medial prefrontal cortex and lesions of basolateral amygdala. The implications of these findings for LI as an animal model of schizophrenia are discussed.
Collapse
Affiliation(s)
- I Weiner
- Department of Psychology, Tel Aviv University, Ramat-Aviv, Israel.
| | | |
Collapse
|
22
|
Oades RD, Roepcke B, Schepker R. A test of conditioned blocking and its development in childhood and adolescence: Relationship to personality and monoamine metabolism. Dev Neuropsychol 1996. [DOI: 10.1080/87565649609540647] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|