1
|
Gao K, Yang Y, Sun X, Wang J, Sun X, Lu T, Wang L, Li M, Yue W, Liu H, Zhang D, Li J. Hippocampal Zkscan4 confers resilience to chronic stress-induced depression-like behaviors. SCIENCE ADVANCES 2025; 11:eadr2291. [PMID: 40408492 PMCID: PMC12101508 DOI: 10.1126/sciadv.adr2291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 04/21/2025] [Indexed: 05/25/2025]
Abstract
Major depression is a prevalent and devastating psychiatric disorder. However, our understanding of the underlying molecular mechanisms is limited. Here, we found reduced expression of zinc finger protein with Krüppel-associated box and SCAN domains 4 (Zkscan4) in the hippocampi of patients with major depressive disorder and stress-susceptible mice. Zkscan4 disruption (Zkscan4-/-) was sufficient to induce depression-like behaviors following subthreshold social stress. Zkscan4 regulated excitatory synaptic transmission mainly through direct interaction with the Htr2a promoter and the recruitment of glucocorticoid receptors for the transcriptional repression of 5-hydroxytryptamine receptor 2a (Htr2a). Reduced excitatory synaptic transmission in the hippocampus and stress susceptibility in Zkscan4-/- mice were restored by pharmacological inhibition, genetic knockdown of Htr2a, or overexpression of the amino-terminal SCAN domain of Zkscan4 (Zkscan41-133) in cornus ammonis region 3. Our findings demonstrate an essential role of Zkscan4 in promoting stress resilience, suggesting a potential antidepressant effect of Zkscan41-133.
Collapse
MESH Headings
- Animals
- Hippocampus/metabolism
- Mice
- Humans
- Stress, Psychological/complications
- Stress, Psychological/metabolism
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Male
- Depression/metabolism
- Depression/etiology
- Behavior, Animal
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Depressive Disorder, Major/metabolism
- Depressive Disorder, Major/genetics
- Mice, Knockout
- Disease Models, Animal
- Promoter Regions, Genetic
- Receptors, Glucocorticoid/metabolism
- Synaptic Transmission
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Kai Gao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Yang Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Xiaoxuan Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Jinxin Wang
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiaqin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Tianlan Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Lifang Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Ming Li
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | | | - Dai Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Jun Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
| |
Collapse
|
2
|
Pulido-Saavedra A, Borelli A, Kitaneh R, Alrafayia M, Jalilian-Khave L, Funaro MC, Potenza MN, Angarita GA. The potential of non-psychedelic 5-HT2A agents in the treatment of substance use disorders: a narrative review of the clinical literature. Expert Opin Pharmacother 2025; 26:133-146. [PMID: 39708346 PMCID: PMC11786980 DOI: 10.1080/14656566.2024.2446623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION Substance use disorders (SUDs) are a public health issue, with only some having FDA-approved indicated treatments and these having high attrition. Consequently, there has been interest in novel interventions (e.g. psychedelics that target 5-HT2A receptors) with some promising results. In this narrative review, we aim to focus on the role of the 5-HT2A receptors on the effectiveness of the treatment of SUDs. AREAS COVERED We evaluated the clinical evidence of the treatment of SUDs with non-psychedelic medications with a primary affinity for the 5-HT2A receptor. EXPERT OPINION The reviewed literature showed some positive effects on craving and abstinence but, overall, results were mixed. Comparison of this work with work on psychedelic agents suggests that mixed results are not unique to non-psychedelic agents. Both psychedelic and non-psychedelic drugs with 5-HT2A affinity are not exclusively selective for 5-HT2A receptors. The observation that most agents reviewed are 5-HT2A receptor antagonists instead of agonists and that psychedelics (typically 5-HT2A receptor agonists) may have more homogenous positive results gives more support to 5-HT2A receptor agonists as a promising group for treating SUDs. Mechanisms may target a common denominator across SUDs (e.g. chronic hypodopaminergic states).
Collapse
Affiliation(s)
- Alejandra Pulido-Saavedra
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 0651, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, United States
| | - Anna Borelli
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 0651, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, United States
| | - Razi Kitaneh
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 0651, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, United States
| | | | - Laya Jalilian-Khave
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 0651, United States
| | - Melissa C. Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, 333 Cedar Street, New Haven, CT 06510, United States
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 0651, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, United States
- Connecticut Council on Problem Gambling, Wethersfield, CT, United States
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, United States
| | - Gustavo A. Angarita
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 0651, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, United States
| |
Collapse
|
3
|
Glatfelter GC, Clark AA, Cavalco NG, Landavazo A, Partilla JS, Naeem M, Golen JA, Chadeayne AR, Manke DR, Blough BE, McCorvy JD, Baumann MH. Serotonin 1A Receptors Modulate Serotonin 2A Receptor-Mediated Behavioral Effects of 5-Methoxy- N, N-dimethyltryptamine Analogs in Mice. ACS Chem Neurosci 2024; 15:4458-4477. [PMID: 39636099 DOI: 10.1021/acschemneuro.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
5-methoxy-N,N-dimethyltrytpamine (5-MeO-DMT) analogs are used as recreational drugs, but they are also being developed as potential medicines, warranting further investigation into their pharmacology. Here, we investigated the neuropharmacology of 5-MeO-DMT and several of its N-alkyl, N-allyl, and 2-methyl analogs, with three major aims: 1) to determine in vitro receptor profiles for the compounds, 2) to characterize in vitro functional activities at serotonin (5-HT) 2A receptors (5-HT2A) and 1A receptors (5-HT1A), and 3) to examine the influence of 5-HT1A on 5-HT2A-mediated psychedelic-like effects in the mouse head twitch response (HTR) model. In vitro receptor binding and functional assays showed that all 5-MeO-DMT analogs bind with high affinity and activate multiple targets (e.g., 5-HT receptor subtypes, alpha adrenergic receptors), including potent effects at 5-HT2A and 5-HT1A. In C57Bl/6J mice, subcutaneous injection of the analogs induced HTRs with varying potencies (ED50 range = 0.2-1.8 mg/kg) and maximal effects (Emax range = 20-60 HTRs/30 min), while inducing hypothermia and hypolocomotion at higher doses (ED50 range = 3.2-20.6 mg/kg). 5-HT2A antagonist pretreatment blocked drug-induced HTRs, whereas 5-HT1A antagonist pretreatment enhanced HTRs. In general, N,N-dialkyl and N-isopropyl derivatives displayed HTR activity, while the N-methyl, N-ethyl, and 2-methyl analogs did not. Importantly, blockade of 5-HT1A unmasked latent HTR activity for the N-ethyl analog and markedly increased maximal responses for other HTR-active compounds (40-90 HTRs/30 min), supporting the notion that 5-HT1A agonist activity can dampen 5-HT2A-mediated HTRs. Suppression of 5-HT2A-mediated HTRs by 5-HT1A only occurred after high 5-MeO-DMT doses, suggesting involvement of other receptors in modulating psychedelic-like effects. Overall, our findings provide key information about the receptor target profiles for 5-MeO-DMT analogs, the structure-activity relationships for inducing psychedelic-like effects, and the critical role of 5-HT1A agonism in modulating acute psychoactive effects of 5-HT2A agonists.
Collapse
MESH Headings
- Animals
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Mice
- Male
- Mice, Inbred C57BL
- Methoxydimethyltryptamines/pharmacology
- Behavior, Animal/drug effects
- Hallucinogens/pharmacology
- Head Movements/drug effects
- Humans
Collapse
Affiliation(s)
- Grant C Glatfelter
- Designer Drug Research Unit, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Allison A Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Natalie G Cavalco
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Antonio Landavazo
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - John S Partilla
- Designer Drug Research Unit, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Marilyn Naeem
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - James A Golen
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Andrew R Chadeayne
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
- CaaMTech, Inc., Issaquah, Washington 98027, United States
| | - David R Manke
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Bruce E Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Michael H Baumann
- Designer Drug Research Unit, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| |
Collapse
|
4
|
Gill H, Chen-Li DCJ, Haikazian S, Seyedin S, McIntyre RS, Mansur RB, DiVincenzo JD, Phan L, Rosenblat JD. Adjunctive cariprazine for major depressive disorder: a systematic review and meta-analysis. CNS Spectr 2024; 29:233-242. [PMID: 38555956 DOI: 10.1017/s1092852924000178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Converging evidence has suggested that treatment augmentation with a second-generation atypical antipsychotic (SGA) may improve treatment outcomes in major depressive disorder (MDD) patients after an incomplete response to a first-line antidepressant. Cariprazine is a recently approved SGA for MDD augmentation. Herein, we evaluate both continuous (ie, change in depressive symptom severity scores over time) and categorical (ie, remission and response rates) outcomes. Following a full-text review, four randomized controlled trials (RCTs) were included in our meta-analysis, while five studies were included for a qualitative review. Risk ratios (RRs) were calculated for all included randomized controlled studies to determine the relative response and remission rates of cariprazine compared to placebo augmentation. The RR for all-cause dropout was also determined as a proxy for overall acceptability. Two studies found a statistically significant treatment response using cariprazine augmentation. One study observed depressive symptom remission for cariprazine compared to placebo. Our random-effects model revealed moderate antidepressant effects of cariprazine, with a standardized mean difference (SMD) in Montgomery-Åsberg Depression Rating Scale (MADRS) scores of -1.79 (95% CI): -2.89, -0.69). Our pooled response RR and remission RR were calculated as 1.21 (95% CI: 1.05, 1.39, P=0.008) and 0.99 (95% CI: 0.84, 1.17, P=0.91), respectively. The RR for response was statistically significant (P<0.05). However, the RR for remission was not statistically significant. The findings from our meta-analysis include a variable magnitude of effects. Evidence suggests cariprazine may be an effective treatment for MDD; however, further results are needed to clarify this relation.
Collapse
Affiliation(s)
- Hartej Gill
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - David C J Chen-Li
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sipan Haikazian
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sam Seyedin
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Canadian Rapid Treatment Center of Excellence, Mississauga, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Joshua D DiVincenzo
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Lee Phan
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Canadian Rapid Treatment Center of Excellence, Mississauga, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Farias CP, Leite AKO, Schmidt BE, de Carvalho Myskiw J, Wyse ATS. The 5-HT2A, 5-HT5A, and 5-HT6 serotonergic receptors in the medial prefrontal cortex behave differently in extinction learning: Does social support play a role? Behav Brain Res 2024; 463:114922. [PMID: 38408524 DOI: 10.1016/j.bbr.2024.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Studies on the social modulation of fear have revealed that in social species, individuals in a distressed state show better recovery from aversive experiences when accompanied - referred to as social buffering. However, the underlying mechanisms remain unknown, hindering the understanding of such an approach. Our previous data showed that the presence of a conspecific during the extinction task inhibited the retrieval of fear memory without affecting the extinction memory in the retention test. Here, we investigate the role of serotonergic receptors (5-HTRs), specifically 5-HT2A, 5-HT5A, and 5-HT6 in the medial prefrontal cortex (mPFC), In the retention of extinction after the extinction task, in the absence or presence of social support. Extinction training was conducted on 60-day-old male Wistar rats either alone or with a conspecific (a familiar cagemate, non-fearful). The antagonists for these receptors were administered directly into the mPFC immediately after the extinction training. The results indicate that blocking 5-HT5A (SB-699551-10 μg/side) and 5-HT6 (SB-271046A - 10 μg/side) receptors in the mPFC impairs the consolidation of CFC in the social support group. Interestingly, blocking 5-HT2A receptors (R65777 - 4 μg/side) in the mPFC led to impaired CFC specifically in the group undergoing extinction training alone. These findings contribute to a better understanding of brain mechanisms and neuromodulation associated with social support during an extinction protocol. They are consistent with previously published research, suggesting that the extinction of contextual fear conditioning with social support involves distinct neuromodulatory processes compared to when extinction training is conducted alone.
Collapse
Affiliation(s)
- Clarissa Penha Farias
- Graduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse´s Lab), Brazil
| | - Ana Karla Oliveira Leite
- Graduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse´s Lab), Brazil
| | - Bianca Estefani Schmidt
- Graduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse´s Lab), Brazil
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil
| | - Angela T S Wyse
- Graduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse´s Lab), Brazil; Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Hakami Zanjani AA, Nguyen TQT, Jacobsen L, Khandelia H. The molecular basis of the antidepressant action of the magic mushroom extract, psilocin. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140914. [PMID: 37019325 DOI: 10.1016/j.bbapap.2023.140914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Magic mushrooms, and their extract psilocybin, are well-known for their psychedelic properties and recreational use. Psilocin, the bio-active form of psilocybin, can potentially treat various psychiatric diseases. Psilocin putatively exerts its psychedelic effect as an agonist to the serotonin 2A receptor (5-HT2AR), which is also the receptor for the neurological hormone serotonin. The two key chemical differences between the two molecules are first, that the primary amine in serotonin is replaced with a tertiary amine in psilocin, and second, the hydroxyl group is substituted differently on the aromatic ring. Here, we find that psilocin can bind to 5-HT2AR with an affinity higher than serotonin, and provide the molecular logic behind the higher binding affinity of psilocin using extensive molecular dynamics simulations and free energy calculations. The binding free energy of psilocin is dependent upon the protonation states of the ligands, as well as that of the key residue in the binding site: Aspartate 155. We find that the tertiary amine of psilocin, and not the altered substitution of the hydroxyl group in the ring is responsible for the increased affinity of psilocin. We propose design rules for effective antidepressants based on molecular insights from our simulations.
Collapse
Affiliation(s)
- Ali Asghar Hakami Zanjani
- PHYLIFE, Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark.
| | - Teresa Quynh Tram Nguyen
- PHYLIFE, Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - Luise Jacobsen
- PHYLIFE, Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - Himanshu Khandelia
- PHYLIFE, Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark.
| |
Collapse
|
7
|
Khashchenko EP, Uvarova EV, Chuprynin VD, Pustynnikova MY, Fatkhudinov TK, Elchaninov AV, Gardanova ZR, Ivanets TY, Vysokikh MY, Sukhikh GT. Pelvic Pain, Mental Health and Quality of Life in Adolescents with Endometriosis after Surgery and Dienogest Treatment. J Clin Med 2023; 12:2400. [PMID: 36983400 PMCID: PMC10052887 DOI: 10.3390/jcm12062400] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Diagnostic and treatment delays have caused significant impacts on the physical and emotional well-being of adolescents with endometriosis, though such research is limited. This study aimed to assess the effects of one-year dienogest therapy on the clinical picture, pain patterns, psycho-emotional status, and quality-of-life indicators in adolescents with endometriosis after surgical treatment. METHODS The study enrolled 32 girls aged 13-17 with peritoneal endometriosis to analyze one-year dynamics of the Visual Analog Scale (VAS), McGill Pain Questionnaire, Beck Depression Scale (BDI), Hospital Anxiety and Depression Scale (HADS), Spielberger State-Trait Anxiety Inventory (STAI) and SF-36 quality-of-life survey scores along with clinical and laboratory indicators before surgery and after one-year dienogest therapy. RESULTS The therapy provided a significant alleviation of endometriosis-associated clinical symptoms, including dysmenorrhea, pelvic pain, gastrointestinal/dysuria symptoms, decreased everyday activity (<0.001), a decrease in anxiety/depression scores (BDI, HADS, STAI), and quality-of-life improvement (<0.001). These effects were accompanied by beneficial dynamics in hormone and inflammatory markers (prolactin, cortisol, testosterone, estradiol, CA-125, neutrophil/lymphocyte ratio; <0.005) within reference ranges. A low body mass index and high C-reactive protein levels were associated with higher VAS scores; a high estradiol level was a factor for anxiety/depression aggravation (<0.05). CONCLUSIONS Dienogest, after surgical treatment, significantly improved quality of life and reduced pain symptoms while showing good tolerability and compliance, and reasoning with timely hormonal therapy in adolescents with endometriosis.
Collapse
Affiliation(s)
- Elena P. Khashchenko
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
| | - Elena V. Uvarova
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
- Department for Obstetrics, Gynecology, Perinatology and Reproduction, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, Bld. 2, 119991 Moscow, Russia
| | - Vladimir D. Chuprynin
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
| | - Margarita Yu. Pustynnikova
- Faculty of Fundamental Medicine, Moscow State University Named after M.V. Lomonosov, 119991 Moscow, Russia
| | - Timur Kh. Fatkhudinov
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, 117997 Moscow, Russia
| | - Andrey V. Elchaninov
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, 117997 Moscow, Russia
| | - Zhanna R. Gardanova
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
| | - Tatyana Yu. Ivanets
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
| | - Mikhail Yu. Vysokikh
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
- A.N. Belozersky Research Institute of Physico-Chemical Biology MSU, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia
| | - Gennady T. Sukhikh
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
- Department for Obstetrics, Gynecology, Perinatology and Reproduction, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, Bld. 2, 119991 Moscow, Russia
| |
Collapse
|
8
|
Glatfelter GC, Pottie E, Partilla JS, Sherwood AM, Kaylo K, Pham DNK, Naeem M, Sammeta VR, DeBoer S, Golen JA, Hulley EB, Stove CP, Chadeayne AR, Manke DR, Baumann MH. Structure-Activity Relationships for Psilocybin, Baeocystin, Aeruginascin, and Related Analogues to Produce Pharmacological Effects in Mice. ACS Pharmacol Transl Sci 2022; 5:1181-1196. [PMID: 36407948 PMCID: PMC9667540 DOI: 10.1021/acsptsci.2c00177] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/06/2022]
Abstract
4-Phosphoryloxy-N,N-dimethyltryptamine (psilocybin) is a naturally occurring tertiary amine found in many mushroom species. Psilocybin is a prodrug for 4-hydroxy-N,N-dimethyltryptamine (psilocin), which induces psychedelic effects via agonist activity at the serotonin (5-HT) 2A receptor (5-HT2A). Several other 4-position ring-substituted tryptamines are present in psilocybin-containing mushrooms, including the secondary amine 4-phosphoryloxy-N-methyltryptamine (baeocystin) and the quaternary ammonium 4-phosphoryloxy-N,N,N-trimethyltryptamine (aeruginascin), but these compounds are not well studied. Here, we investigated the structure-activity relationships for psilocybin, baeocystin, and aeruginascin, as compared to their 4-acetoxy and 4-hydroxy analogues, using in vitro and in vivo methods. Broad receptor screening using radioligand binding assays in transfected cells revealed that secondary and tertiary tryptamines with either 4-acetoxy or 4-hydroxy substitutions display nanomolar affinity for most human 5-HT receptor subtypes tested, including the 5-HT2A and the serotonin 1A receptor (5-HT1A). The same compounds displayed affinity for 5-HT2A and 5-HT1A in mouse brain tissue in vitro and exhibited agonist efficacy in assays examining 5-HT2A-mediated calcium mobilization and β-arrestin 2 recruitment. In mouse experiments, only the tertiary amines psilocin, psilocybin, and 4-acetoxy-N,N-dimethyltryptamine (psilacetin) induced head twitch responses (ED50 0.11-0.29 mg/kg) indicative of psychedelic-like activity. Head twitches were blocked by 5-HT2A antagonist pretreatment, supporting 5-HT2A involvement. Both secondary and tertiary amines decreased body temperature and locomotor activity at higher doses, the effects of which were blocked by 5-HT1A antagonist pretreatment. Across all assays, the pharmacological effects of 4-acetoxy and 4-hydroxy compounds were similar, and these compounds were more potent than their 4-phosphoryloxy counterparts. Importantly, psilacetin appears to be a prodrug for psilocin that displays substantial serotonin receptor activities of its own.
Collapse
Affiliation(s)
- Grant C. Glatfelter
- Designer
Drug Research Unit, National Institute on
Drug Abuse Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Eline Pottie
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, 9000 Ghent, Belgium
| | - John S. Partilla
- Designer
Drug Research Unit, National Institute on
Drug Abuse Intramural Research Program, Baltimore, Maryland 21224, United States
| | | | - Kristi Kaylo
- Usona
Institute, Madison, Wisconsin 53711, United States
| | - Duyen N. K. Pham
- Department
of Chemistry & Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Marilyn Naeem
- Department
of Chemistry & Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Vamshikrishna Reddy Sammeta
- Department
of Chemistry & Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Stacie DeBoer
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - James A. Golen
- Department
of Chemistry & Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Elliott B. Hulley
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, 9000 Ghent, Belgium
| | | | - David R. Manke
- Department
of Chemistry & Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Michael H. Baumann
- Designer
Drug Research Unit, National Institute on
Drug Abuse Intramural Research Program, Baltimore, Maryland 21224, United States
| |
Collapse
|
9
|
Selective Serotonin Reuptake Inhibitor Promotes Bone-Tendon Interface Healing in a Rotator Cuff Tear Rat Model. Tissue Eng Regen Med 2022; 19:853-860. [PMID: 35438456 PMCID: PMC9294099 DOI: 10.1007/s13770-022-00444-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Selective serotonin reuptake inhibitor (SSRI) is believed to accelerate wound healing, and thus expected to have a positive effect on rotator cuff repair. We hypothesized that SSRI has a positive effect on the healing of the bone-tendon interface (BTI), and improved rotator cuff tear healing would be confirmed by mechanical strength measurements and histological assessment of the restored tendon. METHODS The study used 40 adult male Sprague-Dawley wild-type rats. The animals were divided into two groups: group-SSRI, the supraspinatus repair with SSRI injection group, and group-C, conventional supraspinatus repair only without SSRI. Biomechanical and histological analyses were performed 8 weeks after index rotator cuff surgery. RESULTS The ultimate load (N) was significantly higher in group-SSRI than in group-C (54.8 ± 56.9 Vs 25.1 ± 11.1, p = .031). In the histological evaluation, the Bonar score confirmed significant differences in collagen fiber density (group-C: 0.6 ± 0.5, group-SSRI: 1.1 ± 0.6, p = .024), vascularity (group-C: 0.1 ± 0.2, group-SSRI: 0.3 ± 0.4, p = .024) and cellularity (group-C: 1.7 ± 0.4, group-SSRI: 2.0 ± 0.0, p = .023) between the groups. Based on the total score, group-SSRI was significantly better compared with group-C (6.3 ± 2.7 Vs 4.3 ± 1.9, p = .019). CONCLUSION Our study demonstrated that SSRI could facilitate improved biomechanical and histological outcomes 8 weeks after rotator cuff repair in a rat model. Consequently, SSRI may improve healing after rotator cuff repair.
Collapse
|
10
|
Husain MI, Ledwos N, Fellows E, Baer J, Rosenblat JD, Blumberger DM, Mulsant BH, Castle DJ. Serotonergic psychedelics for depression: What do we know about neurobiological mechanisms of action? Front Psychiatry 2022; 13:1076459. [PMID: 36844032 PMCID: PMC9950579 DOI: 10.3389/fpsyt.2022.1076459] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/19/2022] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Current treatment options for major depressive disorder (MDD) have limited efficacy and are associated with adverse effects. Recent studies investigating the antidepressant effect of serotonergic psychedelics-also known as classic psychedelics-have promising preliminary results with large effect sizes. In this context, we conducted a review of the putative neurobiological underpinnings of the mechanism of antidepressant action of these drugs. METHODS A narrative review was conducted using PubMed to identify published articles evaluating the antidepressant mechanism of action of serotonergic psychedelics. RESULTS Serotonergic psychedelics have serotonin (5HT)2A agonist or partial agonist effects. Their rapid antidepressant effects may be mediated-in part-by their potent 5HT2A agonism, leading to rapid receptor downregulation. In addition, these psychedelics impact brain derived neurotrophic factor and immunomodulatory responses, both of which may play a role in their antidepressant effect. Several neuroimaging and neurophysiology studies evaluating mechanistic change from a network perspective can help us to further understand their mechanism of action. Some, but not all, data suggest that psychedelics may exert their effects, in part, by disrupting the activity of the default mode network, which is involved in both introspection and self-referential thinking and is over-active in MDD. CONCLUSION The mechanisms of action underlying the antidepressant effect of serotonergic psychedelics remains an active area of research. Several competing theories are being evaluated and more research is needed to determine which ones are supported by the most robust evidence.
Collapse
Affiliation(s)
- Muhammad Ishrat Husain
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicole Ledwos
- Centre for Complex Interventions, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Elise Fellows
- Centre for Complex Interventions, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jenna Baer
- Centre for Complex Interventions, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Daniel M Blumberger
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Benoit H Mulsant
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - David J Castle
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Centre for Complex Interventions, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
11
|
Alves CDS, Frias HV, Bonamin LV, Correia MSF, Corrêa MG, Bondan EF, de Fátima M Martins M, Coelho CP, Bernardi MM, Suffredini IB. Luffa operculata at a late period of gestation dysregulates melatonin and cytokines interfering with weight of dams and their male offspring. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:113867. [PMID: 33892067 DOI: 10.1016/j.jep.2021.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/20/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The tea made with the fruits of Luffa operculata (L.) Cogn. (Cucurbitaceae; EBN) is popularly used as abortive. AIM OF THE STUDY The present work aimed at accessing how the exposition of female Wistar rats to 1.0 mg/kg of EBN (experimental group, EG), or distilled water (control group, CG), by gavage, at gestational days (GD) 17-21 interfered with the reproductive performance, and with dams' behavior after weaning. MATERIALS AND METHODS At post-natal day 2 (PND2), the number of male and female pups was evaluated, as well as their weight. After weaning (PND21), dams were euthanized, and their liver and kidneys were removed for histological and biochemical analyses, while the blood was used in the evaluation of cytokines IL-1α, IL-1β, IL-6 and TNF-α, corticosterone, adrenocorticotrophic hormone, melatonin, AST, ALT and creatinine levels. RESULTS AND DISCUSSION Dams that were treated with EBN showed an anxiety-like behavior, weight loss at the end of gestation and weight gain at weaning, accompanied with a significant decrease in pro-inflammatory cytokines and in the melatonin level. No significant histological or biochemical alterations have occurred in the liver or kidneys. The number of female pups was significantly higher in the EG. The male pups showed weight gain at PND60. CONCLUSION The presence of cucurbitacins is probably involved in the dysregulations that were found, due to their polycyclic steroid triterpene structure.
Collapse
Affiliation(s)
- Cinthia Dos S Alves
- Programa de Pós-Graduação Em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil
| | - Humberto V Frias
- Programa de Pós-Graduação Em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil
| | - Leoni V Bonamin
- Programa de Pós-Graduação Em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil
| | - Michelle S F Correia
- Programa de Pós-Graduação Em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil
| | - Monica G Corrêa
- Programa de Pós-Graduação Em Odontologia, Universidade Paulista - UNIP, Brazil
| | - Eduardo F Bondan
- Programa de Pós-Graduação Em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil
| | | | | | - Maria M Bernardi
- Programa de Pós-Graduação Em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil; Programa de Pós-Graduação Em Odontologia, Universidade Paulista - UNIP, Brazil
| | - Ivana B Suffredini
- Programa de Pós-Graduação Em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil; Programa de Pós-Graduação Em Odontologia, Universidade Paulista - UNIP, Brazil; Núcleo de Pesquisas Em Biodiversidade, Laboratório de Extração, Universidade Paulista - UNIP, Brazil.
| |
Collapse
|
12
|
Kim M, Truss M, Pagare PP, Essandoh MA, Zhang Y, Williams DA. Structure activity relationship exploration of 5-hydroxy-2-(3-phenylpropyl)chromones as a unique 5-HT 2B receptor antagonist scaffold. Bioorg Med Chem Lett 2020; 30:127511. [PMID: 32853682 DOI: 10.1016/j.bmcl.2020.127511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
Antagonists for the serotonin receptor 2B (5-HT2B) have clinical applications towards migraine, anxiety, irritable bowl syndrome, and MDMA abuse; however, few selective 5-HT2B antagonists have been identified. Previous studies from these labs identified a natural product, 5-hydroxy-2-(2-phenylethyl)chromone (5-HPEC, 2) as the first non-nitrogenous ligand for the 5-HT2B receptor. Studies on 5-HPEC optimization led to the identification of 5-hydroxy-2-(3-phenylpropyl)chromone (5-HPPC, 3), which showed a tenfold improvement in binding affinity over 2 at 5-HT2B. This study aimed to further improve receptor pharmacology of this unique scaffold. Guided by molecular modeling studies modifications at the C-3' and C-4' positions of 3 were made to probe their effects on ligand binding affinity and efficacy. Among the derivatives synthesized 5-hydroxy-2-(3-(3-cyanophenyl)propyl)chromone (5-HCPC, 3d) showed the most promise with a multifold improvement in binding affinity (pKi = 7.1 ± 0.07) over 3 with retained antagonism.
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Chemistry, Kalamazoo College, Kalamazoo, MI 49006, USA
| | - Myles Truss
- Department of Chemistry, Kalamazoo College, Kalamazoo, MI 49006, USA
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Martha A Essandoh
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Dwight A Williams
- Department of Chemistry, Kalamazoo College, Kalamazoo, MI 49006, USA.
| |
Collapse
|
13
|
Sargin D, Chottekalapanda RU, Perit KE, Yao V, Chu D, Sparks DW, Kalik S, Power SK, Troyanskaya OG, Schmidt EF, Greengard P, Lambe EK. Mapping the physiological and molecular markers of stress and SSRI antidepressant treatment in S100a10 corticostriatal neurons. Mol Psychiatry 2020; 25:1112-1129. [PMID: 31431686 PMCID: PMC7031043 DOI: 10.1038/s41380-019-0473-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/08/2019] [Accepted: 05/17/2019] [Indexed: 12/01/2022]
Abstract
In mood disorders, psychomotor and sensory abnormalities are prevalent, disabling, and intertwined with emotional and cognitive symptoms. Corticostriatal neurons in motor and somatosensory cortex are implicated in these symptoms, yet mechanisms of their vulnerability are unknown. Here, we demonstrate that S100a10 corticostriatal neurons exhibit distinct serotonin responses and have increased excitability, compared with S100a10-negative neurons. We reveal that prolonged social isolation disrupts the specific serotonin response which gets restored by chronic antidepressant treatment. We identify cell-type-specific transcriptional signatures in S100a10 neurons that contribute to serotonin responses and strongly associate with psychomotor and somatosensory function. Our studies provide a strong framework to understand the pathogenesis and create new avenues for the treatment of mood disorders.
Collapse
Affiliation(s)
- Derya Sargin
- 0000 0001 2157 2938grid.17063.33Department of Physiology, University of Toronto, Toronto, ON Canada
| | - Revathy U. Chottekalapanda
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Kristina E. Perit
- 0000 0001 2157 2938grid.17063.33Department of Physiology, University of Toronto, Toronto, ON Canada
| | - Victoria Yao
- 0000 0001 2097 5006grid.16750.35Department of Computer Science, Princeton University, Princeton, NJ 08544 USA ,0000 0001 2097 5006grid.16750.35Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544 USA
| | - Duong Chu
- 0000 0001 2157 2938grid.17063.33Department of Physiology, University of Toronto, Toronto, ON Canada
| | - Daniel W. Sparks
- 0000 0001 2157 2938grid.17063.33Department of Physiology, University of Toronto, Toronto, ON Canada
| | - Salina Kalik
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Saige K. Power
- 0000 0001 2157 2938grid.17063.33Department of Physiology, University of Toronto, Toronto, ON Canada
| | - Olga G. Troyanskaya
- 0000 0001 2097 5006grid.16750.35Department of Computer Science, Princeton University, Princeton, NJ 08544 USA ,0000 0001 2097 5006grid.16750.35Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544 USA ,grid.430264.7Flatiron Institute, Simons Foundation, New York, NY 10010 USA
| | - Eric F. Schmidt
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular Biology, The Rockefeller University, New York, NY 10065 USA
| | - Paul Greengard
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Evelyn K. Lambe
- 0000 0001 2157 2938grid.17063.33Department of Physiology, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of OBGYN, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, University of Toronto, Toronto, ON Canada
| |
Collapse
|
14
|
Abdullina AA, Vasileva EV, Kondrakhin EA, Kovalev GI. The Involvement of the Serotonin, Glutamate, and GABA Receptors in the Manifestation of the Antidepressant-Like Effect of Cycloprolylglycine. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419030024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Psycho-emotional status but not cognition is changed under the combined effect of ionizing radiations at doses related to deep space missions. Behav Brain Res 2019; 362:311-318. [DOI: 10.1016/j.bbr.2019.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/14/2022]
|
16
|
Kuypers KPC. Psychedelic medicine: The biology underlying the persisting psychedelic effects. Med Hypotheses 2019; 125:21-24. [PMID: 30902145 DOI: 10.1016/j.mehy.2019.02.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/02/2019] [Accepted: 02/09/2019] [Indexed: 12/15/2022]
Abstract
Psychedelic substances have regained interest as therapeutic agents in the treatment of stress-related disorders. The effects seem to be of persisting nature even after a single dose. Also in lower than 'regular' recreational doses, so-called micro-doses, without the typical effects on consciousness, users report beneficial effects on cognitive processes and well-being. The exact neurobiological mechanism underlying these persisting effects is not clear. While previous research has mainly focused on the central nervous system including the immune system and the neuroendocrine system, I propose a central role for sleep and the microbiome in the effects of regular and low doses of psychedelics respectively. It will be explained why this is hypothesized and studies to test this idea proposed. It is concluded that while these studies are needed to understand the biology underlying psychedelic medicine, it is also important to approach it in a holistic way, including all the above mentioned biological processes psychedelics are known to affect, and explore the role of other substance-related factors like route of administration and form, and factors like diet and lifestyle which are part of the psychedelic experience.
Collapse
Affiliation(s)
- K P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands.
| |
Collapse
|
17
|
Borroto-Escuela DO, Narváez M, Ambrogini P, Ferraro L, Brito I, Romero-Fernandez W, Andrade-Talavera Y, Flores-Burgess A, Millon C, Gago B, Narvaez JA, Odagaki Y, Palkovits M, Diaz-Cabiale Z, Fuxe K. Receptor⁻Receptor Interactions in Multiple 5-HT1A Heteroreceptor Complexes in Raphe-Hippocampal 5-HT Transmission and Their Relevance for Depression and Its Treatment. Molecules 2018; 23:molecules23061341. [PMID: 29865267 PMCID: PMC6099659 DOI: 10.3390/molecules23061341] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022] Open
Abstract
Due to the binding to a number of proteins to the receptor protomers in receptor heteromers in the brain, the term "heteroreceptor complexes" was introduced. A number of serotonin 5-HT1A heteroreceptor complexes were recently found to be linked to the ascending 5-HT pathways known to have a significant role in depression. The 5-HT1A⁻FGFR1 heteroreceptor complexes were involved in synergistically enhancing neuroplasticity in the hippocampus and in the dorsal raphe 5-HT nerve cells. The 5-HT1A protomer significantly increased FGFR1 protomer signaling in wild-type rats. Disturbances in the 5-HT1A⁻FGFR1 heteroreceptor complexes in the raphe-hippocampal 5-HT system were found in a genetic rat model of depression (Flinders sensitive line (FSL) rats). Deficits in FSL rats were observed in the ability of combined FGFR1 and 5-HT1A agonist cotreatment to produce antidepressant-like effects. It may in part reflect a failure of FGFR1 treatment to uncouple the 5-HT1A postjunctional receptors and autoreceptors from the hippocampal and dorsal raphe GIRK channels, respectively. This may result in maintained inhibition of hippocampal pyramidal nerve cell and dorsal raphe 5-HT nerve cell firing. Also, 5-HT1A⁻5-HT2A isoreceptor complexes were recently demonstrated to exist in the hippocampus and limbic cortex. They may play a role in depression through an ability of 5-HT2A protomer signaling to inhibit the 5-HT1A protomer recognition and signaling. Finally, galanin (1⁻15) was reported to enhance the antidepressant effects of fluoxetine through the putative formation of GalR1⁻GalR2⁻5-HT1A heteroreceptor complexes. Taken together, these novel 5-HT1A receptor complexes offer new targets for treatment of depression.
Collapse
Affiliation(s)
- Dasiel O Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet; Retzius väg 8, 17177 Stockholm, Sweden.
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
- Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Zaya 50, 62100 Yaguajay, Cuba.
| | - Manuel Narváez
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain.
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology (SVEB), University of Ferrara, 44121 Ferrara, Italy.
| | - Ismel Brito
- Department of Neuroscience, Karolinska Institutet; Retzius väg 8, 17177 Stockholm, Sweden.
- Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Zaya 50, 62100 Yaguajay, Cuba.
| | | | - Yuniesky Andrade-Talavera
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neuronal Oscillations Lab, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Antonio Flores-Burgess
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain.
| | - Carmelo Millon
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain.
| | - Belen Gago
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain.
| | - Jose Angel Narvaez
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain.
| | - Yuji Odagaki
- Department of Psychiatry, Saitama Medical University, 3388570 Saitama, Japan.
| | - Miklos Palkovits
- Department of Anatomy, Histology and Embryology. Faculty of Medicine. Semmelweis University, H-1094 Budapest, Hungary.
| | - Zaida Diaz-Cabiale
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain.
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet; Retzius väg 8, 17177 Stockholm, Sweden.
| |
Collapse
|
18
|
Abstract
The present study is focused on a review of the current state of investigating music-evoked emotions experimentally, theoretically and with respect to their therapeutic potentials. After a concise historical overview and a schematic of the hearing mechanisms, experimental studies on music listeners and on music performers are discussed, starting with the presentation of characteristic musical stimuli and the basic features of tomographic imaging of emotional activation in the brain, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), which offer high spatial resolution in the millimeter range. The progress in correlating activation imaging in the brain to the psychological understanding of music-evoked emotion is demonstrated and some prospects for future research are outlined. Research in psychoneuroendocrinology and molecular markers is reviewed in the context of music-evoked emotions and the results indicate that the research in this area should be intensified. An assessment of studies involving measuring techniques with high temporal resolution down to the 10 ms range, as, e.g., electroencephalography (EEG), event-related brain potentials (ERP), magnetoencephalography (MEG), skin conductance response (SCR), finger temperature, and goose bump development (piloerection) can yield information on the dynamics and kinetics of emotion. Genetic investigations reviewed suggest the heredity transmission of a predilection for music. Theoretical approaches to musical emotion are directed to a unified model for experimental neurological evidence and aesthetic judgment. Finally, the reports on musical therapy are briefly outlined. The study concludes with an outlook on emerging technologies and future research fields.
Collapse
Affiliation(s)
- Hans-Eckhardt Schaefer
- Tübingen University, Institute of Musicology, Tübingen, Germany.,Institute of Functional Matter and Quantum Technology, Stuttgart University, Stuttgart, Germany
| |
Collapse
|
19
|
Abstract
Although debate on the concept of fibromyalgia (FM) has been vigorous ever since the classification criteria were first published, FM is now better understood and has become recognized as a disorder. Recently, FM has come to be considered a major health problem, affecting 1% to 5% of the general population. As familial aggregations have been observed among some FM patients, genetic research on FM is logical. In fact, genome-wide association studies and linkage analysis, and studies on candidate genes, have uncovered associations between certain genetic factors and FM. Genetic susceptibility is now considered to influence the etiology of FM. At the same time, novel genetic techniques, such as microRNA analysis, have been used in attempts to improve our understanding of the genetic predisposition to FM. In this article, we review recent advances in, and continuing challenges to, the identification of genes contributing to the development of, and symptom severity in, FM.
Collapse
Affiliation(s)
- Dong-Jin Park
- Department of Rheumatology, Chonnam National University Hospital, Gwangju, Korea
| | - Shin-Seok Lee
- Department of Rheumatology, Chonnam National University Hospital, Gwangju, Korea
- Correspondence to Shin-Seok Lee, M.D. Department of Rheumatology, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea Tel: +82-62-220-6591 Fax: +82-62-225-8578 E-mail:
| |
Collapse
|
20
|
León LA, Castro-Gomes V, Zárate-Guerrero S, Corredor K, Mello Cruz AP, Brandão ML, Cardenas FP, Landeira-Fernandez J. Behavioral Effects of Systemic, Infralimbic and Prelimbic Injections of a Serotonin 5-HT 2A Antagonist in Carioca High- and Low-Conditioned Freezing Rats. Front Behav Neurosci 2017; 11:117. [PMID: 28736518 PMCID: PMC5500641 DOI: 10.3389/fnbeh.2017.00117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/31/2017] [Indexed: 12/29/2022] Open
Abstract
The role of serotonin (5-hydroxytryptamine [5-HT]) and 5-HT2A receptors in anxiety has been extensively studied, mostly without considering individual differences in trait anxiety. Our laboratory developed two lines of animals that are bred for high and low freezing responses to contextual cues that are previously associated with footshock (Carioca High-conditioned Freezing [CHF] and Carioca Low-conditioned Freezing [CLF]). The present study investigated whether ketanserin, a preferential 5-HT2A receptor blocker, exerts distinct anxiety-like profiles in these two lines of animals. In the first experiment, the animals received a systemic injection of ketanserin and were exposed to the elevated plus maze (EPM). In the second experiment, these two lines of animals received microinjections of ketanserin in the infralimbic (IL) and prelimbic (PL) cortices and were exposed to either the EPM or a contextual fear conditioning paradigm. The two rat lines exhibited bidirectional effects on anxiety-like behavior in the EPM and opposite responses to ketanserin. Both systemic and intra-IL cortex injections of ketanserin exerted anxiolytic-like effects in CHF rats but anxiogenic-like effects in CLF rats. Microinjections of ketanserin in the PL cortex also exerted anxiolytic-like effects in CHF rats but had no effect in CLF rats. These results suggest that the behavioral effects of 5-HT2A receptor antagonism might depend on genetic variability associated with baseline reactions to threatening situations and 5-HT2A receptor expression in the IL and PL cortices. Highlights -CHF and CLF rats are two bidirectional lines that are based on contextual fear conditioning.-CHF rats have a more "anxious" phenotype than CLF rats in the EPM.-The 5-HT2A receptor antagonist ketanserin had opposite behavioral effects in CHF and CLF rats.-Systemic and IL injections either decreased (CHF) or increased (CLF) anxiety-like behavior.-PL injections either decreased (CHF) anxiety-like behavior or had no effect (CLF).
Collapse
Affiliation(s)
- Laura A. León
- Laboratory of Neuropsychopharmacology, FFCLRP, São Paulo University, Campus USP, and Behavioral Neuroscience Institute (INeC)Ribeirão Preto, São Paulo, Brazil
- Department of Psychology, Pontifical Catholic University of Rio de JaneiroRio de Janeiro, Brazil
- Programa de Psicología, Universidad Sergio ArboledaBogotá, Colombia
| | - Vitor Castro-Gomes
- Laboratory of Experimental and Computational Neuroscience, Department of Bio-systems Engineering, Federal University of São João del ReiSão João del Rei, Brazil
| | | | - Karen Corredor
- Laboratorio de Neurociencia y Comportamiento, Universidad de los AndesBogotá, Colombia
| | | | - Marcus L. Brandão
- Laboratory of Neuropsychopharmacology, FFCLRP, São Paulo University, Campus USP, and Behavioral Neuroscience Institute (INeC)Ribeirão Preto, São Paulo, Brazil
| | - Fernando P. Cardenas
- Laboratorio de Neurociencia y Comportamiento, Universidad de los AndesBogotá, Colombia
| | - J. Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
21
|
Taylor O, Audenaert K, Baeken C, Saunders J, Peremans K. Nuclear medicine for the investigation of canine behavioral disorders. J Vet Behav 2016. [DOI: 10.1016/j.jveb.2016.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Howland RH. Antidepressant, Antipsychotic, and Hallucinogen Drugs for the Treatment of Psychiatric Disorders: A Convergence at the Serotonin-2A Receptor. J Psychosoc Nurs Ment Health Serv 2016; 54:21-4. [DOI: 10.3928/02793695-20160616-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Roth BL, Willins DL, Kristiansen K, Kroeze WK. Activation is Hallucinogenic and Antagonism is Therapeutic: Role of 5-HT2A Receptors in Atypical Antipsychotic Drug Actions. Neuroscientist 2016. [DOI: 10.1177/107385849900500414] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review summarizes recent studies with 5-hydroxytryptamine2A (5-HT2A) receptors, which represent the major site of action of hallucinogens and a likely site for atypical antipsychotic drug actions. We present evidence demonstrating that atypical antipsychotic drugs, as a group, have a preferentially high affinity for 5-HT2A receptors, compared with their affinities for other neurotransmitter receptors. The 5-HT2A receptor blockade seen with atypical antipsychotic drugs is probably an essential factor in explaining many of the unique features of atypical antipsychotic drugs. Atypical antipsychotic drugs have high affinities for several other 5-HT receptors (5-HT2C, 5-HT6, and 5-HT7), and the potential role of these novel 5-HT receptors in atypical antipsychotic drug action is also summarized.
Collapse
Affiliation(s)
- Bryan L. Roth
- Departments of Psychiatry, Biochemistry and Neurosciences
Case Western Reserve University Medical School Cleveland, Ohio
| | - David L. Willins
- Department of Biochemistry, Case Western Reserve University
Medical School Cleveland, Ohio
| | - Kurt Kristiansen
- Department of Biochemistry, Case Western Reserve University
Medical School Cleveland, Ohio
| | - Wesley K. Kroeze
- Department of Biochemistry, Case Western Reserve University
Medical School Cleveland, Ohio
| |
Collapse
|
24
|
Abstract
The dorsal cochlear nucleus (DCN) is one of the first stations within the central auditory pathway where the basic computations underlying sound localization are initiated and heightened activity in the DCN may underlie central tinnitus. The neurotransmitter serotonin (5-hydroxytryptamine; 5-HT), is associated with many distinct behavioral or cognitive states, and serotonergic fibers are concentrated in the DCN. However, it remains unclear what is the function of this dense input. Using a combination of in vitro electrophysiology and optogenetics in mouse brain slices, we found that 5-HT directly enhances the excitability of fusiform principal cells via activation of two distinct 5-HT receptor subfamilies, 5-HT2A/2CR (5-HT2A/2C receptor) and 5-HT7R (5-HT7 receptor). This excitatory effect results from an augmentation of hyperpolarization-activated cyclic nucleotide-gated channels (Ih or HCN channels). The serotonergic regulation of excitability is G-protein-dependent and involves cAMP and Src kinase signaling pathways. Moreover, optogenetic activation of serotonergic axon terminals increased excitability of fusiform cells. Our findings reveal that 5-HT exerts a potent influence on fusiform cells by altering their intrinsic properties, which may enhance the sensitivity of the DCN to sensory input.
Collapse
|
25
|
Ueki T, Mizoguchi K, Yamaguchi T, Nishi A, Sekiguchi K, Ikarashi Y, Kase Y. Yokukansan, a traditional Japanese medicine, decreases head-twitch behaviors and serotonin 2A receptors in the prefrontal cortex of isolation-stressed mice. JOURNAL OF ETHNOPHARMACOLOGY 2015; 166:23-30. [PMID: 25732836 DOI: 10.1016/j.jep.2015.02.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 02/18/2015] [Accepted: 02/21/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yokukansan, a traditional Japanese (Kampo) medicine, has recently been used to treat the behavioral and psychological symptoms of dementia (BPSD), including aggressiveness, excitability, and hallucination. The present study was designed to investigate the mechanisms underlying the ameliorative effects of yokukansan on BPSD using animals exhibiting hallucination-like behaviors. For this purpose, we initially examined whether chronic isolation stress increases the frequency of hallucination in response to a psychedelic drug. Using this animal model, we next examined the effects of yokukansan on drug-induced hallucination-like behaviors. Finally, we examined the density and mRNA levels of serotonin 2A (5-HT2A) receptors. MATERIALS AND METHODS Male mice were subjected to isolation stress for six weeks. Yokukansan was incorporated into food pellets, and administered to the mice for six weeks. In some experiments, yokukansan and each of seven constituent herbs were administered orally to the mice for the last two weeks during the six-week period of isolation stress. A 5-HT2A receptor agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI, 2.5mg/kg), was injected into the mice, and head-twitch behaviors were quantified. The binding sites of 5-HT2A receptors on the plasma membrane of the prefrontal cortex (PFC) were assessed by a receptor-binding assay using tritium-labeled ketanserin, and the density and affinity were calculated from a Scatchard plot. The level of mRNAs was measured by PCR analyses. RESULTS Isolation stress enhanced the frequency of the DOI-induced head-twitch response, and yokukansan treatment by feeding significantly reduced this enhancement. Isolation stress significantly increased the 5-HT2A receptor density in the PFC, and yokukansan treatment by feeding as well as administration significantly down-regulated this increase. Isolation stress and yokukansan did not affect the affinity. Among seven constituent herbs, Bupleurum Root, Uncaria Hook, Japanese Angelica Root, and Glycyrrhiza down-regulated the increase, but statistically not significant, in which their efficacies were over 50% relative to yokukansan. Neither isolation stress nor yokukansan affected mRNA levels of 5-HT2A receptors. CONCLUSION Yokukansan attenuated drug-induced hallucination-like behaviors in isolated mice, which is suggested to be mediated by 5-HT2A receptor down-regulation in the PFC. This mechanism may underlie the ameliorative effects of yokukansan on hallucination.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan.
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Takuji Yamaguchi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Akinori Nishi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Kyoji Sekiguchi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Yasushi Ikarashi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Yoshio Kase
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| |
Collapse
|
26
|
Hayat F, Viswanath ANI, Pae AN, Rhim H, Park WK, Choo HYP. Synthesis and biological evaluation of 4-nitroindole derivatives as 5-HT2A receptor antagonists. Bioorg Med Chem 2015; 23:1313-20. [DOI: 10.1016/j.bmc.2015.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/18/2015] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
|
27
|
Montasser ME, Ziv-Gal A, Brown JP, Flaws JA, Merchenthaler I. A potentially functional variant in the serotonin transporter gene is associated with premenopausal and perimenopausal hot flashes. Menopause 2015; 22:108-13. [PMID: 25026114 PMCID: PMC4270913 DOI: 10.1097/gme.0000000000000291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE An increase in the use of selective serotonin reuptake inhibitors (SSRIs) and/or serotonin-norepinephrine reuptake inhibitors (SNRIs) to relieve menopausal hot flashes (HFs) has been observed recently. However, response to them has been heterogeneous. We hypothesized that this heterogeneity might be partially attributed to genetic variations in genes encoding the serotonin and/or norepinephrine transporters (SLC6A4 and SLC6A2). As a first step in testing the role of genetics in response to SSRIs/SNRIs, we examined the association between HFs and genetic variants within these two genes. METHODS We tested 29 haplotype-tagging single nucleotide polymorphisms within SLC6A4 and SLC6A2 for their association with HFs separately for European-American (396 cases and 392 controls) and African-American (125 cases and 81 controls) premenopausal and perimenopausal women. RESULTS We found that the minor allele of SLC6A4_rs11080121 was associated with protection against HFs (odds ratio, 0.75; 95% CI, 0.60-0.94) only in European-American women. Bioinformatics analyses indicated that rs11080121 is fully correlated with rs1042173 in the 3' untranslated region of SLC6A4. The minor allele of rs1042173 seems to disrupt a conserved binding site for hsa-miR-590-3p microRNA. CONCLUSIONS Disruption of a microRNA binding site leads to higher expression of SLC6A4, higher expression of SLC6A4 leads to depletion of serotonin in synaptic clefts, and depletion of serotonin triggers the presynaptic autoreceptor feedback mechanism to produce more serotonin, which is protective against HFs. This is the first study to test the association between HFs in both European-American and African-American premenopausal and perimenopausal women and genetic variants in two neurotransmitter transporter genes, SLC6A2 and SLC6A4. This information can be used in tailoring the pharmaceutical use of SSRIs/SNRIs for HF relief.
Collapse
Affiliation(s)
- May E Montasser
- Department of Medicine, University of Maryland, School of Medicine, Baltimore, MD
| | - Ayelet Ziv-Gal
- Department of Comparative Biosciences, University of Illinois, Urbana, IL
| | - Jessica P Brown
- Department of Epidemiology & Public Health, University of Maryland, School of Medicine, Baltimore, MD
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, IL
| | - Istvan Merchenthaler
- Department of Epidemiology & Public Health, University of Maryland, School of Medicine, Baltimore, MD
- Department of Anatomy & Neurobiology, University of Maryland, School of Medicine, Baltimore, MD
| |
Collapse
|
28
|
Ogden KK, Khatri A, Traynelis SF, Heldt SA. Potentiation of GluN2C/D NMDA receptor subtypes in the amygdala facilitates the retention of fear and extinction learning in mice. Neuropsychopharmacology 2014; 39:625-37. [PMID: 24008353 PMCID: PMC3895240 DOI: 10.1038/npp.2013.241] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/15/2013] [Accepted: 08/29/2013] [Indexed: 12/16/2022]
Abstract
NMDA receptors are glutamate receptor ion channels that contribute to synaptic plasticity and are important for many forms of learning and memory. In the amygdala, NMDA receptors are critical for the acquisition, retention, and extinction of classically conditioned fear responses. Although the GluN2B subunit has been implicated in both the acquisition and extinction of conditioned fear, GluN2C-knockout mice show reduced conditioned fear responses. Moreover, D-cycloserine (DCS), which facilitates fear extinction, selectively enhances the activity of GluN2C-containing NMDA receptors. To further define the contribution of GluN2C receptors to fear learning, we infused the GluN2C/GluN2D-selective potentiator CIQ bilaterally into the basolateral amygdala (3, 10, or 30 μg/side) following either fear conditioning or fear extinction training. CIQ both increased the expression of conditioned fear 24 h later and enhanced the extinction of the previously conditioned fear response. These results support a critical role for GluN2C receptors in the amygdala in the consolidation of learned fear responses and suggest that increased activity of GluN2C receptors may underlie the therapeutic actions of DCS.
Collapse
Affiliation(s)
- Kevin K Ogden
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Alpa Khatri
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University, Atlanta, GA, USA,Department of Pharmacology, 5025 Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta 30322, GA, USA, Tel: +404-727-0357, Fax: +404-727-0365, E-mail:
| | - Scott A Heldt
- Department of Anatomy and Neurobiology,Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA,Neuroscience Institute, University of Tennessee Health Science Center, 855 Monroe Ave, Memphis, Memphis, TN 38163, USA, Tel: 901-448-5965, Fax: 901-448-7193, E-mail:
| |
Collapse
|
29
|
Mychasiuk R, Muhammad A, Ilnytskyy S, Kolb B. Persistent gene expression changes in NAc, mPFC, and OFC associated with previous nicotine or amphetamine exposure. Behav Brain Res 2013; 256:655-61. [PMID: 24021241 DOI: 10.1016/j.bbr.2013.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/01/2013] [Indexed: 01/03/2023]
Abstract
Highly addictive drugs like nicotine and amphetamine not only change an individual's behaviour in the short and long-term, they also induce persistent changes in neuronal excitability and morphology. Although research has started to examine the epigenetic changes that occur immediately after drug exposure, there has been little investigation into the persistent modifications to the epigenome that likely moderate the stable maintenance of the neurological changes. Male Long-Evans rats were administered amphetamine, nicotine, or saline for 14 consecutive days, given a 14 day withdrawal period, and then sacrificed. DNA from the mPFC, OFC, and nucleus accumbens (NAc) was used for global DNA methylation analysis and RNA from the same brain regions was used for gene expression analysis. Following the two-week withdrawal period, exposure to amphetamine or nicotine was associated with a decrease in global DNA methylation in each brain region examined. Previous exposure to nicotine was associated with changes in expression of 16 genes (NAc:6, mPFC:5, OFC:5) whereas exposure to amphetamine was associated with changes in expression of 25 genes (NAc:13, OFC:8, mPFC:4). The persistent epigenetic changes associated with exposure to amphetamine and nicotine were region and drug dependent, and differ from the latent epigenetic changes that occur immediately after drug exposure. The changes in DNA methylation are consistent with the gene expression results and provide further support to the notion that DNA methylation is the key regulatory mechanism for experience dependent changes.
Collapse
Affiliation(s)
- Richelle Mychasiuk
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Canada.
| | | | | | | |
Collapse
|
30
|
Catlow BJ, Song S, Paredes DA, Kirstein CL, Sanchez-Ramos J. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning. Exp Brain Res 2013; 228:481-91. [PMID: 23727882 DOI: 10.1007/s00221-013-3579-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/13/2013] [Indexed: 01/08/2023]
Abstract
Drugs that modulate serotonin (5-HT) synaptic concentrations impact neurogenesis and hippocampal (HPC)-dependent learning. The primary objective is to determine the extent to which psilocybin (PSOP) modulates neurogenesis and thereby affects acquisition and extinction of HPC-dependent trace fear conditioning. PSOP, the 5-HT2A agonist 25I-NBMeO and the 5-HT2A/C antagonist ketanserin were administered via an acute intraperitoneal injection to mice. Trace fear conditioning was measured as the amount of time spent immobile in the presence of the conditioned stimulus (CS, auditory tone), trace (silent interval) and post-trace interval over 10 trials. Extinction was determined by the number of trials required to resume mobility during CS, trace and post-trace when the shock was not delivered. Neurogenesis was determined by unbiased counts of cells in the dentate gyrus of the HPC birth-dated with BrdU co-expressing a neuronal marker. Mice treated with a range of doses of PSOP acquired a robust conditioned fear response. Mice injected with low doses of PSOP extinguished cued fear conditioning significantly more rapidly than high-dose PSOP or saline-treated mice. Injection of PSOP, 25I-NBMeO or ketanserin resulted in significant dose-dependent decreases in number of newborn neurons in hippocampus. At the low doses of PSOP that enhanced extinction, neurogenesis was not decreased, but rather tended toward an increase. Extinction of "fear conditioning" may be mediated by actions of the drugs at sites other than hippocampus such as the amygdala, which is known to mediate the perception of fear. Another caveat is that PSOP is not purely selective for 5-HT2A receptors. PSOP facilitates extinction of the classically conditioned fear response, and this, and similar agents, should be explored as potential treatments for post-traumatic stress disorder and related conditions.
Collapse
|
31
|
5-HT(3) receptor mediates the dose-dependent effects of citalopram on pentylenetetrazole-induced clonic seizure in mice: involvement of nitric oxide. Epilepsy Res 2012; 101:217-27. [PMID: 22578701 DOI: 10.1016/j.eplepsyres.2012.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 03/21/2012] [Accepted: 04/07/2012] [Indexed: 01/05/2023]
Abstract
Citalopram is a selective serotonin reuptake inhibitor (SSRI), widely used in the treatment of depressive disorders. It has been shown that citalopram affects seizure susceptibility. Although the exact mechanism of these effects are not yet fully understood, recent data suggest that 5HT(3) receptors and nitric oxide (NO) might participate in the central effects of SSRIs. In this study in a mouse model of clonic seizure induced by pentylenetetrazole we investigated whether 5-HT(3) receptors are involved in the effects of citalopram on seizure threshold. In our experiments, citalopram at lower doses (0.5 and 1mg/kg, i.p) significantly increased the seizure threshold and at higher doses (≥25mg/kg) showed proconvulsive effects. Moreover, mCPBG (a 5-HT(3) receptor agonist) at low and non-effective doses augmented while non-effective doses of tropisetron prevented the anticonvulsive properties of citalopram. On the other hand, Low doses of nitric oxide synthase inhibitors l-NAME and 7-NI alone or in combination with lower doses of 5-HT(3) receptor agonist enhanced the anticonvulsive property of citalopram, while l-arginine (NO precursor) alone or in combination with tropisetron blocked the protective effect of citalopram. In summary, our findings demonstrate that 5-HT(3) receptor mediates the anticonvulsant properties of low doses of citalopram, whereas it seems that the proconvulsive effect is mostly mediated through the NO pathway and can be totally blocked by NOS inhibitors. This could propose a new approach toward finding the mechanism of citalopram activity, curtailing the adverse effects of citalopram and perhaps managing the convulsions as a vicious consequence of citalopram overdose.
Collapse
|
32
|
Cui J, Jiang L, Xiang H. Ginsenoside Rb3 exerts antidepressant-like effects in several animal models. J Psychopharmacol 2012; 26:697-713. [PMID: 21948936 DOI: 10.1177/0269881111415735] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Total ginsenosides have been shown to have therapeutic actions as antidepressants. We report a major active ingredient of total ginsenosides, the ginsenoside Rb3 (Rb3), which may have antidepressant-like effects. Using the forced swim test, tail suspension test, and learned helplessness procedure, we found that Rb3 had significant anti-immobility effects in mice in the forced swim and tail suspension tests and reduced the number of escape failures in the learned helplessness procedure. In a reserpine-induced syndrome model, Rb3 attenuated hypothermia, palpebral ptosis, and akinesia. In the chronic mild stress model, chronic Rb3 administration reversed the decrease in locomotor activity, novelty-suppressed feeding, and sucrose preference. Furthermore, neurochemical tests were performed to support our hypothesis that biochemical variations (i.e. brain-derived neurotrophic factor and the monoamine neurotransmitters 5-hydroxytryptamine, dopamine, and norepinephrine) are involved in Rb3's antidepressant-like effects. Finally, we found, using whole-cell patch-clamp recordings, that the action potential transmission in neurons within the somatosensory cortex was excited by Rb3 perfusion and blocked with Panax notoginseng total saponins extracted from leaves. This study provides evidence for the mechanism of action of the antidepressant-like effects of Rb3.
Collapse
Affiliation(s)
- Jihong Cui
- Department of Biological Science and Technology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | | | | |
Collapse
|
33
|
An Overview of the CNS-Pharmacodynamic Profiles of Nonselective and Selective GABA Agonists. Adv Pharmacol Sci 2012; 2012:134523. [PMID: 22363345 PMCID: PMC3273701 DOI: 10.1155/2012/134523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 12/02/2011] [Accepted: 12/07/2011] [Indexed: 11/17/2022] Open
Abstract
Various α2,3 subtype selective partial GABA-A agonists are in development to treat anxiety disorders. These compounds are expected to be anxiolytic with fewer undesirable side effects, compared to nonselective GABA-A agonists like benzodiazepines. Several α2,3 subtype selective and nonselective GABA-A agonists have been examined in healthy volunteers, using a battery addressing different brain domains. Data from five placebo-controlled double-blind studies were pooled. Lorazepam 2 mg was the comparator in three studies. Three α2,3-selective GABAA agonists (i.e., TPA023, TPACMP2, SL65.1498), one α1-selective GABAA agonists (zolpidem), and another full agonist (alprazolam) were examined. Pharmacological selectivity was assessed by determination of regression lines for the change from baseline of saccadic-peak-velocity- (ΔSPV-) relative effect, relative to changes in different pharmacodynamic endpoints (ΔPD). SPV was chosen for its sensitivity to the anxiolysis of benzodiazepines. Slopes of the ΔSPV-ΔPD relations were consistently lower with the α2,3 selective GABA-A agonists than with lorazepam, indicating that their PD effects are less than their SPV-effects. The ΔSPV-ΔPD relations of lorazepam were comparable to alprazolam. Zolpidem showed relatively higher impairments in ΔPD relative to ΔSPV, but did not significantly differ from lorazepam. These PD results support the pharmacological selectivity of the α2,3-selective GABA-A agonists, implying an improved therapeutic window.
Collapse
|
34
|
Vermeire S, Audenaert K, De Meester R, Vandermeulen E, Waelbers T, De Spiegeleer B, Eersels J, Dobbeleir A, Peremans K. Neuro-imaging the serotonin 2A receptor as a valid biomarker for canine behavioural disorders. Res Vet Sci 2011; 91:465-72. [DOI: 10.1016/j.rvsc.2010.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 09/07/2010] [Accepted: 09/28/2010] [Indexed: 12/28/2022]
|
35
|
Rosell DR, Thompson JL, Slifstein M, Xu X, Frankle WG, New AS, Goodman M, Weinstein SR, Laruelle M, Dargham AA, Siever LJ. Increased serotonin 2A receptor availability in the orbitofrontal cortex of physically aggressive personality disordered patients. Biol Psychiatry 2010; 67:1154-62. [PMID: 20434136 PMCID: PMC3091264 DOI: 10.1016/j.biopsych.2010.03.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/29/2010] [Accepted: 03/02/2010] [Indexed: 11/15/2022]
Abstract
BACKGROUND Impulsive physical aggression is a common and problematic feature of many personality disorders. The serotonergic system is known to be involved in the pathophysiology of aggression, and multiple lines of evidence have implicated the serotonin 2A receptor (5-HT(2A)R). We sought to examine the role of the 5-HT(2A)R in impulsive aggression specifically in the orbitofrontal cortex (OFC), given that our own studies and an extensive literature indicate that serotonergic disturbances in the OFC are linked to aggression. We have previously hypothesized that increased 5-HT(2A)R function in the OFC is a state phenomenon that promotes impulsive aggression. METHODS Serotonin 2A receptor availability was measured with positron emission tomography and the selective 5-HT(2A)R antagonist radioligand [(11)C]MDL100907 in two groups of impulsively aggressive personality disordered patients-14 with current physical aggression, and 15 without current physical aggression-and 25 healthy control subjects. Clinical ratings of various symptom dimensions were also obtained. RESULTS Orbitofrontal 5-HT(2A)R availability was greater in patients with current physical aggression compared with patients without current physical aggression and healthy control subjects; no differences in OFC 5-HT(2A)R availability were observed between patients without current physical aggression and healthy control subjects. No significant differences in 5-HT(2A)R availability were observed in other brain regions examined. Among both groups of impulsively aggressive personality disordered patients combined, OFC 5-HT(2A)R availability was correlated, specifically, with a state measure of impulsive aggression. CONCLUSIONS These findings are consistent with our previously described model in which impulsive aggression is related to dynamic changes in 5-HT(2A)R function in the OFC.
Collapse
Affiliation(s)
- Daniel R. Rosell
- James J. Peters Veterans Affairs Medical Center, Bronx, NY; Mount Sinai School of Medicine, New York, NY
| | - Judy L. Thompson
- Columbia University Medical Center, New York, NY; The New York State Psychiatric Institute, New York, NY
| | - Mark Slifstein
- Columbia University Medical Center, New York, NY; The New York State Psychiatric Institute, New York, NY
| | - Xiaoyan Xu
- Columbia University Medical Center, New York, NY; The New York State Psychiatric Institute, New York, NY
| | - W. Gordon Frankle
- Western Psychiatric Institute and Clinic, University of Pittsburgh, Pittsburgh, PA
| | - Antonia S. New
- James J. Peters Veterans Affairs Medical Center, Bronx, NY; Mount Sinai School of Medicine, New York, NY
| | - Marianne Goodman
- James J. Peters Veterans Affairs Medical Center, Bronx, NY; Mount Sinai School of Medicine, New York, NY
| | - Shauna R. Weinstein
- James J. Peters Veterans Affairs Medical Center, Bronx, NY; Mount Sinai School of Medicine, New York, NY
| | | | - Anissa Abi Dargham
- Columbia University Medical Center, New York, NY; The New York State Psychiatric Institute, New York, NY
| | - Larry J. Siever
- James J. Peters Veterans Affairs Medical Center, Bronx, NY; Mount Sinai School of Medicine, New York, NY
| |
Collapse
|
36
|
Abstract
BACKGROUND Studies of serotonin reuptake transporter (SERT-P) polymorphism and irritable bowel syndrome (IBS) have shown diverse results among different populations, which might be due to racial and ethnic difference. AIM This study was to investigate the potential association between the SERT-P polymorphism and clinical subtypes of IBS patients in the Indian population. METHOD This prospective case-control study included 151 IBS patients. Ninety-two patients were diarrhea-predominant IBS, 44 were constipation-predominant IBS (C-IBS), 15 were alternating diarrhea and constipation IBS, and 100 were healthy controls. SERT gene polymorphism was studied by polymerase chain reaction. RESULT A genotypic association was observed between SS genotype of SERT-P polymorphism and C-IBS (P<0.05). When the L/S and L/L genotypes were combined into one group, the frequency of the S/S genotype was significantly higher than that of the non-S/S genotype between C-IBS and the control group (P<0.05). There was no significant difference in the SERT-P genotype and allele frequency between c-ibs, alternating diarrhea and constipation IBS, all types of IBS cases, and controls. CONCLUSIONS A significant association was observed between the SS genotype of SERT-P polymorphism and C-IBS in the Indian population.
Collapse
|
37
|
Sumner BEH, D'Eath RB, Farnworth MJ, Robson S, Russell JA, Lawrence AB, Jarvis S. Early weaning results in less active behaviour, accompanied by lower 5-HT1A and higher 5-HT2A receptor mRNA expression in specific brain regions of female pigs. Psychoneuroendocrinology 2008; 33:1077-92. [PMID: 18653286 DOI: 10.1016/j.psyneuen.2008.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 05/22/2008] [Accepted: 05/23/2008] [Indexed: 12/31/2022]
Abstract
In rodents and humans stressful events in early life e.g. maternal deprivation, can increase sensitivity to stress in later life. Humans may become more susceptible to mood disorders, e.g. depression. In livestock species, such as pigs, early weaning is a form of maternal deprivation. We investigated behavioural consequences in 99 female pigs weaned at three different ages (12, 21 and 42 days; d12, d21, d42). Pigs were habituated to an open field arena over 6 days before being given 5-min open-field tests over three subsequent days (days 77-79). Early-weaned pigs (d12) showed behavioural inhibition (reduced vocalisations and lower activity) compared with later-weaned pigs, although in all groups these measures declined over the three tests, so this treatment difference might reflect more rapid habituation to the test in d12 pigs. Long-term effects on mood-related 5-HT receptor subtypes were measured in the brain at 90 days in a random sample of the d12 (n=8) and d42 pigs (n=8), using (3)H-ligand-binding and autoradiography and in situ hybridisation histochemistry. There were no differences between weaning ages in binding of (3)H-8-OH-DPAT (5-HT(1A) receptor agonist) or of (3)H-ketanserin (5-HT(2A) receptor antagonist) to any brain region studied. In d12 pigs, 5-HT(1A) receptor mRNA expression per unit area was 29%, 63%, 52% and 64% lower than in d42 pigs in the parvocellular PVN, amygdala and hippocampal dentate gyrus and pyramidal cell layer, respectively. The ratio of expression per cell to expressing cells per unit area was also lower, by 31%, in the pars horizontalis of the PVN in d12 pigs. Conversely, 5-HT(2A) receptor mRNA was expressed at a 25% and 28% higher density per unit area in the amygdala and pyramidal cell layer of the hippocampus, respectively, in these d12 pigs. In individual pigs, across brain regions, 5-HT(1A) receptor mRNA data were 70-79% correlated with binding data but no correlation was found for 5-HT(2A) data, suggesting different regulatory mechanisms. The behavioural and neurobiological responses to early weaning might represent either dysfunction or adaptation. Further investigation is required.
Collapse
Affiliation(s)
- Barbara E H Sumner
- C/o Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, Royal (Dick) School of Veterinary Studies, Edinburgh EH25 9RG, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Cortical Serotonin Type-2 Receptor Density in Parents of Children with Autism Spectrum Disorders. J Autism Dev Disord 2008; 39:97-104. [DOI: 10.1007/s10803-008-0604-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
|
39
|
Allee SJ, Markham MR, Salazar VL, Stoddard PK. Opposing actions of 5HT1A and 5HT2-like serotonin receptors on modulations of the electric signal waveform in the electric fish Brachyhypopomus pinnicaudatus. Horm Behav 2008; 53:481-8. [PMID: 18206154 PMCID: PMC2561899 DOI: 10.1016/j.yhbeh.2007.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 12/01/2007] [Accepted: 12/04/2007] [Indexed: 12/12/2022]
Abstract
Serotonin (5-HT) is an indirect modulator of the electric organ discharge (EOD) in the weakly electric gymnotiform fish, Brachyhypopomus pinnicaudatus. Injections of 5-HT enhance EOD waveform "masculinity", increasing both waveform amplitude and the duration of the second phase. This study investigated the pharmacological identity of 5-HT receptors that regulate the electric waveform and their effects on EOD amplitude and duration. We present evidence that two sets of serotonin receptors modulate the EOD in opposite directions. We found that the 5HT1AR agonist 8-OH-DPAT diminishes EOD duration and amplitude while the 5HT1AR antagonist WAY100635 increases these parameters. In contrast, the 5HT2R agonist alpha-Me-5-HT increases EOD amplitude but not duration, yet 5-HT-induced increases in EOD duration can be inhibited by blocking 5HT2A/2C-like receptors with ketanserin. These results show that 5-HT exerts bi-directional control of EOD modulations in B. pinnicaudatus via action at receptors similar to mammalian 5HT1A and 5HT2 receptors. The discordant amplitude and duration response suggests separate mechanisms for modulating these waveform parameters.
Collapse
Affiliation(s)
- Susan J Allee
- Department of Biological Sciences, Florida International University, Miami FL 33199, USA.
| | | | | | | |
Collapse
|
40
|
Beraldo FH, Mikoshiba K, Garcia CRS. Human malarial parasite, Plasmodium falciparum, displays capacitative calcium entry: 2-aminoethyl diphenylborinate blocks the signal transduction pathway of melatonin action on the P. falciparum cell cycle. J Pineal Res 2007; 43:360-4. [PMID: 17910604 DOI: 10.1111/j.1600-079x.2007.00486.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The malarial parasite senses the environment to modulate its own cycle. Knowledge of the mechanisms for regulation signaling processes at the invasion, maturation, as well as division of Plasmodium falciparum before reinvasion would represent a major breakthrough and, therefore, might open new avenues for therapy. We have previously reported that melatonin modulates the circadian rhythm of malarial parasites through the activation of phospholipase C (PLC), production of InsP3, and induction of calcium release from intracellular stores. To further investigate the molecular mechanism of melatonin's action, we have used the InsP3 modulator 2-aminoethyl diphenylborinate (2-APB) given in a culture of P. falciparum parasites. Here we show that the melatonin acts on Plasmodium cell cycle through InsP3 signaling as 2-APB blocks melatonin's effect on calcium release. The function of the InsP3 signaling can be regarded as an important event for parasite invasion and maturation process, since addition of the PLC inhibitor, U73122 into Plasmodium-infected red blood cells impairs parasite invasion in vitro. By using 8BrcAMP, we also report here that Plasmodia displays a 'capacitative calcium entry' mechanism for amplification of calcium signals throughout the cytoplasm.
Collapse
Affiliation(s)
- Flávio H Beraldo
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
41
|
Kulikov AV, Zubkov EA. Chronic thyroxine treatment activates the 5-HT2A serotonin receptor in the mouse brain. Neurosci Lett 2007; 416:307-9. [PMID: 17316999 DOI: 10.1016/j.neulet.2007.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 09/26/2006] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
Chronic thyroxine administration (2.0 mg/l, 60 days) significantly increases the 5-HT2A serotonin receptor gene mRNA level in the frontal cortex and augments the frequency of head twitches induced by the receptor agonist DOI (1.0 mg/kg, i.p.) in AKR mice. The result indicates thyroid hormones involvement in 5-HT2A receptor regulation in adult brain.
Collapse
Affiliation(s)
- A V Kulikov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Avenue Lavrentyev, 10, 630090 Novosibirsk, Russia.
| | | |
Collapse
|
42
|
Carrasco GA, Van de Kar LD, Jia C, Xu H, Chen Z, Chadda R, Garcia F, Muma NA, Battaglia G. Single exposure to a serotonin 1A receptor agonist, (+)8-hydroxy-2-(di-n-propylamino)-tetralin, produces a prolonged heterologous desensitization of serotonin 2A receptors in neuroendocrine neurons in vivo. J Pharmacol Exp Ther 2007; 320:1078-86. [PMID: 17159160 DOI: 10.1124/jpet.106.116004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously demonstrated colocalization of serotonin 1A (5-HT(1A)) and serotonin 2A (5-HT(2A)) receptors in oxytocin and corticotropin-releasing factor neurons in the hypothalamic paraventricular nucleus (PVN). Because a functional imbalance between hypothalamic 5-HT(1A) and 5-HT(2A) receptors has been implicated in several neuropsychiatric disorders, in this study we investigated whether acute in vivo activation of 5-HT(1A) receptors in the PVN results in desensitization of 5-HT(2A) receptor signaling. Functional desensitization of hypothalamic 5-HT(2A) receptors was assessed via a reduction in oxytocin and adrenocorticotropin (ACTH) responses to the 5-HT(2A/2C) receptor agonist (-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl [(-)DOI]. We report here that a single systemic injection of the 5-HT(1A) receptor agonist (+)-8-hydroxy-2-(di-n-propylamino)-tetralin [(+)8-OH-DPAT] (200 microg/kg) significantly reduced the 5-HT(2A) receptor-mediated oxytocin responses for at least 72 h. Direct intraparaventricular injection of (+)8-OH-DPAT (0.2 nmol) 24 h before a submaximal dose of (-)DOI (0.35 mg/kg) significantly inhibited the 5-HT(2A) receptor-mediated increases in both oxytocin and ACTH (-39 and -16%, respectively). In addition, the (+)8-OH-DPAT-induced desensitization of the 5-HT(2A) receptor-mediated oxytocin but not the ACTH response was inhibited in rats pretreated with either a systemic (0.1 mg/kg) or intraparaventricular (10 nmol) injection of the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride (WAY100635). This is the first in vivo demonstration of a prolonged heterologous intracellular desensitization of 5-HT(2A) receptors after acute activation of 5-HT(1A) receptors. These findings may provide insight into the long-term heterologous interactions between 5-HT(1A) and 5-HT(2A) receptor signaling that could occur in response to antidepressants, antipsychotics, or drugs of abuse that target these receptor subtypes.
Collapse
Affiliation(s)
- Gonzalo A Carrasco
- Department of Pharmacology, Loyola University of Chicago, Stritch School of Medicine, 2160 S. First Ave., Maywood, IL 60153, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Malinin A, Oshrine B, Serebruany V. Treatment with selective serotonin reuptake inhibitors for enhancing wound healing. Med Hypotheses 2005; 63:103-9. [PMID: 15193359 DOI: 10.1016/j.mehy.2003.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Accepted: 10/24/2003] [Indexed: 10/26/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are well-established medications for the treatment of mood disorders including major depression. These agents are also known to exhibit potent antiplatelet and endothelium protective effects effects. Additionally, SSRIs can exacerbate the development of inflammation, and modulate the interleukin and interferon production. All of the above suggest that SSRIs therapy could be considered as a potential strategy for the wound healing treatment. We summarized some body of the available data on the history of serotonin metabolism, mechanism of action of ketanserin, and hypothesize why SSRIs may be beneficial in the wound repair natural history. Different pathophysiological considerations are also reflected in this review. Finally, we suggest that the topical use of SSRIs may represent a promising avenue for future strategies affecting wound repair in high-risk patients, especially those with diabetes mellitus, venous insufficiency, obesity, and other vascular disorders.
Collapse
Affiliation(s)
- Alex Malinin
- Osler Medical Center, Johns Hopkins University, 7600 Osler Drive, Suite 307, Towson, Baltimore, MD 21204, USA
| | | | | |
Collapse
|
44
|
|
45
|
Zhang Y, Gray TS, D'Souza DN, Carrasco GA, Damjanoska KJ, Dudas B, Garcia F, Zainelli GM, Sullivan Hanley NR, Battaglia G, Muma NA, Van de Kar LD. Desensitization of 5-HT1A receptors by 5-HT2A receptors in neuroendocrine neurons in vivo. J Pharmacol Exp Ther 2004; 310:59-66. [PMID: 15064330 DOI: 10.1124/jpet.103.062224] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An imbalance between serotonin-2A (5-HT2A) and 5-HT1A receptors may underlie several mood disorders. The present studies determined whether 5-HT2A receptors interact with 5-HT1A receptors in the rat hypothalamic paraventricular nucleus (PVN). The sensitivity of the hypothalamic 5-HT1A receptors was measured as oxytocin and adrenocorticotropic hormone (ACTH) responses to the 5-HT1A receptor agonist (+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide [(+)8-OH-DPAT] (40 microg/kg s.c.). The 5-HT(2A/2C) receptor agonist (-)DOI [(-)-1-(2,5-dimethoxy-4-iodophenyl)2-aminopropane HCl] (1 mg/kg s.c.) injected 2 h prior to (+)8-OH-DPAT significantly reduced the oxytocin and ACTH responses to (+)8-OH-DPAT, producing a heterologous desensitization of the 5-HT1A receptors. Microinjection of the 5-HT2A receptor antagonist MDL100,907 [(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol; 0, 10, or 20 nmol, 15 min prior to (-)DOI] into the PVN dose-dependently prevented the desensitization of 5-HT1A receptors induced by the 5-HT2A receptor agonist (-)DOI. Double-label immunocytochemistry revealed a high degree of colocalization of 5-HT1A and 5-HT2A receptors in the oxytocin and corticotropin-releasing factor neurons of the PVN. Thus, activation of 5-HT2A receptors in the PVN may directly induce a heterologous desensitization of 5-HT1A receptors within individual neuroendocrine cells. These findings may provide insight into the long-term adaptation of 5-HT1A receptor signaling after changes in function of 5-HT2A receptors; for example, during pharmacotherapy of mood disorders.
Collapse
Affiliation(s)
- Yahong Zhang
- Center for Serotonin Disorders Research and Department of Pharmacology, Loyola University of Chicago, Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bailer UF, Price JC, Meltzer CC, Mathis CA, Frank GK, Weissfeld L, McConaha CW, Henry SE, Brooks-Achenbach S, Barbarich NC, Kaye WH. Altered 5-HT(2A) receptor binding after recovery from bulimia-type anorexia nervosa: relationships to harm avoidance and drive for thinness. Neuropsychopharmacology 2004; 29:1143-55. [PMID: 15054474 PMCID: PMC4301578 DOI: 10.1038/sj.npp.1300430] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several lines of evidence suggest that a disturbance of serotonin neuronal pathways may contribute to the pathogenesis of anorexia nervosa (AN) and bulimia nervosa (BN). This study applied positron emission tomography (PET) to investigate the brain serotonin 2A (5-HT(2A)) receptor, which could contribute to disturbances of appetite and behavior in AN and BN. To avoid the confounding effects of malnutrition, we studied 10 women recovered from bulimia-type AN (REC AN-BN, > 1 year normal weight, regular menstrual cycles, no binging, or purging) compared with 16 healthy control women (CW) using PET imaging and a specific 5-HT(2A) receptor antagonist, [18F]altanserin. REC AN-BN women had significantly reduced [18F]altanserin binding potential relative to CW in the left subgenual cingulate, the left parietal cortex, and the right occipital cortex. [18F]altanserin binding potential was positively related to harm avoidance and negatively related to novelty seeking in cingulate and temporal regions only in REC AN-BN subjects. In addition, REC AN-BN had negative relationships between [18F]altanserin binding potential and drive for thinness in several cortical regions. In conclusion, this study extends research suggesting that altered 5-HT neuronal system activity persists after recovery from bulimia-type AN, particularly in subgenual cingulate regions. Altered 5-HT neurotransmission after recovery also supports the possibility that this may be a trait-related disturbance that contributes to the pathophysiology of eating disorders. It is possible that subgenual cingulate findings are not specific for AN-BN, but may be related to the high incidence of lifetime major depressive disorder diagnosis in these subjects.
Collapse
Affiliation(s)
- Ursula F Bailer
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
- Department of General Psychiatry, University Hospital of Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Julie C Price
- Department of Radiology, School of Medicine, Presbyterian University Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carolyn C Meltzer
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
- Department of Radiology, School of Medicine, Presbyterian University Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chester A Mathis
- Department of Radiology, School of Medicine, Presbyterian University Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guido K Frank
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
| | - Lisa Weissfeld
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claire W McConaha
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
| | - Shannan E Henry
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
| | - Sarah Brooks-Achenbach
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
| | - Nicole C Barbarich
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
| | - Walter H Kaye
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
- Correspondence: WH Kaye, Western Psychiatric Institute and Clinic, University of Pittsburgh, Iroquois Building, Suite 600, 3811 O’Hara Street, Pittsburgh, PA 15213, USA, Tel: + 1-412-647-9845, Fax: + 1-412-647-9740,
| |
Collapse
|
47
|
Clark MS, Vincow ES, Sexton TJ, Neumaier JF. Increased expression of 5-HT1B receptor in dorsal raphe nucleus decreases fear-potentiated startle in a stress dependent manner. Brain Res 2004; 1007:86-97. [PMID: 15064139 DOI: 10.1016/j.brainres.2004.01.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2004] [Indexed: 11/17/2022]
Abstract
5-HT(1B) autoreceptors regulate serotonin release from terminals of dorsal raphe nucleus (DRN) projections. Due to postsynaptic 5-HT(1B) receptors in DRN terminal fields, it has not previously been possible to manipulate 5-HT(1B) autoreceptor activity without also changing 5-HT(1B) heteroreceptor activity. We have developed a viral gene transfer strategy to express epitope-tagged 5-HT(1B) and green fluorescent protein in vivo, allowing us to increase 5-HT(1B) expression in DRN neurons. We have shown that increased 5-HT(1B) autoreceptor expression reduced anxiety in unstressed animals but increased anxiety following inescapable stress. These findings suggest that effects of increased 5-HT(1B) autoreceptor expression are dependent on stress context. To better understand the mechanisms underlying these observations, we have used fear-potentiated startle (FPS). FPS is especially sensitive to the activity of the amygdala, which shares reciprocal connections with DRN. In the absence of an inescapable stressor, increased 5-HT(1B) autoreceptor expression attenuated FPS response compared with animals injected with a virus expressing only green fluorescent protein. Administration of the 5-HT(1B) antagonist SB224289 (5 mg/kg i.p.) before startle testing blocked the effects of increased 5-HT(1B) autoreceptor expression. Since SB224289 had no effect on FPS in the absence of viral gene transfer, these results suggest that the antagonist reversed the behavioral effects of increased 5-HT(1B) autoreceptor expression through blockade of transgenic receptors. When tested 24 h following water-restraint stress, animals with increased 5-HT(1B) autoreceptors demonstrated restoration of robust FPS response. These results extend our previous studies and suggest explanations for the complex relationship between 5-HT(1B) autoreceptor expression, stress, and anxiety behavior.
Collapse
MESH Headings
- Animals
- Behavior, Animal
- Fear
- Gene Transfer Techniques
- Green Fluorescent Proteins
- Helplessness, Learned
- Luminescent Proteins/metabolism
- Male
- Models, Neurological
- Piperidones/pharmacology
- Raphe Nuclei/metabolism
- Raphe Nuclei/virology
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1B/genetics
- Receptor, Serotonin, 5-HT1B/metabolism
- Reflex, Startle/genetics
- Reflex, Startle/physiology
- Serotonin 5-HT1 Receptor Antagonists
- Spiro Compounds/pharmacology
- Stress, Physiological/metabolism
- Stress, Physiological/virology
Collapse
Affiliation(s)
- Michael S Clark
- Department of Psychiatry and Behavioral Sciences and Harborview Medical Center, University of Washington, Box 359911, 325 Ninth Avenue, Seattle, WA 98195-2499, USA
| | | | | | | |
Collapse
|
48
|
Terayama H, Takimoto T, Fukunishi I, Itoh M, Iwahashi K. The serotonin-2A receptor polymorphism and clinical symptoms in mood disorders, schizophrenia and alcohol dependence in Japan. Acta Neuropsychiatr 2003; 15:129-32. [PMID: 26983355 DOI: 10.1034/j.1601-5215.2003.00024.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the past, there have been many epidemiological and genetic studies of mood disorders, schizophrenia, and alcohol dependence, and in this study, the human serotonin 2A receptor (5-HTR2A) polymorphism was examined in 80 patients with mood disorders, 50 patients with schizophrenia and 41 patients with alcohol dependence. 5-HTR is related to affectivity, regulation, and pharmacologic effects of antidepressant, anti-anxiety and antipsychotic medications. The polymorphism in 5-HTR2A (102T/C, -1438 A/G) was identified by the polymerase chain reaction (PCR), followed by restriction fragment length polymorphism (RFLP). The results suggest that 5-HTR2A (102T/C, -1438G/A) polymorphism might not be associated with susceptibility to schizophrenia or mood disorders, and it might not be a risk factor contributing to alcohol dependency. We found that the 102T/C polymorphism was in linkage disequilibrium with the -1438G/A polymorphism in psychosis (mood disorder, schizophrenia, and alcohol dependence) and in health controls. Further studies are needed to determine whether or not the novel serotonin receptor (5-HTR) polymorphism reflects the pathogenesis of schizophrenia, mood disorders, and alcohol dependence.
Collapse
Affiliation(s)
- Hayato Terayama
- 1Department of Neurophysiology, Graduate School of Azabu University, Sagamihara-shi, Kanagawa
| | - Takahiro Takimoto
- 1Department of Neurophysiology, Graduate School of Azabu University, Sagamihara-shi, Kanagawa
| | - Isao Fukunishi
- 3Department of Liaison Psychiatry and Psychosomatics, Tokyo Institute of Psychiatry, Setagaya-ku, Tokyo
| | - Masahiro Itoh
- 4First Department of Anatomy, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Kazuhiko Iwahashi
- 1Department of Neurophysiology, Graduate School of Azabu University, Sagamihara-shi, Kanagawa
| |
Collapse
|
49
|
Mitchell PJ, Fairhall SJ, Fletcher A, Redfern PH. Effects of single and repeated electroconvulsive shock on the social and agonistic behaviour of resident rats. Neuropharmacology 2003; 44:911-25. [PMID: 12726823 DOI: 10.1016/s0028-3908(03)00075-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of this study was to determine whether electroconvulsive shock (ECS, an established antidepressant treatment), like acute and chronic antidepressant drug treatments, produces similar differential effects on the behavioural profile of resident rats expressed during social encounters with unfamiliar intruder conspecifics (resident-intruder paradigm). Thirty minute pretreatment with a single ECS suppressed both investigation and aggression directed at intruders concomitant with increased flight behaviour and marked sedation. Behavioural disruption subsided over the following 24 h. In contrast, resident rats subjected to bi-daily ECS treatment expressed elevated aggression at days 7 (four shocks) and 14 (eight shocks). Eight days after the last ECS treatment the behaviour of the resident rats had returned to pretreatment values. Additional studies showed that bi-daily ECS treatment nearly abolished 5-HT(2C) receptor-mediated hypolocomotion induced by acute m-chlorophenylpiperazine (mCPP, 2.5 mg/kg sc) challenge 24 h following 2 ECSs, while 4 ECSs only enhanced 5-HT(2A) receptor-mediated head shakes induced by 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI, 2.0 mg/kg sc). These studies demonstrate that repeated ECS treatment increases the aggressive behaviour of resident rats which may be associated with adaptive changes in 5-HT(2C) and 5-HT(2A) receptor-mediated function. It remains to be seen whether adaptive changes in 5-HT(2C) receptor function represent a common mechanism of clinical antidepressant efficacy.
Collapse
Affiliation(s)
- P J Mitchell
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | | | | | | |
Collapse
|
50
|
Frank GK, Kaye WH, Meltzer CC, Price JC, Greer P, McConaha C, Skovira K. Reduced 5-HT2A receptor binding after recovery from anorexia nervosa. Biol Psychiatry 2002; 52:896-906. [PMID: 12399143 DOI: 10.1016/s0006-3223(02)01378-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Several lines of evidence suggest that a disturbance of serotonin neuronal pathways may contribute to the pathogenesis of anorexia nervosa (AN). This study applied positron emission tomography (PET) to investigate the brain serotonin 2A (5HT2A) receptor, which could contribute to disturbances of appetite and behavior in AN. METHODS To avoid the confounding effects of malnutrition, we studied 16 women recovered from AN (REC AN, >1 year normal weight, regular menstrual cycles, no bingeing or purging) compared with 23 healthy control women (CW) using [18F]altanserin, a specific 5-HT2A receptor antagonist on PET imaging. RESULTS REC AN women had significantly reduced [18F]altanserin binding relative to CW in mesial temporal (amygdala and hippocampus), as well as cingulate cortical regions. In a subset of subjects (11 CW and 16 REC AN), statistical parametric mapping (SPM) confirmed reduced mesial temporal cortex 5HT2A receptor binding and, in addition, showed reduced occipital and parietal cortex binding. CONCLUSIONS This study extends research suggesting that altered 5-HT neuronal system activity persists after recovery from AN and may be related to disturbances of mesial temporal lobe function. Altered 5-HT neurotransmission after recovery also supports the possibility that this may be a trait-related disturbance that contributes to the pathophysiology of AN.
Collapse
Affiliation(s)
- Guido K Frank
- Department of Psychiatry, Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|