1
|
Jin YY, Desai VS, Mazzaroth J, Wickstrom E. IGF1R-Targeted Delivery of a Bridged Nucleic Acid Oligonucleotide-Peptide Conjugate for MicroRNA-21 Inhibition in Triple-Negative Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642231. [PMID: 40161818 PMCID: PMC11952343 DOI: 10.1101/2025.03.09.642231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Triple-negative breast cancer (TNBC), defined by the absence of ER, PR, and Her2, impacts over 46,000 U.S. women annually, disproportionately affecting minority ethnic groups and individuals with BRCA1 mutations. Despite advancements such as PARP inhibitors, TNBC remains highly aggressive, with frequent recurrences and a 50% mortality rate within four years, underscoring the urgent need for more effective targeted therapies. MicroRNAs (miRNAs) represent a novel therapeutic approach. In TNBC, overexpressed miR-21 drives tumor progression, immune evasion, treatment resistance, and metastasis. Targeted miR-21 inhibition could curb these effects while minimizing harm to normal cells. We developed a peptide-conjugated miR-21 inhibitor targeting TNBC cells via the overexpressed IGF1 receptor (IGF1R), associated with poor prognosis. Using aminomethyl-bridged nucleic acid (BNA) chemistry, a serum-stable, low-toxicity anti-miR-21 RNA analog was created and tested for its effects on TNBC cell proliferation, apoptosis, tumor suppressor expression, and immune checkpoint regulation. Conjugation to an IGF1 peptide analog improved delivery, demonstrating tumor-specific biodistribution, efficacy, and safety in TNBC-bearing mice. The miR-21 inhibitor-peptide conjugate reduced proliferation, induced apoptosis, elevated tumor suppressors, and suppressed immune checkpoints in TNBC cell lines. In vivo , it targeted tumors, halted growth, and showed no liver or kidney toxicity, supporting its potential as a targeted, low-toxicity TNBC therapy.
Collapse
|
2
|
Stoltzfus AT, Michel SLJ. Cysteine-rich zinc finger proteins and the nuclear factor kappa-B pathway. FRONTIERS IN CHEMICAL BIOLOGY 2024; 3:1503390. [PMID: 40405983 PMCID: PMC12097756 DOI: 10.3389/fchbi.2024.1503390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Inflammation-related disorders, such as autoimmune diseases and cancer, impose a significant global health burden. Zinc finger proteins (ZFs) are ubiquitous metalloproteins which regulate inflammation and many biological signaling pathways related to growth, development, and immune function. Numerous ZFs are involved in the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway, associating them with inflammation-related diseases that feature chronically elevated pro-inflammatory cytokines. This review highlights the predominance of ZFs in NFκB-related signaling and summarizes the breadth of functions that these proteins perform. The cysteine-specific post-translational modification (PTM) of persulfidation is also discussed in the context of these cysteine-rich ZFs, including what is known from the few available reports on the functional implications of ZF persulfidation. Persulfidation, mediated by endogenously produced hydrogen sulfide (H2S), has a recently established role in signaling inflammation. This work will summarize the known connections between ZFs and persulfidation and has the potential to inform on the development of related therapies.
Collapse
Affiliation(s)
- Andrew T. Stoltzfus
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| |
Collapse
|
3
|
Gupta R, Salave S, Rana D, Karunakaran B, Butreddy A, Benival D, Kommineni N. Versatility of Liposomes for Antisense Oligonucleotide Delivery: A Special Focus on Various Therapeutic Areas. Pharmaceutics 2023; 15:1435. [PMID: 37242677 PMCID: PMC10222274 DOI: 10.3390/pharmaceutics15051435] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Nucleic acid therapeutics, specifically antisense oligonucleotides (ASOs), can effectively modulate gene expression and protein function, leading to long-lasting curative effects. The hydrophilic nature and large size of oligonucleotides present translational challenges, which have led to the exploration of various chemical modifications and delivery systems. The present review provides insights into the potential role of liposomes as a drug delivery system for ASOs. The potential benefits of liposomes as an ASO carrier, along with their method of preparation, characterization, routes of administration, and stability aspects, have been thoroughly discussed. A novel perspective in terms of therapeutic applications of liposomal ASO delivery in several diseases such as cancer, respiratory disease, ophthalmic delivery, infectious diseases, gastrointestinal disease, neuronal disorders, hematological malignancies, myotonic dystrophy, and neuronal disorders remains the major highlights of this review.
Collapse
Affiliation(s)
- Raghav Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
4
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Cardiovascular disease is the leading cause of death globally, with the number of deaths rising every year. Much effort has gone into development of new treatment strategies. Many RNA species have important regulatory functions in disease initiation and progression, providing interesting new treatment options. This review focuses on different classes of RNA-based therapeutics and provides examples of current clinical and preclinical studies. Current challenges that prevent clinical translation and possibilities to overcome them will be discussed. RECENT FINDINGS Different RNA-based molecules have been developed, such as antisense oligos, microRNA mimics and small interfering RNAs. Modifications are used to prevent degradation and immune activation and improve affinity. Additionally, in order to improve delivery of the RNA molecules to the target tissues, viral or nonviral vectors can be used. SUMMARY RNA-based therapy has been shown to be a promising new treatment strategy for different disorders. However, several challenges, such as delivery problems and low efficacy remain. Future research will likely focus on effective delivery to target tissues in order to improve efficacy and avoid harmful side-effects.
Collapse
|
6
|
Jasiński M, Miszkiewicz J, Feig M, Trylska J. Thermal Stability of Peptide Nucleic Acid Complexes. J Phys Chem B 2019; 123:8168-8177. [PMID: 31491077 DOI: 10.1021/acs.jpcb.9b05168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Peptide nucleic acid (PNA) is a neutral nucleic acid analogue that base pairs with itself and natural nucleic acids. PNA-nucleic acid complexes are more thermally stable than the corresponding complexes of natural nucleic acids. In addition, PNA is biostable and thus used in many antisense and antigene applications to block functional RNA or DNA via sequence-specific interactions. We have recently developed force field parameters for molecular dynamics (MD) simulations of PNA and PNA-involving duplexes with natural nucleic acids. In this work, we provide the first application of this force field to biologically relevant PNA sequences and their complexes with RNA. We investigated thermal stabilities of short PNA-PNA, PNA-RNA, and RNA-RNA duplexes using UV-monitored thermal denaturation experiments and MD simulations at ambient and elevated temperatures. The simulations show a two-state melting transition and reproduce the thermal stability from melting experiments, with PNA-PNA being the most and RNA-RNA the least stable. The PNA-PNA duplex also displays the highest activation energy for melting. The atomistic details of unfolding of PNA duplexes suggest that all PNA-PNA bases melt concomitantly, whereas the RNA-RNA and PNA-RNA are destabilized from the termini toward the central part of the duplexes.
Collapse
Affiliation(s)
| | | | - Michael Feig
- Department of Biochemistry and Molecular Biology , Michigan State University , 603 Wilson Road , East Lansing , Michigan 48824 , United States
| | | |
Collapse
|
7
|
Aareskjold E, Grindheim AK, Hollås H, Goris M, Lillehaug JR, Vedeler A. Two tales of Annexin A2 knock-down: One of compensatory effects by antisense RNA and another of a highly active hairpin ribozyme. Biochem Pharmacol 2019; 166:253-263. [PMID: 31158338 DOI: 10.1016/j.bcp.2019.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/29/2019] [Indexed: 11/26/2022]
Abstract
Besides altering its own expression during cell transformation, Annexin A2 is upregulated during the progression of many cancer types and also plays key roles during viral infection and multiplication. Consequently, there has been great interest in Annexin A2 as a potential drug target. The successful design of efficient in vivo delivery systems constitutes an obstacle in full exploitation of antisense and RNA-cleaving technologies for the knock-down of specific targets. Efficiency is dependent on the method of delivery and accessibility of the target. Here, hairpin ribozymes and an antisense RNA against rat annexin A2 mRNA were tested for their efficiencies in a T7-driven coupled transcription/translation system. The most efficient ribozyme and antisense RNA were subsequently inserted into a retroviral vector under the control of a tRNA promoter, in a cassette inserted between retroviral Long Terminal Repeats for stable insertion into host DNA. The Phoenix package system based on defective retroviruses was used for virus-mediated gene transfer into PC12 cells. Cells infected with the ribozyme-containing particles died shortly after infection. However, the same ribozyme showed a very high catalytic effect in vitro in cell lysates, explained by its loose hinge helix 2 region. This principle can be transferred to other ribozymes, such as those designed to cleave the guide RNA in the CRISPR/Cas9 technology, as well as to target specific viral RNAs. Interestingly, efficient down-regulation of the expression of Annexin A2 by the antisense RNA resulted in up-regulation of Annexin A7 as a compensatory effect after several cell passages. Indeed, compensatory effects have previously been observed during gene knock-out, but not during knock-down of protein expression. This highlights the problems in interpreting the phenotypic effects of knocking down the expression of a protein. In addition, these data are highly relevant when considering the effects of the CRISPR/Cas9 approach.
Collapse
Affiliation(s)
- Elin Aareskjold
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Ann Kari Grindheim
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Hanne Hollås
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Marianne Goris
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Johan R Lillehaug
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Anni Vedeler
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.
| |
Collapse
|
8
|
Dayeh DM, Kruithoff BC, Nakanishi K. Structural and functional analyses reveal the contributions of the C- and N-lobes of Argonaute protein to selectivity of RNA target cleavage. J Biol Chem 2018. [PMID: 29519815 DOI: 10.1074/jbc.ra117.001051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Some gene transcripts have cellular functions as regulatory noncoding RNAs. For example, ∼23-nucleotide (nt)-long siRNAs are loaded into Argonaute proteins. The resultant ribonucleoprotein assembly, the RNA-induced silencing complex (RISC), cleaves RNAs that are extensively base-paired with the loaded siRNA. To date, base complementarity is recognized as the major determinant of specific target cleavage (or slicing), but little is known about how Argonaute inspects base pairing before cleavage. A hallmark of Argonaute proteins is their bilobal structure, but despite the significance of this structure for curtailing slicing activity against mismatched targets, the molecular mechanism remains elusive. Here, our structural and functional studies of a bilobed yeast Argonaute protein and its isolated catalytic C-terminal lobe (C-lobe) revealed that the C-lobe alone retains almost all properties of bilobed Argonaute: siRNA-duplex loading, passenger cleavage/ejection, and siRNA-dependent RNA cleavage. A 2.1 Å-resolution crystal structure revealed that the catalytic C-lobe mirrors the bilobed Argonaute in terms of guide-RNA recognition and that all requirements for transitioning to the catalytically active conformation reside in the C-lobe. Nevertheless, we found that in the absence of the N-terminal lobe (N-lobe), target RNAs are scanned for complementarity only at positions 5-14 on a 23-nt guide RNA before endonucleolytic cleavage, thereby allowing for some off-target cleavage. Of note, acquisition of an N-lobe expanded the range of the guide RNA strand used for inspecting target complementarity to positions 2-23. These findings offer clues to the evolution of the bilobal structure of catalytically active Argonaute proteins.
Collapse
Affiliation(s)
- Daniel M Dayeh
- From the Center for RNA Biology.,the Department of Chemistry and Biochemistry, and.,the Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210
| | - Bradley C Kruithoff
- From the Center for RNA Biology.,the Department of Chemistry and Biochemistry, and
| | - Kotaro Nakanishi
- From the Center for RNA Biology, .,the Department of Chemistry and Biochemistry, and.,the Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
9
|
Liu C, Zhao Y, Yin S, Liu S, Zhang H, Wang X, Lv Z. The expression and construction of engineering Escherichia coli producing humanized AluY RNAs. Microb Cell Fact 2017; 16:183. [PMID: 29084536 PMCID: PMC5663053 DOI: 10.1186/s12934-017-0800-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Exogenous RNAs can specifically up-regulate or down-regulate gene expression after they enter into cells. Alu RNAs are the main constituent of human transcriptome and participate in gene expression regulation. AluY elements belong to a subfamily of Alus and are the youngest Alus. In this paper, we established the technology method of preparing genetically engineered humanized AluY RNAs (AluY RNAs) from Escherichia coli (E. coli) strains. This technology method also can be used to prepare other genetically engineered humanized RNAs that can be used for cytology experiments. RESULTS Different copies of human AluY elements were inserted into pET-28α plasmid (pET) to construct pET-AluY plasmids that were transformed into BMBL21-DE3 (DE3) E. coli. Isopropylthio-β-D-galactoside (IPTG) induction inhibited transformed bacterial growth after DE3 E. coli were transformed by pET-AluY × 8 plasmid (8 copies of AluYs were inserted into pET); northern blotting was used to detect the amount of AluY RNAs after 2, 4, 6, 8, 10, 12, 14 and 16 h inducing with IPTG. The results showed that the amount of AluY RNAs was the highest at 4 h; 1, 2, 4, 8 or 14 copies of AluY elements were inserted into the pET to construct pET-AluY plasmids that were transformed into DE3 bacteria, the northern blotting results showed that AluY RNAs production amount increased with the increase of AluY copy number; pET-AluY × 8 DE3 bacteria did not produce AluY RNAs without IPTG induction, AluY RNA production kept similar when inducing by 0.1-0.4 mg/ml IPTG induction, however, AluY RNA production slightly decreased if deviating from the above concentration range; pET-AluY × 8 DE3 bacteria were cultured at 34, 37 or 40 °C and the results showed that AluY RNA production was the highest under 37 °C cultivation; pET-AluY × 8 plasmid was transformed into three kinds of BL21 bacteria, including DE3, BMBL21-DE3-pLysS (pLysS) and Trans BL 21 (TransBL), the results showed that AluY RNA production was the highest when using DE3 bacteria. CONCLUSIONS The optimal conditions of producing AluY RNAs were: a kind of host bacteria of DE3, an engineering bacteria concentration of OD600 1.0, an IPTG concentration of 0.2 mg/ml, a culturing temperature of 37 °C and a culturing time of 4 h. Pure AluY RNAs occupied 15.8% of extractive total RNAs and the mean yield of pure AluY RNAs in 100 ml bacteria solution was 0.46 mg.
Collapse
Affiliation(s)
- Chao Liu
- Department of Genetics, Hebei Key Lab of Laboratory Animal, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Yuehua Zhao
- School of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Shuxian Yin
- School of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Shufeng Liu
- Department of Genetics, Hebei Key Lab of Laboratory Animal, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Huanling Zhang
- Department of Genetics, Hebei Key Lab of Laboratory Animal, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Xiufang Wang
- Department of Genetics, Hebei Key Lab of Laboratory Animal, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| | - Zhanjun Lv
- Department of Genetics, Hebei Key Lab of Laboratory Animal, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
10
|
Nguyen TQN, Lim KW, Phan AT. A Dual-Specific Targeting Approach Based on the Simultaneous Recognition of Duplex and Quadruplex Motifs. Sci Rep 2017; 7:11969. [PMID: 28931822 PMCID: PMC5607247 DOI: 10.1038/s41598-017-10583-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/09/2017] [Indexed: 12/31/2022] Open
Abstract
Small-molecule ligands targeting nucleic acids have been explored as potential therapeutic agents. Duplex groove-binding ligands have been shown to recognize DNA in a sequence-specific manner. On the other hand, quadruplex-binding ligands exhibit high selectivity between quadruplex and duplex, but show limited discrimination between different quadruplex structures. Here we propose a dual-specific approach through the simultaneous application of duplex- and quadruplex-binders. We demonstrated that a quadruplex-specific ligand and a duplex-specific ligand can simultaneously interact at two separate binding sites of a quadruplex-duplex hybrid harbouring both quadruplex and duplex structural elements. Such a dual-specific targeting strategy would combine the sequence specificity of duplex-binders and the strong binding affinity of quadruplex-binders, potentially allowing the specific targeting of unique quadruplex structures. Future research can be directed towards the development of conjugated compounds targeting specific genomic quadruplex-duplex sites, for which the linker would be highly context-dependent in terms of length and flexibility, as well as the attachment points onto both ligands.
Collapse
Affiliation(s)
- Thi Quynh Ngoc Nguyen
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kah Wai Lim
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
11
|
Studzińska S. Review on investigations of antisense oligonucleotides with the use of mass spectrometry. Talanta 2017; 176:329-343. [PMID: 28917758 DOI: 10.1016/j.talanta.2017.08.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 11/17/2022]
Abstract
Antisense oligonucleotides have been investigated as potential drugs for years. They inhibit target gene or protein expression. The present review summarizes their modifications, modes of action, and applications of liquid chromatography coupled with mass spectrometry for qualitative and quantitative analysis of these compounds. The most recent reports on a given topic were given prominence, while some early studies were reviewed in order to provide a theoretical background. The present review covers the issues of using ion-exchange chromatography, ion-pair reversed-phase high performance liquid chromatography and hydrophilic interaction chromatography for the separation of antisense oligonucleotides. The application of mass spectrometry was described with regard to the ionization type used for the determination of these potential therapeutics. Moreover, the current approaches and applications of mass spectrometry for quantitative analysis of antisense oligonucleotides and their metabolites as well as their impurities during in vitro and in vivo studies were discussed. Finally, certain conclusions and perspectives on the determination of therapeutic oligonucleotides in various samples were briefly described.
Collapse
Affiliation(s)
- Sylwia Studzińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Str., PL-87-100 Toruń, Poland.
| |
Collapse
|
12
|
Rotavirus Genomic RNA Complex Forms via Specific RNA-RNA Interactions: Disruption of RNA Complex Inhibits Virus Infectivity. Viruses 2017; 9:v9070167. [PMID: 28661470 PMCID: PMC5537659 DOI: 10.3390/v9070167] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 01/18/2023] Open
Abstract
Rotavirus (RV), a member of the Reoviridae family, causes infection in children and infants, with high morbidity and mortality. To be viable, the virus particle must package a set of eleven RNA segments. In order to understand the packaging mechanism, here, we co-synthesized sets of RNA segments in vitro in different combinations and detected by two alternate methods: the electrophoretic mobility shift assay (EMSA) and the RNA-bead pull-down assay. We showed that viral positive-sense RNA segments interact with each other in a specific manner, forming RNA complexes, and that the RNA–RNA interactions followed a sequential order initiated by small RV segments. Further, we demonstrated that RNA complexes were perturbed by targeted specific antisense oligoribonucleotides (ORNs) complementary to short RNA sequences, indicating that the RNA–RNA interactions between different segments were sequence-specific. The same inhibitory ORNs also had the capability to inhibit virus replication. The combined in vitro and in vivo data inferred that RNA–RNA interactions and specific complex formation are essential for sorting different segments, possibly prior to, or during, genome packaging. As genome assembly is a universal requirement in the Reoviridae family, this work offers an approach towards a further understanding of the sorting and packaging mechanisms of RV and related dsRNA (double-stranded RNA) viruses.
Collapse
|
13
|
Patutina OA, Miroshnichenko SK, Lomzov AA, Mironova NL, Zenkova MA. Search for oligonucleotides selectively binding oncogenic miR-21. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s106816201701006x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Wang X, Ma Z, Kong X, Lv Z. Effects of RNAs on chromatin accessibility and gene expression suggest RNA-mediated activation. Int J Biochem Cell Biol 2016; 79:24-32. [PMID: 27497987 DOI: 10.1016/j.biocel.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 01/20/2023]
Abstract
The study of the interaction between RNA and DNA sequences in activating genes has important significance for understanding the mechanisms of RNA-mediated activation. Here, we used in vitro chromatin reconstitution approach to observe whether RNAs increase DNase I digestion, plasmid transfection to observe whether RNAs promote gene expression, and bioinformatics analysis to predict the binding ability of RNAs to centromere DNA (constitutive heterochromatin). Synthetic RNAs (23nt) that were complementary to mouse albumin gene and total liver RNA increased DNase I digestion sensitivity of mouse albumin gene, suggesting that RNAs can increase chromatin accessibility. Transcribed sense-antisense tandem Alu elements activated an enhanced green fluorescent protein reporter gene after stable transfection. Bioinformatics analysis showed that the binding strength of RNA population to centromere DNAs is significantly lower than that of their flanking sequences, which suggests that the centromere is not easily affected by RNAs produced from other transcribed regions and may be the reason why centromeres consist of constitutive heterochromatin. The results in this paper illustrate that RNAs complementary to DNA sequences play roles in activating genes. Since RNA is mainly produced from the cell's own DNA, the work presented in this paper suggests that RNAs transcribed from DNA create feedback that activates DNA transcription.
Collapse
Affiliation(s)
- Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China.
| | - Zhihong Ma
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China; Clinical Laboratory, The Second Hospital of Tangshan, 21 North Jianshe Road, Tangshan, Hebei Province, China.
| | - Xianglong Kong
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China; Clinical Laboratory, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, Hebei Province, China.
| | - Zhanjun Lv
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
15
|
Shinohara ET, Lu B, Hallahan DE. The Use of Gene Therapy in Cancer Research and Treatment. Technol Cancer Res Treat 2016; 3:479-90. [PMID: 15453813 DOI: 10.1177/153303460400300509] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Gene therapy involves identifying a gene of interest and then manipulating the expression of this gene through a variety of techniques. Here we specifically address gene therapy's role in cancer research. This paper will encompass thoroughly investigated techniques such as cancer vaccines and suicide gene therapy and the latest advancements in and applications of these techniques. It will also cover newer techniques such as Antisense Oligonucleotides and small interfering RNAs and how these technologies are being developed and used. The use of gene therapy continues to expand in cancer research and has an integral role in the advancement of cancer treatment.
Collapse
Affiliation(s)
- E T Shinohara
- Department of Radiation Oncology, Vanderbilt University, 1301 22nd Avenue South, B-902, The Vanderbilt Clinic, Nashville, Tennessee 37232-5671, USA
| | | | | |
Collapse
|
16
|
Emile C, Bazile D, Herman F, Helene C, Veillard M. Encapsulation of oligonucleotides in stealth Me.PEG-PLA50 nanoparticles by complexation with structured oligopeptides. Drug Deliv 2016; 3:187-95. [PMID: 26790915 DOI: 10.3109/10717549609029449] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two oligopeptides with alternating hydrophilic-hydrophobic amino acids, H-(leu-lys-lys-leu)10-OH and H-(leu-lys-leu-lys)10-OH, were shown to have higher affinity for a 13-mer oligonucleotide than H-(pro-lys-lys-leu)10-OH used as a control. This increased affinity was correlated to the secondary structure adopted by the oligopeptides (respectively, α-helix and β-sheet for LKKL and LK) when complexed to the oligonucleotide. Tight ion-pairing association between the phosphate groups of the oligonucleotide and the lysines of the oligopeptide led to efficient encapsulation of the resulting oligonucleotide/oligopeptide non-water-soluble complex in hydrophobic Me.PEG-PLA50 nanoparticles, by coprecipitation with the co-polymer.
Collapse
Affiliation(s)
- C Emile
- a Muséum National d'Histoire Naturelle, Laboratoire de Biophysique, Paris, France
| | - D Bazile
- b Rhône-Poulenc Rorer, Centre de Recherche de Vitry, Département d'Analyse Structurale, Vitry sur Seine, France
| | - F Herman
- b Rhône-Poulenc Rorer, Centre de Recherche de Vitry, Département d'Analyse Structurale, Vitry sur Seine, France
| | - C Helene
- a Muséum National d'Histoire Naturelle, Laboratoire de Biophysique, Paris, France
| | - M Veillard
- c Rhône-Poulenc Rorer, Centre de Recherche de Vitry, Département de Sciences Pharmaceutiques, Vitry sur Seine, France
| |
Collapse
|
17
|
Enhancing the pharmacokinetic/pharmacodynamic properties of therapeutic nucleotides using lipid nanoparticle systems. Future Med Chem 2015; 7:1751-69. [PMID: 26399560 DOI: 10.4155/fmc.15.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although activity has been reported in vivo, free nucleic acid-based drugs are rapidly degraded and cleared following systemic administration. To address these challenges and improve the potency and bioavailability of genetic drugs, significant efforts have been made to develop effective delivery systems of which lipid nanoparticles (LNP) represent the most advanced technology currently available. In this review, we will describe and discuss the improvements to the pharmacokinetic and pharmacodynamic properties of nucleic acid-based drugs mediated by LNP delivery. It is envisioned that the significant improvements in potency and safety, largely driven by the development of LNP encapsulated siRNA drugs, will be translatable to other types of genetic drugs and enable the rapid development of potent molecular tools and drugs.
Collapse
|
18
|
Reyes-Darias JA, Sánchez-Luque FJ, Morales JC, Pérez-Rentero S, Eritja R, Berzal-Herranz A. Glucose conjugation of anti-HIV-1 oligonucleotides containing unmethylated CpG motifs reduces their immunostimulatory activity. Chembiochem 2015; 16:584-591. [PMID: 25683851 DOI: 10.1002/cbic.201402574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 02/05/2023]
Abstract
Antisense oligodeoxynucleotides (ODNs) are short synthetic DNA polymers complementary to a target RNA sequence. They are commonly designed to halt a biological event, such as translation or splicing. ODNs are potentially useful therapeutic agents for the treatment of different human diseases. Carbohydrate-ODN conjugates have been reported to improve the cell-specific delivery of ODNs through receptor mediated endocytosis. We tested the anti-HIV activity and biochemical properties of the 5'-end glucose-conjugated GEM 91 ODN targeting the initiation codon of the gag gene of HIV-1 RNA in cell-based assays. The conjugation of a glucose residue significantly reduces the immunostimulatory effect without diminishing its potent anti-HIV-1 activity. No significant effects were observed in either ODN stability in serum, in vitro degradation of antisense DNA-RNA hybrids by RNase H, cell toxicity, cellular uptake and ability to interfere with genomic HIV-1 dimerisation.
Collapse
Affiliation(s)
- José A Reyes-Darias
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Avd. del Conocimiento s/n, Armilla, 18016 Granada (Spain); Present address: Estación Experimental del Zaidín, (EEZ-CSIC), C/ Prof. Albareda, 1, 18008 Granada, (Spain)
| | | | | | | | | | | |
Collapse
|
19
|
Rigo F, Seth PP, Bennett CF. Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:303-52. [PMID: 25201110 DOI: 10.1007/978-1-4939-1221-6_9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Before a messenger RNA (mRNA) is translated into a protein in the cytoplasm, its pre-mRNA precursor is extensively processed through capping, splicing and polyadenylation in the nucleus. Defects in the processing of pre-mRNAs due to mutations in RNA sequences often cause disease. Traditional small molecules or protein-based therapeutics are not well suited for correcting processing defects by targeting RNA. However, antisense oligonucleotides (ASOs) designed to bind RNA by Watson-Crick base pairing can target most RNA transcripts and have emerged as the ideal therapeutic agents for diseases that are caused by pre-mRNA processing defects. Here we review the diverse ASO-based mechanisms that can be exploited to modulate the expression of RNA. We also discuss how advancements in medicinal chemistry and a deeper understanding of the pharmacokinetic and toxicological properties of ASOs have enabled their use as therapeutic agents. We end by describing how ASOs have been used successfully to treat various pre-mRNA processing diseases in animal models.
Collapse
Affiliation(s)
- Frank Rigo
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, USA,
| | | | | |
Collapse
|
20
|
Studzińska S, Mounicou S, Szpunar J, Łobiński R, Buszewski B. New approach to the determination phosphorothioate oligonucleotides by ultra high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry. Anal Chim Acta 2014; 855:13-20. [PMID: 25542085 DOI: 10.1016/j.aca.2014.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 01/27/2023]
Abstract
This text presents a novel method for the separation and detection of phosphorothioate oligonucleotides with the use of ion pair ultra high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry The research showed that hexafluoroisopropanol/triethylamine based mobile phases may be successfully used when liquid chromatography is coupled with such elemental detection. However, the concentration of both HFIP and TEA influences the final result. The lower concentration of HFIP, the lower the background in ICP-MS and the greater the sensitivity. The method applied for the analysis of serum samples was based on high resolution inductively coupled plasma mass spectrometry. Utilization of this method allows determination of fifty times lower quantity of phosphorothioate oligonucleotides than in the case of quadrupole mass analyzer. Monitoring of (31)P may be used to quantify these compounds at the level of 80 μg L(-1), while simultaneous determination of sulfur is very useful for qualitative analysis. Moreover, the results presented in this paper demonstrate the practical applicability of coupling LC with ICP-MS in determining phosphorothioate oligonucleotides and their metabolites in serum within 7 min with a very good sensitivity. The method was linear in the concentration range between 0.2 and 3 mg L(-1). The limit of detection was in the range of 0.07 and 0.13 mg L(-1). Accuracy varied with concentration, but was in the range of 3%.
Collapse
Affiliation(s)
- Sylwia Studzińska
- Chair of the Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St., PL-87 100 Torun, Poland.
| | - Sandra Mounicou
- CNRS/UPPA, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, UMR 5254, Hélioparc, 2 av. Pr. Angot, F-64053 Pau, France
| | - Joanna Szpunar
- CNRS/UPPA, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, UMR 5254, Hélioparc, 2 av. Pr. Angot, F-64053 Pau, France
| | - Ryszard Łobiński
- CNRS/UPPA, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, UMR 5254, Hélioparc, 2 av. Pr. Angot, F-64053 Pau, France
| | - Bogusław Buszewski
- Chair of the Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St., PL-87 100 Torun, Poland
| |
Collapse
|
21
|
Suresh G, Priyakumar UD. Atomistic investigation of the effect of incremental modification of deoxyribose sugars by locked nucleic acid (β-D-LNA and α-L-LNA) moieties on the structures and thermodynamics of DNA-RNA hybrid duplexes. J Phys Chem B 2014; 118:5853-63. [PMID: 24845216 DOI: 10.1021/jp5014779] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemically modified oligonucleotides offer many possibilities in utilizing their special features for a vast number of applications in nucleic acid based therapies and synthetic molecular biology. Locked nucleic acid analogues (α-/β-LNA) are modifications having an extra ring of 2'-O,4'-C-methylene group in the furanose sugar. LNA strands have been shown to exhibit high binding affinity toward RNA and DNA strands, and the resultant duplexes show significantly high melting temperatures. In the present study, molecular dynamics (MD) simulations were performed on DNA-RNA hybrid duplexes by systematically modifying their deoxyribose sugars with locked nucleic acid analogues. Several geometrical and energetic analyses were performed using principal component (PCA) analysis and binding free energy methods to understand the consequence of incorporated isomeric LNA modifications on the structure, dynamics, and stability of DNA-RNA hybrid duplex. The β-modification systematically changes the conformation of the DNA-RNA hybrid duplex whereas drastic changes are observed for α-modification. The fully modified duplexes have distinct properties compared to partial and unmodified duplexes, and the partly modified duplexes have properties intermediate to full strand and unmodified duplexes. The distribution of BI versus BII populations suggests that backbone rearrangement is minimal for β-LNA modification in order to accommodate it in duplexes whereas extensive backbone rearrangement is necessary in order to incorporate α-LNA modification which subsequently alters the energetic and structural properties of the duplexes. The simulation results also suggest that the alteration of DNA-RNA hybrid properties depends on the position of modification and the gap between the modifications.
Collapse
Affiliation(s)
- Gorle Suresh
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology , Hyderabad 500 032, India
| | | |
Collapse
|
22
|
Bamford RA, Zhao ZY, Hotchin NA, Styles IB, Nash GB, Tucker JHR, Bicknell R. Electroporation and microinjection successfully deliver single-stranded and duplex DNA into live cells as detected by FRET measurements. PLoS One 2014; 9:e95097. [PMID: 24755680 PMCID: PMC3995676 DOI: 10.1371/journal.pone.0095097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/22/2014] [Indexed: 11/25/2022] Open
Abstract
Förster resonance energy transfer (FRET) technology relies on the close proximity of two compatible fluorophores for energy transfer. Tagged (Cy3 and Cy5) complementary DNA strands forming a stable duplex and a doubly-tagged single strand were shown to demonstrate FRET outside of a cellular environment. FRET was also observed after transfecting these DNA strands into fixed and live cells using methods such as microinjection and electroporation, but not when using lipid based transfection reagents, unless in the presence of the endosomal acidification inhibitor bafilomycin. Avoiding the endocytosis pathway is essential for efficient delivery of intact DNA probes into cells.
Collapse
Affiliation(s)
- Rosemary A. Bamford
- PSIBS Doctoral Training Centre, University of Birmingham, Birmingham, United Kingdom
| | - Zheng-yun Zhao
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Neil A. Hotchin
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Iain B. Styles
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Gerard B. Nash
- Centre for Cardiovascular Sciences, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
| | - James H. R. Tucker
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
- * E-mail: (JHRT); (RB)
| | - Roy Bicknell
- Institute of Biomedical Research, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
- * E-mail: (JHRT); (RB)
| |
Collapse
|
23
|
Kusano S, Haruyama T, Ishiyama S, Hagihara S, Nagatsugi F. Development of the crosslinking reactions to RNA triggered by oxidation. Chem Commun (Camb) 2014; 50:3951-4. [DOI: 10.1039/c3cc49463b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this paper, we have reported a novel oxidation triggered crosslinking nucleobase ATVP (1) and demonstrated that the oxidized form ASVP (2) showed a very fast and selective crosslinking reaction to cytosine in RNA.
Collapse
Affiliation(s)
- Shuhei Kusano
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai-shi, Japan
| | - Takuya Haruyama
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai-shi, Japan
| | - Shogo Ishiyama
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai-shi, Japan
| | - Shinya Hagihara
- Institute of Transformative Bio-Molecules (WPI-ITbM)
- Nagoya University
- Nagoya, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai-shi, Japan
| |
Collapse
|
24
|
Therapeutic applications of anti-sense mechanisms for the treatment of cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
25
|
Trylska J, Thoduka SG, Dąbrowska Z. Using sequence-specific oligonucleotides to inhibit bacterial rRNA. ACS Chem Biol 2013; 8:1101-9. [PMID: 23631412 DOI: 10.1021/cb400163t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The majority of antibiotics used in the clinic target bacterial protein synthesis. However, the widespread emergence of bacterial resistance to existing drugs creates a need to discover or develop new therapeutic agents. Ribosomal RNA (rRNA) has been a target for numerous antibiotics that bind to functional rRNA regions such as the peptidyl transferase center, polypeptide exit tunnel, and tRNA binding sites. Even though the atomic resolution structures of many ribosome-antibiotic complexes have been solved, improving the ribosome-acting drugs is difficult because the large rRNA has a complicated 3D architecture and is surrounded by numerous proteins. Computational approaches, such as structure-based design, often fail when applied to rRNA binders because electrostatics dominate the interactions and the effect of ions and bridging waters is difficult to account for in the scoring functions. Improving the classical anti-ribosomal agents has not proven particularly successful and has not kept pace with acquired resistance. So one needs to look for other ways to combat the ribosomes, finding either new rRNA targets or totally different compounds. There have been some efforts to design translation inhibitors that act on the basis of the sequence-specific hybridization properties of nucleic acid bases. Indeed oligonucleotides hybridizing with functional regions of rRNA have been shown to inhibit translation. Also, some peptides have been shown to be reasonable inhibitors. In this review we describe these nonconventional approaches to screening for ribosome inhibition and function of particular rRNA regions. We discuss inhibitors against rRNA that may be designed according to nucleotide sequence and higher order structure.
Collapse
Affiliation(s)
- Joanna Trylska
- Centre of New Technologies, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Sapna G. Thoduka
- Centre of New Technologies, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Zofia Dąbrowska
- Centre of New Technologies, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
26
|
Potential of Antisense Technology in the Treatment of Immunological Disorders. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03259283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Ryazanova O, Dubey L, Dubey I, Zozulya V. Spectroscopic study on the effect of imidazophenazine tethered to 5'-end of pentadecathymidilate on stability of poly(dA)·(dT)15 duplex. J Fluoresc 2012; 22:1431-9. [PMID: 22752430 DOI: 10.1007/s10895-012-1080-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 06/20/2012] [Indexed: 11/26/2022]
Abstract
The effect of imidazo[4,5-d]phenazine (Pzn) attached to the 5(')-end of (dT)(15) oligonucleotide via a flexible linker on the thermal stability of poly(dA)·(dT)(15) duplex was studied in aqueous buffered solution containing 0.1 М NaCl at the equimolar ratio of adenine and thymine bases (100 μM each) using spectroscopic techniques. Duplex formation was investigated by measuring UV absorption and fluorescence melting curves for the Pzn-modified system. Tethered phenazine derivative enhances the thermostability of poly(dA)·(dT)(15) duplex increasing the helix-to-coil transition temperature by 4.5 °С due to an intercalation of the dye chromophore between AT-base pairs. The thermodynamic parameters of the transition for non-modified and modified systems were estimated using "all-or-none" model. The modification of the (dT)(15) results in a decrease in the transition enthalpy, however, the observed gain in the Gibbs free energy of complex formation, ΔG, is provided with the corresponding decrease in entropy change. The increase of ΔG value at 37 °C in consequence of (dT)(15) modification was found to be equal to 1.3 kcal/mol per oligonucleotide strand.
Collapse
Affiliation(s)
- Olga Ryazanova
- Department of Molecular Biophysics, B. Verkin Institute for Low Temperature Physics & Engineering of the NAS of Ukraine, Kharkov, Ukraine.
| | | | | | | |
Collapse
|
28
|
Rusling DA, Nandhakumar IS, Brown T, Fox KR. Triplex-directed recognition of a DNA nanostructure assembled by crossover strand exchange. ACS NANO 2012; 6:3604-3613. [PMID: 22443318 DOI: 10.1021/nn300718z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
DNA has been widely exploited for the self-assembly of nanosized objects and arrays that offer the potential to act as scaffolds for the spatial positioning of molecular components with nanometer precision. Methods that allow the targeting of components to specific locations within these structures are therefore highly sought after. Here we report that the triplex approach to DNA recognition, which relies on the specific binding of an oligonucleotide within the major groove of double-helical DNA, can be exploited to recognize specific loci within a DNA double-crossover tile and array, a nanostructure assembled by crossover strand exchange. The oligonucleotide can be targeted to both crossover and non-crossover strands and, surprisingly, across the region spanning the crossover junction itself. Moreover, by attaching biotin to the end of the oligonucleotide, we show that streptavidin molecules can be recruited to precise locations within a DX array, with an average spacing of 31.9 (±1.3) nm. This is a promising approach that could be exploited to introduce other components compatible with oligonucleotide synthesis into the wide variety of DNA nanostructures assembled by crossover strand exchange, such as those generated by DNA origami.
Collapse
Affiliation(s)
- David A Rusling
- Centre for Biological Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | | | | | | |
Collapse
|
29
|
Leidinger P, Keller A, Meese E. MicroRNAs - Important Molecules in Lung Cancer Research. Front Genet 2012; 2:104. [PMID: 22303398 PMCID: PMC3263430 DOI: 10.3389/fgene.2011.00104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/20/2011] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNA) are important regulators of gene expression. They are involved in many physiological processes ensuring the cellular homeostasis of human cells. Alterations of the miRNA expression have increasingly been associated with pathophysiologic changes of cancer cells making miRNAs currently to one of the most analyzed molecules in cancer research. Here, we provide an overview of miRNAs in lung cancer. Specifically, we address biological functions of miRNAs in lung cancer cells, miRNA signatures generated from tumor tissue and from patients’ body fluids, the potential of miRNAs as diagnostic and prognostic biomarker for lung cancer, and its role as therapeutic target.
Collapse
Affiliation(s)
- Petra Leidinger
- Institute of Human Genetics, Medical School, Saarland University Homburg, Germany
| | | | | |
Collapse
|
30
|
Abstract
Tumor necrosis factor-α (TNF-α), a proinflammatory cytokine, plays a key role in the pathogenesis of many inflammatory diseases, including arthritis. Neutralization of this cytokine by anti-TNF-α antibodies has shown its efficacy in rheumatoid arthritis (RA) and is now widely used. Nevertheless, some patients currently treated with anti-TNF-α remain refractory or become nonresponder to these treatments. In this context, there is a need for new or complementary therapeutic strategies. In this study, we investigated in vitro and in vivo anti-inflammatory potentialities of an anti-TNF-α triplex-forming oligonucleotide (TFO), as judged from effects on two rat arthritis models. The inhibitory activity of this TFO on articular cells (synoviocytes and chondrocytes) was verified and compared to that of small interfering RNA (siRNA) in vitro. The use of the anti-TNF-α TFO as a preventive and local treatment in both acute and chronic arthritis models significantly reduced disease development. Furthermore, the TFO efficiently blocked synovitis and cartilage and bone destruction in the joints. The results presented here provide the first evidence that gene targeting by anti-TNF-α TFO modulates arthritis in vivo, thus providing proof-of-concept that it could be used as therapeutic tool for TNF-α-dependent inflammatory disorders.
Collapse
|
31
|
Iwata R, Sudo M, Nagafuji K, Wada T. Synthesis of oligodiaminosaccharides having α-glycoside bonds and their interactions with oligonucleotide duplexes. J Org Chem 2011; 76:5895-906. [PMID: 21688799 DOI: 10.1021/jo200951p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Syntheses of the novel oligodiaminosaccharides, α-(1→4)-linked-2,6-diamino-2,6-dideoxy-D-glucopyranose oligomers, and their interactions with nucleic acid duplexes DNA-DNA, RNA-RNA, and DNA-RNA are described. Monomers to tetramers of oligodiaminoglucose derivatives having α-glycosyl bonds were successfully synthesized using a chain elongation cycle including glycosylation reactions of a 6-phthalimide glycosyl donor. UV melting experiments for a variety of nucleic acid duplexes in the absence and presence of the oligodiaminosaccharides were performed. The synthesized oligodiaminosaccharides exhibited notable thermodynamic stabilization effects on A-type RNA-RNA and DNA-RNA duplexes, whereas B-type DNA-DNA duplexes were not stabilized by the synthesized oligodiaminosaccharides. Among the oligodiaminosaccharides, the tetramer exhibited the highest ability to stabilize A-type duplexes, and the increase in T(m) values induced by the tetramer were higher than those induced by neomycin B and tobramycin, which are known aminoglycosides having ability to bind and stabilize a variety of RNA molecules. CD spectrometry experiments revealed that the oligodiaminosaccharides caused small structural changes in RNA-RNA duplexes, whereas no appreciable changes were observed in the structure of DNA-DNA duplexes. ITC (isothermal titration calorimetry) experiments demonstrated that the amount of heat generated by the interaction between RNA-RNA duplexes and the tetradiaminosaccharides was approximately double that generated by that between DNA-DNA duplexes and the tetradiaminosaccharides. These results strongly suggested the existence of an A-type nucleic acid specific-binding mode of the oligodiaminosaccharides, which bind to these duplexes and cause small structural changes.
Collapse
Affiliation(s)
- Rintaro Iwata
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Building 702, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | |
Collapse
|
32
|
Morihiro K, Kodama T, Obika S. Benzylidene acetal type bridged nucleic acids: changes in properties upon cleavage of the bridge triggered by external stimuli. Chemistry 2011; 17:7918-26. [PMID: 21644240 DOI: 10.1002/chem.201100541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Indexed: 11/07/2022]
Abstract
Four classes of benzylidene acetal type bridged nucleic acids (BA-BNAs) were designed with 2',4'-bridged structures that cleaved upon exposure to appropriate external stimuli. Cleavage of 6-nitroveratrylidene and 2-nitrobenzylidene acetal type BNA bridges occurred upon photoirradiation and subsequent treatment with thiol caused changes in secondary structure to afford 4'-C-hydroxymethyl RNA. Benzylidene and 4-nitrobenzylidene acetal type BNA responded to acids and reducing agents, respectively, resulting in hydrolysis of the acetal-bridged structure. Cleavage of the bridge removed sugar conformational restrictions and changed the duplex- and triplex-forming properties of the BNA-modified oligonucleotides. Moreover, oligonucleotides incorporating a single BA-BNA modification had considerably improved stability toward 3'-exonuclease, which was lost upon cleavage of the bridge. Thus, these new BNAs may be useful as therapeutic and detection tools by sensing various environments.
Collapse
Affiliation(s)
- Kunihiko Morihiro
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
33
|
Nyakas A, Stucki SR, Schürch S. Tandem mass spectrometry of modified and platinated oligoribonucleotides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:875-887. [PMID: 21472522 DOI: 10.1007/s13361-011-0106-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/04/2011] [Accepted: 02/09/2011] [Indexed: 05/30/2023]
Abstract
Therapeutic approaches for treatment of various diseases aim at the interruption of transcription or translation. Modified oligonucleotides, such as 2'-O-methyl- and methylphosphonate-derivatives, exhibit high resistance against cellular nucleases, thus rendering application for, e.g., antigene or antisense purposes possible. Other approaches are based on administration of cross-linking agents, such as cis-diamminedichloroplatinum(II) (cisplatin, DDP), which is still the most widely used anticancer drug worldwide. Due to the formation of 1,2-intrastrand cross links at adjacent guanines, replication of the double-strand is disturbed, thus resulting in significant cytotoxicity. Evidence for the gas-phase dissociation mechanism of platinated RNA is given, based on nano-electrospray ionization high-resolution multistage tandem mass spectrometry (MS(n)). Confirmation was found by investigating the fragmentation pattern of platinated and unplatinated 2'-methoxy oligoribonucleotide hexamers and their corresponding methylphosphonate derivatives. Platinated 2'-methoxy oligoribonucleotides exhibit a similar gas-phase dissociation behavior as the corresponding DNA and RNA sequences, with the 3'-C-O bond adjacent to the vicinal guanines being cleaved preferentially, leading to w(x)-ion formation. By examination of the corresponding platinated methylphosphonate derivatives of the 2'-methoxy oligoribonucleotides, the key role of the negatively charged phosphate oxygen atoms in direct proximity to the guanines was proven. The significant alteration of fragmentation due to platination is demonstrated by comparison of the fragment ion patterns of unplatinated and platinated 2'-O-methyl- and 2'-O-methyl methylphosphonate oligoribonucleotides, and the results obtained by H/D exchange experiments.
Collapse
Affiliation(s)
- Adrien Nyakas
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | | |
Collapse
|
34
|
Abstract
A DNA duplex can be recognized sequence-specifically in the major groove by an oligodeoxynucleotide (ODN). The resulting structure is a DNA triple helix, or triplex. The scientific community has invested significant research capital in the study of DNA triplexes because of their robust potential for providing new applications, including molecular biology tools and therapeutic agents. The triplex structures have inherent instabilities, however, and the recognition of DNA triplexes by small molecules has been attempted as a means of strengthening the three-stranded complex. Over the decades, the majority of work in the field has focused on heterocycles that intercalate between the triplex bases. In this Account, we present an alternate approach to recognition and stabilization of DNA triplexes. We show that groove recognition of nucleic acid triple helices can be achieved with aminosugars. Among these aminosugars, neomycin is the most effective aminoglycoside (groove binder) for stabilizing a DNA triple helix. It stabilizes both the TAT triplex and mixed-base DNA triplexes better than known DNA minor groove binders (which usually destabilize the triplex) and polyamines. Neomycin selectively stabilizes the triplex (TAT and mixed base) without any effect on the DNA duplex. The selectivity of neomycin likely originates from its potential and shape complementarity to the triplex Watson-Hoogsteen groove, making it the first molecule that selectively recognizes a triplex groove over a duplex groove. The groove recognition of aminoglycosides is not limited to DNA triplexes, but also extends to RNA and hybrid triple helical structures. Intercalator-neomycin conjugates are shown to simultaneously probe the base stacking and groove surface in the DNA triplex. Calorimetric and spectrosocopic studies allow the quantification of the effect of surface area of the intercalating moiety on binding to the triplex. These studies outline a novel approach to the recognition of DNA triplexes that incorporates the use of noncompeting binding sites. These principles of dual recognition should be applicable to the design of ligands that can bind any given nucleic acid target with nanomolar affinities and with high selectivity.
Collapse
|
35
|
Patterson A, Caprio F, Vallée-Bélisle A, Moscone D, Plaxco KW, Palleschi G, Ricci F. Using triplex-forming oligonucleotide probes for the reagentless, electrochemical detection of double-stranded DNA. Anal Chem 2010; 82:9109-15. [PMID: 20936782 PMCID: PMC3134121 DOI: 10.1021/ac1024528] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a reagentless, electrochemical sensor for the detection of double-stranded DNA targets that employs triplex-forming oligonucleotides (TFOs) as its recognition element. These sensors are based on redox-tagged TFO probes strongly chemisorbed onto an interrogating gold electrode. Upon the addition of the relevant double-stranded DNA target, the probe forms a rigid triplex structure via reverse Hoogsteen base pairing in the major groove. The formation of the triplex impedes contact between the probe's redox moiety and the interrogating electrode, thus signaling the presence of the target. We first demonstrated the proof of principle of this approach by using a well-characterized 22-base polypurine TFO sequence that readily detects a synthetic, double-stranded DNA target. We then confirmed the generalizability of our platform with a second probe, a 19-base polypyrimidine TFO sequence that targets a polypurine tract (PPT) sequence conserved in all HIV-1 strains. Both sensors rapidly and specifically detect their double-stranded DNA targets at concentrations as low as ~10 nM and are selective enough to be employed directly in complex sample matrices such as blood serum. Moreover, to demonstrate real-world applicability of this new sensor platform, we have successfully detected unpurified, double-stranded PCR amplicons containing the relevant conserved HIV-1 sequence.
Collapse
|
36
|
|
37
|
Forsha SJ, Panyutin IV, Neumann RD, Panyutin IG. Intracellular traffic of oligodeoxynucleotides in and out of the nucleus: effect of exportins and DNA structure. Oligonucleotides 2010; 20:277-84. [PMID: 20946012 DOI: 10.1089/oli.2010.0255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The delivery of oligodeoxynucleotides (ODNs) into cells is widely utilized for antisense, antigene, aptamer, and similar approaches to regulate gene and protein activities based upon the ODNs' sequence-specific recognition. Short pieces of DNA can also be generated in biological processes, for example, after degradation of viral or bacterial DNA. However, the mechanisms that regulate intracellular trafficking and localization of ODNs are not fully understood. Here we study the effects of major transporters of microRNA, exportin-1 (Exp1) and exportin-5 (Exp5), on the transport of single-stranded ODNs in and out of the nucleus. For this, we employed a fluorescent microscopy-based assay to quantitatively measure the redistribution of ODNs between the nucleus and cytoplasm of live cells. By measuring the fluorescent signal of the nuclei we observed that after delivery into cells via cationic liposomes ODNs rapidly accumulated inside nuclei. However, after removal of the ODN/liposome containing media, we found re-localization of ODNs from the nuclei to cytoplasm of the cells over the time course of several hours. Downregulation of the Exp5 gene by siRNA resulted in a slight increase of ODN uptake into the nucleus, but the kinetics of ODN efflux to the cytoplasm was not affected. Inhibition of Exp1 with leptomycin B somewhat slowed down the clearance of ODNs from the nucleus; however, within 6 hours most of the ODN were still being cleared form the nucleus. ODNs that could form intramolecular G-quadruplex structures behaved differently. They also accumulated in nuclei, although at a lesser extent than unstructured ODN, but they remained there for up to 20 hours after transfection, causing significant cell death. We conclude that Exp1 and Exp5 are not the major transporters of our ODNs out of the nucleus, and that the transport of ODNs is strongly affected by their secondary structure.
Collapse
Affiliation(s)
- Stephen J Forsha
- Radiology and Imaging Sciences Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
38
|
van Aerschot A, Saison-Behmoaras T, Rozenski J, Hendrix C, Schepers G, Verhoeven G, Herdewijn P. Conjugation of Oligonucleotides to 3′-Polar Moieties. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bscb.19951041208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Arslan P, Jyo A, Ihara T. Reversible circularization of an anthracene-modified DNA conjugate through bimolecular triplex formation and its analytical application. Org Biomol Chem 2010; 8:4843-8. [PMID: 20734012 DOI: 10.1039/c0ob00282h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We prepared an oligodeoxyribonucleotide conjugate (5-3ant(2)18) carrying two anthracenes, each of which was tethered to both ends of the conjugate through hexamethylene linker chains. The conjugate has a mirror repeat of two heptamer sequences, such that it forms a bimolecular triplex with the single stranded target, forming a two-fold U-shaped conformation. The conformation of the conjugate in its triplex structure could be frozen instantaneously by circularization through photodimerization of the anthracenes. Compared with the duplex formation of linear probes with relevant sequences, bimolecular triplex formation of 5-3ant(2)18 shows a unique feature in its target recognition; it binds the target tightly, yet still retains high sequence selectivity. Circularization of 5-3ant(2)18 by UV photoirradiation was verified as the probe reaction for a DNA assay. The probe reaction could be performed in a few seconds over a wide range of temperatures, at least between 0 and 25 °C. In addition, the reaction could be regarded as a reversible method for the preparation of circular DNA that shows higher affinity for the target.
Collapse
Affiliation(s)
- Pelin Arslan
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | | | | |
Collapse
|
40
|
Gryaznov SM. Oligonucleotide n3'-->p5' phosphoramidates and thio-phoshoramidates as potential therapeutic agents. Chem Biodivers 2010; 7:477-93. [PMID: 20232321 DOI: 10.1002/cbdv.200900187] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nucleic acids analogues, i.e., oligonucleotide N3'-->P5' phosphoramidates and N3'-->P5' thio-phosphoramidates, containing 3'-amino-3'-deoxy nucleosides with various 2'-substituents were synthesized and extensively studied. These compounds resist nuclease hydrolysis and form stable duplexes with complementary native phosphodiester DNA and, particularly, RNA strands. An increase in duplexes' melting temperature, DeltaT(m), relative to their phosphodiester counterparts, reaches 2.2-4.0 degrees per modified nucleoside. 2'-OH- (RNA-like), 2'-O-Me-, and 2'-ribo-F-nucleoside substitutions result in the highest degree of duplex stabilization. Moreover, under close to physiological salt and pH conditions, the 2'-deoxy- and 2'-fluoro-phosphoramidate compounds form extremely stable triple-stranded complexes with either single- or double-stranded phosphodiester DNA oligonucleotides. Melting temperature, T(m), of these triplexes exceeds T(m) values for the isosequential phosphodiester counterparts by up to 35 degrees . 2'-Deoxy-N3'-->P5' phosphoramidates adopt RNA-like C3'-endo or N-type nucleoside sugar-ring conformations and hence can be used as stable RNA mimetics. Duplexes formed by 2'-deoxy phosphoramidates with complementary RNA strands are not substrates for RNase H-mediated cleavage in vitro. Oligonucleotide phosphoramidates and especially thio-phosphoramidates conjugated with lipid groups are cell-permeable and demonstrate high biological target specific activity in vitro. In vivo, these compounds show good bioavailability and efficient biodistribution to all major organs, while exerting acceptable toxicity at therapeutically relevant doses. Short oligonucleotide N3'-->P5' thio-phosphoramidate conjugated to 5'-palmitoyl group, designated as GRN163L (Imetelstat), was recently introduced as a potent human telomerase inhibitor. GRN163L is not an antisense agent; it is a direct competitive inhibitor of human telomerase, which directly binds to the active site of the enzyme and thus inhibits its activity. This compound is currently in multiple Phase-I and Phase-I/II clinical trials as potential broad-spectrum anticancer agent.
Collapse
Affiliation(s)
- Sergei M Gryaznov
- Geron Corporation, 230 Constitution Drive, Menlo Park, CA 94025, USA.
| |
Collapse
|
41
|
|
42
|
Rusling DA, Peng G, Srinivasan N, Fox KR, Brown T. DNA triplex formation with 5-dimethylaminopropargyl deoxyuridine. Nucleic Acids Res 2009; 37:1288-96. [PMID: 19139069 PMCID: PMC2651792 DOI: 10.1093/nar/gkn1060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 02/01/2023] Open
Abstract
We have prepared triplex-forming oligonucleotides containing the nucleotide analogue 5-dimethylaminopropargyl deoxyuridine (DMAPdU) in place of thymidine and examined their ability to form intermolecular triple helices by thermal melting and DNase I footprinting studies. The results were compared with those for oligonucleotides containing 5-aminopropargyl-dU (APdU), 5-guanidinopropargyl-dU (GPdU) and 5-propynyl dU (PdU). We find that DMAPdU enhances triplex stability relative to T, though slightly less than the other analogues that bear positive charges (T << PdU < DMAPdU < APdU < GPdU). For oligonucleotides that contain multiple substitutions with DMAPdU dispersed residues are more effective than clustered combinations. DMAPdU will be especially useful as a nucleotide analogue as, unlike APdU and GPdU, the base does not require protection during oligonucleotide synthesis and it can therefore be used with other derivatives that require mild deprotection conditions.
Collapse
Affiliation(s)
- David A. Rusling
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Guomei Peng
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Natarajan Srinivasan
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Keith R. Fox
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Tom Brown
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| |
Collapse
|
43
|
Fichna J, Gach K, Perlikowska R, Poels J, Vanden Broeck J, Szemraj J, Janecka A. Identification of endomorphin-1 and endomorphin-2 binding sites in human mu-opioid receptor by antisense oligonucleotide strategy. Chem Biol Drug Des 2009; 72:507-12. [PMID: 19090917 DOI: 10.1111/j.1747-0285.2008.00725.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of phosphorothioate antisense oligodeoxynucleotides against exons-1, -2, -3 and -4 of the human mu-opioid receptor were studied in the CHO-mu-opioid receptor cells using aequorin luminescence-based calcium assay. All four antisense oligodeoxynucleotides significantly decreased the level of mu-opioid receptor mRNA in comparison with the non-treated cells, used as control. However, no statistically significant differences between antisense oligodeoxynucleotides were observed. antisense oligodeoxynucleotides against exon-2 attenuated endomorphin-1-induced intracellular calcium response in a concentration-dependent manner. antisense oligodeoxynucleotides against exons-1, -2, -3 and -4 inhibited endomorphin-2-induced intracellular calcium response in a concentration-dependent manner and the effect of antisense oligodeoxynucleotides against exons-3 and -4 was most pronounced. The mismatch oligodeoxynucleotides against respective exons failed to exert any effect. The selective actions of antisense probes directed against different exons of the human mu-opioid receptor gene, that resulted, at the protein level, in attenuation of calcium responses induced by endomorphin-1 and endomorphin-2, suggest that the binding sites for endomorphins are structurally and functionally different. The presence of functionally distinct binding sites might play a crucial role in the modulation of pain and may be important clinically.
Collapse
Affiliation(s)
- Jakub Fichna
- Laboratory of Biomolecular Chemistry, Institute of Biomedicinal Chemistry, Medical University, Mazowiecka St. 6/8, Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
44
|
Unfolding Thermodynamics of DNA Intramolecular Complexes Involving Joined Triple- and Double-Helical Motifs. Methods Enzymol 2009; 466:477-502. [DOI: 10.1016/s0076-6879(09)66020-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Ichikawa S. [Medicinal chemistry targeting nucleosides and nucleic acids based on fine synthetic chemistry]. YAKUGAKU ZASSHI 2008; 128:1403-30. [PMID: 18827462 DOI: 10.1248/yakushi.128.1403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleosides and nucleotides are one of the most important elements for cells by the fact that they are components of DNAs and RNAs. In addition, they play important roles in most fundamental cellular metabolic pathways such as energy donors, second messengers, and cofactors for various enzymes. Therefore, there exists a rich source in drug discovery targeting nucleosides and nucleotides. In order to utilize nucleosides and nucleic acids on the drug development, it is very important to develop reactions and methods, by which the highly coordinating and labile nucleoside intermediates can be used. With these in mind, we have been working on synthetic nucleoside and nucleic acid chemistry. First, branched sugar nucleoside derivatives, which are potential antitumor agents, have been synthesized utilizing samarium diiodide (SmI(2)) mediated Reformatsky reaction or aldol reaction. 3'-beta-Carbamoylmethylcytidine (CAMC) was found to exhibit potent cytotoxicity against various human tumor cell lines. Synthetic methodology of the caprazamycins, which are promising antibacterial nucleoside natural products, was also developed by the strategy including beta-selective ribosylation without using a neighboring group participation. Our synthetic route provided a range of key analogues with partial structures to define the pharmacophore. Simplification of the caprazamycins was further pursued to develop diketopiperazine analogs. Medicinal chemistry of oligodeoxynucleotides has been conducted. Thus, novel triazole-linked dumbbell oligodeoxynucleotides and modular bent oligodeoxynucleotides were synthesized. They exhibit excellent binding affinity to NF-kappaB or HMGB1 A-box protein, which are important therapeutic targets. Therefore, the results obtained conclusively demonstrated these oligodeoxynucleotides could be proposed as powerful decoy molecules.
Collapse
|
46
|
Bennett CF, Chiang MY, Chan H, Grimm S. Use of Cationic Lipids to Enhance the Biological Activity of Antisense Oligonucleotides. J Liposome Res 2008. [DOI: 10.3109/08982109309147445] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Sdiqui N, Arar K, Midoux P, Mayer R, Monsigny M, Roche AC. Inhibition of Human Mammary Cell Line Proliferation by Membrane Lectin-Mediated Uptake of Ha-rasAntisense Oligodeoxynucleotide. Drug Deliv 2008. [DOI: 10.3109/10717549509031353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
|
49
|
Fraser GL, Wahlestedt C. Section Review: Biologicals & Immunologicals: Applications of antisense technology to both basic and clinical research. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.7.637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Abstract
Molecular analyses have become an integral part of biomedical research as well as clinical medicine. The definition of the molecular and genetic basis of many human diseases has led to a better understanding of their pathogenesis and has in addition offered new perspectives for their diagnosis, therapy and prevention. Genetically, liver diseases can be classified as hereditary monogenic, acquired monogenic, complex genetic and diseases. Based on this classification, gene therapy is based on six concepts: gene repair, gene substitution, cell therapy, block of gene expression or function, DNA vaccination as well as gene augmentation. While recent developments are promising, various delivery, targeting and safety issues need to be addressed before gene therapy will enter clinical practice. In the future, molecular diagnosis and therapy liver diseases will be part of our patient management and complement existing diagnostic, therapeutic and preventive strategies.
Collapse
Affiliation(s)
- H E Blum
- Department of Medicine II, University Hospital, D-79106 Freiburg, Germany.
| |
Collapse
|