1
|
Rather N, Williams M, Elkhalil A, Sharmin R, Juanez K, Clark G, Shaham S, Ghose P. EOR-1/PLZF-regulated WAH-1/AIF sequentially promotes early and late stages of non-apoptotic corpse removal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.04.626465. [PMID: 39677785 PMCID: PMC11642882 DOI: 10.1101/2024.12.04.626465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Programmed cell death (PCD) is a crucial, genetically-encoded, and evolutionarily-conserved process required for development and homeostasis. We previously identified a genetically non-apoptotic, highly ordered, and stereotyped killing program called Compartmentalized Cell Elimination (CCE) in the C. elegans tail-spike epithelial cell (TSC). Here we identify the transcription factor EOR-1/PLZF as an important coordinator of CCE. Loss of EOR-1 results in a large, persisting, un-engulfed soma with enlarged nuclei. We find that EOR-1 and its partners positively regulate the transcription of the Apoptosis Inducing Factor AIF homolog, WAH-1/AIF. We report stereotyped and sequential spatiotemporal dynamics of WAH-1/AIF1 during phagocytosis, with defined roles acting early and late, within the dying cells. Mitochondria to plasma membrane translocation within the TSC soma is required its internalization by its phagocyte, and plasma membrane to nuclear translocation is required for DNA degradation and ultimately, corpse resolution. Our study suggests that EOR-1 serves as a master regulator for the transcriptional control of DNA degradation is essential for changes in nuclear morphology required for cellular dismantling and infers that tight spatiotemporal regulation of WAH-1/AIF is required for this function.
Collapse
|
2
|
Vafadar A, Tajbakhsh A, Hosseinpour-Soleimani F, Savardshtaki A, Hashempur MH. Phytochemical-mediated efferocytosis and autophagy in inflammation control. Cell Death Discov 2024; 10:493. [PMID: 39695119 DOI: 10.1038/s41420-024-02254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/06/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Efferocytosis, the clearance of apoptotic cells, is a critical process that maintains tissue homeostasis and immune regulation. Defective efferocytosis is linked to the development of chronic inflammatory conditions, including atherosclerosis, neurological disorders, and autoimmune diseases. Moreover, the interplay between autophagy and efferocytosis is crucial for inflammation control, as autophagy enhances the ability of phagocytic cells. Efficient efferocytosis, in turn, regulates autophagic pathways, fostering a balanced cellular environment. Dysregulation of this balance can contribute to the pathogenesis of various disorders. Phytochemicals, bioactive compounds found in plants, have emerged as promising therapeutic agents owing to their diverse pharmacological properties, including antioxidant, anti-inflammatory, and immunomodulatory effects. This review aims to highlight the pivotal role of phytochemicals in enhancing efferocytosis and autophagy and explore their potential in the prevention and treatment of related disorders. This study examines how phytochemicals influence key aspects of efferocytosis, including phagocytic cell activation, macrophage polarization, and autophagy induction. The therapeutic potential of phytochemicals in atherosclerosis and neurological diseases is highlighted, emphasizing their ability to enhance efferocytosis and autophagy and reduce inflammation. This review also discusses innovative approaches, such as nanoformulations and combination therapies to improve the targeting and bioavailability of phytochemicals. Ultimately, this study inspires further research and clinical applications in phytochemical-mediated efferocytosis enhancement for managing chronic inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Hosseinpour-Soleimani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardshtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Yipeng Z, Chao C, Ranran L, Tingting P, Hongping Q. Metabolism: a potential regulator of neutrophil fate. Front Immunol 2024; 15:1500676. [PMID: 39697327 PMCID: PMC11652355 DOI: 10.3389/fimmu.2024.1500676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Neutrophils are essential components of the innate immune system that defend against the invading pathogens, such as bacteria, viruses, and fungi, as well as having regulatory roles in various conditions, including tissue repair, cancer immunity, and inflammation modulation. The function of neutrophils is strongly related to their mode of cell death, as different types of cell death involve various cellular and molecular alterations. Apoptosis, a non-inflammatory and programmed type of cell death, is the most common in neutrophils, while other modes of cell death, including NETOsis, necrosis, necroptosis, autophagy, pyroptosis, and ferroptosis, have specific roles in neutrophil function regulation. Immunometabolism refers to energy and substance metabolism in immune cells, and profoundly influences immune cell fate and immune system function. Intercellular and intracellular signal transduction modulate neutrophil metabolism, which can, in turn, alter their activities by influencing various cell signaling pathways. In this review, we compile an extensive body of evidence demonstrating the role of neutrophil metabolism in their various forms of cell death. The review highlights the intricate metabolic characteristics of neutrophils and their interplay with various types of cell death.
Collapse
Affiliation(s)
| | | | | | - Pan Tingting
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| | - Qu Hongping
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Dey S, Mohapatra S, Khokhar M, Hassan S, Pandey RK. Extracellular Vesicles in Malaria: Shedding Light on Pathogenic Depths. ACS Infect Dis 2024; 10:827-844. [PMID: 38320272 PMCID: PMC10928723 DOI: 10.1021/acsinfecdis.3c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
Malaria, a life-threatening infectious disease caused by Plasmodium falciparum, remains a significant global health challenge, particularly in tropical and subtropical regions. The epidemiological data for 2021 revealed a staggering toll, with 247 million reported cases and 619,000 fatalities attributed to the disease. This formidable global health challenge continues to perplex researchers seeking a comprehensive understanding of its pathogenesis. Recent investigations have unveiled the pivotal role of extracellular vesicles (EVs) in this intricate landscape. These tiny, membrane-bound vesicles, secreted by diverse cells, emerge as pivotal communicators in malaria's pathogenic orchestra. This Review delves into the multifaceted roles of EVs in malaria pathogenesis, elucidating their impact on disease progression and immune modulation. Insights into EV involvement offer potential therapeutic and diagnostic strategies. Integrating this information identifies targets to mitigate malaria's global impact. Moreover, this Review explores the potential of EVs as diagnostic biomarkers and therapeutic targets in malaria. By deciphering the intricate dialogue facilitated by these vesicles, new avenues for intervention and novel strategies for disease management may emerge.
Collapse
Affiliation(s)
- Sangita Dey
- CSO
Department, Cellworks Research India Pvt
Ltd, Bengaluru 560066, Karnataka, India
| | - Salini Mohapatra
- Department
of Biotechnology, Chandigarh University, Punjab 140413, India
| | - Manoj Khokhar
- Department
of Biochemistry, All India Institute of
Medical Sciences Jodhpur, Rajasthan 342005, India
| | - Sana Hassan
- Department
of Life Sciences, Manipal Academy of Higher
Education, Dubai 345050, United Arab Emirates
| | - Rajan Kumar Pandey
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
5
|
Mohammad-Rafiei F, Negahdari S, Tahershamsi Z, Gheibihayat SM. Interface between Resolvins and Efferocytosis in Health and Disease. Cell Biochem Biophys 2024; 82:53-65. [PMID: 37794303 DOI: 10.1007/s12013-023-01187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Acute inflammation resolution acts as a vital process for active host response, tissue support, and homeostasis maintenance, during which resolvin D (RvD) and E (RvE) as mediators derived from omega-3 polyunsaturated fatty acids display specific and stereoselective anti-inflammations like restricting neutrophil infiltration and pro-resolving activities. On the other side of the coin, potent macrophage-mediated apoptotic cell clearance, namely efferocytosis, is essential for successful inflammation resolution. Further studies mentioned a linkage between efferocytosis and resolvins. For instance, resolvin D1 (RvD1), which is endogenously formed from docosahexaenoic acid within the inflammation resolution, thereby provoking efferocytosis. There is still limited information regarding the mechanism of action of RvD1-related efferocytosis enhancement at the molecular level. The current review article was conducted to explore recent data on how the efferocytosis process and resolvins relate to each other during the inflammation resolution in illness and health. Understanding different aspects of this connection sheds light on new curative approaches for medical conditions caused by defective efferocytosis and disrupted inflammation resolution.
Collapse
Affiliation(s)
- Fatemeh Mohammad-Rafiei
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Samira Negahdari
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Munich, Germany.
| |
Collapse
|
6
|
Yazdani A, Bahrami F, Pourgholaminejad A, Moghadasali R. A biological and a mathematical model of SLE treated by mesenchymal stem cells covering all the stages of the disease. Theory Biosci 2023; 142:167-179. [PMID: 37071370 DOI: 10.1007/s12064-023-00390-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/10/2023] [Indexed: 04/19/2023]
Abstract
In this study, we proposed a biological model explaining the progress of autoimmune activation along different stages of systemic lupus erythematosus (SLE). For any upcoming stage of SLE, any new component is introduced, when it is added to the model. Particularly, the interaction of mesenchymal stem cells, with the components of the model, is specified in a way that both the inflammatory and anti-inflammatory functions of these cells would be covered. The biological model is then recapitulated to a model with less complexity that explains the main features of the problem. Later, a 7th-order mathematical model for SLE is proposed, based on this simplified model. Finally, the range of validity of the proposed mathematical model was assessed. For this purpose, we simulated the model and analyzed the simulation results in case of some known behaviors of the disease, such as tolerance breach, the appearance of systemic inflammation, development of clinical signs, and occurrence of flares and improvements. The model was able to reproduce these events, qualitatively.
Collapse
Affiliation(s)
- Ali Yazdani
- Human Motor Control and Computational Neuroscience Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fariba Bahrami
- Human Motor Control and Computational Neuroscience Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Arash Pourgholaminejad
- Department of Immunology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
7
|
Sun LWH, Asana Marican HT, Shen H. In Vivo Imaging of Radiation-Induced Apoptosis at Single-Cell Resolution in Transgenic Zebrafish Embryos. Radiat Res 2023; 199:229-239. [PMID: 36745564 DOI: 10.1667/rade-22-00174.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/17/2023] [Indexed: 02/07/2023]
Abstract
Among the various types of cell death induced by ionizing radiation, apoptosis is a highly regulated and well-characterized form. Investigating radiation-induced apoptosis in an intact organism offers advantages in capturing the dynamics of apoptosis under preserved physiology, although high resolution imaging remains challenging. Owing to their optical transparency and genetic amenability, zebrafish is an ideal animal model for research into this aspect. In this study, we present a secA5 transgenic zebrafish expressing genetically encoded secreted ANNEXIN V fused with mVenus, a yellow fluorescent protein that enables reporting of radiation-induced apoptosis. Using in vivo imaging approach, we show that after 2 Gy total-body irradiation, apoptosis could be visualized at single-cell resolution in different cell types throughout the embryo. Elevated apoptosis could be imaged and quantified in the neuroepithelium of the embryonic brain, as well as the proliferative zone and parenchyma of the larval brain. In addition, clearance of apoptotic cells by microglia, the professional phagocytes residing in the brain, could be imaged at single-cell resolution in irradiated larvae. These results establish transgenic secA5 zebrafish as a useful and versatile in vivo system for investigating the dynamic process of radiation-induced apoptosis.
Collapse
Affiliation(s)
| | | | - Hongyuan Shen
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| |
Collapse
|
8
|
Petrušić M, Stojić-Vukanić Z, Pilipović I, Kosec D, Prijić I, Leposavić G. Thymic changes as a contributing factor in the increased susceptibility of old Albino Oxford rats to EAE development. Exp Gerontol 2023; 171:112009. [PMID: 36334894 DOI: 10.1016/j.exger.2022.112009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
The study was aimed to examine putative contribution of thymic involution to ageing-associated increase in susceptibility of Albino Oxford (AO) rats to the development of clinical EAE, and vice versa influence of the disease on the progression of thymic involution. To this end we examined (i) the parameters of thymocyte negative selection efficacy, the thymic generation of CD4+CD25+Foxp3+ T regulatory cells (Tregs) and thymic capacity to instruct/predetermine IL-17-producing T-cell differentiation, and thymopietic efficacy-associated accumulation of "inflammescent" cytotoxic CD28- T cells in the periphery, and (ii) the key underlying mechanisms in young and old non-immunised AO rats and their counterparts immunised for EAE (on the 16th day post-immunisation when the disease in old rats reached the plateau) using flow cytometry analysis and/or RT-qPCR. It was found that thymic involution impairs: (i) the efficacy of negative selection (by affecting thymocyte expression of CD90, negative regulator of selection threshold and the expression of thymic stromal cell integrity factors) and (ii) Treg generation (by diminishing expression of cytokines supporting their differentiation/maturation). Additionally, the results suggest that thymic involution facilitates CD8+ T-cell differentiation into IL-17-producing cells (previously linked to the development of clinical EAE in old AO rats). Furthermore, they confirmed that ageing-related decrease in thymic T-cell output (as indicated by diminished frequency of recent thymic emigrants in peripheral blood) resulted in the accumulation of CD28- T cells in peripheral blood and, upon immunisation, in the target organ. On the other hand, the development of EAE (most likely by increasing circulatory levels of proinflammatory cytokines) contributed to the decline in thymic output of T cells, including Tregs, and thereby to the progression/maintenance of clinical EAE. Thus, in AO rats thymic involution via multi-layered mechanisms may favour the development of clinically manifested autoimmunity, which, in turn, precipitates the thymus atrophy.
Collapse
Affiliation(s)
- Marija Petrušić
- Department of Pathobiology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivana Prijić
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
9
|
Nguyen NH, Chen M, Chak V, Balu-Iyer SV. Biophysical Characterization of Tolerogenic Lipid-Based Nanoparticles Containing Phosphatidylcholine and Lysophosphatidylserine. J Pharm Sci 2022; 111:2072-2082. [PMID: 35108564 PMCID: PMC11075660 DOI: 10.1016/j.xphs.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/21/2022]
Abstract
Autoimmune conditions, allergies, and immunogenicity against therapeutic proteins are initiated by the unwanted immune response against self and non-self proteins. The development of tolerance induction approaches can offer an effective treatment modality for these clinical conditions. We recently showed that oral administration of lipidic nanoparticles containing phosphatidylcholine (PC) and lysophosphatidylserine (Lyso-PS) converted an immunogen to a tolerogen and induced immunological tolerance towards several antigens. While the biophysical properties such as lamellar characteristics of this binary lipid system are critical for stability, therapeutic delivery, and mechanism of tolerance induction, such information has not been thoroughly investigated. In the current study, we evaluated the lamellar phase properties of PC/Lyso-PS system using orthogonal biophysical methods such as fluorescence (steady-state, anisotropy, PSvue, and Laurdan), dynamic light scattering, and differential scanning calorimetry. The results showed that Lyso-PS partitioned into the PC bilayers and led to changes in the particles' lamellar phase properties, lipid-packing, and lipid-water dynamics. Additionally, the biophysical characteristics of PC/Lyso-PS system are different from the well-studied PC/double-chain phosphatidylserine (PS) system. Notably, the incorporation of Lyso-PS significantly reduced the hydrodynamic diameter of PC particles. Results from the in vivo uptake study and intestinal loop assay utilizing flow cytometry analysis also indicated that the uptake of Lyso-PS-containing nanoparticles by immune cells in the gut and Peyer's patches is significantly higher than that of double-chain PS due to the differential transport through microfold cells. It was also found that the acyl chain mismatch between PC and Lyso-PS is critical for the miscibility and particle stability. Collectively, the results suggest that these biophysical characteristics likely influence the in vivo behaviors and contribute to the oral tolerance property of PC/Lyso-PS system.
Collapse
Affiliation(s)
- Nhan H Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Manlin Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Vincent Chak
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
10
|
Wang J, Lu S, Zheng K, He Z, Li W, Liu J, Guo N, Xie Y, Chen D, Xu M, Wu Y. Treponema pallidum delays the apoptosis of human polymorphonuclear neutrophils through the intrinsic and extrinsic pathways. Mol Immunol 2022; 147:157-169. [PMID: 35597181 DOI: 10.1016/j.molimm.2022.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022]
Abstract
Treponema pallidum is a "stealth pathogen" responsible for infectious sexually transmitted diseases. Although neutrophils are usually present in skin lesions of early syphilis, the role of these cells in T. pallidum infection has barely been investigated. Neutrophils are short-lived cells that undergo constitutive apoptosis, and phagocytosis usually accelerates this process. Here, we demonstrated that human polymorphonuclear neutrophils (hPMNs) could phagocytose T. pallidum in vitro. An unexpected discovery was that T. pallidum inhibited hPMNs apoptosis markedly in an opsonin-independent manner. Furthermore, this phenomenon was not affected by bacterial viability, as detected by annexin V, morphology studies, and TUNEL staining. Exploration of the underlying mechanism showed that expression of the cleaved forms of caspase-3, -8, and -9 and effector caspase activity were diminished significantly in T. pallidum-infected hPMNs. T. pallidum also impaired staurosporine- and anti-Fas-induced signaling for neutrophil apoptosis. Of note, these effects were accompanied by inducing the autocrine production of the anti-apoptotic cytokine IL-8. Taken together, our data revealed that T. pallidum could inhibit the apoptosis of hPMNs through intrinsic and extrinsic pathways and provide new insights for understanding the pathogenicity mechanisms of T. pallidum.
Collapse
Affiliation(s)
- Jianye Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Simin Lu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Kang Zheng
- Clinical Laboratory, Hengyang Central Hospital, Hengyang, China
| | - Zhangping He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Weiwei Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Jie Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Ningyuan Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Yafeng Xie
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China; Department of Clinical Laboratory, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Dejun Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Man Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China.
| | - Yimou Wu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China.
| |
Collapse
|
11
|
Li X, Li Y, Xu A, Zhou D, Zhang B, Qi S, Chen Z, Wang X, Ou X, Cao B, Qu C, Huang J. Apoptosis-induced translocation of centromere protein F in its corresponding autoantibody production in hepatocellular carcinoma. Oncoimmunology 2021; 10:1992104. [PMID: 34676150 PMCID: PMC8525945 DOI: 10.1080/2162402x.2021.1992104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/03/2022] Open
Abstract
Serum autoantibodies against tumor-associated antigen have important value in the early diagnosis of hepatocellular carcinoma (HCC), but the mechanism of autoantibody production is poorly understood. We previously showed that autoantibodies against the centromere protein F (CENPF) may be useful as an early diagnostic marker for HCC. Here we explored the mechanism of cell apoptosis-based CENPF autoantibody production and verified the correlation of CENPF autoantibody level with HCC development. We demonstrated that CENPF was overexpressed and aberrantly localized throughout the nuclei and cytoplasm in human HCC cells compared with hepatic cells. CENPF overexpression promoted the production of CENPF autoantibodies in a manner that correlated with tumor growth of mouse HCC model. During apoptosis of HCC cells, CENPF protein translocated to apoptotic vesicles and relocalized at the cell surface. Through isolating apoptotic components, we found apoptotic body and blebs with lower CD31 and CD47 expression more effectively induced DC phagocytosis and maturation compared with apoptotic intact cells in vitro, and this DC response was independent of CENPF expression. Moreover, injection of mice with apoptotic bodies and blebs effectively induced an immune response and the production of CENPF-specific antibodies. Our findings provide a first elucidation of mechanisms underlying the CENPF autoantibody production via cell apoptosis-induced CENPF translocation, and demonstrate a direct correlation between CENPF autoantibody levels and HCC progression, suggesting the potential of CENPF autoantibody as an HCC diagnostic marker.
Collapse
Affiliation(s)
- Xiaojin Li
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanmeng Li
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Anjian Xu
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Donghu Zhou
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bei Zhang
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Saiping Qi
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhibin Chen
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Wang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaojuan Ou
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunfeng Qu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Huang
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Proteomic analysis of serum samples of paracoccidioidomycosis patients with severe pulmonary sequel. PLoS Negl Trop Dis 2021; 15:e0009714. [PMID: 34424905 PMCID: PMC8425554 DOI: 10.1371/journal.pntd.0009714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/08/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022] Open
Abstract
Background Pulmonary sequelae (PS) in patients with chronic paracoccidioidomycosis (PCM) typically include pulmonary fibrosis and emphysema. Knowledge of the molecular pathways involved in PS of PCM is required for treatment and biomarker identification. Methodology/Principal findings This non-concurrent cohort study included 29 patients with pulmonary PCM that were followed before and after treatment. From this group, 17 patients evolved to mild/ moderate PS and 12 evolved severe PS. Sera from patients were evaluated before treatment and at clinical cure, serological cure, and apparent cure. A nanoACQUITY UPLC-Xevo QT MS system and PLGS software were used to identify serum differentially expressed proteins, data are available via ProteomeXchange with identifier PXD026906. Serum differentially expressed proteins were then categorized using Cytoscape software and the Reactome pathway database. Seventy-two differentially expressed serum proteins were identified in patients with severe PS compared with patients with mild/moderate PS. Most proteins altered in severe PS were involved in wound healing, inflammatory response, and oxygen transport pathways. Before treatment and at clinical cure, signaling proteins participating in wound healing, complement cascade, cholesterol transport and retinoid metabolism pathways were downregulated in patients with severe PS, whereas signaling proteins in gluconeogenesis and gas exchange pathways were upregulated. At serological cure, the pattern of protein expression reversed. At apparent cure pathways related with tissue repair (fibrosis) became downregulated, and pathway related oxygen transport became upregulated. Additionally, we identified 15 proteins as candidate biomarkers for severe PS. Conclusions/Significance Development of severe PS is related to increased expression of proteins involved in glycolytic pathway and oxygen exchange), indicative of the greater cellular activity and replication associated with early dysregulation of wound healing and aberrant tissue repair. Our findings provide new targets to study mechanisms of PS in PCM, as well as potential biomarkers. Pulmonary fibrosis is the main sequel of paracoccidioidomycosis (PCM), a fungal disease that affects mainly men, rural workers. The development of pulmonary fibrosis is complex and involves several mechanisms that culminate in aberrant collagen production and deposition in the lungs making it became stiff and blocking the air passages. These changes lead to difficulty in breathing and in PCM patients dyspnea in response to high or low levels of exertion is common. Therefore, these patients show incapacity to work and the decreased quality of life. With the possibility of identifying some marker, for example, it could help the indication of respiratory physiotherapy, professional rehabilitation, or therapeutic intervention. This is the first study to examine the pulmonary sequelae (PS) in patients with paracoccidioidomycosis using an approach combining proteomics with bioinformatics. Here, we identify the specific proteome pattern found in PCM patients with severe sequelae that distinguishes these patients from that with mild/moderate sequelae. Our results showed that time points immediately before treatment and at clinical cure are key moments at which PS can progress to severe PS due a dysregulation in wound healing with consequent delayed in the healing processes resulting in an aberrant scar. As such, we suggest that the prognoses for severe PS should be considered as soon as possible and as early as diagnosis of PCM. Furthermore, we used proteomics to identify possible serum biomarkers with which to predict the likely development of severe PS, to be validated in future studies.
Collapse
|
13
|
Zhou L, Matsushima GK. Tyro3, Axl, Mertk receptor-mediated efferocytosis and immune regulation in the tumor environment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 361:165-210. [PMID: 34074493 DOI: 10.1016/bs.ircmb.2021.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three structurally related tyrosine receptor cell surface kinases, Tyro3, Axl, and Mertk (TAM) have been recognized to modulate immune function, tissue homeostasis, cardiovasculature, and cancer. The TAM receptor family appears to operate in adult mammals across multiple cell types, suggesting both widespread and specific regulation of cell functions and immune niches. TAM family members regulate tissue homeostasis by monitoring the presence of phosphatidylserine expressed on stressed or apoptotic cells. The detection of phosphatidylserine on apoptotic cells requires intermediary molecules that opsonize the dying cells and tether them to TAM receptors on phagocytes. This complex promotes the engulfment of apoptotic cells, also known as efferocytosis, that leads to the resolution of inflammation and tissue healing. The immune mechanisms dictating these processes appear to fall upon specific family members or may involve a complex of different receptors acting cooperatively to resolve and repair damaged tissues. Here, we focus on the role of TAM receptors in triggering efferocytosis and its consequences in the regulation of immune responses in the context of inflammation and cancer.
Collapse
Affiliation(s)
- Liwen Zhou
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC, United States
| | - Glenn K Matsushima
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC, United States; UNC Department of Microbiology & Immunology, University of North Carolina-CH, Chapel Hill, NC, United States; UNC Integrative Program for Biological & Genome Sciences, University of North Carolina-CH, Chapel Hill, NC, United States.
| |
Collapse
|
14
|
Felföldi B, Bódi I, Minkó K, Benyeda Z, Nagy N, Magyar A, Oláh I. Infection of bursal disease virus abrogates the extracellular glycoprotein in the follicular medulla. Poult Sci 2021; 100:101000. [PMID: 33690054 PMCID: PMC7938241 DOI: 10.1016/j.psj.2021.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/25/2020] [Accepted: 01/02/2021] [Indexed: 11/11/2022] Open
Abstract
In the medulla of bursal follicle, only the secretory dendritic cell (BSDC) is furnished with secretory machinery. The granular discharge of BSDC appears in membrane-bound and solubilized forms. Movat pentachrome staining proves that the solubilized form is a glycoprotein, which fills up the extracellular space of follicular medulla. The glycoprotein contributes to bursal microenvironment and may be attached to the surface of medullary lymphocytes. The secretory granules of BSDC may be fused, resulting in large, irregular dense bodies, which are the first sign of BSDC transformation to macrophage-like cells (Mal). To determine the effect of infectious bursal disease virus (IBDV) infection on the extracellular glycoprotein and BSDC, SPF chickens were experimentally infected with IBDV. On the surface of BSDC, the secretory substance is in high concentration, which may contribute to primary binding of IBDV to BSDC. The early distribution of IBDV infected cells is in consent with that BSDC. The IBDV infected BSDC rapidly transforms to Mal in which the glycoprotein staining appears. In the dense bodies, the packed virus particles inhibit the virus particles preventing the granular discharge, which may represent the first, early phase of virus replication cycle. The absence of extracellular glycoprotein results in alteration in the medullary microenvironment and subsequently B cell apoptosis. On the surface of medullary B cells, the solubilized secretory substance can be in much lower concentration, which results in secondary binding of IBDV to B cells. In secondary, late phase of virus replication cycle, the virus particles are not packed in electron dense substance which results in cytolytic lymphocytes and presence of virus in extracellular space. The Mal emigrates into the cortex, where induces inflammation, recruiting heterophil granulocyte and monocyte.
Collapse
Affiliation(s)
- Balázs Felföldi
- Scientific Support and Investigation Unit, Ceva-Phylaxia Co. Ltd., Ceva Animal Health, 1107 Budapest, Hungary
| | - Ildikó Bódi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094, Budapest, Hungary
| | - Krisztina Minkó
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094, Budapest, Hungary
| | | | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094, Budapest, Hungary
| | - Attila Magyar
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094, Budapest, Hungary
| | - Imre Oláh
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094, Budapest, Hungary.
| |
Collapse
|
15
|
Popescu GDA, Scheau C, Badarau IA, Dumitrache MD, Caruntu A, Scheau AE, Costache DO, Costache RS, Constantin C, Neagu M, Caruntu C. The Effects of Capsaicin on Gastrointestinal Cancers. Molecules 2020; 26:94. [PMID: 33379302 PMCID: PMC7794743 DOI: 10.3390/molecules26010094] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal (GI) cancers are a group of diseases with very high positions in the ranking of cancer incidence and mortality. While they show common features regarding the molecular mechanisms involved in cancer development, organ-specific pathophysiological processes may trigger distinct signaling pathways and intricate interactions with inflammatory cells from the tumoral milieu and mediators involved in tumorigenesis. The treatment of GI cancers is a topic of increasing interest due to the severity of these diseases, their impact on the patients' survivability and quality of life, and the burden they set on the healthcare system. As the efficiency of existing drugs is hindered by chemoresistance and adverse reactions when administered in high doses, new therapies are sought, and emerging drugs, formulations, and substance synergies are the focus of a growing number of studies. A class of chemicals with great potential through anti-inflammatory, anti-oxidant, and anti-tumoral effects is phytochemicals, and capsaicin in particular is the subject of intensive research looking to validate its position in complementing cancer treatment. Our paper thoroughly reviews the available scientific evidence concerning the effects of capsaicin on major GI cancers and its interactions with the molecular pathways involved in the course of these diseases.
Collapse
Affiliation(s)
| | - Cristian Scheau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.A.B.); (C.C.)
| | - Ioana Anca Badarau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.A.B.); (C.C.)
| | - Mihai-Daniel Dumitrache
- Departament of Pneumology IV, “Marius Nasta” Institute of Pneumophtysiology, 050159 Bucharest, Romania;
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania;
- Department of Preclinical Sciences, Faculty of Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Daniel Octavian Costache
- Department of Dermatology, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania;
| | - Raluca Simona Costache
- Gastroenterology and Internal Medicine Clinic, “Carol Davila” Central Military Emergency Hospital, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.A.B.); (C.C.)
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
16
|
Beckmann N, Huber F, Hanschen M, St Pierre Schneider B, Nomellini V, Caldwell CC. Scald Injury-Induced T Cell Dysfunction Can Be Mitigated by Gr1 + Cell Depletion and Blockage of CD47/CD172a Signaling. Front Immunol 2020; 11:876. [PMID: 32477354 PMCID: PMC7232553 DOI: 10.3389/fimmu.2020.00876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Infection is a common and severe complication of burn injury: Sepsis accounts for 47% of postburn mortality. Burn-induced T cell suppression likely contributes to the increased infection susceptibility in burn patients. However, little is known about the kinetics of T cell dysfunction after burn and its underlying mechanisms. In this study, we show in a murine scald injury model that T cell activation of both CD4+ and CD8+ T cells as well as T cell cytokine production is suppressed acutely and persistently for at least 11 days after burn injury. Purified T cells from scald-injured mice exhibit normal T cell functions, indicating an extrinsically mediated defect. We further show that T cell dysfunction after burn appears to be cell-to-cell contact dependent and can be ameliorated by depletion of myeloid-derived suppressor cells. These cells expand after burn injury, particularly a subset expressing the checkpoint inhibitor CD172a, and infiltrate germinal centers. Expression of CD172a appears to be driven by ingestion of immature reticulocytes. Immature reticulocytes are drastically increased in the spleen of scald mice and may contribute to immunosuppression through more direct mechanisms as well. Overall, our study newly identifies two cell populations, myeloid-derived suppressor cells and immature reticulocytes, as well as the CD47/CD172a-signaling pathways as mediators of T cell suppressors after burn and thus opens up new research opportunities in the search for new therapies to combat increased infection susceptibility and the associated morbidity and mortality in burn victims.
Collapse
Affiliation(s)
- Nadine Beckmann
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, OH, United States
| | - Franziska Huber
- Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marc Hanschen
- Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Vanessa Nomellini
- Division of Research, Shriner's Hospital for Children Cincinnati, Cincinnati, OH, United States.,Division of Trauma Critical Care and Acute Care Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Charles C Caldwell
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, OH, United States.,Division of Research, Shriner's Hospital for Children Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
17
|
Nguyen MVC, Courtier A, Adrait A, Defendi F, Couté Y, Baillet A, Guigue L, Gottenberg JE, Dumestre-Pérard C, Brun V, Gaudin P. Fetuin-A and thyroxin binding globulin predict rituximab response in rheumatoid arthritis patients with insufficient response to anti-TNFα. Clin Rheumatol 2020; 39:2553-2562. [PMID: 32212002 DOI: 10.1007/s10067-020-05030-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/07/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is a debilitating disease, but patient management and treatment have been revolutionized since the advent of bDMARDs. However, about one third of RA patients do not respond to specific bDMARD treatment without clear identified reasons. Different bDMARDs must be tried until the right drug is found. Here, we sought to identify a predictive protein signature to stratify patient responsiveness to rituximab (RTX) among patients with an insufficient response to a first anti-TNFα treatment. METHODS Serum samples were collected at baseline before RTX initiation. A proteomics study comparing responders and nonresponders was conducted to identify and select potential predictive biomarkers whose concentration was measured by quantitative assays. Logistic regression was performed to determine the best biomarker combination to predict good or nonresponse to RTX (EULAR criteria after 6 months' treatment). RESULTS Eleven biomarkers potentially discriminating between responders and nonresponders were selected following discovery proteomics. Quantitative immunoassays and univariate statistical analysis showed that fetuin-A and thyroxine binding globulin (TBG) presented a good capacity to discriminate between patient groups. A logistic regression analysis revealed that the combination of fetuin-A plus TBG could accurately predict a patient's responsiveness to RTX with an AUC of 0.86, sensitivity of 80%, and a specificity of 79%. CONCLUSION In RA patients for whom a first anti-TNFα treatment has failed, the serum abundance of fetuin-A and TBG before initiating RTX treatment is an indicator for their response status at 6 months. ClinicalTrials.gov identifier: NCT01000441. Key Points • Proteomic analysis revealed 11 putative predictive biomarkers to discriminate rituximab responder vs. nonresponder RA patients. • Fetuin-A and TBG are significantly differentially expressed at baseline in rituximab responder vs. nonresponder RA patients. • Algorithm combining fetuin-A and TBG accurately predicts response to rituximab in RA patients with insufficient response to TNFi.
Collapse
Affiliation(s)
- Minh Vu Chuong Nguyen
- GREPI EA 7408, Université Grenoble Alpes, 38000, Grenoble, France. .,Sinnovial, 38000, Grenoble, France.
| | | | - Annie Adrait
- Inserm, CEA, Biologie à Grande Echelle, Université Grenoble Alpes, F-38000, Grenoble, France
| | - Federica Defendi
- Laboratoire d'Immunologie, Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000, Grenoble Cedex 9, France
| | - Yohann Couté
- Inserm, CEA, Biologie à Grande Echelle, Université Grenoble Alpes, F-38000, Grenoble, France
| | - Athan Baillet
- GREPI EA 7408, Université Grenoble Alpes, 38000, Grenoble, France.,Rheumatology Department, Centre Hospitalier Universitaire Grenoble Alpes, Hôpital Sud Echirolles, 38130, Echirolles, France
| | | | - Jacques-Eric Gottenberg
- Department of Rheumatology, National Reference Center for Rare Systemic Autoimmune Diseases, Strasbourg. University Hospital, CNRS, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of excellence MEDALIS, Université de Strasbourg, Hôpital Hautepierre, 1 Ave Molière, 67000, Strasbourg, France
| | - Chantal Dumestre-Pérard
- Laboratoire d'Immunologie, Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000, Grenoble Cedex 9, France
| | - Virginie Brun
- Inserm, CEA, Biologie à Grande Echelle, Université Grenoble Alpes, F-38000, Grenoble, France
| | - Philippe Gaudin
- GREPI EA 7408, Université Grenoble Alpes, 38000, Grenoble, France.,Rheumatology Department, Centre Hospitalier Universitaire Grenoble Alpes, Hôpital Sud Echirolles, 38130, Echirolles, France
| |
Collapse
|
18
|
Pezzotti G, Zhu W, Adachi T, Horiguchi S, Marin E, Boschetto F, Ogitani E, Mazda O. Metabolic machinery encrypted in the Raman spectrum of influenza A virus-inoculated mammalian cells. J Cell Physiol 2019; 235:5146-5170. [PMID: 31710091 DOI: 10.1002/jcp.29392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 10/15/2019] [Indexed: 12/22/2022]
Abstract
Raman spectroscopy was applied with a high spectral resolution to a structural study of Influenza (type A) virus before and after its inoculation into Madin-Darby canine kidney cells. This study exploits the fact that the major virus and cell constituents, namely DNA/RNA, lipid, and protein molecules, exhibit peculiar fingerprints in the Raman spectrum, which clearly differed between cells and viruses, as well as before and after virus inoculation into cells. These vibrational features, which allowed us to discuss viral assembly, membrane lipid evolution, and nucleoprotein interactions of the virus with the host cells, reflected the ability of the virus to alter host cells' pathways to enhance its replication efficiency. Upon comparing Raman signals from the host cells before and after virus inoculation, we were also able to discuss in detail cell metabolic reactions against the presence of the virus in terms of compositional variations of lipid species, the formation of fatty acids, dephosphorylation of high-energy adenosine triphosphate molecules, and enzymatic hydrolysis of the hemagglutinin glycoprotein.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Faculty of Materials Science and Engineering, Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan.,Department of Orthopedic Surgery, Tokyo Medical University, Tokyo, Japan.,The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wenliang Zhu
- Faculty of Materials Science and Engineering, Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Tetsuya Adachi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Horiguchi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Elia Marin
- Faculty of Materials Science and Engineering, Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Francesco Boschetto
- Faculty of Materials Science and Engineering, Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan.,Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eriko Ogitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
19
|
Combinatorial Cytotoxic Effects of Gelam Honey and 5-Fluorouracil against Human Adenocarcinoma Colon Cancer HT-29 Cells In Vitro. Int J Cell Biol 2019; 2019:3059687. [PMID: 30923553 PMCID: PMC6408991 DOI: 10.1155/2019/3059687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/09/2019] [Accepted: 01/17/2019] [Indexed: 11/18/2022] Open
Abstract
Combination of natural products with chemodrugs is becoming a trend in discovering new therapeutics approach for enhancing the cancer treatment process. In the present study, we aimed to investigate the cytotoxic and apoptosis induction of Gelam honey (GH) combined with or without 5-Fluorouracil (5-FU) on HT-29 cells. The cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay to assess cytotoxicity. Morphological changes and apoptosis were determined by the inverted microscope, Annexin V-FITC, and DNA fragmentation via flow cytometric analysis, respectively. Our results demonstrate that combined treatment revealed a remarkable and concentration-dependent cytotoxic effect on HT-29 cells in comparison with GH and 5-FU alone. Flow cytometry analysis showed that early apoptosis event was more pronounced in combined treatment. In addition, compared to 5-FU alone, apoptosis of HT-29 cells treated with combinations of GH and 5-FU demonstrated increasing percentages of fragmented DNA. Our results suggest that GH has a synergistic cytotoxic effect with 5-FU in HT-29 cell lines in vitro. Although the actions of the molecular mechanisms are not yet clear, the results reveal that the combination of GH and 5-FU could have the potential as a therapeutic agent.
Collapse
|
20
|
Kumari S, Achazi K, Dey P, Haag R, Dernedde J. Design and Synthesis of PEG-Oligoglycerol Sulfates as Multivalent Inhibitors for the Scavenger Receptor LOX-1. Biomacromolecules 2019; 20:1157-1166. [PMID: 30642176 DOI: 10.1021/acs.biomac.8b01416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a cell surface scavenger receptor. The protein is involved in binding and internalization of oxidized low-density lipoprotein (oxLDL), which leads under pathophysiological circumstances to plaque formation in arteries and initiation of atherosclerosis. A structural feature of LOX-1 relevant to oxLDL binding is the "basic spine" motif consisting of linearly aligned arginine residues stretched over the dimer surface. Inhibition of LOX-1 can be done by blocking these positively charged motifs. Here we report on the design, synthesis, and evaluation of a series of novel LOX-1 inhibitors having different numbers of sulfates and polyethylene glycerol (PEG) spacer. Two molecules, compounds 6b and 6d, showed binding affinity in the low nM range, i.e. 45.8 and 47.4 nM, respectively. The in vitro biological studies reveal that these molecules were also able to block the interaction of LOX-1 with its cognate ligands oxLDL, aged RBC, and bacteria.
Collapse
Affiliation(s)
- Shalini Kumari
- Institute for Chemistry and Biochemistry, Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Katharina Achazi
- Institute for Chemistry and Biochemistry, Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Pradip Dey
- Institute for Chemistry and Biochemistry, Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin , Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1 , 13353 Berlin , Germany
| |
Collapse
|
21
|
Liu Y, Dong J, Ren B. MicroRNA-182-5p contributes to the protective effects of thrombospondin 1 against lipotoxicity in INS-1 cells. Exp Ther Med 2018; 16:5272-5279. [PMID: 30546417 DOI: 10.3892/etm.2018.6883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/26/2018] [Indexed: 12/25/2022] Open
Abstract
The dysfunction of beta cells serves an important role in the pathogenesis of type 2 diabetes mellitus (T2DM). An improved understanding of the molecular mechanisms underlying beta cell mass and failure will be useful for identifying novel approaches toward preventing and treating this disease. Recent studies have indicated that free fatty acids (FFAs) can cause beta cell dysfunction. In the present study, palmitate (Pal) was used as a FFA and its functions on cell viability and apoptosis were detected. MTT assay and flow cytometry were used and the results revealed that incubation of INS-1 cells with Pal significantly decreased cell viability and increased cell apoptosis. However, a co-incubation with thrombospondin 1 (THBS-1) protected the cells against Pal-induced toxicity. Numerous studies have demonstrated that microRNAs (miRs) are involved in fatty acid-induced beta cell dysfunction. Various studies have reported that miR-182-5p is associated with a number of diseases, including cancer, heart disease, and leukemia. However, to the best of our knowledge miR-182-5p has never been reported to be associated with diabetes. In the present study, miR-182-5p, which is predicted to target the 3'-untranslated region (UTR) of THBS-1, was detected using reverse transcription-quantitative polymerase chain reaction in INS-1 cells in response to Pal. miR-182-5p was significantly increased in Pal-treated cells compared with the control cells. Furthermore, miR-182-5p mimics significantly decreased cell viability and increased Pal-induced apoptosis in INS-1 cells. However, cell viability was increased and Pal-induced apoptosis was decreased in cells that were treated with miR-182-5p inhibitors. The present findings also revealed that overexpression of THBS-1 counteracted the effect of miR-182-5p on cell viability and apoptosis. These results suggested that miR-182-5p is involved in the mechanism of THBS 1 on the modulation of beta cell survival.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Laboratory of Birth Defects and Related Disease of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Jiayue Dong
- Department of Traditional Chinese Medicine, College of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| | - Bo Ren
- Department of Traditional Chinese Medicine, College of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| |
Collapse
|
22
|
Alti D, Sambamurthy C, Kalangi SK. Emergence of Leptin in Infection and Immunity: Scope and Challenges in Vaccines Formulation. Front Cell Infect Microbiol 2018; 8:147. [PMID: 29868503 PMCID: PMC5954041 DOI: 10.3389/fcimb.2018.00147] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/20/2018] [Indexed: 01/01/2023] Open
Abstract
Deficiency of leptin (ob/ob) and/or desensitization of leptin signaling (db/db) and elevated expression of suppressor of cytokine signaling-3 (SOCS3) reported in obesity are also reported in a variety of pathologies including hypertriglyceridemia, insulin resistance, and malnutrition as the risk factors in host defense system. Viral infections cause the elevated SOCS3 expression, which inhibits leptin signaling. It results in immunosuppression by T-regulatory cells (Tregs). The host immunity becomes incompetent to manage pathogens' attack and invasion, which results in the accelerated infections and diminished vaccine-specific antibody response. Leptin was successfully used as mucosal vaccine adjuvant against Rhodococcus equi. Leptin induced the antibody response to Helicobacter pylori vaccination in mice. An integral leptin signaling in mucosal gut epithelial cells offered resistance against Clostridium difficile and Entameoba histolytica infections. We present in this review, the intervention of leptin in lethal diseases caused by microbial infections and propose the possible scope and challenges of leptin as an adjuvant tool in the development of effective vaccines.
Collapse
Affiliation(s)
- Dayakar Alti
- School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Suresh K Kalangi
- School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
23
|
Motwani MP, Colas RA, George MJ, Flint JD, Dalli J, Richard-Loendt A, De Maeyer RP, Serhan CN, Gilroy DW. Pro-resolving mediators promote resolution in a human skin model of UV-killed Escherichia coli-driven acute inflammation. JCI Insight 2018; 3:94463. [PMID: 29563331 PMCID: PMC5926908 DOI: 10.1172/jci.insight.94463] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 02/20/2018] [Indexed: 12/22/2022] Open
Abstract
While the treatment of inflammatory disorders is generally based on inhibiting factors that drive onset of inflammation, these therapies can compromise healing (NSAIDs) or dampen immunity against infections (biologics). In search of new antiinflammatories, efforts have focused on harnessing endogenous pathways that drive resolution of inflammation for therapeutic gain. Identification of specialized pro-resolving mediators (SPMs) (lipoxins, resolvins, protectins, maresins) as effector molecules of resolution has shown promise in this regard. However, their action on inflammatory resolution in humans is unknown. Here, we demonstrate using a model of UV-killed Escherichia coli–triggered skin inflammation that SPMs are biosynthesized at the local site at the start of resolution, coinciding with the expression of receptors that transduce their actions. These include receptors for lipoxin A4 (ALX/FPR2), resolvin E1 (ChemR23), resolvin D2 (GPR18), and resolvin D1 (GPR32) that were differentially expressed on the endothelium and infiltrating leukocytes. Administering SPMs into the inflamed site 4 hours after bacterial injection caused a reduction in PMN numbers over the ensuing 6 hours, the phase of active resolution in this model. These results indicate that in humans, the appearance of SPMs and their receptors is associated with the beginning of inflammatory resolution and that their therapeutic supplementation enhanced the resolution response. In humans, the appearance of specialized pro-resolving lipid mediators and their receptors is associated with the start of inflammatory resolution.
Collapse
Affiliation(s)
- Madhur P Motwani
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, United Kingdom
| | - Romain A Colas
- Lipid Mediator Unit, Biochemical Pharmacology, William Harvey Research Institute, Bart's and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Marc J George
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, United Kingdom
| | - Julia D Flint
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, United Kingdom
| | - Jesmond Dalli
- Lipid Mediator Unit, Biochemical Pharmacology, William Harvey Research Institute, Bart's and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Angela Richard-Loendt
- Division of Neuropathology and, Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom
| | - Roel Ph De Maeyer
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, United Kingdom
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Derek W Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
24
|
Motwani MP, Bennett F, Norris PC, Maini AA, George MJ, Newson J, Henderson A, Hobbs AJ, Tepper M, White B, Serhan CN, MacAllister R, Gilroy DW. Potent Anti-Inflammatory and Pro-Resolving Effects of Anabasum in a Human Model of Self-Resolving Acute Inflammation. Clin Pharmacol Ther 2018; 104:675-686. [PMID: 29238967 PMCID: PMC6175297 DOI: 10.1002/cpt.980] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/31/2017] [Accepted: 11/25/2017] [Indexed: 12/13/2022]
Abstract
Anabasum is a synthetic analog of Δ8‐tetrahydrocannabinol (THC)‐11‐oic acid that in preclinical models of experimental inflammation exerts potent anti‐inflammatory actions with minimal central nervous system (CNS) cannabimimetic activity. Here we used a novel model of acute inflammation driven by i.d. UV‐killed E. coli in healthy humans and found that anabasum (5 mg) exerted a potent anti‐inflammatory effect equivalent to that of prednisolone in terms of inhibiting neutrophil infiltration, the hallmark of acute inflammation. These effects arose from the inhibition of the neutrophil chemoattractant LTB4, while the inhibition of antiphagocytic prostanoids (PGE2, TxB2, and PGF2α) resulted in enhanced clearance of inflammatory stimulus from the injected site. Anabasum at the higher dose of 20 mg possessed the additional properties of triggering the biosynthesis of specialized pro‐resolving lipid mediators including LXA4, LXB4, RvD1, and RvD3. Collectively, we demonstrate for the first time a striking anti‐inflammatory and pro‐resolution effects of a synthetic analog of THC in healthy humans.
Collapse
Affiliation(s)
- Madhur P Motwani
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| | - Frances Bennett
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| | - Paul C Norris
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander A Maini
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| | - Marc J George
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| | - Justine Newson
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| | - Alice Henderson
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Heart Centre, Barts & the London School of Medicine, Queen Mary University of London, London, UK
| | - Mark Tepper
- Corbus Pharmaceuticals, Norwood, Massachusetts, USA
| | | | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Raymond MacAllister
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| | - Derek W Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| |
Collapse
|
25
|
Olave C, Morales N, Uberti B, Henriquez C, Sarmiento J, Ortloff A, Folch H, Moran G. Tamoxifen induces apoptotic neutrophil efferocytosis in horses. Vet Res Commun 2018; 42:57-63. [PMID: 29297134 DOI: 10.1007/s11259-017-9709-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/26/2017] [Indexed: 02/08/2023]
Abstract
Macrophages and neutrophils are important cellular components in the process of acute inflammation and its subsequent resolution, and evidence increasingly suggests that they play important functions during the resolution of chronic, adaptive inflammatory processes. Exacerbated neutrophil activity can be harmful to surrounding tissues; this is important in a range of diseases, including allergic asthma and chronic obstructive pulmonary disease in humans, and equine asthma (also known as recurrent airway obstruction (RAO). Tamoxifen (TX) is a non-steroidal estrogen receptor modulator with effects on cell growth and survival. Previous studies showed that TX treatment in horses with induced acute pulmonary inflammation promoted early apoptosis of blood and BALF neutrophils, reduction of BALF neutrophils, and improvement in animals' clinical status. The aim of this study was to describe if TX induces in vitro efferocytosis of neutrophils by alveolar macrophages. Efferocytosis assay, myeloperoxidase (MPO) detection and translocation phosphatidylserine (PS) were performed on neutrophils isolated from peripheral blood samples from five healthy horses. In in vitro samples from heathy horses, TX treatment increases the phenomenon of efferocytosis of peripheral neutrophils by alveolar macrophages. Similar increases in supernatant MPO concentration and PS translocation were observed in TX-treated neutrophils, compared to control cells. In conclusion, these results confirm that tamoxifen has a direct effect on equine peripheral blood neutrophils, through stimulation of the engulfment of apoptotic neutrophils by alveolar macrophages.
Collapse
Affiliation(s)
- C Olave
- Department of Pharmacology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - N Morales
- Department of Pharmacology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - B Uberti
- Department of Clinical Veterinary Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - C Henriquez
- Department of Pharmacology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - J Sarmiento
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - A Ortloff
- College of Veterinary Medicine, Universidad Catolica de Temuco, Temuco, Chile
| | - H Folch
- Department of Immunology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - G Moran
- Department of Pharmacology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
26
|
Bao W, Luo Y, Wang D, Li J, Wu X, Mei W. Sodium salicylate modulates inflammatory responses through AMP-activated protein kinase activation in LPS-stimulated THP-1 cells. J Cell Biochem 2018; 119:850-860. [PMID: 28661045 PMCID: PMC5724678 DOI: 10.1002/jcb.26249] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 06/28/2017] [Indexed: 12/27/2022]
Abstract
Sodium salicylate (NaSal) is a nonsteroidal anti-inflammatory drug. The putative mechanisms for NaSal's pharmacologic actions include the inhibition of cyclooxygenases, platelet-derived thromboxane A2, and NF-κB signaling. Recent studies demonstrated that salicylate could activate AMP-activated protein kinase (AMPK), an energy sensor that maintains the balance between ATP production and consumption. The anti-inflammatory action of AMPK has been reported to be mediated by promoting mitochondrial biogenesis and fatty acid oxidation. However, the exact signals responsible for salicylate-mediated inflammation through AMPK are not well-understood. In the current study, we examined the potential effects of NaSal on inflammation-like responses of THP-1 monocytes to lipopolysaccharide (LPS) challenge. THP-1 cells were stimulated with or without 10 ug/mL LPS for 24 h in the presence or absence of 5 mM NaSal. Apoptosis was measured by flow cytometry using Annexin V/PI staining and by Western blotting for the Bcl-2 anti-apoptotic protein. Cell proliferation was detected by EdU incorporation and by Western blot analysis for proliferating cell nuclear antigen (PCNA). Secretion of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) was determined by enzyme-linked immunosorbent assay (ELISA). We observed that the activation of AMPK by NaSal was accompanied by induction of apoptosis, inhibition of cell proliferation, and increasing secretion of TNF-α and IL-1β. These effects were reversed by Compound C, an inhibitor of AMPK. In addition, NaSal/AMPK activation inhibited LPS-induced STAT3 phosphorylation, which was reversed by Compound C treatment. We conclude that AMPK activation is important for NaSal-mediated inflammation by inducing apoptosis, reducing cell proliferation, inhibiting STAT3 activity, and producing TNF-α and IL-1β.
Collapse
Affiliation(s)
- Weiwei Bao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Department of Anesthesiology, Xinqiao HospitalThe Third Military Medical UniversityChongqingChina
| | - Yaru Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Department of Anesthesiology, Renmin Hospital of Wuhan UniversityHubei ProvinceWuhanHubeiChina
| | - Dan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Jian Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Department of AnesthesiologyShenzhen Second People's HospitalGuangdong ProvinceShenzhenChina
| | - Xi Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
27
|
D'Alpino PHP, Moura GEDDD, Barbosa SCDA, Marques LDA, Eberlin MN, Nascimento FD, Tersariol ILDS. Differential cytotoxic effects on odontoblastic cells induced by self-adhesive resin cements as a function of the activation protocol. Dent Mater 2017; 33:1402-1415. [DOI: 10.1016/j.dental.2017.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/19/2017] [Accepted: 09/20/2017] [Indexed: 11/15/2022]
|
28
|
Abstract
Cutaneous wound repair is a complex, dynamic process with the goal of rapidly sealing any breach in the skin's protective barrier. Myeloid cells compose a significant proportion of the inflammatory cells recruited to a wound site and play important roles in decontaminating the injured tissue of any invading microorganisms. Subsequently, myeloid cells are able to influence many aspects of the healing response, in part through their capacity to release a large array of signaling molecules that allow them to communicate with and regulate the behavior of other wound cells and in turn, be themselves exquisitely regulated by the wound microenvironment. Macrophages, for example, appear to play important, temporally changing roles in the initiation of scarring and subsequently in matrix remodeling to resolve fibrosis. In this way, myeloid cells seem to play both positive (e.g., pathogen killing and matrix remodeling) and negative (e.g., scarring) roles in wound repair. Further research is of course needed to elucidate the precise temporal and spatial myeloid cell phenotypes and behaviors and ultimately to design effective strategies to optimize the beneficial functions of these cells while minimizing their detrimental contributions to improve wound healing in the clinic.
Collapse
|
29
|
The role of free kappa and lambda light chains in the pathogenesis and treatment of inflammatory diseases. Biomed Pharmacother 2017; 91:632-644. [PMID: 28494417 DOI: 10.1016/j.biopha.2017.04.121] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/08/2017] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
|
30
|
Tumor suppressor p53 induces apoptosis of host lymphocytes experimentally infected by Leishmania major, by activation of Bax and caspase-3: a possible survival mechanism for the parasite. Parasitol Res 2017; 116:2159-2166. [PMID: 28560572 DOI: 10.1007/s00436-017-5517-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/22/2017] [Indexed: 11/27/2022]
Abstract
Apoptosis of infected host macrophages by Leishmania spp. is mainly addressed as one of the survival mechanisms of the parasite. However, there is no eligible data about whether tumor suppressor p53 could induce the apoptosis of host lymphocytes-treated Leishmania major via the mitochondrial intrinsic pathway. In this study, the amastigotes of L. major obtained from ten cutaneous leishmaniases (CL) patients were separately isolated and cultured in N.N.N and RPMI 1640 media. L. major was definitely confirmed by targeting Cyt b gene following sequencing. Subsequently, 2-3 × 106 lymphocytes obtained from ten healthy individuals were isolated and co-cultured with 1-2 × 106 L. major promastigotes. Following 6 h of exposure time, the enzymatic activity of caspase-3 was determined by fluorometric assay in each L. major-treated lymphocytes and cell control (only lymphocyte). The mRNA expressions of Bax, Bcl-2, p53, and caspase-3 genes were assessed by quantitative real-time-PCR analysis following 6 to 9 h of exposure times. The Bcl-2 mRNA expression in L. major-treated lymphocytes was 100-fold down-regulated relative to cell control. The mRNA expressions of p53 and caspase-3 were over-expressed 1.8- and 3.2-fold up-regulated relative to control lymphocytes, respectively. The Bax/Bcl-2 ratio and caspase-3 activity were higher than the control group (Pv <0.05). The current new findings indicate that the apoptotic effects of L. major-treated host lymphocytes dependent on p53 tumor suppressor via mitochondrial pathway may probably address as an auxiliary survival mechanism of L. major in CL patients. However, here is much work ahead to figure out the multiple functions played by apoptosis in the evasion of L. major.
Collapse
|
31
|
Kinkead LC, Fayram DC, Allen LAH. Francisella novicida inhibits spontaneous apoptosis and extends human neutrophil lifespan. J Leukoc Biol 2017; 102:815-828. [PMID: 28550119 DOI: 10.1189/jlb.4ma0117-014r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 01/09/2023] Open
Abstract
Francisella novicida is a Gram-negative bacterium that is closely related to the highly virulent facultative intracellular pathogen, Francisella tularensis Data published by us and others demonstrate that F. tularensis virulence correlates directly with its ability to impair constitutive apoptosis and extend human neutrophil lifespan. In contrast, F. novicida is attenuated in humans, and the mechanisms that account for this are incompletely defined. Our published data demonstrate that F. novicida binds natural IgG that is present in normal human serum, which in turn, elicits NADPH oxidase activation that does not occur in response to F. tularensis As it is established that phagocytosis and oxidant production markedly accelerate neutrophil death, we predicted that F. novicida may influence the neutrophil lifespan in an opsonin-dependent manner. To test this hypothesis, we quantified bacterial uptake, phosphatidylserine (PS) externalization, and changes in nuclear morphology, as well as the kinetics of procaspase-3, -8, and -9 processing and activation. To our surprise, we discovered that F. novicida not only failed to accelerate neutrophil death but also diminished and delayed apoptosis in a dose-dependent, but opsonin-independent, manner. In keeping with this, studies of conditioned media (CM) showed that neutrophil longevity could be uncoupled from phagocytosis and that F. novicida stimulated neutrophil secretion of CXCL8. Taken together, the results of this study reveal shared and unique aspects of the mechanisms used by Francisella species to manipulate neutrophil lifespan and as such, advance understanding of cell death regulation during infection.
Collapse
Affiliation(s)
- Lauren C Kinkead
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Microbiology, University of Iowa, Iowa City, Iowa, USA.,Iowa City VA Medical Center, Iowa City, Iowa, USA
| | - Drew C Fayram
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Microbiology, University of Iowa, Iowa City, Iowa, USA
| | - Lee-Ann H Allen
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA; .,Department of Microbiology, University of Iowa, Iowa City, Iowa, USA.,Iowa City VA Medical Center, Iowa City, Iowa, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA; and
| |
Collapse
|
32
|
Programmed Cell Death During Caenorhabditis elegans Development. Genetics 2017; 203:1533-62. [PMID: 27516615 DOI: 10.1534/genetics.115.186247] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/22/2016] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general.
Collapse
|
33
|
Quan H, Park HC, Kim Y, Yang HC. Modulation of the anti-inflammatory effects of phosphatidylserine-containing liposomes by PEGylation. J Biomed Mater Res A 2017; 105:1479-1486. [DOI: 10.1002/jbm.a.35981] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Hongxuan Quan
- Department of Dental Biomaterials Science and Dental Research Institute; School of Dentistry, Seoul National University; 101 Daehak-ro, Jongno-gu Seoul 03080 Korea
| | - Hee Chul Park
- Department of Dental Biomaterials Science and Dental Research Institute; School of Dentistry, Seoul National University; 101 Daehak-ro, Jongno-gu Seoul 03080 Korea
| | - Yongjoon Kim
- Department of Dental Biomaterials Science and Dental Research Institute; School of Dentistry, Seoul National University; 101 Daehak-ro, Jongno-gu Seoul 03080 Korea
| | - Hyeong-Cheol Yang
- Department of Dental Biomaterials Science and Dental Research Institute; School of Dentistry, Seoul National University; 101 Daehak-ro, Jongno-gu Seoul 03080 Korea
| |
Collapse
|
34
|
Joós G, Jákim J, Kiss B, Szamosi R, Papp T, Felszeghy S, Sághy T, Nagy G, Szondy Z. Involvement of adenosine A3 receptors in the chemotactic navigation of macrophages towards apoptotic cells. Immunol Lett 2017; 183:62-72. [PMID: 28188820 DOI: 10.1016/j.imlet.2017.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 11/16/2022]
Abstract
The first step in the clearance of apoptotic cells is chemotactic migration of macrophages towards the apoptotic cells guided by find-me signals provided by the dying cells. Upon sensing the chemotactic signals, macrophages release ATP. ATP is then degraded to ADP, AMP and adenosine to trigger purinergic receptors concentrated at the leading edge of the cell. Previous studies have shown that in addition to the chemotactic signals, this purinergic autocrine signaling is required to amplify and translate chemotactic signals into directional motility. In the present study the involvement of adenosine A3 receptors (A3R) was studied in the chemotactic migration of macrophages directed by apoptotic thymocyte-derived find-me signals. By taking video images in vitro, we demonstrate 1, by administering apyrase, which degrades ATP and ADP, that the purinergic autocrine signaling is required for maintaining both the velocity and the directionality of macrophage migration towards the apoptotic thymocytes; 2, by readding 5'-N-ethylcarboxamidoadenosine, an adenosine analogue, to apyrase treated cells that the adenosine receptor signaling alone is sufficient to act so; and 3, by studying migration of various adenosine receptor null or adenosine receptor antagonist-treated macrophages, that the individual loss of the A3R signaling leads to the loss of chemotactic navigation. Though loss of A3Rs does not affect the phagocytotic capacity of macrophages, intraperitoneally-injected apoptotic thymocytes were cleared with a delayed kinetics by A3R null macrophages in vivo due to the impaired chemotactic navigation. All together these data demonstrate the involvement of macrophage A3Rs in the proper chemotactic navigation and consequent in vivo clearance of apoptotic cells. Interestingly, loss of A3Rs did not affect the in vivo clearance of apoptotic thymocytes in the dexamethasone-treated thymus.
Collapse
Affiliation(s)
- Gergely Joós
- Dental Biochemistry Section, Department of Biochemistry and Molecular Biology, Faculty of Dentistry, Research Center of Molecular Medicine, Hungary
| | - Judit Jákim
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, Hungary
| | - Beáta Kiss
- Dental Biochemistry Section, Department of Biochemistry and Molecular Biology, Faculty of Dentistry, Research Center of Molecular Medicine, Hungary
| | - Regina Szamosi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, Hungary
| | - Tamás Papp
- Division of Oral Anatomy, Department of Anatomy, Histology and Embryology, Faculty of Dentistry, University of Debrecen, H-4012 Debrecen, Hungary
| | - Szabolcs Felszeghy
- Division of Oral Anatomy, Department of Anatomy, Histology and Embryology, Faculty of Dentistry, University of Debrecen, H-4012 Debrecen, Hungary
| | - Tibor Sághy
- Dental Biochemistry Section, Department of Biochemistry and Molecular Biology, Faculty of Dentistry, Research Center of Molecular Medicine, Hungary
| | - Gábor Nagy
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, Hungary
| | - Zsuzsa Szondy
- Dental Biochemistry Section, Department of Biochemistry and Molecular Biology, Faculty of Dentistry, Research Center of Molecular Medicine, Hungary.
| |
Collapse
|
35
|
Kuwabara WMT, Curi R, Alba-Loureiro TC. Autophagy Is Impaired in Neutrophils from Streptozotocin-Induced Diabetic Rats. Front Immunol 2017; 8:24. [PMID: 28163707 PMCID: PMC5247474 DOI: 10.3389/fimmu.2017.00024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/06/2017] [Indexed: 01/14/2023] Open
Abstract
We tested the hypothesis that changes reported on functions of neutrophils from streptozotocin-induced diabetic rats involve autophagy impairment. Wistar rats were rendered diabetic by streptozotocin injection (65 mg/kg, i.v.), and the measurements were carried out 2 weeks afterward. Neutrophils were collected through intraperitoneal cavity lavage after 4 h of i.p. oyster glycogen type 2 injection. Neutrophils cultured with PMA (20 nM) for 1 h were used for analysis of plasma membrane integrity, DNA fragmentation, and mitochondrial depolarization by flow cytometry; expression of Atg5, Atg14, Beclin1, LC3BII, and Rab9 by RT-PCR; the contents of caspase 3, LC3BII/LC3BI, and pS6 by western blotting; ATP content by fluorescence essay; reactive oxygen species production by chemiluminescence (Luminol), and autophagy by immunofluorescence tracking LC3B cleavage. Herein, neutrophils from diabetic rats had high DNA fragmentation, depolarization of mitochondrial membrane, low content of ATP, and high content of cleaved caspase 3 after PMA stimulation. Neutrophils from diabetic rats also had low expression of LC3B, failed to increase the expression of Rab9 and Atg14 induced by PMA stimulation. Neutrophils from diabetic animals also had low cleavage of LC3BI to LC3BII and do not present punctate structures that label autophagosomal membranes after stimulus. The changes of neutrophil function reported in diabetic rats do involve impaired autophagy. The suppression of autophagy in neutrophils from diabetic rats may be associated with the activation of the mTOR signaling as indicated by the high content of pS6.
Collapse
Affiliation(s)
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | | |
Collapse
|
36
|
Combinatorial Cytotoxic Effects of Damnacanthal and Doxorubicin against Human Breast Cancer MCF-7 Cells in Vitro. Molecules 2016; 21:molecules21091228. [PMID: 27649120 PMCID: PMC6274052 DOI: 10.3390/molecules21091228] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 11/16/2022] Open
Abstract
Despite progressive research being done on drug therapy to treat breast cancer, the number of patients succumbing to the disease is still a major issue. Combinatorial treatment using different drugs and herbs to treat cancer patients is of major interest in scientists nowadays. Doxorubicin is one of the most used drugs to treat breast cancer patients. The combination of doxorubicin to other drugs such as tamoxifen has been reported. Nevertheless, the combination of doxorubicin with a natural product-derived agent has not been studied yet. Morinda citrifolia has always been sought out for its remarkable remedies. Damnacanthal, an anthraquinone that can be extracted from the roots of Morinda citrifolia is a promising compound that possesses a variety of biological properties. This study aimed to study the therapeutic effects of damnacanthal in combination with doxorubicin in breast cancer cells. Collectively, the combination of both these molecules enhanced the efficacy of induced cell death in MCF-7 as evidenced by the MTT assay, cell cycle, annexin V and expression of apoptosis-related genes and proteins. The effectiveness of doxorubicin as an anti-cancer drug was increased upon addition of damnacanthal. These results could provide a promising approach to treat breast cancer patients.
Collapse
|
37
|
Marini M, Musiani D, Raggi MA, Schiavone P, Levine RL. Oxidative stress does not mediate heat shock-induced cell damage and apoptosis. Redox Rep 2016; 3:57-63. [DOI: 10.1080/13510002.1997.11747091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
38
|
Rivabene R, Straface E, Giammarioli AM, Rainaldi G, Malorni W. Combined effect of 3-aminobenzamide and N-acetylcysteine on HIV replication in chronically infected U937 cells. Redox Rep 2016; 3:145-51. [DOI: 10.1080/13510002.1997.11747102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
39
|
Abstract
Recent studies have shown that excitotoxicity can result in either neuronal necrosis (passive cell lysis associated with energy failure) or apoptosis (active cell death requiring energy production). The type of cell death encountered by neuronal cell cultures exposed to excessive levels of excitatory amino acids—such as glutamate, the major excitatory neurotransmitter in the central nervous system, or free radicals, such as nitric oxide (NO) and superoxide anion (O2 -), which react to form peroxynitrite (ONOO-)—depends on the intensity of the exposure and may involve two temporally distinct phases. After relatively fulminant insults, an initial phase of necrosis—associated with extreme energy depletion—may simply reflect the failure of neurons to carry out the "default" apoptotic death program used to efficiently dispose of aged or otherwise unwanted cells. Neurons that survive this initial insult recover mitochondrial membrane potential and energy charge and subsequently undergo apoptosis, which seems to be associated with a factor(s) released from mitochondria. These factors have proteolytic activity or trigger the activation of proteases (caspases), ex ecutors of the cell death program. Thus, the maintenance of balanced energy production may be a decisive factor in determining the degree, type, and progression of neuronal injury caused by excitotoxins and free radicals. Increasing evidence suggests that similar events occur in vivo after ischemia or other insults, including Alzheimer's disease, Huntington's disease, and AIDS dementia. NEUROSCIENTIST 4:345-352, 1998
Collapse
Affiliation(s)
- Stuart A. Lipton
- CNS Research Institute Brigham and Women's Hospital
and Program in Neuroscience Harvard Medical School Boston, Massachusetts (SAL)
Faculty of Biology University of Konstanz Konstanz, Germany (PN)
| | - Pierluigi Nicotera
- CNS Research Institute Brigham and Women's Hospital
and Program in Neuroscience Harvard Medical School Boston, Massachusetts (SAL)
Faculty of Biology University of Konstanz Konstanz, Germany (PN)
| |
Collapse
|
40
|
Sándor K, Pallai A, Duró E, Legendre P, Couillin I, Sághy T, Szondy Z. Adenosine produced from adenine nucleotides through an interaction between apoptotic cells and engulfing macrophages contributes to the appearance of transglutaminase 2 in dying thymocytes. Amino Acids 2016; 49:671-681. [PMID: 27236567 DOI: 10.1007/s00726-016-2257-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/06/2016] [Indexed: 12/23/2022]
Abstract
Transglutaminase 2 (TG2) has been known for a long time to be associated with the in vivo apoptosis program of various cell types, including T cells. Though the expression of the enzyme is strongly induced in mouse thymocytes following apoptosis induction in vivo, no significant induction of TG2 can be detected, when thymocytes are induced to die by the same stimuli in vitro indicating that signals arriving from the tissue environment are required for the proper in vivo induction of the enzyme. Previous studies from our laboratory have demonstrated that two of these signals, transforming growth factor-β (TGF-β) and retinoids, are produced by macrophages engulfing apoptotic cells. However, in addition to TGF-β and retinoids, engulfing macrophages produce adenosine as well. Here, we show that in vitro adenosine, adenosine, and retinoic acid or adenosine, TGF-β and retinoic acids together can significantly enhance the TG2 mRNA expression in dying thymocytes. The effect of adenosine is mediated via adenosine A2A receptors (A2ARs) and the A2AR-triggered adenylate cyclase signaling pathway. In accordance, loss of A2ARs in A2AR null mice significantly attenuates the in vivo induction of TG2 following apoptosis induction in the thymus indicating that adenosine indeed contributes in vivo to the apoptosis-related appearance of the enzyme. We also demonstrate that adenosine is produced extracellularly during engulfment of apoptotic thymocytes, partly from adenine nucleotides released via thymocyte pannexin-1 channels. Our data reveal a novel crosstalk between macrophages and apoptotic cells, in which apoptotic cell uptake-related adenosine production contributes to the appearance of TG2 in the dying thymocytes.
Collapse
Affiliation(s)
- Katalin Sándor
- Division of Dental Biochemistry, Department of Biochemistry and Molecular Biology Research Center of Molecular Medicine, University of Debrecen, Nagyerdei krt.98., Debrecen, 4032, Hungary
| | - Anna Pallai
- Division of Dental Biochemistry, Department of Biochemistry and Molecular Biology Research Center of Molecular Medicine, University of Debrecen, Nagyerdei krt.98., Debrecen, 4032, Hungary
| | - Edina Duró
- Division of Dental Biochemistry, Department of Biochemistry and Molecular Biology Research Center of Molecular Medicine, University of Debrecen, Nagyerdei krt.98., Debrecen, 4032, Hungary
| | - Pascal Legendre
- Institut National de la Santé et de la Recherche Médicale (INSERM) U952, Université Pierre et Marie Curie, Paris, France.,Center National de la Recherche Scientifique (CNRS), UMR 7224, Université Pierre et Marie Curie, Paris, France.,UPMC Université Paris 06, 9 quai Saint Bernard, Paris, Ile de France, France
| | - Isabelle Couillin
- UMR-IEM 6218 Molecular Immunology and Embryology, Transgenose Institute, CNRS, 45071, Orléans, France
| | - Tibor Sághy
- Division of Dental Biochemistry, Department of Biochemistry and Molecular Biology Research Center of Molecular Medicine, University of Debrecen, Nagyerdei krt.98., Debrecen, 4032, Hungary
| | - Zsuzsa Szondy
- Division of Dental Biochemistry, Department of Biochemistry and Molecular Biology Research Center of Molecular Medicine, University of Debrecen, Nagyerdei krt.98., Debrecen, 4032, Hungary. .,Department of Biochemistry and Molecular Biology, University of Debrecen, Nagyerdei krt.98., Debrecen, 4012, Hungary.
| |
Collapse
|
41
|
Ramakrishnan DP, Hajj-Ali RA, Chen Y, Silverstein RL. Extracellular Vesicles Activate a CD36-Dependent Signaling Pathway to Inhibit Microvascular Endothelial Cell Migration and Tube Formation. Arterioscler Thromb Vasc Biol 2016; 36:534-44. [PMID: 26821945 DOI: 10.1161/atvbaha.115.307085] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/15/2016] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Literature on the effect of cell-derived extracellular vesicles (EV), ≤1 μm vesicles shed from various cell types during activation or apoptosis, on microvascular endothelial cell (MVEC) signaling is conflicting. Thrombospondin-1 and related proteins induce anti-angiogenic signals in MVEC via CD36. CD36 binds EV via phosphatidylserine exposed on their surface but the effects of this interaction on MVEC functions are not known. We hypothesized that EV would inhibit angiogenic MVEC functions via CD36. APPROACH AND RESULTS EV generated in vitro from various cell types or isolated from plasma inhibited MVEC tube formation in in vitro matrigel assays and endothelial cell migration in Boyden chamber assays. Exosomes derived from the same cells did not have inhibitory activity. Inhibition of migration required endothelial cell expression of CD36. In mouse in vivo matrigel plug assays, EV inhibited cell migration into matrigel plugs in wild type but not in cd36 null animals. Annexin V, an anionic phospholipid binding protein, when incubated with EV partially reversed inhibition of migration, suggesting a phosphatidylserine-dependent effect. EV exposure induced reactive oxygen species generation in MVEC in a NADPH oxidase and Src family kinase-dependent manner, and their inhibition by apocynin and PP2, respectively, partially reversed the EV-mediated inhibition of migration. Annexin V partially reversed EV-induced reactive oxygen species generation in murine CD36 cDNA-transfected HVUEC but not in CD36-negative human umbilical vein endothelial cell. CONCLUSIONS These studies establish a general inhibitory effect of EV on endothelial cell proangiogenic responses and identify a CD36-mediated mechanistic pathway through which EV inhibit MVEC migration and tube formation.
Collapse
Affiliation(s)
- Devi Prasadh Ramakrishnan
- From the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH (D.P.R.); Laboratory of Vascular Pathobiology, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI (D.P.R., Y.C., R.L.S.); Department of Rheumatologic and Immunologic Disease, Orthopedic and Rheumatologic Institute, Cleveland Clinic Foundation, Cleveland, OH (R.A.H.-A.); and Department of Medicine, Medical College of Wisconsin, Milwaukee, WI (R.L.S.)
| | - Rula A Hajj-Ali
- From the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH (D.P.R.); Laboratory of Vascular Pathobiology, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI (D.P.R., Y.C., R.L.S.); Department of Rheumatologic and Immunologic Disease, Orthopedic and Rheumatologic Institute, Cleveland Clinic Foundation, Cleveland, OH (R.A.H.-A.); and Department of Medicine, Medical College of Wisconsin, Milwaukee, WI (R.L.S.)
| | - Yiliang Chen
- From the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH (D.P.R.); Laboratory of Vascular Pathobiology, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI (D.P.R., Y.C., R.L.S.); Department of Rheumatologic and Immunologic Disease, Orthopedic and Rheumatologic Institute, Cleveland Clinic Foundation, Cleveland, OH (R.A.H.-A.); and Department of Medicine, Medical College of Wisconsin, Milwaukee, WI (R.L.S.)
| | - Roy L Silverstein
- From the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH (D.P.R.); Laboratory of Vascular Pathobiology, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI (D.P.R., Y.C., R.L.S.); Department of Rheumatologic and Immunologic Disease, Orthopedic and Rheumatologic Institute, Cleveland Clinic Foundation, Cleveland, OH (R.A.H.-A.); and Department of Medicine, Medical College of Wisconsin, Milwaukee, WI (R.L.S.).
| |
Collapse
|
42
|
The physiologic sclerotic dentin: A literature-based hypothesis. Med Hypotheses 2015; 85:887-90. [DOI: 10.1016/j.mehy.2015.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/11/2015] [Indexed: 11/22/2022]
|
43
|
Tacke R, Hilgendorf I, Garner H, Waterborg C, Park K, Nowyhed H, Hanna RN, Wu R, Swirski FK, Geissmann F, Hedrick CC. The transcription factor NR4A1 is essential for the development of a novel macrophage subset in the thymus. Sci Rep 2015; 5:10055. [PMID: 26091486 PMCID: PMC4473761 DOI: 10.1038/srep10055] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/20/2015] [Indexed: 12/23/2022] Open
Abstract
Tissue macrophages function to maintain homeostasis and regulate immune responses. While tissue macrophages derive from one of a small number of progenitor programs, the transcriptional requirements for site-specific macrophage subset development are more complex. We have identified a new tissue macrophage subset in the thymus and have discovered that its development is dependent on transcription factor NR4A1. Functionally, we find that NR4A1-dependent macrophages are critically important for clearance of apoptotic thymocytes. These macrophages are largely reduced or absent in mice lacking NR4A1, and Nr4a1-deficient mice have impaired thymocyte engulfment and clearance. Thus, NR4A1 functions as a master transcription factor for the development of this novel thymus-specific macrophage subset.
Collapse
Affiliation(s)
- Robert Tacke
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Ingo Hilgendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hannah Garner
- Centre for Molecular and Cellular Biology of Inflammation, King’s College London, London, UK
| | - Claire Waterborg
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Kiwon Park
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Heba Nowyhed
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Richard N. Hanna
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Runpei Wu
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Filip K. Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Frederic Geissmann
- Centre for Molecular and Cellular Biology of Inflammation, King’s College London, London, UK
| | - Catherine C. Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| |
Collapse
|
44
|
Sláma P, Sládek Z, Ryšánek D. Application of methods for detection of apoptosis and necrosis of bovine blood neutrophil granulocytes in vitro. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun200654050107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
45
|
Ansary MMU, Ishihara S, Oka A, Kusunoki R, Oshima N, Yuki T, Kawashima K, Maegawa H, Kashiwagi N, Kinoshita Y. Apoptotic cells ameliorate chronic intestinal inflammation by enhancing regulatory B-cell function. Inflamm Bowel Dis 2014; 20:2308-2320. [PMID: 25358066 DOI: 10.1097/mib.0000000000000240] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis is a programmed physiological death of unwanted cells, and handling of apoptotic cells (ACs) is thought to have profound effects on immune-mediated disorders. However, there is scant information regarding the role of ACs in intestinal inflammation, in which immune homeostasis is a major concern. To investigate this, we injected ACs into a severe combined immunodeficiency adoptive transfer model of chronic colitis in the presence and absence of cotransferred whole B or regulatory B cell (Breg)-depleted B cells. We also injected syngeneic ACs into AKR/N mice as a control and into milk fat globule-epidermal growth factor 8 knockout mice deficient of phagocytic function. Chronic colitis severity was significantly reduced in the AC as opposed to the phosphate-buffered saline group with cotransferred whole B cells. The AC-mediated effect was lost in the absence of B cells or presence of Breg-depleted B cells. In addition, ACs induced splenic B cells to secrete significantly increased levels of interleukin 10 in AKR/N mice but not milk fat globule-epidermal growth factor 8 knockout mice. Apoptotic leukocytes were induced by reactive oxygen species during granulocyte/monocyte apheresis therapy in rabbits and H2O2-induced apoptotic neutrophils ameliorated mice colitis. Our results indicate that ACs are protective only in the presence of B cells and phagocytosis of ACs induced interleukin 10 producing Bregs. Thus, the ameliorative effect seen in this study might have been exerted by AC-induced Bregs through increased production of the immunosuppressive cytokine interleukin 10, whereas an AC-mediated effect may contribute to the anti-inflammatory effect of granulocyte/monocyte apheresis as a novel therapeutic mechanism for inflammatory bowel disease.
Collapse
MESH Headings
- Animals
- Apoptosis/immunology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- B-Lymphocytes, Regulatory/immunology
- B-Lymphocytes, Regulatory/metabolism
- B-Lymphocytes, Regulatory/pathology
- Cells, Cultured
- Chronic Disease
- Colitis/immunology
- Colitis/metabolism
- Colitis/pathology
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Immunoenzyme Techniques
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Mice
- Mice, Inbred AKR
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/pathology
- RNA, Messenger/genetics
- Rabbits
- Reactive Oxygen Species/metabolism
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Md Mesbah Uddin Ansary
- *Department of Internal Medicine II, School of Medicine, Shimane University, Izumo, Japan; †Department of Gastrointestinal Endoscopy, Shimane University Hospital, Izumo, Japan; and ‡Research Division, JIMRO Co. Ltd., Takasaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Willems JJLP, Arnold BP, Gregory CD. Sinister self-sacrifice: the contribution of apoptosis to malignancy. Front Immunol 2014; 5:299. [PMID: 25071762 PMCID: PMC4081761 DOI: 10.3389/fimmu.2014.00299] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/13/2014] [Indexed: 01/02/2023] Open
Affiliation(s)
- Jorine J L P Willems
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh , Edinburgh , UK
| | - Benjamin P Arnold
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh , Edinburgh , UK
| | - Christopher D Gregory
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh , Edinburgh , UK
| |
Collapse
|
47
|
Duró E, Pallai A, Köröskényi K, Sarang Z, Szondy Z. Adenosine A3 receptors negatively regulate the engulfment-dependent apoptotic cell suppression of inflammation. Immunol Lett 2014; 162:292-301. [PMID: 24998471 DOI: 10.1016/j.imlet.2014.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 02/05/2023]
Abstract
Timed initiation of apoptotic cell death followed by efficient removal mediated by professional macrophages is a key mechanism in maintaining tissue homeostasis. Besides phagocytosis, clearance of apoptotic cells also involves suppression of inflammatory responses by apoptotic cells mediated by both direct inhibition of pro-inflammatory cytokine production and release of soluble anti-inflammatory factors, which act in a paracrine or autocrine fashion to amplify or sustain the anti-inflammatory response. Previous work has demonstrated that during engulfment of apoptotic cells adenosine is produced in sufficient amounts to trigger both adenosine A2A receptors (A2ARs) and A3 receptors (A3Rs). Adenosine bound to A2ARs of macrophages activated the adenylate cyclase pathway to suppress the apoptotic-cell induced, NO-dependent formation of neutrophil migration factors. Here we show by using A3R null engulfing macrophages that the adenosine produced triggers the A3Rs as well, which attenuate the A2AR signaling by inhibiting adenylate cyclase. As a result, the balance in the activation of A2ARs and A3Rs determines the amounts of NO and consequently the levels of neutrophil chemoattractants formed. Since during phagocytosis of apoptotic cells the expression of A2ARs increases, while that of A3Rs decreases, on long term adenosine suppresses the proinflammatory responses in engulfing macrophages.
Collapse
Affiliation(s)
- Edina Duró
- Department of Dental Biochemistry, Research Center of Molecular Medicine, University of Debrecen, Debrecen H-4012, Hungary
| | - Anna Pallai
- Department of Dental Biochemistry, Research Center of Molecular Medicine, University of Debrecen, Debrecen H-4012, Hungary
| | - Krisztina Köröskényi
- Department of Dental Biochemistry, Research Center of Molecular Medicine, University of Debrecen, Debrecen H-4012, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Research Center of Molecular Medicine, University of Debrecen, Debrecen H-4012, Hungary
| | - Zsuzsa Szondy
- Department of Dental Biochemistry, Research Center of Molecular Medicine, University of Debrecen, Debrecen H-4012, Hungary.
| |
Collapse
|
48
|
Defective expression of scavenger receptors in celiac disease mucosa. PLoS One 2014; 9:e100980. [PMID: 24971453 PMCID: PMC4074117 DOI: 10.1371/journal.pone.0100980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/02/2014] [Indexed: 01/30/2023] Open
Abstract
Celiac disease (CD) is a gluten sensitive enteropathy characterized by a marked infiltration of the mucosa with immune cells, over-production of inflammatory cytokines and epithelial cell damage. The factors/mechanisms that sustain and amplify the ongoing mucosal inflammation in CD are not however fully understood. Here, we have examined whether in CD there is a defective clearance of apoptotic cells/bodies, a phenomenon that helps promote tolerogenic signals thus liming pathogenic responses. Accumulation of apoptotic cells and bodies was more pronounced in the epithelial and lamina propria compartments of active CD patients as compared to inactive CD patients and normal controls. Expression of scavenger receptors, which are involved in the clearance of apoptotic cells/bodies, namely thrombospondin (TSP)-1, CD36 and CD61, was significantly reduced in active CD as compared to inactive CD and normal mucosal samples. Consistently, lamina propria mononuclear cells (LPMC) of active CD patients had diminished ability to phagocyte apoptotic cells. Interleukin (IL)-15, IL-21 and interferon-γ, cytokines over-produced in active CD, inhibited the expression of TSP-1, CD36, and CD61 in normal intestinal LPMC. These results indicate that CD-related inflammation is marked by diminished clearance of apoptotic cells/bodies, thus suggesting a role for such a defect in the ongoing mucosal inflammation in this disorder.
Collapse
|
49
|
Ultrastructural and molecular changes in the developing small intestine of the toad Bufo regularis. ScientificWorldJournal 2014; 2014:986784. [PMID: 24715821 PMCID: PMC3970051 DOI: 10.1155/2014/986784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/22/2013] [Indexed: 12/03/2022] Open
Abstract
The ontogenetic development of the small intestine of the toad Bufo regularis was investigated using twofold approaches, namely, ultrastructural and molecular. The former has been done using transmission electron microscope and utilizing the developmental stages 42, 50, 55, 60, 63, and 66. The most prominent ultrastructural changes were recorded at stage 60 and were more evident at stage 63. These included the appearance of apoptotic bodies/nuclei within the larval epithelium, the presence of macrophages, swollen mitochondria, distorted rough endoplasmic reticulum, chromatin condensation, and irregular nuclear envelop, and the presence of large vacuoles and lysosomes. The molecular investigation involved examining DNA content and fragmentation. The results showed that the DNA content decreased significantly during the metamorphic stages 60 and 63 compared with both larval (50 and 55) and postmetamorphic (66) stages. The metamorphic stages (60 and 63) displayed extensive DNA laddering compared with stages 50, 55, and 66. The percentage of DNA damage was 0.00%, 12.91%, 57.26%, 45.48%, and 4.43% for the developmental stages 50, 55, 60, 63, and 66, respectively. In conclusion, the recorded remodeling of the small intestine represents a model for clarifying the mechanism whereby cell death and proliferation are controlled.
Collapse
|
50
|
Mas-Oliva J, Navarro-Vidal E, Tapia-Vieyra JV. ARP2, a novel pro-apoptotic protein expressed in epithelial prostate cancer LNCaP cells and epithelial ovary CHO transformed cells. PLoS One 2014; 9:e86089. [PMID: 24465888 PMCID: PMC3899214 DOI: 10.1371/journal.pone.0086089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 12/11/2013] [Indexed: 12/03/2022] Open
Abstract
Neoplastic epithelial cells generate the most aggressive types of cancers such as those located in the lung, breast, colon, prostate and ovary. During advanced stages of prostate cancer, epithelial cells are associated to the appearance of androgen-independent tumors, an apoptotic-resistant phenotype that ultimately overgrows and promotes metastatic events. We have previously identified and electrophysiologically characterized a novel Ca(2+)-permeable channel activated during apoptosis in the androgen-independent prostate epithelial cancer cell line, LNCaP. In addition, we reported for the first time the cloning and characterization of this channel-like molecule named apoptosis regulated protein 2 (ARP2) associated to a lethal influx of Ca(2+) in Xenopus oocytes. In the present study, LNCaP cells and Chinese hamster ovary cells (CHO cell line) transfected with arp2-cDNA are induced to undergo apoptosis showing an important impact on cell viability and activation of caspases 3 and 7 when compared to serum deprived grown cells and ionomycin treated cells. The subcellular localization of ARP2 in CHO cells undergoing apoptosis was studied using confocal microscopy. While apoptosis progresses, ARP2 initially localized in the peri-nuclear region of cells migrates with time towards the plasma membrane region. Based on the present results and those of our previous studies, the fact that ARP2 constitutes a novel cation channel is supported. Therefore, ARP2 becomes a valuable target to modulate the influx and concentration of calcium in the cytoplasm of epithelial cancer cells showing an apoptotic-resistant phenotype during the onset of an apoptotic event.
Collapse
Affiliation(s)
- Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., México
| | - Enrique Navarro-Vidal
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
| | | |
Collapse
|