1
|
Alnakip MEA, Rhouma NR, Abd-Elfatah EN, Quintela-Baluja M, Böhme K, Fernández-No I, Bayoumi MA, Abdelhafez MM, Taboada-Rodríguez A, Calo-Mata P, Barros-Velázquez J. Discrimination of major and minor streptococci incriminated in bovine mastitis by MALDI-TOF MS fingerprinting and 16S rRNA gene sequencing. Res Vet Sci 2020; 132:426-438. [PMID: 32777539 DOI: 10.1016/j.rvsc.2020.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/13/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023]
Abstract
The current work investigated the discriminatory potential of MALDI-TOF MS fingerprinting towards most-relevant major (Streptococcus agalactiae, S. dysgalactiae, S. uberis) and minor (S. canis, S. parauberis, S. salivarius, S. equinus and S. gallolyticus) streptococci involved in bovine mastitis (BM), in comparison to 16S rRNA gene sequencing (GS)-based identification. The MALDI-TOF MS-generated spectral fingerprints were recruited for eliciting a detailed proteomic map that demonstrated clear variability for inter- and intra-species-specific biomarkers. Besides, a phyloproteomic dendrogram was evolved and comparatively analyzed against the phylogenetic one obtained from 16S rRNA GS in order to assess the differentiation of streptococci of bovine origin based on variability of protein fingerprints versus the variation of 16S rRNA gene homology. Results showed that the discrimination of BM-implicated streptococci can be obtained by both approaches; however MALDI-TOF MS was superior, achieving more variability at both intra- and sub-species levels. MALDI-TOF MS spectral analytics revealed that Streptococcus spp. exhibited three genus-specific biomarkers (peaks with m/z values at 2112, 4452 and 5955) and all streptococci exhibited spectral variability at both species and subspecies levels. Remarkably, MALDI-TOF MS fingerprinting was found to be at least as robust as 16S rRNA GS-based identification, allowing much cheaper and faster analysis, and additionally exhibiting high reliability for characterization of BM-implicated streptococci, thus proving to be a powerful tool that can be used independently within dairy diagnostics.
Collapse
Affiliation(s)
- Mohamed E A Alnakip
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology, University of Santiago de Compostela, Rúa Carballo Calero s/n, Campus Lugo, E-27002 Lugo, Spain; Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, 44519, Egypt
| | - Nasreddin R Rhouma
- Department of Biology, Faculty of Science, Misurata University, Libya; Department of Food science and Technology, Faculty of Agriculture, Misurata University, Libya
| | - Eman N Abd-Elfatah
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, 44519, Egypt
| | - Marcos Quintela-Baluja
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology, University of Santiago de Compostela, Rúa Carballo Calero s/n, Campus Lugo, E-27002 Lugo, Spain
| | - Karola Böhme
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology, University of Santiago de Compostela, Rúa Carballo Calero s/n, Campus Lugo, E-27002 Lugo, Spain
| | - Inmaculada Fernández-No
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology, University of Santiago de Compostela, Rúa Carballo Calero s/n, Campus Lugo, E-27002 Lugo, Spain
| | - Mohmaed A Bayoumi
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, 44519, Egypt
| | - Mostafa M Abdelhafez
- Department of Food science and Technology, Faculty of Agriculture, Misurata University, Libya
| | - Amaury Taboada-Rodríguez
- Food Biotechnology Group, Department of Nutrition and Food Science, Faculty of Veterinary Sciences, Murcia university, Campus Espinardo, 30100 Murcia, Spain
| | - Pillar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology, University of Santiago de Compostela, Rúa Carballo Calero s/n, Campus Lugo, E-27002 Lugo, Spain
| | - J Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology, University of Santiago de Compostela, Rúa Carballo Calero s/n, Campus Lugo, E-27002 Lugo, Spain.
| |
Collapse
|
2
|
Quantification of viable bacterial starter cultures of Virgibacillus sp. and Tetragenococcus halophilus in fish sauce fermentation by real-time quantitative PCR. Food Microbiol 2016; 57:54-62. [DOI: 10.1016/j.fm.2016.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/21/2015] [Accepted: 01/15/2016] [Indexed: 11/20/2022]
|
3
|
Crespo BG, Wallhead PJ, Logares R, Pedrós-Alió C. Probing the Rare Biosphere of the North-West Mediterranean Sea: An Experiment with High Sequencing Effort. PLoS One 2016; 11:e0159195. [PMID: 27442429 PMCID: PMC4956085 DOI: 10.1371/journal.pone.0159195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/28/2016] [Indexed: 11/18/2022] Open
Abstract
High-throughput sequencing (HTS) techniques have suggested the existence of a wealth of species with very low relative abundance: the rare biosphere. We attempted to exhaustively map this rare biosphere in two water samples by performing an exceptionally deep pyrosequencing analysis (~500,000 final reads per sample). Species data were derived by a 97% identity criterion and various parametric distributions were fitted to the observed counts. Using the best-fitting Sichel distribution we estimate a total species richness of 1,568-1,669 (95% Credible Interval) and 5,027-5,196 for surface and deep water samples respectively, implying that 84-89% of the total richness in those two samples was sequenced, and we predict that a quadrupling of the present sequencing effort would suffice to observe 90% of the total richness in both samples. Comparing the HTS results with a culturing approach we found that most of the cultured taxa were not obtained by HTS, despite the high sequencing effort. Culturing therefore remains a useful tool for uncovering marine bacterial diversity, in addition to its other uses for studying the ecology of marine bacteria.
Collapse
Affiliation(s)
- Bibiana G. Crespo
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Passeig Marítim de la Barceloneta, 37–49, 08003, Barcelona, Spain
- * E-mail:
| | - Philip J. Wallhead
- Norwegian Institute for Water Research (NIVA), Thormøhlens gate 53D, N-5006 Bergen, Norway
| | - Ramiro Logares
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Passeig Marítim de la Barceloneta, 37–49, 08003, Barcelona, Spain
| | - Carlos Pedrós-Alió
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Passeig Marítim de la Barceloneta, 37–49, 08003, Barcelona, Spain
| |
Collapse
|
4
|
Doonan J, Denman S, Gertler C, Pachebat JA, Golyshin PN, McDonald JE. The intergenic transcribed spacer region 1 as a molecular marker for identification and discrimination of Enterobacteriaceae associated with acute oak decline. J Appl Microbiol 2014; 118:193-201. [PMID: 25355271 DOI: 10.1111/jam.12677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 11/30/2022]
Abstract
AIMS We assessed the veracity of intergenic spacer region 1 (ITS1) ribotyping for the rapid, inexpensive and accurate identification of Brenneria goodwinii and Gibbsiella quercinecans that are associated with acute oak decline (AOD) in the UK. METHODS AND RESULTS Agarose gel electrophoresis and polyacrylamide gel electrophoresis (PAGE) were applied for the typing of ITS1 PCR amplicons from strains of B. goodwinii, G. quercinecans and related species (n = 34). The number and length of ITS1 amplicons varied significantly between strains. ITS1 profiles generated via PAGE were used to differentiate species using a neighbour-joining phylogram. The ITS1 phylogram was compared against DNA gyrase B (gyrB) gene sequences from the same strains, demonstrating that ITS1 ribotyping is as effective as gyrB at resolving G. quercinecans and B. goodwinii to the species level. CONCLUSIONS The ITS1 gene has been successfully employed as a novel marker to resolve newly described AOD-associated Enterobacteriaceae, B. goodwinii and G. quercinecans, to species level. SIGNIFICANCE AND IMPACT OF THE STUDY ITS1 ribotyping of B. goodwinii and G. quercinecans provides equivalent sensitivity to the current standard method for strain identification (sequence analysis of the gyrB gene), but with reduced processing time and cost. Furthermore, the ITS1 gene is widely applicable as a rapid and inexpensive typing system for Enterobacteriaceae.
Collapse
Affiliation(s)
- J Doonan
- School of Biological Sciences, Bangor University, Bangor, UK
| | | | | | | | | | | |
Collapse
|
5
|
Wings S, Müller H, Berg G, Lamshöft M, Leistner E. A study of the bacterial community in the root system of the maytansine containing plant Putterlickia verrucosa. PHYTOCHEMISTRY 2013; 91:158-64. [PMID: 22795602 DOI: 10.1016/j.phytochem.2012.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/07/2012] [Accepted: 06/18/2012] [Indexed: 05/16/2023]
Abstract
Maytansinoid compounds are ansa antibiotics occurring in the bacterium Actinosynnema pretiosum, in mosses and in higher plants such as Putterlickia verrucosa (E. Meyer ex Sonder) Szyszyl. The disjunct occurrence of maytansinoids has led to the consideration that plant-associated bacteria may be responsible for the presence of maytansinoids in P. verrucosa plants. Investigation of the bacterial community of this plant by molecular methods led to the observation that A. pretiosum, a maytansine-producing bacterium, is likely to be an inhabitant of the rhizosphere and the endorhiza of P. verrucosa.
Collapse
Affiliation(s)
- Susanne Wings
- Institut fuer Pharmazeutische Biologie, Rheinische Friedrich Wilhelms-Universität, Bonn, Germany
| | | | | | | | | |
Collapse
|
6
|
Piterina AV, Bartlett J, Pembroke TJ. Evaluation of the removal of indicator bacteria from domestic sludge processed by Autothermal Thermophilic Aerobic Digestion (ATAD). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:3422-41. [PMID: 20948933 PMCID: PMC2954554 DOI: 10.3390/ijerph7093422] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 08/27/2010] [Accepted: 08/31/2010] [Indexed: 11/21/2022]
Abstract
The degradation of sludge solids in an insulated reactor during Autothermal Thermophilic Aerobic Digestion (ATAD) processing results in auto-heating, thermal treatment and total solids reduction, however, the ability to eliminate pathogenic organisms has not been analysed under large scale process conditions. We evaluated the ATAD process over a period of one year in a two stage, full scale Irish ATAD plant established in Killarney and treating mixed primary and secondary sludge, by examining the sludge microbiologically at various stages during and following ATAD processing to determine its ability to eliminate indicator organisms. Salmonella spp. (pathogen) and fecal-coliform (indicator) densities were well below the limits used to validate class A biosolids in the final product. Enteric pathogens present at inlet were deactivated during the ATAD process and were not detected in the final product using both traditional microbial culture and molecular phylogenetic techniques. A high DNase activity was detected in the bulk sludge during the thermophilic digestion stage which may be responsible for the rapid turn over of DNA from lysed cells and the removal of mobile DNA. These results offer assurance for the safe use of ATAD sludge as a soil supplement following processing.
Collapse
Affiliation(s)
- Anna V. Piterina
- Department of Chemical and Environmental Sciences and Material and Surface Science Institute, University of Limerick, National Technological Park, Castletroy, Limerick, Ireland; E-Mail: (A.P.)
| | - John Bartlett
- Sligo Institute of Technology, Cente for Sustainability, Sligo, Ireland; E-Mail: (J.B.)
| | - Tony J. Pembroke
- Department of Chemical and Environmental Sciences and Material and Surface Science Institute, University of Limerick, National Technological Park, Castletroy, Limerick, Ireland; E-Mail: (A.P.)
| |
Collapse
|
7
|
D'Elia TV, Cooper CR, Johnston CG. Source tracking of Escherichia coli by 16S-23S intergenic spacer region denaturing gradient gel electrophoresis (DGGE) of the rrnB ribosomal operon. Can J Microbiol 2008; 53:1174-84. [PMID: 18026210 DOI: 10.1139/w07-083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This research validates a novel approach for source tracking based on denaturing gradient gel electrophoresis (DGGE) analysis of DNA extracted from Escherichia coli isolates. Escherichia coli from different animal sources and from river samples upstream from, at, and downstream of a combined sewer overflow were subjected to DGGE to determine sequence variations within the 16S-23S intergenic spacer region (ISR) of the rrnB ribosomal operon. The ISR was analyzed to determine if E. coli isolates from various animal sources could be differentiated from each other. DNA isolated from the E. coli animal sources was PCR amplified to isolate the rrnB operon. To prevent amplification of all 7 E. coli ribosomal operons by PCR amplification using universal primers, sequence-specific primers were utilized for the rrnB operon. Another primer set was then used to prepare samples of the 16S-23S ISR for DGGE. Comparison of PCR-DGGE results between human and animal sources revealed differences in the distribution and frequency of the DGGE bands produced. Human and Canada Goose isolates had the most unique distribution patterns and the highest percent of unique isolates and were grouped separately from all other animal sources. Method validation suggests that there are enough host specificity and genetic differences for use in the field. Field results at and around a combined sewer overflow indicate that this method can be used for microbial source tracking.
Collapse
Affiliation(s)
- Thomas V D'Elia
- Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555, USA
| | | | | |
Collapse
|
8
|
Holmfeldt K, Middelboe M, Nybroe O, Riemann L. Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their Flavobacterium hosts. Appl Environ Microbiol 2007; 73:6730-9. [PMID: 17766444 PMCID: PMC2074958 DOI: 10.1128/aem.01399-07] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phages are a main mortality factor for marine bacterioplankton and are thought to regulate bacterial community composition through host-specific infection and lysis. In the present study we demonstrate for a marine phage-host assemblage that interactions are complex and that specificity and efficiency of infection and lysis are highly variable among phages infectious to strains of the same bacterial species. Twenty-three Bacteroidetes strains and 46 phages from Swedish and Danish coastal waters were analyzed. Based on genotypic and phenotypic analyses, 21 of the isolates could be considered strains of Cellulophaga baltica (Flavobacteriaceae). Nevertheless, all bacterial strains showed unique phage susceptibility patterns and differed by up to 6 orders of magnitude in sensitivity to the same titer of phage. The isolated phages showed pronounced variations in genome size (8 to >242 kb) and host range (infecting 1 to 20 bacterial strains). Our data indicate that marine bacterioplankton are susceptible to multiple co-occurring phages and that sensitivity towards phage infection is strain specific and exists as a continuum between highly sensitive and resistant, implying an extremely complex web of phage-host interactions. Hence, effects of phages on bacterioplankton community composition and dynamics may go undetected in studies where strain identity is not resolvable, i.e., in studies based on the phylogenetic resolution provided by 16S rRNA gene or internal transcribed spacer sequences.
Collapse
Affiliation(s)
- Karin Holmfeldt
- Department of Natural Sciences, Kalmar University, S-391 82 Kalmar, Sweden
| | | | | | | |
Collapse
|
9
|
Panangala VS, van Santen VL, Shoemaker CA, Klesius PH. Analysis of 16S-23S intergenic spacer regions of the rRNA operons in Edwardsiella ictaluri and Edwardsiella tarda isolates from fish. J Appl Microbiol 2005; 99:657-69. [PMID: 16108808 DOI: 10.1111/j.1365-2672.2005.02626.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To analyse interspecies and intraspecies differences based on the 16S-23S rRNA intergenic spacer region (ISR) sequences of the fish pathogens Edwardsiella ictaluri and Edwardsiella tarda. METHODS AND RESULTS The 16S-23S rRNA spacer regions of 19 Edw. ictaluri and four Edw. tarda isolates from four geographical regions were amplified by PCR with primers complementary to conserved sequences within the flanking 16S-23S rRNA coding sequences. Two products were generated from all isolates, without interspecies or intraspecific size polymorphisms. Sequence analysis of the amplified fragments revealed a smaller ISR of 350 bp, which contained a gene for tRNA(Glu), and a larger ISR of 441 bp, which contained genes for tRNA(Ile) and tRNA(Ala). The sequences of the smaller ISR of different Edw. ictaluri isolates were essentially identical to each other. Partial sequences of larger ISR from several Edw. ictaluri isolates also revealed no differences from the one complete Edw. ictaluri large ISR sequence obtained. The sequences of the smaller ISR of Edw. tarda were 97% identical to the Edw. ictaluri smaller ISR and the larger ISR were 96-98% identical to the Edw. ictaluri larger ISR sequence. The Edw. tarda isolates displayed limited ISR sequence heterogeneity, with > or =97% sequence identity among isolates for both small and large ISR. CONCLUSIONS There is a high degree of size and sequence similarity of 16S-23S ISR both among isolates within Edw. ictaluri and Edw. tarda species and between the two species. SIGNIFICANCE AND IMPACT OF THE STUDY Our results confirm a close genetic relationship between Edw. ictaluri and Edw. tarda and the relative homogeneity of Edw. ictaluri isolates compared with Edw. tarda isolates. Because no differences were found in ISR sequences among Edw. ictaluri isolates, sequence analysis of the ISR will not be useful to distinguish isolates of Edw. ictaluri. However, we identified restriction sites that differ between ISR sequences of Edw. ictaluri and Edw. tarda, which will be useful in distinguishing the two species.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA, Bacterial/genetics
- DNA, Ribosomal Spacer/genetics
- Edwardsiella/genetics
- Edwardsiella/isolation & purification
- Edwardsiella ictaluri/genetics
- Edwardsiella ictaluri/isolation & purification
- Edwardsiella tarda/genetics
- Edwardsiella tarda/isolation & purification
- Enterobacteriaceae/genetics
- Fishes/microbiology
- Operon/genetics
- Phylogeny
- Polymorphism, Restriction Fragment Length
- RNA, Bacterial/genetics
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- Sequence Analysis, DNA/methods
- Species Specificity
Collapse
Affiliation(s)
- V S Panangala
- Agricultural Research Service, Aquatic Animal Health Research Unit, US Department of Agriculture, PO Box 952, Auburn, AL 36831-0952, USA.
| | | | | | | |
Collapse
|
10
|
Yasuda M, Shiaris MP. Differentiation of bacterial strains by thermal gradient gel electrophoresis using non-GC-clamped PCR primers for the 16S-23S rDNA intergenic spacer region. FEMS Microbiol Lett 2005; 243:235-42. [PMID: 15668024 DOI: 10.1016/j.femsle.2004.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 12/06/2004] [Accepted: 12/09/2004] [Indexed: 10/26/2022] Open
Abstract
The method for DNA fingerprinting of the 16S-23S rDNA intergenic spacer region was modified to increase resolution of bacterial strains by thermal gradient gel electrophoresis (TGGE) analysis. By utilizing the high melting temperature region of the tRNA gene located in the middle of the 16S-23S rDNA intergenic spacer region as an internal clamp for TGGE, multiple melting domain problems were solved. PCR primers lacking a stretch of GC-rich sequences (GC-clamp) amplified the intergenic spacer region more efficiently than GC-clamped primers. Therefore, PCR artifacts were avoided by using low, 17-cycle, PCR. The method was successfully applied to diverse bacterial species for strain differentiation by TGGE without requiring a special PCR primer set.
Collapse
Affiliation(s)
- Michie Yasuda
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA.
| | | |
Collapse
|
11
|
łaganowska M, Kaznowski A. Restriction Fragment Length Polymorphism of 16S–23S rDNA Intergenic Spacer of Aeromonas spp. Syst Appl Microbiol 2004; 27:549-57. [PMID: 15490556 DOI: 10.1078/0723202041748226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We analyzed restriction fragment length polymorphism (RFLP) of 16S-23S rDNA intergenic spacer region (ISR) of Aeromonas species. A total of 69 isolates belonging to 18 DNA hybridization groups (HG; equivalent of genomic species) were used in this study. ISRs were amplified by PCR and the products were digested with four restriction endonucleases: Hin6I, Csp6I, TaqI, and TasI. The RFLP patterns obtained after digesting by particular enzymes revealed ISR polymorphism of isolates allocated to individual genomic species. The combined Hin6I, Csp6I, TaqI, and TasI restriction profiles were examined by Dice coefficient (SD) and unweighted pair group method of clustering (UPGMA). The isolates were allocated into 15 groups, three strains were unclustered. The strains belonging to the following genomic species: A. hydrophila, A. bestiarum, A. salmonicida, A. caviae, A. media, A. schubertii, A. allosaccharophila, A. popoffii, and A. culicicola formed distinct clusters. Strains belonging to HG 6, HG 7, HG 11, and HG 16 revealed similar combined RFLP patterns and constituted one group. Similarly, the strains of A. jandaei (HG 9) and the type strain of A. trota were allocated into one cluster. Two isolates of HG 14 formed distinct cluster. We noticed a genetic diversity among A. veronii isolates, the strains were clustered in two groups. Our study showed that combined ISR-RFLP analysis may be used for identification of some species of Aeromonas.
Collapse
Affiliation(s)
- Marzena łaganowska
- Department of Microbiology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | | |
Collapse
|
12
|
Peplies J, Glöckner FO, Amann R, Ludwig W. Comparative sequence analysis and oligonucleotide probe design based on 23S rRNA genes of Alphaproteobacteria from North Sea bacterioplankton. Syst Appl Microbiol 2004; 27:573-80. [PMID: 15490559 DOI: 10.1078/0723202041748172] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Almost complete 23S rRNA gene sequences were obtained from 11 Alphaproteobacteria isolated from marine surface water of the German Bight. Five of the strains belong to the "marine alpha" group, a phylogenetic cluster which encompasses members of the genus Roseobacter and closely related bacteria. Phylogenetic sequence analysis based on 52 published as well as unpublished complete 23S rDNA sequences from Alphaproteobacteria including the newly obtained was in general consistent with the 16S rRNA gene sequence-derived phylogeny. 16S and 23S rRNA based phylogenies both showed a distinct cluster for strains associated with the "marine alpha" group. The suitability of both markers for the design of oligonucleotide probes targeting selected groups of Alphaproteobacteria was systematically evaluated and compared in silico. Six clusters of sequences covering different phylogenetic levels as well as two strains were selected in a case study. To compensate for the quantitative difference in the two data sets, the 16S rRNA dataset was truncated to sequences with an equivalent in the 23S rRNA data set. Our results show, that the overall number of phylogenetically redundant probes available could be more than doubled by extending probe design to the 23S rRNA. For small clusters of high sequence similarity and single strains, up to 8 times more discriminating binding sites were provided by the 23S rRNA.
Collapse
MESH Headings
- Alphaproteobacteria/classification
- Alphaproteobacteria/genetics
- Alphaproteobacteria/isolation & purification
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/isolation & purification
- Genes, rRNA
- Germany
- Molecular Sequence Data
- North Sea
- Oligonucleotide Probes/genetics
- Phylogeny
- Plankton
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- Roseobacter/classification
- Seawater/microbiology
- Sensitivity and Specificity
- Sequence Analysis, DNA
- Water Microbiology
Collapse
Affiliation(s)
- Jörg Peplies
- Max Planck Institute for Marine Microbiology, Department of Molecular Ecology, Bremen, Germany
| | | | | | | |
Collapse
|
13
|
Broda DM, Musgrave DR, Bell RG. Molecular differentiation of clostridia associated with "blown pack" spoilage of vacuum-packed meats using internal transcribed spacer polymorphism analysis. Int J Food Microbiol 2003; 84:71-7. [PMID: 12781956 DOI: 10.1016/s0168-1605(02)00396-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 16S-23S rDNA internal transcribed spacer (ITS) polymorphism analysis was assessed for its suitability in rapid discrimination between species of psychrophilic and psychrotolerant clostridia associated with "blown pack" spoilage of vacuum-packed meats. DNA isolated from 10 reference and 20 meat strains of psychrophilic and psychrotolerant clostridia were used as templates in PCR amplification with primers complementary to conserved regions of the 3' end of the 16S rRNA and 5' end of the 23S rRNA genes directly flanking the spacer. The majority of strains showed multi-band ITS patterns when products of spacer amplification were visualised on an agarose gel. With the majority of meat strains, PCR amplification generated single banding pattern for a single clostridial species. However, meat strains of Cl. algidicarnis produced four different ITS banding patterns. With reference strains of psychrophilic and psychrotolerant clostridia, variation in spacer length was also observed between nonproteolytic Cl. botulinum type B (17B), E (Beluga) and F (202F). On the other hand, the number and size of the ITS amplification products could not be used for a differentiation of Cl. laramiense ATCC 51254(T) from Cl. estertheticum DSM 8809(T), Cl. putrefaciens DSM 1291(T) from Cl. algidicarnis NCFB 2931(T), or Cl. frigidicarnis strains from nonproteolytic Cl. botulinum type B (17B). The presence of interstrain, and lack of interspecies, ITS polymorphism observed in the present study with some clostridial species may preclude the use of 16S-23S rDNA spacer amplification for species-level discrimination and identification, respectively, of psychrophilic and psychrotolerant clostridia associated with meat spoilage. However, where interstrain, intraspecies heterogeneity of ITS amplification products exists, ITS analysis could be useful for tracing back psychrophilic and psychrotolerant clostridia responsible for meat spoilage to their meat plant sources.
Collapse
Affiliation(s)
- D M Broda
- AgResearch Limited, Ruakura MIRINZ Centre, Private Bag 3123, Hamilton, New Zealand.
| | | | | |
Collapse
|
14
|
Hofman-Bang J, Zheng D, Westermann P, Ahring BK, Raskin L. Molecular ecology of anaerobic reactor systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 81:151-203. [PMID: 12747563 DOI: 10.1007/3-540-45839-5_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these processes. Only a few percent of Bacteria and Archaea have so far been isolated, and almost nothing is known about the dynamics and interactions between these and other microorganisms. This lack of knowledge is most clearly exemplified by the sometimes unpredictable and unexplainable failures and malfunctions of anaerobic digesters occasionally experienced, leading to sub-optimal methane production and wastewater treatment. Using a variety of molecular techniques, we are able to determine which microorganisms are active, where they are active, and when they are active, but we still need to determine why and what they are doing. As genetic manipulations of anaerobes have been shown in only a few species permitting in-situ gene expression studies, the only way to elucidate the function of different microbes is to correlate the metabolic capabilities of isolated microbes in pure culture to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various specific nucleic acid probes are discussed and exemplified by studies of anaerobic granular sludge, biofilm and digester systems.
Collapse
Affiliation(s)
- J Hofman-Bang
- Environmental Microbiology and Biotechnology, Biocentrum DTU, The Technical University of Denmark, Building 227, 2800 Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
15
|
Stamm LV, Bergen HL, Walker RL. Molecular typing of papillomatous digital dermatitis-associated Treponema isolates based on analysis of 16S-23S ribosomal DNA intergenic spacer regions. J Clin Microbiol 2002; 40:3463-9. [PMID: 12202594 PMCID: PMC130723 DOI: 10.1128/jcm.40.9.3463-3469.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomatous digital dermatitis (PDD), an emerging infectious disease of cattle, is characterized by painful, ulcerative foot lesions. The detection of high numbers of invasive spirochetes in PDD lesions suggests an important role for these organisms in the pathogenesis of PDD. PDD-associated spirochetes have phenotypic characteristics consistent with members of the genus TREPONEMA: Partial 16S ribosomal DNA (rDNA) sequence analysis of clonal isolates from California cattle showed that they comprise three phylotypes which cluster closely with human-associated Treponema spp. of the oral cavity (T. denticola and T. medium/T. vincentii) or genital area (T. phagedenis). The goal of our study was to apply 16S-23S rDNA intergenic spacer region (ISR) sequence analysis to the molecular typing of U.S. PDD-associated Treponema isolates. This methodology has potentially greater discriminatory power for differentiation of closely related bacteria than 16S rDNA analysis. We PCR amplified, cloned, and sequenced the ISRs from six California PDD-associated Treponema isolates and, for comparative purposes, one strain each of T. denticola, T. medium, T. vincentii, and T. phagedenis. Two ISRs that varied in length and composition were present in all the PDD-associated Treponema isolates and in T. denticola, T. medium, and T. phagedenis. ISR1 contained a tRNA(Ala) gene, while ISR2 contained a tRNA(Ile) gene. Only a single ISR (ISR1) was identified in T. vincentii. Comparative analyses of the ISR1 and ISR2 sequences indicated that the California PDD-associated Treponema isolates comprised three phylotypes, in agreement with the results of 16S rDNA analysis. PCR amplification of the 16S-tRNA(Ile) region of ISR2 permitted rapid phylotyping of California and Iowa PDD-associated Treponema isolates based on product length polymorphisms.
Collapse
Affiliation(s)
- L V Stamm
- Program in Infectious Diseases, Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7435, USA.
| | | | | |
Collapse
|
16
|
Parekh NR, Bardgett RD. Chapter 2 The characterisation of microbial communities in environmental samples. RADIOACTIVITY IN THE ENVIRONMENT 2002. [DOI: 10.1016/s1569-4860(02)80031-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Ranjard L, Brothier E, Nazaret S. Sequencing bands of ribosomal intergenic spacer analysis fingerprints for characterization and microscale distribution of soil bacterium populations responding to mercury spiking. Appl Environ Microbiol 2000; 66:5334-9. [PMID: 11097911 PMCID: PMC92465 DOI: 10.1128/aem.66.12.5334-5339.2000] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two major emerging bands (a 350-bp band and a 650-bp band) within the RISA (ribosomal intergenic spacer analysis) profile of a soil bacterial community spiked with Hg(II) were selected for further identification of the populations involved in the response of the community to the added metal. The bands were cut out from polyacrylamide gels, cloned, characterized by restriction analysis, and sequenced for phylogenetic affiliation of dominant clones. The sequences were the intergenic spacer between the rrs and rrl genes and the first 130 nucleotides of the rrl gene. Comparison of sequences derived from the 350-bp band to The GenBank database permitted us to identify the bacteria as being mostly close relatives to low G+C firmicutes (Clostridium-like genera), while the 650-bp band permitted us to identify the bacteria as being mostly close relatives to beta-proteobacteria (Ralstonia-like genera). Oligonucleotide probes specific for the identified dominant bacteria were designed and hybridized with the RISA profiles derived from the control and spiked communities. These studies confirmed the contribution of these populations to the community response to the metal. Hybridization of the RISA profiles from subcommunities (bacterial pools associated with different soil microenvironments) also permitted to characterize the distribution and the dynamics of these populations at a microscale level following mercury spiking.
Collapse
Affiliation(s)
- L Ranjard
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Université Claude Bernard, Lyon I, F-69622 Villeurbanne Cedex, France
| | | | | |
Collapse
|
18
|
Broda DM, Musgrave DR, Bell RG. Use of restriction fragment length polymorphism analysis to differentiate strains of psychrophilic and psychrotropic clostridia associated with blown pack' spoilage of vacuum-packed meats. J Appl Microbiol 2000; 88:107-16. [PMID: 10735249 DOI: 10.1046/j.1365-2672.2000.00925.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reference and meat strains of psychrophilic and psychrotrophic clostridia were differentiated using restriction fragment length polymorphism (RFLP) analysis of genomic DNA (DNA-RFLP) and the polymerase chain reaction-amplified 16S rDNA gene (PCR-RFLP). Groupings obtained with PCR-RFLP were confirmed with 16S rDNA gene sequencing. DNA-RFLP resolved 19 of the 22 meat strains into 11 groups. Three meat strains were untypable using this method. All reference strains representing different genotypic species could be distinguished by the restriction patterns of 16S rDNA genes. With PCR-RFLP, the 22 meat strains produced eight distinct genotypes. 16S rDNA gene sequencing confirmed that each genotype was represented by a distinct sequence. PCR-RFLP restriction patterns of 15 meat strains matched those of one of two of the seven reference strains used. Seven meat strains whose RFLP restriction patterns of 16S rDNA genes differed from those of any reference strains probably represent four previously undescribed species. Although RFLP analysis of the amplified 16S rDNA gene allowed differentiation of psychrophilic and psychrotrophic clostridia at the genotypic species level and below, comparison of PCR-RFLP patterns and 16S rDNA sequences of unknown clostridial isolates with patterns and sequences of reference strains may not effect ready identification of these micro-organisms. The results of this study will be useful in diagnosis of the cause of premature spoilage of chilled vacuum-packed meats and in tracing spoilage-causing clostridia to their source(s) in the abattoir.
Collapse
Affiliation(s)
- D M Broda
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand.
| | | | | |
Collapse
|
19
|
Fisher MM, Triplett EW. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 1999; 65:4630-6. [PMID: 10508099 PMCID: PMC91617 DOI: 10.1128/aem.65.10.4630-4636.1999] [Citation(s) in RCA: 456] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An automated method of ribosomal intergenic spacer analysis (ARISA) was developed for the rapid estimation of microbial diversity and community composition in freshwater environments. Following isolation of total community DNA, PCR amplification of the 16S-23S intergenic spacer region in the rRNA operon was performed with a fluorescence-labeled forward primer. ARISA-PCR fragments ranging in size from 400 to 1,200 bp were next discriminated and measured by using an automated electrophoresis system. Database information on the 16S-23S intergenic spacer was also examined, to understand the potential biases in diversity estimates provided by ARISA. In the analysis of three natural freshwater bacterial communities, ARISA was rapid and sensitive and provided highly reproducible community-specific profiles at all levels of replication tested. The ARISA profiles of the freshwater communities were quantitatively compared in terms of both their relative diversity and similarity level. The three communities had distinctly different profiles but were similar in their total number of fragments (range, 34 to 41). In addition, the pattern of major amplification products in representative profiles was not significantly altered when the PCR cycle number was reduced from 30 to 15, but the number of minor products (near the limit of detection) was sensitive to changes in cycling parameters. Overall, the results suggest that ARISA is a rapid and effective community analysis technique that can be used in conjunction with more accurate but labor-intensive methods (e.g., 16S rRNA gene cloning and sequencing) when fine-scale spatial and temporal resolution is needed.
Collapse
Affiliation(s)
- M M Fisher
- Department of Agronomy, Brock Institute for Environmental Microbiology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
20
|
Schwieger F, Tebbe CC. A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 1998; 64:4870-6. [PMID: 9835576 PMCID: PMC90936 DOI: 10.1128/aem.64.12.4870-4876.1998] [Citation(s) in RCA: 355] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Single-strand-conformation polymorphism (SSCP) of DNA, a method widely used in mutation analysis, was adapted to the analysis and differentiation of cultivated pure-culture soil microorganisms and noncultivated rhizosphere microbial communities. A fragment (approximately 400 bp) of the bacterial 16S rRNA gene (V-4 and V-5 regions) was amplified by PCR with universal primers, with one primer phosphorylated at the 5' end. The phosphorylated strands of the PCR products were selectively digested with lambda exonuclease, and the remaining strands were separated by electrophoresis with an MDE polyacrylamide gel, a matrix specifically optimized for SSCP purposes. By this means, reannealing and heteroduplex formation of DNA strands during electrophoresis could be excluded, and the number of bands per organism was reduced. PCR products from 10 of 11 different bacterial type strains tested could be differentiated from each other. With template mixtures consisting of pure-culture DNAs from 5 and 10 bacterial strains, most of the single strains could be detected from such model communities after PCR and SSCP analyses. Purified bands amplified from pure cultures and model communities extracted from gels could be reamplified by PCR, but by this process, additional products were also generated, as detected by further SSCP analysis. Profiles generated with DNAs of rhizosphere bacterial communities, directly extracted from two different plant species grown in the same field site, could be clearly distinguished. This study demonstrates the potential of the selected PCR-single-stranded DNA approach for microbial community analysis.
Collapse
Affiliation(s)
- F Schwieger
- Institut für Agrarökologie, Bundesforschungsanstalt für Landwirtschaft, 38116 Braunschweig, Germany
| | | |
Collapse
|
21
|
Fox KF, Fox A, Nagpal M, Steinberg P, Heroux K. Identification of Brucella by ribosomal-spacer-region PCR and differentiation of Brucella canis from other Brucella spp. pathogenic for humans by carbohydrate profiles. J Clin Microbiol 1998; 36:3217-22. [PMID: 9774568 PMCID: PMC105304 DOI: 10.1128/jcm.36.11.3217-3222.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular and chemical characteristics often provide complementary information in the differentiation of closely related organisms. The genus Brucella consists of a highly conserved group of organisms. Identification of the four species pathogenic in humans (Brucella melitensis, Brucella abortus, Brucella suis, and Brucella canis) is problematic for many clinical laboratories that depend primarily on serology and phenotypic characteristics to differentiate species. PCR amplification of the 16S-23S ribosomal DNA interspace region was evaluated for species-specific polymorphism. B. abortus, B. melitensis, B. suis, and B. canis produced identical PCR interspace profiles. However, these PCR products were unique to brucellae, allowing them to be readily distinguished from other gram-negative bacteria (including Bartonella spp. and Agrobacterium spp.). Carbohydrate profiles differentiated B. canis from the other three Brucella species due to the absence of the rare amino sugar quinovosamine in the three other species. PCR of the rRNA interspace region is useful in identification of the genus Brucella, while carbohydrate profiling is capable of differentiating B. canis from the other Brucella species.
Collapse
Affiliation(s)
- K F Fox
- Department of Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, South Carolina 29208, USA
| | | | | | | | | |
Collapse
|
22
|
Nakao H, Popovic T. Development of a rapid ribotyping method for Corynebacterium diphtheriae by using PCR single-strand conformation polymorphism: comparison with standard ribotyping. J Microbiol Methods 1998. [DOI: 10.1016/s0167-7012(97)00104-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|