1
|
Fritzsche S, Hübner H, Oldiges M, Castiglione K. Comparative evaluation of the extracellular production of a polyethylene terephthalate degrading cutinase by Corynebacterium glutamicum and leaky Escherichia coli in batch and fed-batch processes. Microb Cell Fact 2024; 23:274. [PMID: 39390488 PMCID: PMC11468216 DOI: 10.1186/s12934-024-02547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND With a growing global population, the generation of plastic waste and the depletion of fossil resources are major concerns that need to be addressed by developing sustainable and efficient plastic recycling methods. Biocatalytic recycling is emerging as a promising ecological alternative to conventional processes, particularly in the recycling of polyethylene terephthalate (PET). However, cost-effective production of the involved biocatalyst is essential for the transition of enzymatic PET recycling to a widely used industrial technology. Extracellular enzyme production using established organisms such as Escherichia coli or Corynebacterium glutamicum offers a promising way to reduce downstream processing costs. RESULTS In this study, we compared extracellular recombinant protein production by classical secretion in C. glutamicum and by membrane leakage in E. coli. A superior extracellular release of the cutinase ICCGDAQI was observed with E. coli in batch and fed-batch processes on a litre-scale. This phenomenon in E. coli, in the absence of a signal peptide, might be associated with membrane-destabilizing catalytic properties of the expressed cutinase. Optimisations regarding induction, expression temperature and duration as well as carbon source significantly enhanced extracellular cutinase activity. In particular, in fed-batch cultivation of E. coli at 30 °C with lactose as carbon source and inducer, a remarkable extracellular activity (137 U mL-1) and cutinase titre (660 mg L-1) were achieved after 48 h. Literature values obtained with other secretory organisms, such as Bacillus subtilis or Komagataella phaffii were clearly outperformed. The extracellular ICCGDAQI produced showed high efficacy in the hydrolysis of PET textile fibres, either chromatographically purified or unpurified as culture supernatant. In less than 18 h, 10 g L-1 substrate was hydrolysed using supernatant containing 3 mg cutinase ICCGDAQI at 70 °C, pH 9 with terephthalic acid yields of up to 97.8%. CONCLUSION Extracellular production can reduce the cost of recombinant proteins by simplifying downstream processing. In the case of the PET-hydrolysing cutinase ICCGDAQI, it was even possible to avoid chromatographic purification and still achieve efficient PET hydrolysis. With such production approaches and their further optimisation, enzymatic recycling of PET can contribute to a more efficient and environmentally friendly solution to the industrial recycling of plastics in the future.
Collapse
Affiliation(s)
- Stefanie Fritzsche
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Holger Hübner
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Kathrin Castiglione
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany.
| |
Collapse
|
2
|
Bastami M, Hosseini R. The codon optimised gene produces an active human basic fibroblastic growth factor in rice cell suspension culture. Growth Factors 2024; 42:171-187. [PMID: 39485262 DOI: 10.1080/08977194.2024.2423747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
The coding sequence of human basic fibroblast growth factor (hbFGF) was optimised for expression in rice. An expression cassette was constructed by fusing the PCR-amplified RAmy3D promoter, along with its 5'UTR, 3'UTR, and terminator sequences, to the codon-optimised hbFGF sequence. This cassette was inserted into the pCAMBIA1304 shuttle vector, which also contained the RAmy3D signal peptide. Agrobacterium tumefaciens strain LBA 4404 was used to transform rice callus. Among the transformed lines, the callus expressing the highest level of bFGF (38.1 mg/kg fresh weight) was identified via ELISA and selected for establishing a cell suspension culture. Expression and secretion of the recombinant bFGF into the culture medium were observed three days after incubating the transgenic rice cells in sucrose-free medium. The presence of recombinant bFGF was confirmed through Western blot and SDS-PAGE analyses. Furthermore, the rice-derived bFGF effectively stimulated the proliferation of NIH/3T3 cells, demonstrating a comparable biological activity to that of commercial bFGF.
Collapse
Affiliation(s)
- Meysam Bastami
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Ramin Hosseini
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
3
|
Trainor K, Doyle CM, Metcalfe-Roach A, Steckner J, Lipovšek D, Malakian H, Langley D, Krystek SR, Meiering EM. Design for Solubility May Reveal Induction of Amide Hydrogen/Deuterium Exchange by Protein Self-Association. J Mol Biol 2021; 434:167398. [PMID: 34902431 DOI: 10.1016/j.jmb.2021.167398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Structural heterogeneity often constrains the characterization of aggregating proteins to indirect or low-resolution methods, obscuring mechanistic details of association. Here, we report progress in understanding the aggregation of Adnectins, engineered binding proteins with an immunoglobulin-like fold. We rationally design Adnectin solubility and measure amide hydrogen/deuterium exchange (HDX) under conditions that permit transient protein self-association. Protein-protein binding commonly slows rates of HDX; in contrast, we find that Adnectin association may induce faster HDX for certain amides, particularly in the C-terminal β-strand. In aggregation-prone proteins, we identify a pattern of very different rates of amide HDX for residues linked by reciprocal hydrogen bonds in the native structure. These results may be explained by local loss of native structure and formation of an inter-protein interface. Amide HDX induced by self-association, detected here by deliberate modulation of propensity for such interactions, may be a general phenomenon with the potential to expose mechanisms of aggregation by diverse proteins.
Collapse
Affiliation(s)
- Kyle Trainor
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Colleen M Doyle
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada.
| | - Avril Metcalfe-Roach
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada.
| | - Julia Steckner
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Daša Lipovšek
- Bristol Myers Squibb, Cambridge, MA 02140, United States.
| | | | - David Langley
- Bristol Myers Squibb, Cambridge, MA 02140, United States
| | | | - Elizabeth M Meiering
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada.
| |
Collapse
|
4
|
Nghia NH, Kumada Y, Kishimoto M, Horiuchi JI. Stabilization of single-chain Fv antibody production using recombinant Escherichia coli by DO-stat fed-batch culture employing yeast extract-enriched feeding medium. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Akbarian M, Yousefi R. Human αB-crystallin as fusion protein and molecular chaperone increases the expression and folding efficiency of recombinant insulin. PLoS One 2018; 13:e0206169. [PMID: 30339677 PMCID: PMC6195290 DOI: 10.1371/journal.pone.0206169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/08/2018] [Indexed: 01/19/2023] Open
Abstract
Low expression and instability are significant challenges in the recombinant production of therapeutic peptides. The current study introduces a novel expression and purification system for human insulin production using the molecular chaperone αB-crystallin (αB-Cry) as a fusion partner protein. Insulin is composed of A- and B-chain containing three disulfide bonds (one intarchain and two interchains). We have constructed two plasmids harboring the A- or B-chain of insulin joined with human αB-Cry. This system is suitable for cloning of the genes and for directing the synthesis of large amounts of the fusion proteins αB-Cry/A-chain (αB-AC) and αB-Cry/B-chain (αB-BC). The construction of vectors, their efficient expression in Escherichia coli and simple purification of the fusion proteins and two insulin chains are described. A large amount of the recombinant fusion proteins with high purity was obtained by applying a single step anion exchange chromatography or metal chelate affinity. The insulin A- and B-chain were released from the fusion proteins using cyanogen bromide cleavage. The insulin peptides were obtained with an appreciable yield and high purity using one-step gel filtration chromatography. To increase efficiency of chain combination to produce insulin, αB-Cry was used under oxidative conditions. The purification of natively folded insulin was performed by phenyl sepharose hydrophobic interaction chromatography. Finally, using an insulin tolerance test in mice and various biophysical methods, the structure and function of purified human recombinant insulin was compared with authentic insulin, to verify folding of insulin to its native state. Overall, the novel expression system using αB-Cry is highly demanding for producing human insulin and functional protein. The procedure for αB-Cry-mediated insulin folding could be also applicable for the large-scale production of this highly important therapeutic peptide hormone.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Protein Chemistry Laboratory, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
6
|
Reichelt WN, Haas F, Sagmeister P, Herwig C. Bioprocess development workflow: Transferable physiological knowledge instead of technological correlations. Biotechnol Prog 2016; 33:261-270. [PMID: 27690336 DOI: 10.1002/btpr.2377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/28/2016] [Indexed: 11/06/2022]
Abstract
Microbial bioprocesses need to be designed to be transferable from lab scale to production scale as well as between setups. Although substantial effort is invested to control technological parameters, usually the only true constant parameter is the actual producer of the product: the cell. Hence, instead of solely controlling technological process parameters, the focus should be increasingly laid on physiological parameters. This contribution aims at illustrating a workflow of data life cycle management with special focus on physiology. Information processing condenses the data into physiological variables, while information mining condenses the variables further into physiological descriptors. This basis facilitates data analysis for a physiological explanation for observed phenomena in productivity. Targeting transferability, we demonstrate this workflow using an industrially relevant Escherichia coli process for recombinant protein production and substantiate the following three points: (1) The postinduction phase is independent in terms of productivity and physiology from the preinduction variables specific growth rate and biomass at induction. (2) The specific substrate uptake rate during induction phase was found to significantly impact the maximum specific product titer. (3) The time point of maximum specific titer can be predicted by an easy accessible physiological variable: while the maximum specific titers were reached at different time points (19.8 ± 7.6 h), those maxima were reached all within a very narrow window of cumulatively consumed substrate dSn (3.1 ± 0.3 g/g). Concluding, this contribution provides a workflow on how to gain a physiological view on the process and illustrates potential benefits. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:261-270, 2017.
Collapse
Affiliation(s)
- Wieland N Reichelt
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/166, Vienna, A-1060, Austria
| | - Florian Haas
- Research Division Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1A/166-4, Vienna, 1060, Austria
| | - Patrick Sagmeister
- Research Division Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1A/166-4, Vienna, 1060, Austria
| | - Christoph Herwig
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/166, Vienna, A-1060, Austria
| |
Collapse
|
7
|
Studies to Prevent Degradation of Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization. Int J Mol Sci 2016; 17:ijms17060913. [PMID: 27294920 PMCID: PMC4926446 DOI: 10.3390/ijms17060913] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 12/12/2022] Open
Abstract
Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1–D3)-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture and was observed to increase over time in culture and also on storage. In this study, a few parameters were explored in a bid to inhibit clipping in the fusion protein The effects of culture temperature, duration of culture, the addition of an anti-clumping agent, ferric citrate and use of protease inhibitor cocktail on inhibition of proteolysis of the Fc fusion were studied. Lowering of culture temperature from 37 to 30 °C alone appears to be the best solution for reducing protein degradation from the quality, cost and regulatory points of view. The obtained Fc protein was characterized and found to be in its stable folded state, exhibiting a high affinity for its ligand and also biological and functional activities.
Collapse
|
8
|
Ang RP, Teoh LS, Chan MK, Miswan N, Khoo BY. Comparing the expression of human DNA topoisomerase I in KM71H and X33 strains of Pichia pastoris. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Ensemble Modeling and Intracellular Aggregation of an Engineered Immunoglobulin-Like Domain. J Mol Biol 2016; 428:1365-1374. [DOI: 10.1016/j.jmb.2016.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/28/2016] [Accepted: 02/12/2016] [Indexed: 11/21/2022]
|
10
|
Reyes G, Nivillac NMI, Chalsev M, Coe IR. Analysis of recombinant tagged equilibrative nucleoside transporter 1 (ENT1) expressed in E. coli. Biochem Cell Biol 2011; 89:246-55. [PMID: 21455275 DOI: 10.1139/o10-155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nucleoside transporters (NTs) are integral membrane proteins necessary for the cellular entry of nucleoside analog drugs used in chemotherapeutic treatment of conditions such as cancer and viral or parasitic infections. NTs are also the targets of certain drugs used in the treatment of various cardiovascular conditions. Because of the importance of NTs in drug uptake, determination of the three-dimensional structure of these proteins, particularly hENT1, has the potential to improve these treatments through structure-based design of more specifically targeted and transported drugs. In this paper, we use NMR spectroscopy to investigate the structure of the large intracellular loop between transmembrane domains 6 and 7 and we also describe a method for the successful overexpression of full-length hENT1 in a bacterial system. Recombinant tandem histidine-affinity (HAT) and 3×FLAG tagged hENT1 was overexpressed in E. coli, affinity purified, and functionally characterized by nitrobenzylthioinosine (NBTI) binding. Anti-3×FLAG immunodetection confirmed the expression of N-HAT-3×FLAG-hENT1, while increased NBTI binding (3.2-fold compared with controls) confirmed the conformational integrity of the recombinant hENT1 within the bacterial inner membrane. Yields of recombinant hENT1 using this approach were ~15 µg/L of bacterial culture and this approach provides a basis for large-scale production of protein for a variety of purposes.
Collapse
Affiliation(s)
- German Reyes
- Department of Biology, York University, Toronto, ON, Canada
| | | | | | | |
Collapse
|
11
|
Conley AJ, Joensuu JJ, Richman A, Menassa R. Protein body-inducing fusions for high-level production and purification of recombinant proteins in plants. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:419-33. [PMID: 21338467 DOI: 10.1111/j.1467-7652.2011.00596.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
For the past two decades, therapeutic and industrially important proteins have been expressed in plants with varying levels of success. The two major challenges hindering the economical production of plant-made recombinant proteins include inadequate accumulation levels and the lack of efficient purification methods. To address these limitations, several fusion protein strategies have been recently developed to significantly enhance the production yield of plant-made recombinant proteins, while simultaneously assisting in their subsequent purification. Elastin-like polypeptides are thermally responsive biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the purification of recombinant proteins. Hydrophobins are small fungal proteins capable of altering the hydrophobicity of their respective fusion partner, thus enabling efficient purification by surfactant-based aqueous two-phase systems. Zera, a domain of the maize seed storage protein γ-zein, can induce the formation of protein storage bodies, thus facilitating the recovery of fused proteins using density-based separation methods. These three novel protein fusion systems have also been shown to enhance the accumulation of a range of different recombinant proteins, while concurrently inducing the formation of protein bodies. The packing of these fusion proteins into protein bodies may exclude the recombinant protein from normal physiological turnover. Furthermore, these systems allow for quick, simple and inexpensive nonchromatographic purification of the recombinant protein, which can be scaled up to industrial levels of protein production. This review will focus on the similarities and differences of these artificial storage organelles, their biogenesis and their implication for the production of recombinant proteins in plants and their subsequent purification.
Collapse
Affiliation(s)
- Andrew J Conley
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | | | | | | |
Collapse
|
12
|
Chuppa S, Tsai YS, Yoon S, Shackleford S, Rozales C, Bhat R, Tsay G, Matanguihan C, Konstantinov K, Naveh D. Fermentor temperature as a tool for control of high-density perfusion cultures of mammalian cells. Biotechnol Bioeng 2010; 55:328-38. [PMID: 18636491 DOI: 10.1002/(sici)1097-0290(19970720)55:2<328::aid-bit10>3.0.co;2-d] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Temperature is a key environmental variable whose potential in animal cell fermentor optimization is not yet fully utilized. The scarce literature data suggests that reduced fermentor temperature results in an improved viability and shear resistance, higher cell density and titer in batch cultures, and reduction in glucose/lactate metabolism. Due to the arrest of the cells in the G1 phase, the specific growth rate was found to decrease at temperatures below 37.0 degrees C. The response of the specific production rate was cell line dependent: in some cases it increased 2-to-3-fold, but decreased in other cases. The controlable slowdown of cell metabolism at lower temperature can be used in optimization of perfusion mammalian cell cultures with several potential advantages, including higher cell density in oxygen limited reactors, lower perfusion rate, improved product quality, simplified pH control, and others. To evaluate this strategy, a series of long-term experiments in 15 L perfusion bioreactors culturing recombinant hamster cells at 20.0 x 10(6) cells/mL were conducted. The temperature was changed over a range of set points, and maintained at each of these for a long period of time. Steady state process data was collected and analyzed. The effect of temperature on the following characteristics of the perfusion process was studied: cell growth, glucose/lactate metabolism, glutamine/ammonia metabolism, cell respiration, cell density at constant oxygen transfer rate, proteolytic activity, and product quality (glycosylation and molecule fragmentation). The results suggest that temperature is a variable with a significant potential in optimization of perfusion cultures. Properly selected temperature set point will contribute to the overall improvement of process performance. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 328-338, 1997.
Collapse
Affiliation(s)
- S Chuppa
- Bayer Corp., 800 Dwight Way, P.O. Box 1986, Berkeley, California 94710; telephone: (510) 705-7327; fax: (510) 705-4911
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Conley AJ, Jevnikar AM, Menassa R, Brandle JE. Temporal and spatial distribution of erythropoietin in transgenic tobacco plants. Transgenic Res 2010; 19:291-8. [PMID: 19618287 DOI: 10.1007/s11248-009-9306-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 07/04/2009] [Indexed: 10/20/2022]
Abstract
Plants have shown promise as bioreactors for the large-scale production of a wide variety of recombinant proteins. To increase the economic feasibility of this technology, numerous molecular approaches have been developed to enhance the production yield of these valuable proteins in plants. Alternatively, we chose to examine the temporal and spatial distribution of erythropoietin (EPO) accumulation during tobacco plant development, in order to establish the optimal harvesting time to further maximize heterologous protein recovery. EPO is used extensively worldwide for the treatment of anaemia and is currently the most commercially valuable biopharmaceutical on the market. Our results indicate that the concentration of recombinant EPO and endogenous total soluble protein (TSP) declined significantly for every leaf of the plant during maturation, although the rate of these declines was strongly dependent on the leaf's position on the plant. As a result, the amount of EPO produced in leaves relative to TSP content remained essentially unchanged over the course of the plant's life. Decreasing levels of recombinant protein in leaves was attributed to proteolytic degradation associated with tissue senescence since transgene silencing was not detected. We found that significantly higher concentrations of EPO within younger leaves more than compensated for their smaller size, when compared to their low-expressing, fully-grown counterparts. This suggests that fast-growing, young leaves should be periodically harvested from the plants as they continue to grow in order to maximize recombinant protein yield. These findings demonstrate that EPO accumulation is highly influenced by the plant's physiology and development.
Collapse
Affiliation(s)
- Andrew J Conley
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | | | | | | |
Collapse
|
14
|
Idiris A, Tohda H, Kumagai H, Takegawa K. Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 2010; 86:403-17. [DOI: 10.1007/s00253-010-2447-0] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/07/2010] [Accepted: 01/09/2010] [Indexed: 01/08/2023]
|
15
|
Abstract
Plants have emerged in the past decade as a suitable alternative to the current production systems for recombinant pharmaceutical proteins and, today their potential for low-cost production of high quality, much safer and biologically active mammalian proteins is largely documented. Among various plant expression systems being explored, genetically modified suspension-cultured plant cells offer a promising system for production of biopharmaceuticals. Indeed, when compared to other plant-based production platforms that have been explored, suspension-cultured plant cells have the advantage of being totally devoid of problems associated with the vagaries of weather, pest, soil and gene flow in the environment. Because of short growth cycles, the timescale needed for the production of recombinant proteins in plant cell culture can be counted in days or weeks after transformation compared to months needed for the production in transgenic plants. Moreover, recovery and purification of recombinant proteins from plant biomass is an expensive and technically challenging business that may amount to 80-94% of the final product cost. One additional advantage of plant cell culture is that the recombinant protein fused with a signal sequence can be expressed and secreted into the culture medium, and therefore recovered and purified in the absence of large quantities of contaminating proteins. Consequently, the downstream processing of proteins extracted from plant cell culture medium is less expensive, which may/does balance the higher costs of fermentation. When needed for clinical use, recombinant proteins are easily produced in suspension-cultured plant cells under certified, controllable and sterile conditions that offer improved safety and provide advantages for good manufacturing practices and regulatory compliance. In this chapter, we present basic protocols for rapid generation of transgenic suspension-cultured cells of Nicotiana tabacum, Oriza sativa and Arabidopis thaliana. These systems are powerful tools for plant-made pharmaceuticals production in highly controlled conditions.
Collapse
|
16
|
Kasche V, Ignatova Z, Märkl H, Plate W, Punckt N, Schmidt D, Wiegandt K, Ernst B. Ca2+ Is a Cofactor Required for Membrane Transport and Maturation and Is a Yield-Determining Factor in High Cell Density Penicillin Amidase Production. Biotechnol Prog 2008; 21:432-8. [PMID: 15801782 DOI: 10.1021/bp049636a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Penicillin amidases (PAs) from E. coli and A. faecalis are periplasmic enzymes that contain one tightly bound Ca(2+) per molecule that does not directly participate in the enzymatic function. This ion may, however, be required for the maturation of the pre-pro-enzyme. The pro-enzyme of homologous PAs are translocated through the Tat- (E. coli PA(EC)) and Sec- (A. faecalis PA(AF)) transport systems, respectively. Cell fractionation, electrophoresis, immunoblotting, and activity staining demonstrated that Ca(2+) binding is required for the membrane transport and maturation of the pro-enzyme to active enzyme. Pro-enzyme without Ca(2+) was targeted to the membrane but not translocated. Influence of Ca(2+) in medium and feed was studied for high cell density cultivations of E. coli expressing these enzymes. Without Ca(2+) in the feed the synthesis of the pre-pro-enzyme was hardly influenced. At optimal Ca(2+) content in the feed the active enzyme amount could be increased by 2 orders of magnitude up to 0.9 g/L (PA(EC)) and 2.3 g/L (PA(AF)) or 4% (PA(EC)) and 8% (PA(AF)) of the cell dry weight. The corresponding specific activities are 1700 U (PA(EC)) and 14000 U (PA(AF)) per gram cell dry weight, respectively. These values are higher than those published previously. Thus, for optimal yields of the studied and other extra- and periplasmic enzymes that require Ca(2+) or other ions as cofactors for membrane transport and maturation, sufficient cofactor must be added in the feed.
Collapse
Affiliation(s)
- Volker Kasche
- Biotechnologie I and II, Technische Universität Hamburg-Harburg, Denickestrasse 15, 21071 Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Benchabane M, Goulet C, Rivard D, Faye L, Gomord V, Michaud D. Preventing unintended proteolysis in plant protein biofactories. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:633-48. [PMID: 18452504 PMCID: PMC7159130 DOI: 10.1111/j.1467-7652.2008.00344.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 03/13/2008] [Accepted: 03/21/2008] [Indexed: 05/18/2023]
Abstract
Numerous reports have been published over the last decade assessing the potential of plants as useful hosts for the heterologous expression of clinically useful proteins. Significant progress has been made, in particular, in optimizing transgene transcription and translation in plants, and in elucidating the complex post-translational modifications of proteins typical of the plant cell machinery. In this article, we address the important issue of recombinant protein degradation in plant expression platforms, which directly impacts on the final yield, homogeneity and overall quality of the resulting protein product. Unlike several more stable and structurally less complex pharmaceuticals, recombinant proteins present a natural tendency to structural heterogeneity, resulting in part from the inherent instability of polypeptide chains expressed in heterologous environments. Proteolytic processing, notably, may dramatically alter the structural integrity and overall accumulation of recombinant proteins in plant expression systems, both in planta during expression and ex planta after extraction. In this article, we describe the current strategies proposed to minimize protein hydrolysis in plant protein factories, including organ-specific transgene expression, organelle-specific protein targeting, the grafting of stabilizing protein domains to labile proteins, protein secretion in natural fluids and the co-expression of companion protease inhibitors.
Collapse
|
18
|
Enhancement of stability of recombinant streptokinase by intracellular expression and single step purification by hydrophobic interaction chromatography. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2007.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Balagurunathan B, Jayaraman G. Cellular response to accumulation of recombinant proteins in the E. coli inner membrane: Implications for proteolysis and productivity of the secretory expression system. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2007.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Vitovski S, Sayers JR. Relaxed cleavage specificity of an immunoglobulin A1 protease from Neisseria meningitidis. Infect Immun 2007; 75:2875-85. [PMID: 17353288 PMCID: PMC1932897 DOI: 10.1128/iai.01671-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Respiratory pathogens, such as Neisseria meningitidis, secrete site-specific proteases able to cleave human immunoglobulin A1 (IgA1), the first line of defense at mucosal membranes. Bacterial isolates show wide variability in IgA1 protease activity, and those isolated from patients with clinical infection possess the highest levels of activity. A feature of this enzyme is the self-cleavage required for secretion of the mature extracellular form. Known cleavage targets contain a proline-rich consensus recognition sequence, Pro-Pro-Ser-Pro, residing in the variable linker region that connects the protease and translocator domains. Here, we report the sequence of the NMB IgA1 protease and the unexpected self-cleavage and subsequent extracellular release of mature IgA1 protease from mutants lacking the previously defined consensus cleavage site. We investigated the possible link between enzyme secretion and variability in the linker sequence segment using site-directed mutagenesis and linker domain swapping to construct mutated and chimeric forms of the IgA1 protease from N. meningitidis strain NMB. The observed change in secreted activity levels compared to the wild-type clone indicated that the precise amino acid sequence of the intervening region, between mature IgA1 protease and the beta-core translocator domain, influences the efficacy of autoproteolytic processing. The broader specificity uncovered for the NMB IgA1 protease suggests that it could cleave a far wider range of human proteins than previously appreciated.
Collapse
Affiliation(s)
- Srdjan Vitovski
- Section of Infection, Inflammation and Immunity, Henry Wellcome Laboratories for Medical Research, The University of Sheffield School of Medicine and Biomedical Science, Sheffield, UK
| | | |
Collapse
|
21
|
Idiris A, Bi K, Tohda H, Kumagai H, Giga-Hama Y. Construction of a protease-deficient strain set for the fission yeast Schizosaccharomyces pombe, useful for effective production of protease-sensitive heterologous proteins. Yeast 2006; 23:83-99. [PMID: 16491466 DOI: 10.1002/yea.1342] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
One of the major problems hindering effective production and purification of heterologous proteins from the fission yeast Schizosaccharomyces pombe is proteolytic degradation of the recombinant gene products by host-specific proteases. As an initial solution to this problem, we constructed a protease-deficient disruptant set by respective disruption of 52 Sz. pombe protease genes. Functional screening of the resultant set was performed by observing secretory production of a proteolytically sensitive model protein, human growth hormone (hGH). The results indicated that some of the resultant disruptants were effective in reducing hGH degradation, as observed during the hGH expression procedure and mainly as a result of unknown serine- and/or cysteine-type proteases in the culture medium. These findings also demonstrated that construction of a protease-deficient strain set is not only useful for practical application in protein production, but also for functional screening, specification and modification of proteases in Sz. pombe, where further investigations of proteolytic processes and improvement through multiple gene manipulations are required.
Collapse
Affiliation(s)
- Alimjan Idiris
- ASPEX Division, Research Centre, Asahi Glass Co. Ltd, 1150 Hazawa-cho, Kanagawa-ku, Yokohama 221-8755, Japan
| | | | | | | | | |
Collapse
|
22
|
Huang LF, Liu YK, Lu CA, Hsieh SL, Yu SM. Production of human serum albumin by sugar starvation induced promoter and rice cell culture. Transgenic Res 2005; 14:569-81. [PMID: 16245148 DOI: 10.1007/s11248-004-6481-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 11/11/2004] [Indexed: 10/25/2022]
Abstract
Human serum albumin (HSA) is the most widely used clinical serum protein. Currently, commercial HSA can only be obtained from human plasma, due to lack of commercially feasible recombinant protein expression systems. In this study, inducible expression and secretion of HSA by transformed rice suspension cell culture was established. Mature form of HSA was expressed under the control of the sucrose starvation-inducible rice alpha Amy3 promoter, and secretion of HSA into the culture medium was achieved by using the alpha Amy3 signal sequence. High concentrations of HSA were secreted into culture medium in a short time (2-4 days) by sucrose depletion after cell concentrations had reached a peak density in culture medium containing sucrose. The recombinant HSA had the same electrophoretic mobility as commercial HSA and was stable and free from apparent proteolysis in the culture medium. In a flask scale culture with repeated sucrose provision-depletion cycles, HSA was stably produced with yields up to 11.5% of total medium proteins or 15 mg/L per cycle after each sucrose provision-depletion cycle. A bubble column type bioreactor was designed for production of HSA. In the bioreactor scale culture, HSA was produced with yields up to 76.4 mg/L 4 days after sucrose depletion. HSA was purified from the culture medium to high purity by a simple purification scheme. Enrichment of HSA in culture medium simplifies downstream purification, minimizes protease degradation, and may reduce production cost. The combination of a DNA construct containing the alpha Amy3 promoter and signal sequence, and the use of a rice suspension cell culture can provide an effective system for the production of recombinant pharmaceutical proteins.
Collapse
Affiliation(s)
- Li-Fen Huang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Nankang, Taiwan, ROC
| | | | | | | | | |
Collapse
|
23
|
Parra R, Aldred D, Magan N. A novel immobilised design for the production of the heterologous protein lysozyme by a genetically engineered Aspergillus niger strain. Appl Microbiol Biotechnol 2004; 67:336-44. [PMID: 15480630 DOI: 10.1007/s00253-004-1742-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 08/19/2004] [Accepted: 08/31/2004] [Indexed: 10/26/2022]
Abstract
A novel immobilisation design for increasing the final concentration of the heterologous protein lysozyme by a genetically engineered fungus, Aspergillus niger B1, was developed. A central composition design was used to investigate different immobilised polymer types (alginate and pectate), polymer concentration [24% and 4% (w/v)], inoculum support ratios (1:2 and 1:4) and gel-inducing agent concentration [CaCl(2), 2% and 3.5% (w/v)]. Studies of the kinetics of production showed that optimum lysozyme productivity occurred after 10 days. Lysozyme production was significantly affected by polymer type, polymer concentration, and inoculum support ratio. Overall, immobilisation in Ca-pectate resulted in higher lysozyme production compared to that in Ca-alginate. Similar effects were observed when the polymer concentration was reduced. Regardless of polymer type and concentration, increasing the fungal inoculum level increased lysozyme production. A significantly higher lysozyme yield was achieved with Ca-pectate in comparison to Ca-alginate (approximately 20-23 mg l(-1) and 0.5-2 mg l(-1), respectively). The maximum lysozyme yield achieved was about 23 mg l(-1) by immobilisation in Ca-pectate 2% (w/v) with 33% (v/v) mycelium and 3.5% (w/v) gel-inducing agent (CaCl(2)). Response surface methodology was used to investigate the effect of pH and water activity (a(w)). The best medium pH was 4.5-5.0, and bead a(w) for optimum lysozyme yield was 0.94, regardless of polymer type.
Collapse
Affiliation(s)
- Roberto Parra
- Applied Mycology Group, Institute of BioScience and Technology, Cranfield University, Silsoe, Bedford MK45 4DT, UK
| | | | | |
Collapse
|
24
|
Flaschel E, Friehs K. Improvement of downstream processing of recombinant proteins by means of genetic engineering methods. Biotechnol Adv 2003; 11:31-77. [PMID: 14544808 DOI: 10.1016/0734-9750(93)90409-g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid advancement of genetic engineering has allowed to produce an impressive number of proteins on a scale which would not have been achieved by classical biotechnology. At the beginning of this development research was focussed on elucidating the mechanisms of protein overexpression. The appearance of inclusion bodies may illustrate the success. In the meantime, genetic engineering is not only expected to achieve overexpression, but to improve the whole process of protein production. For downstream processing of recombinant proteins, the synthesis of fusion proteins is of primary importance. Fusion with certain proteins or peptides may protect the target protein from proteolytic degradation and may alter its solubility. Intracellular proteins may be translocated by means of fusions with signal peptides. Affinity tags as fusion complements may render protein separation and purification highly selective. These methods as well as similar ones for improving the downstream processing of proteins will be discussed on the basis of recent literature.
Collapse
Affiliation(s)
- E Flaschel
- Universität Bielefeld, Technische Fakultät, Arbeitsgruppe Fermentationstechnik, Bielefeld, Germany
| | | |
Collapse
|
25
|
Millán AFS, Mingo-Castel A, Miller M, Daniell H. A chloroplast transgenic approach to hyper-express and purify Human Serum Albumin, a protein highly susceptible to proteolytic degradation. PLANT BIOTECHNOLOGY JOURNAL 2003; 1:71-9. [PMID: 17147744 PMCID: PMC3481847 DOI: 10.1046/j.1467-7652.2003.00008.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Human Serum Albumin (HSA) accounts for 60% of the total protein in blood serum and it is the most widely used intravenous protein in a number of human therapies. HSA, however, is currently extracted only from blood because of a lack of commercially feasible recombinant expression systems. HSA is highly susceptible to proteolytic degradation in recombinant systems and is expensive to purify. Expression of HSA in transgenic chloroplasts using Shine-Dalgarno sequence (SD), which usually facilitates hyper-expression of transgenes, resulted only in 0.02% HSA in total protein (tp). Modification of HSA regulatory sequences using chloroplast untranslated regions (UTRs) resulted in hyper-expression of HSA (up to 11.1% tp), compensating for excessive proteolytic degradation. This is the highest expression of a pharmaceutical protein in transgenic plants and 500-fold greater than previous reports on HSA expression in transgenic leaves. Electron micrographs of immunogold labelled transgenic chloroplasts revealed HSA inclusion bodies, which provided a simple method for purification from other cellular proteins. HSA inclusion bodies could be readily solubilized to obtain a monomeric form using appropriate reagents. The regulatory elements used in this study should serve as a model system for enhancing expression of foreign proteins that are highly susceptible to proteolytic degradation and provide advantages in purification, when inclusion bodies are formed.
Collapse
Affiliation(s)
- Alicia Fernández-San Millán
- Department of Molecular Biology and Microbiology, University of Central Florida, Biomolecular Science Building #20, Room 336, Orlando, FL 32816-2360, USA
| | - Angel Mingo-Castel
- Institute of Agrobiotechnology and Natural Resources, Public University of Navarra-CSIC, Mutilva Baja, 31192 Navarra, Spain
| | - Michael Miller
- Auburn University Research Instrumentation Facility – Advanced Microscopy and Imaging Laboratory, Auburn, AL 36849, USA
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, University of Central Florida, Biomolecular Science Building #20, Room 336, Orlando, FL 32816-2360, USA
| |
Collapse
|
26
|
Ignatova Z, Mahsunah A, Georgieva M, Kasche V. Improvement of posttranslational bottlenecks in the production of penicillin amidase in recombinant Escherichia coli strains. Appl Environ Microbiol 2003; 69:1237-45. [PMID: 12571052 PMCID: PMC143610 DOI: 10.1128/aem.69.2.1237-1245.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using periplasmic penicillin amidase (PA) from Escherichia coli ATCC 11105 as a model recombinant protein, we reviewed the posttranslational bottlenecks in its overexpression and undertook attempts to enhance its production in different recombinant E. coli expression hosts. Intracellular proteolytic degradation of the newly synthesized PA precursor and translocation through the plasma membrane were determined to be the main posttranslational processes limiting enzyme production. Rate constants for both intracellular proteolytic breakdown (k(d)) and transport (k(t)) were used as quantitative tools for selection of the appropriate host system and cultivation medium. The production of mature active PA was increased up to 10-fold when the protease-deficient strain E. coli BL21(DE3) was cultivated in medium without a proteinaceous substrate, as confirmed by a decrease in the sum of the constants k(d) and k(t). The original signal sequence of pre-pro-PA was exchanged with the OmpT signal peptide sequence in order to increase translocation efficiency; the effects of this change varied in the different E. coli host strains. Furthermore, we established that simultaneous coexpression of the OmpT pac gene with some proteins of the Sec export machinery of the cell resulted in up to threefold-enhanced PA production. In parallel, we made efforts to increase PA flux via coexpression with the kil gene (killing protein). The primary effects of the kil gene were the release of PA into the extracellular medium and an approximately threefold increase in the total amount of PA produced per liter of bacterial culture.
Collapse
Affiliation(s)
- Z Ignatova
- Institut für Biotecnologie II, Technische Universität Hamburg-Harburg, 21073 Hamburg, Germany.
| | | | | | | |
Collapse
|
27
|
Drouault S, Anba J, Bonneau S, Bolotin A, Ehrlich SD, Renault P. The peptidyl-prolyl isomerase motif is lacking in PmpA, the PrsA-like protein involved in the secretion machinery of Lactococcus lactis. Appl Environ Microbiol 2002; 68:3932-42. [PMID: 12147493 PMCID: PMC124044 DOI: 10.1128/aem.68.8.3932-3942.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prsA-like gene from Lactococcus lactis encoding its single homologue to PrsA, an essential protein triggering the folding of secreted proteins in Bacillus subtilis, was characterized. This gene, annotated pmpA, encodes a lipoprotein of 309 residues whose expression is increased 7- to 10-fold when the source of nitrogen is limited. A slight increase in the expression of the PrsA-like protein (PLP) in L. lactis removed the degradation products previously observed with the Staphylococcus hyicus lipase used as a model secreted protein. This shows that PmpA either triggers the folding of the secreted lipase or activates its degradation by the cell surface protease HtrA. Unlike the case for B. subtilis, the inactivation of the gene encoding PmpA reduced only slightly the growth rate of L. lactis in standard conditions. However, it almost stopped its growth when the lipase was overexpressed in the presence of salt in the medium. Like PrsA of B. subtilis and PrtM of L. lactis, the L. lactis PmpA protein could thus have a foldase activity that facilitates protein secretion. These proteins belong to the third family of peptidyl-prolyl cis/trans-isomerases (PPIases) for which parvulin is the prototype. Almost all PLP from gram-positive bacteria contain a domain with the PPIase signature. An exception to this situation was found only in Streptococcaceae, the family to which L. lactis belongs. PLP from Streptococcus pneumoniae and Enterococcus faecalis possess this signature, but those of L. lactis, Streptococcus pyogenes, and Streptococcus mutans do not. However, secondary structure predictions suggest that the folding of PLP is conserved over the entire length of the proteins, including the unconserved signature region. The activity associated with the expression of PmpA in L. lactis and these genomic data show that either the PPIase motif is not necessary for PPIase activity or, more likely, PmpA foldase activity does not necessarily require PPIase activity.
Collapse
Affiliation(s)
- Sophie Drouault
- Unité d'Ecologie et de Physiologie du Système Digestif. Unité de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas Cedex, France
| | | | | | | | | | | |
Collapse
|
28
|
Medina MG, Carbonell X, Villaverde A. Connection between gene dosage and protein stability revealed by a high-yield production of recombinant proteins in an E. coli LexA1(Ind-) background. Biotechnol Bioeng 2002; 78:722-30. [PMID: 12001164 DOI: 10.1002/bit.10253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacterial production of a plasmid-encoded bacteriophage P22 tailspike protein shows different yield and impact on cell viability in RecA+ LexA+, RecA- LexA+ and RecA+ LexA1(Ind-) backgrounds. In a LexA1(Ind-) context, we have observed lesser toxicity and higher productivity than in the wild-type strain, in which the bacterial growth was inhibited after induction of recombinant gene expression. Also, a negative effect of the incubation temperature on the growth of producing cells was also detected. By exploring the molecular basis of these inhibitory events, we found a connection between the dosage of the recombinant gene and the proteolytic stability of the encoded protein. Under both genetic and environmental conditions favoring higher plasmid copy number and consequently increasing the synthesis rate of the recombinant protein, enhanced protein degradation was observed in parallel with an important growth inhibition. Altogether, the obtained data suggest the existence of a critical concentration of recombinant protein over which cell proteolysis is stimulated at rates not compatible with optimal physiological conditions for bacterial growth.
Collapse
Affiliation(s)
- Manel G Medina
- Institut de Biologia Fonamental and Departament de Genètica and Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | | | | |
Collapse
|
29
|
Balbás P. Understanding the art of producing protein and nonprotein molecules in Escherichia coli. Mol Biotechnol 2001; 19:251-67. [PMID: 11721622 DOI: 10.1385/mb:19:3:251] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The high-level production of functional proteins in E. coli is a very extense field of research in biotechnology. A number of important aspects to be considered in the initial design of an expression system and their interplay, were clear years ago. However, in recent times, strategies that go beyond transcription, translation, stability, vector, and strain choice, have been developed; so now expression of active peptides can be viewed as a more integrated process. Coexpression of protein subunits, foldases and chaperones, protein folding, location and purification schemes, metabolic engineering of the cell's central metabolism, and in vitro refolding strategies, are some of the novelties that are now available to aid in the success of an efficient expression system for active heterologous proteins. This review presents a compilation of the basic issues that influence the success in the production of protein and nonprotein products in Escherichia coli, as well as some general strategies designed to facilitate downstream process operations and improve biosynthesis yields.
Collapse
Affiliation(s)
- P Balbás
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México.
| |
Collapse
|
30
|
Lin WJ, Huang SW, Chou CP. DegP-coexpression minimizes inclusion-body formation upon overproduction of recombinant penicillin acylase in Escherichia coli. Biotechnol Bioeng 2001; 73:484-92. [PMID: 11344453 DOI: 10.1002/bit.1083] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We demonstrated the enhancement of recombinant penicillin acylase (PAC) production in Escherichia coli by increasing the intracellular concentration of the periplasmic protease DegP. Using appropriate host/vector systems (e.g., HB101 harboring pTrcKnPAC2902 or MDDeltaP7 harboring pTrcKnPAC2902) in which the expression of the pac gene was regulated by the strong trc promoter, the overproduction of PAC was often limited by periplasmic processing and inclusion bodies composed of protein aggregates of PAC precursors were formed in the periplasm. The amount of these periplasmic inclusion bodies was significantly reduced and PAC activity was significantly increased upon coexpression of DegP. The specific PAC activity reached an extremely high level of 674 U/L/OD(600) for MDDeltaP7 harboring pTrcKnPAC2902 and pKS12 under optimum culture conditions. However, such improvement in the production of PAC was not observed for the expression systems (e.g., MDDeltaP7 harboring pCLL2902) in which the periplasmic processing was not the step limiting the production of PAC. The results suggest that DegP could in vivo assist the periplasmic processing though the enzyme is shown to be not absolutely required for the formation of active PAC in E. coli. In addition, the steps limiting the production of PAC are identified and the reasons for the formation of PAC inclusion bodies are discussed here.
Collapse
Affiliation(s)
- W J Lin
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan, Republic of China
| | | | | |
Collapse
|
31
|
Zhang CC, Glenn KA, Kuntz MA, Shapiro DJ. High level expression of full-length estrogen receptor in Escherichia coli is facilitated by the uncoupler of oxidative phosphorylation, CCCP. J Steroid Biochem Mol Biol 2000; 74:169-78. [PMID: 11162922 DOI: 10.1016/s0960-0760(00)00120-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The expression of high levels of full-length human estrogen receptor alpha (hERalpha) in Escherichia coli has proven difficult. We found that expression of the ER DNA binding domain is highly toxic to E. coli, resulting in rapid loss of the expression plasmid. Using a tightly regulated arabinose expression system and the antibiotic Timentin, we were able to overcome ER toxicity and express substantial levels of ER. The expressed ER exhibited protease cleavage at a single site near the N-terminus of the hinge region. Of the many measures we tested to eliminate ER cleavage, only addition of carbonyl cyanide m-chlorophenyl-hydrazone (CCCP), an uncoupler of oxidative phosphorylation, completely blocked intracellular proteolysis of the ER. Using CCCP and our expression methods, full-length FLAG epitope-tagged hERalpha (fER) was expressed in E. coli at approximately 1 mg/l. The fER was purified to homogeneity in a single step by immunoaffinity chromatography with anti-FLAG monoclonal antibody. Purified full-length bacterial fER binds 17beta-estradiol with the same affinity as hER expressed in human cells (K(D) approximately 0.5 nM). At high concentrations of fER (20 nM), a bell-shaped estrogen binding curve with a Hill coefficient of 1.7 was seen. Bacterially-expressed fER exhibits a reduced affinity for the estrogen response element (ERE). Anti-FLAG antibody restores high affinity binding of the fER to the ERE, suggesting that impaired dimerization may be responsible for the reduced affinity of bacterially-expressed fER for the ERE. The use of Timentin and CCCP may provide a general method for high level bacterial expression of steroid/nuclear receptors and other proteins important in hormone action.
Collapse
Affiliation(s)
- C C Zhang
- Department of Biochemistry, 413 RAL, University of Illinois, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
32
|
Jürgen B, Lin HY, Riemschneider S, Scharf C, Neubauer P, Schmid R, Hecker M, Schweder T. Monitoring of genes that respond to overproduction of an insoluble recombinant protein in Escherichia coli glucose-limited fed-batch fermentations. Biotechnol Bioeng 2000; 70:217-24. [PMID: 10972933 DOI: 10.1002/1097-0290(20001020)70:2<217::aid-bit11>3.0.co;2-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cellular response of Escherichia coli to overproduction of the insoluble heterologous protein alpha-glucosidase of Saccharomyces cerevisiae during a glucose-limited fed-batch fermentation was analyzed on the transcriptional and the translational levels. After the induction of the tac-regulated overexpression of the recombinant model protein, a significant but transient increase of the mRNA levels of the heat shock genes lon and dnaK could be observed. The mRNA level of the gene coding for the inclusion body-associated protein IbpB showed the strongest increase and remained at a clearly higher level until the end of the fermentation. By contrast, the mRNA levels of htrA and ppiB were decreased after induction of the alpha-glucosidase overexpression. Analysis of the soluble cytoplasmic protein fraction 3 h after induction revealed increased levels of the chaperones GroEL, DnaK, and Tig and a decrease in the protein levels of the two ribosomal proteins S6 and L9, the peptidylprolyl-cis-trans-isomerase PpiB, and the sigma(38)-dependent protein Dps. Analysis of the aggregated protein fraction revealed a remarkably inhomogeneous composition of the alpha-glucosidase inclusion bodies. N-terminal sequencing and MALDI-TOF mass spectrometry identification showed that most of these spots are fragments of the heterologous alpha-glucosidase. Host stress proteins, like DnaK, GroEL, IbpA, IbpB, and OmpT, have been found to be associated with the alpha-glucosidase protein aggregates.
Collapse
Affiliation(s)
- B Jürgen
- Institute of Microbiology, Ernst Moritz Arndt University, F.-L. Jahnstrasse 15, D-17487 Greifswald, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kilikian B, Suárez I, Liria C, Gombert A. Process strategies to improve heterologous protein production in Escherichia coli under lactose or IPTG induction. Process Biochem 2000. [DOI: 10.1016/s0032-9592(00)00137-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
The relative importance of intracellular proteolysis and transport on the yield of the periplasmic enzyme penicillin amidase in Escherichia coli*. Enzyme Microb Technol 2000; 26:165-170. [PMID: 10689073 DOI: 10.1016/s0141-0229(99)00130-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Intracellular proteolysis is an important mechanism for regulating the level of the periplasmic enzyme penicillin amidase in Escherichia coli. Evidence is presented that the active enzyme is localized in the periplasmic space and maturation of pro-enzyme occurs during transport through the cytoplasmic membrane or rapidly after its entrance in the periplasm. The rate constants of the transport through cytoplasmic membrane and of the intracellular proteolysis were estimated to be 0.01 h and 0.5 h, respectively. This indicates that more than 90% of the synthesized pre-pro-enzyme is lost by intracellular proteolysis occurring in the cytoplasm.
Collapse
|
35
|
Huang R, Lam E, Chen Y, Hackett J, Lam T, Liu D, Ma M, Siu K, Sivakesava S, Xu Z, Wong R, Wong W. Human epidermal growth factor excreted by recombinant Escherichia coli K-12 has the correct N-terminus and is fully bioactive. Process Biochem 1999. [DOI: 10.1016/s0032-9592(99)00024-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Abstract
The tolerance of the beta-galactosidase C-terminus to foreign protein fusions has been explored by using different-sized derivatives of the chimeric protein LACVP1. While the molecular mass of the partner domain shows a minor influence on protein toxicity for the producing E. coli cells, it dramatically affects the proteolytic susceptibility of the whole fusion. Surprisingly, the observed structural modulation of proteolysis is not an all-or-nothing process, but it exhibits a continuous effect concomitantly with the length of the fusion. The conformational effects caused by increasingly sized partners seem to progressively expose cryptic protease target sites, initiating a proteolytic cascade that dramatically reduces the yield of the recombinant protein.
Collapse
Affiliation(s)
- J L Corchero
- Institut de Biologia Fonamental and Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | |
Collapse
|
37
|
Rozkov A, Enfors SO. Stabilization of a proteolytically sensitive cytoplasmic recombinant protein during transition to downstream processing. Biotechnol Bioeng 1999; 62:730-8. [PMID: 9951528 DOI: 10.1002/(sici)1097-0290(19990320)62:6<730::aid-bit12>3.0.co;2-q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The influence of aeration and glucose feeding on the stability of recombinant protein A in Escherichia coli during the transition period from a fed-batch cultivation to downstream processing was studied. Neither interruption of the feeding under aerobic conditions nor anaerobic conditions in presence of glucose could stabilize protein A completely and the intracellular ATP pool did not decrease to less than 0.75-1 mM by this treatment. On the other hand, the absence of both oxygen and glucose resulted in a decrease of the ATP pool to less than 0.5 mM and almost complete stabilization of protein A. The decrease of ATP was more severe when sulfite was used instead of nitrogen gas to create anaerobic conditions in presence of glucose. This also resulted in nearly complete stabilization of protein A, which might be explained by an inhibiting effect of sodium sulfite on fermentation. Therefore, protein stabilization and decrease of the ATP pool were correlated in experiments in vivo. The concentrations of ADP and AMP increased during starvation and may also play a role in stabilization of the protein in vivo. ATP may be a limiting factor of proteolysis also during further steps of downstream processing. Its concentration decreases by 80-90% during harvesting and centrifugation of biomass and even further during disruption of cells. However, neither addition nor regeneration of ATP in cell disintegrate was enough to restore degradation of protein A, indicating that an additional factor limits proteolysis in vitro.
Collapse
Affiliation(s)
- A Rozkov
- Department of Biochemistry and Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden.
| | | |
Collapse
|
38
|
Betton JM, Sassoon N, Hofnung M, Laurent M. Degradation versus aggregation of misfolded maltose-binding protein in the periplasm of Escherichia coli. J Biol Chem 1998; 273:8897-902. [PMID: 9535871 DOI: 10.1074/jbc.273.15.8897] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The periplasmic fates of misfolded MalE31, a defective folding mutant of the maltose-binding protein, were determined by manipulating two cellular activities affecting the protein folding pathway in host cells: (i) the malEp promoter activity, which is controlled by the transcriptional activator MalT, and (ii) the DegP and Protease III periplasmic proteolytic activity. At a low level of expression, the degradation of misfolded MalE31 was partially impaired in cells lacking DegP or Protease III. At a high level of expression, misfolded MalE31 rapidly formed periplasmic inclusion bodies and thus escaped degradation. However, the manipulated host cell activities did not enhance the production of periplasmic, soluble MalE31. A kinetic competition between folding, aggregation, and degradation is proposed as a general model for the biogenesis of periplasmic proteins.
Collapse
Affiliation(s)
- J M Betton
- Unité de Programmation Moléculaire et de Toxicologie Génétique/CNRS-URA1444, Département des Biotechnologies, Institut Pasteur, 25, rue du Docteur Roux 75015 Paris, France.
| | | | | | | |
Collapse
|
39
|
Viaplana E, Feliu JX, Corchero JL, Villaverde A. Reversible activation of a cryptic cleavage site within E. coli beta-galactosidase in beta-galactosidase fusion proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1343:221-6. [PMID: 9434112 DOI: 10.1016/s0167-4838(97)00114-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The VP60 capsid protein of rabbit haemorrhagic disease virus (60 kDa) has been fused to the C-terminus of beta-galactosidase and produced in E. coli from two related expression vectors. One of these vectors, carries a 429 bp DNA segment encoding the N-terminus peptide of VP60, and directs the synthesis of a larger fusion that contains the entire viral protein. Both fusion proteins are efficiently cleaved at a presumed trypsin-like target site within the carboxy moiety of beta-galactosidase (Arg 611-Thr 612), which is activated by the presence of the viral partner. In the larger fusion, VP60 is released by a cleavage within the linker region that affects about 10% of the chimeric proteins. In this situation, the resulting beta-galactosidase-like fragment recovers its natural proteolytic stability. These results prove that cryptic cleavage sites in beta-galactosidase can be efficiently activated in a fusion protein and suggest that this activation is based on reversible steric constraints generated by the fusion partner.
Collapse
Affiliation(s)
- E Viaplana
- Department de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | |
Collapse
|
40
|
Volkin DB, Mach H, Middaugh CR. Degradative covalent reactions important to protein stability. Mol Biotechnol 1997; 8:105-22. [PMID: 9406181 DOI: 10.1007/bf02752255] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Commonly observed chemical modifications that occur in proteins during their in vitro purification, storage, and handling are discussed. Covalent modifications described include deamidation and isoaspartate formation, cleavage of peptide bonds at aspartic acid residues, cystine destruction and thiol-disulfide interchange, oxidation of cysteine and methionine residues, and the glycation and carbamylation of amino groups.
Collapse
Affiliation(s)
- D B Volkin
- Merck Research Laboratories, West Point, PA 19486, USA
| | | | | |
Collapse
|
41
|
Corchero JL, Cubarsí R, Enfors S, Villaverde A. Limited in vivo proteolysis of aggregated proteins. Biochem Biophys Res Commun 1997; 237:325-30. [PMID: 9268709 DOI: 10.1006/bbrc.1997.7132] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Degradation pathways of insoluble proteins have been analyzed in Escherichia coli by using a N-terminal beta-galactosidase fusion protein (VP1LAC) that aggregates immediately after its synthesis. In recombinant E. coli cells, lower molecular mass products, antigenically related to the entire fusion, accumulate together with the entire fusion. In absence of protein synthesis, the insoluble intact protein declines, suggesting that degradation of the recombinant protein also affects aggregated protein. Time course analysis of both soluble and insoluble cell fractions has revealed a limited proteolysis of the insoluble protein that removes the heterologous domain and permits the resulting beta-galactosidase fragments to refold and solubilize. Further extensive degradation occurs exclusively on soluble protein. The restricted proteolysis of misfolded, insoluble protein is the initiating event of a subsequent degradative pathway in which rate-limiting steps permit the accumulation of stable degradative intermediates.
Collapse
Affiliation(s)
- J L Corchero
- Institut de Biologia Fonamental and Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, 08193, Spain
| | | | | | | |
Collapse
|
42
|
Abstract
Progress in our understanding of several biological processes promises to broaden the usefulness of Escherichia coli as a tool for gene expression. There is an expanding choice of tightly regulated prokaryotic promoters suitable for achieving high-level gene expression. New host strains facilitate the formation of disulfide bonds in the reducing environment of the cytoplasm and offer higher protein yields by minimizing proteolytic degradation. Insights into the process of protein translocation across the bacterial membranes may eventually make it possible to achieve robust secretion of specific proteins into the culture medium. Studies involving molecular chaperones have shown that in specific cases, chaperones can be very effective for improved protein folding, solubility, and membrane transport. Negative results derived from such studies are also instructive in formulating different strategies. The remarkable increase in the availability of fusion partners offers a wide range of tools for improved protein folding, solubility, protection from proteases, yield, and secretion into the culture medium, as well as for detection and purification of recombinant proteins. Codon usage is known to present a potential impediment to high-level gene expression in E. coli. Although we still do not understand all the rules governing this phenomenon, it is apparent that "rare" codons, depending on their frequency and context, can have an adverse effect on protein levels. Usually, this problem can be alleviated by modification of the relevant codons or by coexpression of the cognate tRNA genes. Finally, the elucidation of specific determinants of protein degradation, a plethora of protease-deficient host strains, and methods to stabilize proteins afford new strategies to minimize proteolytic susceptibility of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- S C Makrides
- Department of Molecular Biology, T Cell Sciences, Inc., Needham, Massachusetts 02194, USA
| |
Collapse
|
43
|
Effect of culture conditions and induction strategies on production of human interleukin-6 by a recombinant Aspergillus nidulans strain. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0953-7562(96)80169-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Yang S, Enfors SO. Process conditions affecting proteolysis of recombinant proteins in Escherichia coli. Biotechnol Lett 1996. [DOI: 10.1007/bf00137802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Agaisse H, Lereclus D. How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol 1995; 177:6027-32. [PMID: 7592363 PMCID: PMC177438 DOI: 10.1128/jb.177.21.6027-6032.1995] [Citation(s) in RCA: 202] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- H Agaisse
- Unité de Biochimie Microbienne, Centre National de la Recherche Scientifique URA 1300, Institut Pasteur, Paris, France
| | | |
Collapse
|
46
|
Yang S, Enfors SO. The influence of energy sources on the proteolysis of a recombinant staphylococcal protein A in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:969-75. [PMID: 8521866 DOI: 10.1111/j.1432-1033.1995.969_3.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The kinetics of proteolysis of a recombinant staphylococcal protein A in Escherichia coli were studied by a Western-blotting-based method. The proteolysis constants obtained from this method are very close to those obtained from the traditional radioactive pulse-chase technique. Protein A was selectively degraded to a great extent, while host proteins were quite stable after heat induction of protein A expression. The proteolysis of protein A was much faster in the presence of energy sources compared to when cells were starved of energy. The degradation rate constants are 2.8 h-1 in the presence of 10 g/l glucose and about 0.4 h-1 in the absence of any external carbon source. The supplementation of glucose to the medium at 0-100 mg/l caused a gradual increase of proteolysis of protein A, but the proteolysis was saturated when the concentration of glucose exceeded 200 mg/l at a cell concentration of about 0.36 g/l. The respiration inhibitor sodium azide completely inhibited the degradation of protein A in glucose-free salt medium but had almost no effect in the presence of glucose. Therefore, the proteolysis process is energy dependent but the energy supply rate obtained by fermentation of glucose is enough to meet this requirement. The proteolysis rate increased with the temperature in the interval 5-45 degrees C but was then reduced due to damage of the proteolysis system by high temperature. At 60 degrees C, the proteolysis ceased completely within 30 min.
Collapse
Affiliation(s)
- S Yang
- Department of Biochemistry and Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
47
|
Abstract
In recent years, Escherichia coli gene fusion expression systems have circumvented many of the problems inherent in the use of this bacterium for the production of recombinant proteins. These systems also provide a powerful means for identifying peptides or proteins with desired binding specificities. Gene fusion technology continues to expand with the introduction of new fusion partners, purification and detection tags, cleavage reagents and ways to display peptides on the surface of bacteria.
Collapse
Affiliation(s)
- E R LaVallie
- Department of Molecular Biology and Gene Expression, Genetics Institute, Cambridge, Massachusetts 02140, USA
| | | |
Collapse
|
48
|
Hahm DH, Kim SH, Pan J, Rhee JS. Maximum yield of foreign lipase in Escherichia coli HB101 limited by duration of protein expression. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0922-338x(95)90609-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Yang S, Bergman T, Veide A, Enfors SO. Effects of amino acid insertions on the proteolysis of a staphylococcal protein A derivative in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:847-52. [PMID: 7813474 DOI: 10.1111/j.1432-1033.1994.00847.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In vivo proteolysis of protein ZZT0, derived from the B domain of staphylococcal protein A, was investigated in Escherichia coli before and after insertion of 1-3 multiples of the tetrapeptide Ala-Trp-Trp-Pro close to the C-terminus of ZZT0. Before insertion, ZZT0 was proteolytically stable as judged from the purity of IgG binding proteins up to 1 h after inhibition of protein synthesis with chloramphenicol. Insertion of 1-3 units of Ala-Trp-Trp-Pro into ZZT0 increased progressively the sensitivity to proteolysis and induced DnaK and GroEL binding to the protein. The time for 50% in vivo hydrolysis of the full length protein derivative that was most susceptible to proteolysis, i.e. with three tetrapeptide units, was about 40 min when cultivated in a bioreactor and about 4 min in a shaken flask culture. Molecular masses and N-terminal sequences of the main degradation products indicated that protein ZZT0 is cleaved at identical sites irrespective of the number of inserted tetrapeptide units and that the cleavage sites are located far from the insertion point. Insertion of another hydrophobic amino acid, isoleucine, as the tetrapeptide Ala-Ile-Ile-Pro, only induced a slight proteolysis of the ZZT0 molecule under similar conditions. This indicates that the insertion of tryptophan residues, rather than of a general hydrophobic segment, plays an essential role in the induced proteolysis of the ZZT0 protein.
Collapse
Affiliation(s)
- S Yang
- Department of Biochemistry and Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | | | | | | |
Collapse
|
50
|
Meerman HJ, Georgiou G. Construction and characterization of a set of E. coli strains deficient in all known loci affecting the proteolytic stability of secreted recombinant proteins. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1994; 12:1107-10. [PMID: 7765553 DOI: 10.1038/nbt1194-1107] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Even though secretion offers numerous advantages for the production of proteins in Escherichia coli, the expression of many heterologous proteins is severely limited by degradation in the periplasmic space. We found that mutations in rpoH, the RNA polymerase sigma factor responsible for heat shock protein synthesis, affect the stability of heterologous secreted proteins. A particularly dramatic increase in expression was further observed in rpoH degP double mutants. To minimize proteolytic degradation, we constructed a family of 25 isogenic strains deficient in all known cell envelope proteases (DegP, Protease III, Tsp(Prc), and OmpT), as well as the rpoH15 mutant allele, and characterized their growth in both shake flasks and fermentors. The availability of this set of strains permits the selection of a suitable host based on the optimal combination between the optimum reduction in protease activity and acceptable growth properties.
Collapse
Affiliation(s)
- H J Meerman
- Department of Chemical Engineering, University of Texas at Austin 78712-1062
| | | |
Collapse
|