1
|
Khanal O, Kumar V, Lenhoff AM. Displacement to separate host-cell proteins and aggregates in cation-exchange chromatography of monoclonal antibodies. Biotechnol Bioeng 2020; 118:164-174. [PMID: 32910459 DOI: 10.1002/bit.27559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
An efficient and consistent method of monoclonal antibody (mAb) purification can improve process productivity and product consistency. Although protein A chromatography removes most host-cell proteins (HCPs), mAb aggregates and the remaining HCPs are challenging to remove in a typical bind-and-elute cation-exchange chromatography (CEX) polishing step. A variant of the bind-and-elute mode is the displacement mode, which allows strongly binding impurities to be preferentially retained and significantly improves resin utilization. Improved resin utilization renders displacement chromatography particularly suitable in continuous chromatography operations. In this study we demonstrate and exploit sample displacement between a mAb and impurities present at low prevalence (0.002%-1.4%) using different multicolumn designs and recycling. Aggregate displacement depends on the residence time, sample concentration, and solution environment, the latter by enhancing the differences between the binding affinities of the product and the impurities. Displacement among the mAb and low-prevalence HCPs resulted in an effectively bimodal-like distribution of HCPs along the length of a multi-column system, with the mAb separating the relatively more basic group of HCPs from those that are more acidic. Our findings demonstrate that displacement of low-prevalence impurities along multiple CEX columns allows for selective separation of mAb aggregates and HCPs that persist through protein A chromatography.
Collapse
Affiliation(s)
- Ohnmar Khanal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Vijesh Kumar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Griaud F, Winter A, Denefeld B, Lang M, Hensinger H, Straube F, Sackewitz M, Berg M. Identification of multiple serine to asparagine sequence variation sites in an intended copy product of LUCENTIS® by mass spectrometry. MAbs 2017; 9:1337-1348. [PMID: 28846476 PMCID: PMC5680803 DOI: 10.1080/19420862.2017.1366395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Patent expiration of first-generation biologics and the high cost of innovative biologics are 2 drivers for the development of biosimilar products. There are, however, technical challenges to the production of exact copies of such large molecules. In this study, we performed a head-to-head comparison between the originator anti-VEGF-A Fab product LUCENTIS® (ranibizumab) and an intended copy product using an integrated analytical approach. While no differences could be observed using size-exclusion chromatography, capillary electrophoresis-sodium dodecyl sulfate and potency assays, different acidic peaks were identified with cation ion exchange chromatography and capillary zone electrophoresis. Further investigation of the intact Fab, subunits and primary sequence with mass spectrometry demonstrated the presence of a modified light chain variant in the intended copy product batches. This variant was characterized with a mass increase of 27.01 Da compared to the originator sequence and its abundance was estimated in the range of 6–9% of the intended copy product light chain. MS/MS spectra interrogation confirmed that this modification relates to a serine to asparagine sequence variant found in the intended copy product light chain. We demonstrated that the integration of high-resolution and sensitive orthogonal technologies was beneficial to assess the similarity of an originator and an intended copy product.
Collapse
Affiliation(s)
- François Griaud
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Andrej Winter
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Blandine Denefeld
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Manuel Lang
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Héloïse Hensinger
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Frank Straube
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Mirko Sackewitz
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Matthias Berg
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| |
Collapse
|
3
|
Borisov OV, Alvarez M, Carroll JA, Brown PW. Sequence Variants and Sequence Variant Analysis in Biotherapeutic Proteins. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Oleg V. Borisov
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| | - Melissa Alvarez
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| | - James A. Carroll
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| | - Paul W. Brown
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| |
Collapse
|
4
|
Zhang T, Huang Y, Chamberlain S, Romeo T, Zhu-Shimoni J, Hewitt D, Zhu M, Katta V, Mauger B, Kao YH. Identification of a single base-pair mutation of TAA (Stop codon) → GAA (Glu) that causes light chain extension in a CHO cell derived IgG1. MAbs 2012; 4:694-700. [PMID: 23018810 PMCID: PMC3502236 DOI: 10.4161/mabs.22232] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We describe here the identification of a stop codon TAA (Stop) → GAA (Glu) = Stop221E mutation on the light chain of a recombinant IgG1 antibody expressed in a Chinese hamster ovary (CHO) cell line. The extended light chain variants, which were caused by translation beyond the mutated stop codon to the next alternative in-frame stop codon, were observed by mass spectra analysis. The abnormal peptide peaks present in tryptic and chymotryptic LC–MS peptide mapping were confirmed by N-terminal sequencing as C-terminal light chain extension peptides. Furthermore, LC-MS/MS of Glu-C peptide mapping confirmed the stop221E mutation, which is consistent with a single base-pair mutation in TAA (stop codon) to GAA (Glu). The light chain variants were approximately 13.6% of wild type light chain as estimated by RP-HPLC analysis. DNA sequencing techniques determined a single base pair stop codon mutation, instead of a stop codon read-through, as the cause of this light chain extension. To our knowledge, the stop codon mutation has not been reported for IgGs expressed in CHO cells. These results demonstrate orthogonal techniques should be implemented to characterize recombinant proteins and select appropriate cell lines for production of therapeutic proteins because modifications could occur at unexpected locations.
Collapse
Affiliation(s)
- Taylor Zhang
- Protein Analytical Chemistry, Genentech, South San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Harris RP, Mattocks J, Green PS, Moffatt F, Kilby PM. Determination and control of low-level amino acid misincorporation in human thioredoxin protein produced in a recombinant Escherichia coli production system. Biotechnol Bioeng 2012; 109:1987-95. [PMID: 22334292 DOI: 10.1002/bit.24462] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/23/2012] [Accepted: 02/01/2012] [Indexed: 11/11/2022]
Abstract
Escherichia coli is used extensively in the production of proteins within biotechnology for a number of therapeutic applications. Here, we discuss the production and overexpression of the potential biopharmaceutical human thioredoxin protein (rhTRX) within E. coli. Overexpression of foreign molecules within the cell can put an enormous amount of stress on the translation machinery. This can lead to a misfiring in the construction of a protein resulting in populations differing slightly in amino acid composition. Whilst this may still result in a population of active molecules being expressed, it does present significant problems with molecules that are destined for clinical applications. Amino acid misincorporation of this subset could potentially result in antibodies being raised to these unnatural proteins. Cross-reaction with a patient's endogenous thioredoxin could then lead to an autoimmune phenomena and serious health implications. Generally, the issue of misincorporation appears not to be a routine regulatory concern (see ICH Q6B guidelines). Therefore, amino acid misincorporation may not have been detected, much less explored in the clinic as the occurrence or absence of these random errors is not routinely reported. Using current technologies based on proteomics, the ability to find misincorporation critically depends upon the criteria for matching theoretical and experimental mass spectrometry data. Additionally, isolation and extraction of these mistranslated proteins from the production process is both difficult and expensive. Therefore, it is advantageous to find routes for removing their production during the upstream phase. In this study, we show how modern proteomic technology can be used to identify and quantify amino acid misincorporation. Using these techniques we have shown how manipulation of gene sequence and scoping of fermentation media composition can lead to the reduction and elimination of these misincorporations in rhTRX.
Collapse
Affiliation(s)
- Robert P Harris
- Syngenta, Jealott's Hill Research Centre, Bracknell, Berkshire RG42 6EY, UK.
| | | | | | | | | |
Collapse
|
6
|
Khetan A, Huang YM, Dolnikova J, Pederson NE, Wen D, Yusuf-Makagiansar H, Chen P, Ryll T. Control of misincorporation of serine for asparagine during antibody production using CHO cells. Biotechnol Bioeng 2010; 107:116-23. [PMID: 20506364 DOI: 10.1002/bit.22771] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A recombinant monoclonal antibody produced by Chinese hamster ovary (CHO) cell fed-batch culture was found to have amino acid sequence misincorporation upon analysis by intact mass and peptide mapping mass spectrometry. A detailed analysis revealed multiple sites for asparagine were being randomly substituted by serine, pointing to mistranslation as the likely source. Results from time-course analysis of cell culture suggest that misincorporation was occurring midway through the fed-batch process and was correlated to asparagine reduction to below detectable levels in the culture. Separate shake flask experiments were carried out that confirmed starvation of asparagine and not excess of serine in the medium as the root cause of the phenomenon. Reduction in serine concentration under asparagine starvation conditions helped reduce extent of misincorporation. Supplementation with glutamine also helped reduce extent of misincorporation. Maintenance of asparagine at low levels in 2 L bench-scale culture via controlled supplementation of asparagine-containing feed eliminated the occurrence of misincorporation. This strategy was implemented in a clinical manufacturing process and scaled up successfully to the 200 and 2,000 L bioreactor scales.
Collapse
Affiliation(s)
- Anurag Khetan
- Biogen Idec, Inc., Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wen D, Vecchi MM, Gu S, Su L, Dolnikova J, Huang YM, Foley SF, Garber E, Pederson N, Meier W. Discovery and investigation of misincorporation of serine at asparagine positions in recombinant proteins expressed in Chinese hamster ovary cells. J Biol Chem 2009; 284:32686-94. [PMID: 19783658 DOI: 10.1074/jbc.m109.059360] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Misincorporation of amino acids in proteins expressed in Escherichia coli has been well documented but not in proteins expressed in mammalian cells under normal recombinant protein production conditions. Here we report for the first time that Ser can be incorporated at Asn positions in proteins expressed in Chinese hamster ovary cells. This misincorporation was discovered as a result of intact mass measurement, peptide mapping analysis, and tandem mass spectroscopy sequencing. Our analyses showed that the substitution was not related to specific protein molecules or DNA codons and was not site-specific. We believe that the incorporation of Ser at sites coded for Asn was due to mischarging of tRNA(Asn) rather than to codon misreading. The rationale for substitution of Asn by Ser and not by other amino acids is also discussed. Further investigation indicated that the substitution was due to the starvation for Asn in the cell culture medium and that the substitution could be limited by using the Asn-rich feed. These observations demonstrate that the quality of expressed proteins should be closely monitored when altering cell culture conditions.
Collapse
Affiliation(s)
- Dingyi Wen
- Biogen Idec Inc., 14 Cambridge Center, Cambridge, Massachusetts 02412, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Miksch G, Bettenworth F, Friehs K, Flaschel E, Saalbach A, Twellmann T, Nattkemper TW. Libraries of synthetic stationary-phase and stress promoters as a tool for fine-tuning of expression of recombinant proteins in Escherichia coli. J Biotechnol 2005; 120:25-37. [PMID: 16019099 DOI: 10.1016/j.jbiotec.2005.04.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 03/31/2005] [Accepted: 04/12/2005] [Indexed: 11/23/2022]
Abstract
Due to their induction characteristics stationary-phase promoters have a great potential in biotechnological processes for the production of heterologous proteins on a large-scale. In order to broaden the utility of stationary-phase promoters in bacterial expression systems and to create novel promoters induced by metabolic conditions, a library of synthetic stationary-phase/stress promoters for Escherichia coli was constructed. For designing the promoters the known -10 consensus sequence as well as the extended -10 region and an A/T-rich region downstream of the -10 region were kept constant, while sequences from -37 to -14 were partially or completely randomized. For detection and selection of stationary-phase promoters GFP with enhanced fluorescence was used. The expression pattern of the GFP reporter system was compared with that of the LacZ reporter system. To screen and characterize colonies containing stationary-phase/stress promoters a bioinformatic approach was developed. In total, 33 promoters were selected which cover a broad range of promoter activities and induction times indicating that the strength of promoters can be modulated by partially randomizing the sequence upstream of the -10 region. The induction ratio of synthetic promoters at the transition from exponential to stationary-phase was from 4 to over 6000 and the induction time relative to the entrance into stationary-phase from -1.4 to 2.7 h. Ninety-one percentage of the promoters had no or only low background activity during exponential growth. The broad variability of the promoters offers good possibilities for fine-tuning of gene expression and for applications in industrial bioprocesses.
Collapse
Affiliation(s)
- Gerhard Miksch
- Lehrstuhl für Fermentationstechnik, Technische Fakultät, Universität Bielefeld, D-33594 Bielefeld, Germany.
| | | | | | | | | | | | | |
Collapse
|
9
|
Ackermann M, Jäger V, Marx U. Influence of cell- and media-derived factors on the integrity of a human monoclonal antibody after secretion into serum-free cell culture supernatants. Biotechnol Bioeng 2004; 45:97-106. [DOI: 10.1002/bit.260450202] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
McNulty DE, Claffee BA, Huddleston MJ, Porter ML, Cavnar KM, Kane JF. Mistranslational errors associated with the rare arginine codon CGG in Escherichia coli. Protein Expr Purif 2003; 27:365-74. [PMID: 12597898 DOI: 10.1016/s1046-5928(02)00610-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Escherichia coli, CGG is a rare arginine codon occurring at a frequency of 0.54% in all E. coli mRNAs or 9.8% when an arginine residue is encoded for. When present in high numbers or in clusters in highly expressed recombinant mRNA, rare codons can cause expression problems compromising product yield and translational fidelity. The coding region for an N-terminally polyhistidine tagged p27 protease domain from Herpes Simplex Virus 2 (HSV-2) contains 11 of these rare arginine codons, with 3 occurring in tandem near the C-terminus of the protein. When expressed in E. coli, the majority of the recombinant material produced had an apparent molecular mass of 31 kDa by SDS-PAGE gels or 3 kDa higher than predicted. Detailed biochemical analysis was performed on chemical and enzymatic digests of the protein and peptide fragments were characterized by Edman and MS/MS sequencing approaches. Two major species were isolated comprising +1 frameshift events at both the second and third CGG codons in the triplet cluster. Translation proceeded in the missense frame to the next termination codon. In addition, significant levels of glutamine misincorporating for arginine were discovered, suggesting second base misreading of CGG as CAG. Coexpression of the argX gene, which encodes the cognate tRNA for CGG codons, largely eliminated both the frameshift and misincorporation events, and increased expression levels of authentic product by up to 7-fold. We conclude that supplementation of the rare arginyl tRNA(CGG) levels by coexpression of the argX gene can largely alleviate the CGG codon bias present in E. coli, allowing for efficient and accurate translation of heterologous gene products.
Collapse
Affiliation(s)
- Dean E McNulty
- Department of Gene Expression and Protein Biochemistry, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Beier H, Grimm M. Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res 2001; 29:4767-82. [PMID: 11726686 PMCID: PMC96686 DOI: 10.1093/nar/29.23.4767] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Translational stop codon readthrough provides a regulatory mechanism of gene expression that is extensively utilised by positive-sense ssRNA viruses. The misreading of termination codons is achieved by a variety of naturally occurring suppressor tRNAs whose structure and function is the subject of this survey. All of the nonsense suppressors characterised to date (with the exception of selenocysteine tRNA) are normal cellular tRNAs that are primarily needed for reading their cognate sense codons. As a consequence, recognition of stop codons by natural suppressor tRNAs necessitates unconventional base pairings in anticodon-codon interactions. A number of intrinsic features of the suppressor tRNA contributes to the ability to read non-cognate codons. Apart from anticodon-codon affinity, the extent of base modifications within or 3' of the anticodon may up- or down-regulate the efficiency of suppression. In order to out-compete the polypeptide chain release factor an absolute prerequisite for the action of natural suppressor tRNAs is a suitable nucleotide context, preferentially at the 3' side of the suppressed stop codon. Three major types of viral readthrough sites, based on similar sequences neighbouring the leaky stop codon, can be defined. It is discussed that not only RNA viruses, but also the eukaryotic host organism might gain some profit from cellular suppressor tRNAs.
Collapse
Affiliation(s)
- H Beier
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Am Hubland, D-97074 Würzburg, Germany.
| | | |
Collapse
|
12
|
Lu KV, Rohde MF, Thomason AR, Kenney WC, Lu HS. Mistranslation of a TGA termination codon as tryptophan in recombinant platelet-derived growth factor expressed in Escherichia coli. Biochem J 1995; 309 ( Pt 2):411-7. [PMID: 7626004 PMCID: PMC1135747 DOI: 10.1042/bj3090411] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mature 109-amino-acid human platelet-derived growth factor B (PDGF-B) peptide is derived by intracellular processing from a 241-amino-acid precursor synthesized in mammalian cells, with removal of 81 N-terminal and 51 C-terminal amino acids. In order to produce directly the mature 109-amino acid PDGF-B peptide as a recombinant protein in Escherichia coli, a CGA codon at position 110 of a DNA sequence encoding the full-length precursor form of PDGF-B was converted into the translation termination codon TGA by in vitro mutagenesis. Expression of this DNA via a plasmid vector in E. coli resulted in production of two distinct PDGF-B proteins having apparent molecular masses of 15 and 19 kDa, with the latter species predominating. Structural characterization employing N- and C-terminal amino acid sequencing and MS analyses indicated that the 15 kDa protein is the expected 109-amino-acid PDGF-B, and that the 19 kDa protein represents a C-terminal extended PDGF-B containing 160 amino acids. Characterization of a unique tryptic peptide derived from the 19 kDa protein revealed that this longer form of PDGF-B results from mistranslation of the introduced TGA termination codon at position 110 as tryptophan, with translation subsequently proceeding to the naturally occurring TAG termination codon at position 161. Owing to the high rate of translation readthrough of TGA codons in this and occasionally other proteins, it appears that the use of TGA as a translation termination codon for proteins to be expressed in E. coli should be avoided when possible.
Collapse
Affiliation(s)
- K V Lu
- Amgen Inc., Amgen Center, Thousand Oaks, CA 91320, USA
| | | | | | | | | |
Collapse
|
13
|
Leah R, Kigel J, Svendsen I, Mundy J. Biochemical and molecular characterization of a barley seed beta-glucosidase. J Biol Chem 1995; 270:15789-97. [PMID: 7797581 DOI: 10.1074/jbc.270.26.15789] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A 60-kDa beta-glucosidase (BGQ60) was purified and characterized from seeds of barley (Hordeum vulgare L.). BGQ60 catalytic activity was restricted to the cleavage of short-chain oligosaccharides composed of (1-2)-, (1-3)-, and/or (1-4)-beta-linked glucose or mannose units. These oligosaccharides are the primary products of endosperm cell wall polysaccharide hydrolysis by other enzymes. In keeping with this, complete hydrolysis of the major polysaccharide of barley starchy endosperm cell wall, (1-3,1-4)-beta-glucan, to free glucose was shown to require the concerted action of endo-(1-3,1-4)-beta-glucanase and BGQ60. The complete amino acid sequence of BGQ60 was determined by protein sequencing combined with the deduced sequence of the corresponding cDNA and genomic clones. The BGQ60 primary structure exhibits extensive homology to members of glycosyl hydrolase family 1 (EC 3.2.1.21). Southern and Northern blot analysis with the cDNA as probe indicated that BGQ60 is encoded by a single gene, and that BGQ60 mRNA only accumulates in the starch endosperm tissue of late developing seeds. The bgq60 structural gene of approximately 5 kilobases contains an open reading frame encoding 485 amino acids interrupted by 9 introns. The complete nucleotide sequence of the bgq60 structural gene represents the first characterized plant gene encoding a beta-glucosidase. The barley BGQ60 is a novel plant beta-glucosidase with a hitherto undescribed specific enzymatic activity. The possible biological functions of BGQ60 during barley seed development and germination are discussed.
Collapse
Affiliation(s)
- R Leah
- Carlsberg Research Laboratory, Gamle Carlsberg Vejlo, Copenhagen, Denmark
| | | | | | | |
Collapse
|
14
|
Construction of a vector for probing the effect of co-expression of dnaY and secB upon secreted gene products in Escherichia coli. ACTA ACUST UNITED AC 1995. [DOI: 10.1007/bf00151568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
E. coli-expressed human neurotrophin-3 characterization of a C-terminal extended product. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1080-8914(06)80042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
Ahmad Z, Ciolek D, Pan YC, Michel H, Khan FR. Purification and characterization of a high-molecular-weight form of recombinant human interleukin-2. JOURNAL OF PROTEIN CHEMISTRY 1994; 13:591-8. [PMID: 7702741 DOI: 10.1007/bf01890457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
During purification of recombinant Interleukin-2 (rIL-2) by reversed-phase HPLC, early fractions are discarded due to the presence of an unidentified form of rIL-2. A procedure has been developed to isolate and purify this unidentified form of rIL-2. The purification process involves two chromatography steps and utilizes a Bakerbond Carboxy-Sulfon (CS) column under two different conditions. This material, designated as a high-molecular-weight form of rIL-2 (HMWrIL-2), exhibits lower mobility during SDS-PAGE and has a pI which is approximately one unit less than that of rIL-2, but has similar bioactivity to rIL-2. Structural analysis through enzymatic cleavage, HPLC peptide mapping, mass spectrometry, sequencing, and amino acid composition revealed that the difference between these two proteins is a C-terminal extension of 11 amino acids. This extension could be the result of a nonstandard translation event.
Collapse
Affiliation(s)
- Z Ahmad
- Bioprocess Department, Hoffmann-La Roche, Nutley, New Jersey 07110
| | | | | | | | | |
Collapse
|
17
|
|