1
|
ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis. Sci Rep 2016; 6:32713. [PMID: 27633273 PMCID: PMC5025660 DOI: 10.1038/srep32713] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/11/2016] [Indexed: 12/22/2022] Open
Abstract
Current Zika virus (ZIKV) outbreaks that spread in several areas of Africa, Southeast Asia, and in pacific islands is declared as a global health emergency by World Health Organization (WHO). It causes Zika fever and illness ranging from severe autoimmune to neurological complications in humans. To facilitate research on this virus, we have developed an integrative multi-omics platform; ZikaVR (http://bioinfo.imtech.res.in/manojk/zikavr/), dedicated to the ZIKV genomic, proteomic and therapeutic knowledge. It comprises of whole genome sequences, their respective functional information regarding proteins, genes, and structural content. Additionally, it also delivers sophisticated analysis such as whole-genome alignments, conservation and variation, CpG islands, codon context, usage bias and phylogenetic inferences at whole genome and proteome level with user-friendly visual environment. Further, glycosylation sites and molecular diagnostic primers were also analyzed. Most importantly, we also proposed potential therapeutically imperative constituents namely vaccine epitopes, siRNAs, miRNAs, sgRNAs and repurposing drug candidates.
Collapse
|
2
|
Villiers MB, Cortès S, Brakha C, Lavergne JP, Marquette CA, Deny P, Livache T, Marche PN. Peptide-protein microarrays and surface plasmon resonance detection: biosensors for versatile biomolecular interaction analysis. Biosens Bioelectron 2010; 26:1554-9. [PMID: 20729071 DOI: 10.1016/j.bios.2010.07.110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/27/2010] [Accepted: 07/27/2010] [Indexed: 01/24/2023]
Abstract
Biosensors in microarray format provide promising tools for high-throughput analyses of complex samples. Although they are able to detect, quantify and characterize a multitude of compounds, most of the available devices are specialized in the analysis of one type of interaction, limiting their application to a define area. The aim of our work was to develop and characterize versatile protein (or peptide) microarrays suitable for the simultaneous analysis of a large panel of biological interactions. Our system involved a simple procedure to immobilized proteins or peptides, based on pyrrole electropolymerization, and ligand binding was detected by imaging the surface plasmon resonance. We demonstrated its suitability in three different contexts, i.e. humoral response characterization, ion binding analysis and cell detection. This work evidences the potentiality of this approach which allows multiparametric, high-throughput and label-free analysis of biological samples suitable for the detection of compounds as various as proteins, ions or cells and the characterization of their interaction with peptides or proteins.
Collapse
|
3
|
Tsai SL, Lee TH, Chien RN, Liao SK, Lin CL, Kuo GC, Liaw YF. A method to increase tetramer staining efficiency of CD8+ T cells with MHC-peptide complexes: therapeutic applications in monitoring cytotoxic T lymphocyte activity during hepatitis B and C treatment. J Immunol Methods 2004; 285:71-87. [PMID: 14871536 DOI: 10.1016/j.jim.2003.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 11/03/2003] [Accepted: 11/13/2003] [Indexed: 01/12/2023]
Abstract
The development of peptide-MHC tetrameric complexes heralds a new era in the study of antigen-specific T cells and their role in viral infections. However, the frequencies of tetramer-staining CD8+ T cells in fresh peripheral blood mononuclear cells (PBMCs) are usually below 1% in patients with chronic hepatitis B and C viruses (HBV and HCV) as well as human immunodeficiency virus (HIV) infections, which makes difficult the comparison and sequential evaluation of different individuals. Thus, the development of a method to enumerate efficiently antigen-specific CD8+ T cells will be clinically beneficial in monitoring the antiviral cellular immunity during therapy. We report here a modified CRI-p culture method (cytotoxic T lymphocyte response index of the epitope-peptide method), using a panel of peptides to stimulate PBMCs in bulk culture. The modified CRI-p cultured cells were, in turn, subjected to fluorescence-activated cell sorter (FACS) analysis, tetramer staining or T-cell functional assays to quantify the antiviral immunity of HLA-A2 (+) HBV and HCV patients receiving antiviral therapies. The results obtained showed that patients with a sustained response had a significantly higher increase in the frequencies of tetramer staining of virus-specific CD8+ T cells than did nonresponders. This method permits semi-quantitative determination of the relative strength of CTL activity against a panel of peptides and provides a large number of cells for FACS analysis from a single blood sampling. Significantly, it achieves high frequencies of tetramer staining of CD8+ T cells allowing the data of different individuals to be easily compared and sequentially evaluated. The mechanisms involved in this method are discussed.
Collapse
Affiliation(s)
- Sun-Lung Tsai
- Department of Medical Research, Liver Research Unit, Chi-Mei Foundation Medical Center, Tainan, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
4
|
Tsai SL, Sheen IS, Chien RN, Chu CM, Huang HC, Chuang YL, Lee TH, Liao SK, Lin CL, Kuo GC, Liaw YF. Activation of Th1 immunity is a common immune mechanism for the successful treatment of hepatitis B and C: tetramer assay and therapeutic implications. J Biomed Sci 2003; 10:120-35. [PMID: 12566993 DOI: 10.1007/bf02256004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2002] [Accepted: 08/08/2002] [Indexed: 01/02/2023] Open
Abstract
Both chronic hepatitis B and C virus (HBV and HCV) infections respond ineffectively to current antiviral therapies. Recent studies have suggested that treatment outcomes may depend on the development of type 1 T helper (Th1) and Th2 cell responses. Specifically, activation of Th1 immunity may play a major role in successfully treating hepatitis B and C. This model was revisited herein by evaluating immune responses in 36 HBV and 40 HCV patients with or without treatment, in an attempt to find a common immune mechanism for successful treatment. The immune responses in all examined cases were studied by peripheral blood mononuclear cell (PBMC) proliferation and cytokine responses to viral antigens, cytotoxic T lymphocyte (CTL) responses, enzyme-linked immunospot (ELISPOT) assay, and tetramer staining of virus-specific CD8+ T cells. The overall results revealed that all responders among both HBV- and HCV-infected cases displayed significantly higher PBMC proliferation to viral antigens with a predominant Th1 cytokine profile. Furthermore, the Th1-dominant responses were associated with significant enhancement of CTL activities and were correlated with ELISPOT data, while non-responders responded more weakly. During therapy, the numbers of tetramer-staining, virus-specific CD8+ T cells showed greater increases in responders than in non-responders (p = 0.001). The frequencies determined by the tetramer assay were approximately 200-fold higher than data estimated by limiting-dilution analysis. In conclusion, activation of Th1 immunity accompanied by enhancement of CTL activity during therapy is a common immune mechanism for successfully treating hepatitis B and C, and therefore may have important therapeutic implications.
Collapse
Affiliation(s)
- Sun-Lung Tsai
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Jin J, Yang JY, Liu J, Kong YY, Wang Y, Li GD. DNA immunization with fusion genes encoding different regions of hepatitis C virus E2 fused to the gene for hepatitis B surface antigen elicits immune responses to both HCV and HBV. World J Gastroenterol 2002; 8:505-10. [PMID: 12046080 PMCID: PMC4656431 DOI: 10.3748/wjg.v8.i3.505] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2001] [Revised: 12/23/2001] [Accepted: 01/23/2002] [Indexed: 02/06/2023] Open
Abstract
AIM Both Hepatitis B virus (HBV) and Hepatitis C virus (HCV) are major causative agents of transfusion-associated and community-acquired hepatitis worldwide. Development of a HCV vaccine as well as more effective HBV vaccines is an urgent task. DNA immunization provides a promising approach to elicit protective humoral and cellular immune responses against viral infection. The aim of this study is to achieve immune responses against both HCV and HBV by DNA immunization with fusion constructs comprising various HCV E2 gene fragments fused to HBsAg gene of HBV. METHODS C57BL/6 mice were immunized with plasmid DNA expressing five fragments of HCV E2 fused to the gene for HBsAg respectively. After one primary and one boosting immunizations, antibodies against HCV E2 and HBsAg were tested and subtyped in ELISA. Splenic cytokine expression of IFN-gamma and IL-10 was analyzed using an RT-PCR assay. Post-immune mouse antisera also were tested for their ability to capture HCV viruses in the serum of a hepatitis C patient in vitro. RESULTS After immunization, antibodies against both HBsAg and HCV E2 were detected in mouse sera, with IgG2a being the dominant immunoglobulin sub-class. High-level expression of INF-gamma was detected in cultured splenic cells. Mouse antisera against three of the five fusion constructs were able to capture HCV viruses in an in vitro assay. CONCLUSION The results indicate that these fusion constructs could efficiently elicit humoral and Th1 dominant cellular immune responses against both HBV S and HCV E2 antigens in DNA-immunized mice. They thus could serve as candidates for a bivalent vaccine against HBV and HCV infection. In addition, the capacity of mouse antisera against three of the five fusion constructs to capture HCV viruses in vitro suggested that neutralizing epitopes may be present in other regions of E2 besides the hypervariable region 1.
Collapse
Affiliation(s)
- Jing Jin
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
6
|
Hunziker IP, Zurbriggen R, Glueck R, Engler OB, Reichen J, Dai WJ, Pichler WJ, Cerny A. Perspectives: towards a peptide-based vaccine against hepatitis C virus. Mol Immunol 2001; 38:475-84. [PMID: 11741697 DOI: 10.1016/s0161-5890(01)00083-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) is a widespread infectious disease in humans with the negative implication of becoming chronic in most persons. Patients infected with HCV are at risk of liver cirrhosis or hepatocellular carcinoma at later stages. In contrast to hepatitis A and hepatitis B, there is no immunization yet available, neither prophylactic nor therapeutic. Thus, there is an urgent need to develop a safe, protective vaccine against this fatal disease. Developing countries are even more at risk for HCV. There are currently a number of scientific approaches aimed towards solving this problem. Taking both risks and costs of immunization into consideration, a peptide-based vaccine may be a reasonable prophylactic protection. Also, it might be of therapeutic use in already infected patients by increasing a specific CTL response against HCV. In our lab, we are focusing on immunopotentiating reconstituted influenza virosomes (IRIVs) as carriers for immunogenic HLA-A2-restricted core epitopes to induce peptide-specific cytotoxic T lymphocytes (CTLs). The IRIVs are similar to liposomes, but in addition contain influenza-derived hemagglutinin and neuraminidase on their outer surface which makes them fusogenic, thus, permitting antigen delivery to host cells. So far, virosomes have been successfully used for vaccine development and as a result a virosomal vaccine against both influenza virus (Inflexal) BERNA) and hepatitis A virus (HAV) (Epaxal) BERNA) already exist on the market. This paper focuses on the importance of development of a successful vaccine against HCV and, more specifically, we discuss the use, advantages and disadvantages of a peptide-based vaccine. A brief report of our latest findings will be included.
Collapse
Affiliation(s)
- I P Hunziker
- Clinic of Rheumatology and Clinical Immunology/Allergology, University Hospital, Inselspital Bern, 3010, Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Han A, Liu Y, Xiao L, Kang L, Zhang Y, Li D, Tian B. Expression of human hepatitis C virus core antigen in tobacco plants by tobacco mosaic virus-based vector system. CHINESE SCIENCE BULLETIN-CHINESE 2000. [DOI: 10.1007/bf02884901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
|
9
|
Fournillier A, Nakano I, Vitvitski L, Depla E, Vidalin O, Maertens G, Trépo C, Inchauspé G. Modulation of immune responses to hepatitis C virus envelope E2 protein following injection of plasmid DNA using single or combined delivery routes. Hepatology 1998; 28:237-44. [PMID: 9657118 DOI: 10.1002/hep.510280131] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Different delivery routes of plasmid DNA may result in the induction of differential humoral and cellular immunity. We have studied the influence of two main routes of plasmid injection, performed intramuscularly and intraepidermally using a gene gun, for the induction of immune responses specific to hepatitis C virus (HCV) envelope protein E2. Three plasmids expressing different immunogenic domains of E2 (amino acids [aa] 384443, aa 504-555, and aa 384-746) were injected into BALB/c mice according to five different protocols using various combinations of intramuscular (i.m.) or intraepidermal (i.e.) primary and booster injections. Seroconversion rates, antibody titers and isotypes, epitope recognition, and T-helper (Th) release cytokine profiles were analyzed. Antibody titers and epitope recognition were linked to either or both the nature of the immunogen expressed and the delivery route chosen. In all cases, the lowest antibody titers were obtained using single i.m.-based protocols. Independently of the antibody titers generated, only some specific i.e.-combined delivery routes induced antibodies able to recognize determinants located in the N-terminal of E2 (aa 384411 and aa 411437) and mimicked by synthetic peptides. By contrast, the antibody isotypes and the splenic cytokine production identified were independent of the plasmids used and the delivery route implemented. All conditions resulted in Th-1 like responses suggested by the exclusive detection of IgG2a and 2b antibodies and the production of interferon gamma (INF-gamma) but no interleukin-4 (IL-4). Overall, our results suggest that the combination of i.m. and i.e. delivery routes provides the most efficient way to induce a broad immune response against HCV-E2.
Collapse
Affiliation(s)
- A Fournillier
- INSERM U271, Virus des hépatites, Rétrovirus humains et Pathologies associées, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Navas S, Martín J, Quiroga JA, Castillo I, Carreño V. Genetic diversity and tissue compartmentalization of the hepatitis C virus genome in blood mononuclear cells, liver, and serum from chronic hepatitis C patients. J Virol 1998; 72:1640-6. [PMID: 9445070 PMCID: PMC124648 DOI: 10.1128/jvi.72.2.1640-1646.1998] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/1997] [Accepted: 10/30/1997] [Indexed: 02/05/2023] Open
Abstract
The degree of genetic variability in the hypervariable region 1 of hepatitis C virus (HCV) was analyzed by cloning and sequencing HCV genomes obtained in paired samples of serum, liver tissue, and peripheral blood mononuclear cells (PBMC) from four chronic hepatitis C patients. Genetic variability in serum was higher than in liver tissue or PBMC at the level of complexity (the number of different sequences obtained from each type of tissue) as well as at the level of genetic distance between all pairs of sequences within each tissue (compared by the Student t test; P < 0.001 for two patients and P < 0.01 for another). The spectrum of viral genomes differed among the three types of tissue, as shown by segregation of sequences according to their tissue of origin in phylogenetic analysis and by statistical analysis of mean genetic distances observed between sequences obtained from different tissues (P < 0.001), but sequences from liver tissue and PBMC were more closely related to each other than to those from serum.
Collapse
Affiliation(s)
- S Navas
- Department of Hepatology, Fundación Jiménez Díaz, Madrid, Spain
| | | | | | | | | |
Collapse
|
11
|
Nakano I, Maertens G, Major ME, Vitvitski L, Dubuisson J, Fournillier A, De Martynoff G, Trepo C, Inchauspe G. Immunization with plasmid DNA encoding hepatitis C virus envelope E2 antigenic domains induces antibodies whose immune reactivity is linked to the injection mode. J Virol 1997; 71:7101-9. [PMID: 9261444 PMCID: PMC192006 DOI: 10.1128/jvi.71.9.7101-7109.1997] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Plasmids expressing different domains of the hepatis C virus (HCV) envelope E2 glycoprotein from a genotype 1a isolate were constructed to compare the immunogenic potential of E2 in nucleic acid-based immunizations. One plasmid, pCIE2t, expressed a C-terminally truncated form of E2, while others, pS2.SE2A to pS2.SE2E, encoded the adjacent 60-amino-acid (aa) sequences of E2 (inserts A to E) expressed as a fusion with the hepatitis B virus surface antigen. BALB/c mice were given injections of the plasmids intramuscularly (i.m.) or intraepidermally (i.e.) via a gene gun (biolistic introduction), and induced humoral immune responses were evaluated. The i.e. injections resulted in higher seroconversion rates and antibody titers, up to 100-fold, than did the i.m. injections (P = 0.01 to 0.04). Three restricted immunogenic domains, E2A (aa 384 to 443), E2C (aa 504 to 555), and E2E (aa 609 to 674), that yielded antibody titers ranging from 1:59 to > 1:43,700 could be identified. Subtype 1a- and 1b-derived E2 antigens and synthetic peptides were used in Western blot and enzyme-linked immunosorbent assay analyses, which revealed that the cross-reactivity of the plasmid-induced antibodies was linked both to the type of antigen expressed and to the injection mode. Induced anti-E2 antibodies could immunoprecipitate noncovalent E1E2 complexes believed to exist on the surface of HCV virions. This study allowed us to identify restricted immunogenic domains within E2 and demonstrated that different routes of injection of HCV E2 plasmids can result in quantitatively and qualitatively different humoral immune responses.
Collapse
|
12
|
Bertoni R, Sidney J, Fowler P, Chesnut RW, Chisari FV, Sette A. Human histocompatibility leukocyte antigen-binding supermotifs predict broadly cross-reactive cytotoxic T lymphocyte responses in patients with acute hepatitis. J Clin Invest 1997; 100:503-13. [PMID: 9239396 PMCID: PMC508216 DOI: 10.1172/jci119559] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The present study was designed to determine if highly conserved hepatitis B virus (HBV)-derived peptides that bind multiple HLA class I alleles with high affinity are recognized as cytotoxic T lymphocyte (CTL) epitopes in acutely infected patients. Peripheral blood mononuclear cells from 67 patients with acute hepatitis B, and 12 patients convalescent from acute hepatitis B, were stimulated with three panels of peptides, each of which bind with high affinity to several class I alleles from the HLA-A2-, HLA-A3-, or HLA-B7-supertypes. In these patients, 8 of the 19 peptides tested were found to represent CTL epitopes recognized by two or more alleles in each supertype. Two sets of nested peptides were recognized in the context of alleles with completely unrelated peptide binding specificities. Finally, promiscuous recognition by the same CTL of a given peptide presented by target cells expressing different A2 subtypes was also commonly observed. In conclusion, several HBV-specific CTL epitopes, recognized by acutely infected or convalescent patients in the context of a wide range of HLA alleles have been identified. These results demonstrate the functional relevance of the supertype grouping of HLA class I molecules in a human viral disease setting. Furthermore, they represent a significant advance in the development of a totally synthetic vaccine to terminate chronic HBV infection and support the feasibility of a systematic approach to development of similar vaccines for prevention and treatment of other chronic viral infections.
Collapse
Affiliation(s)
- R Bertoni
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
13
|
Inchauspé G. Gene vaccination for hepatitis C. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1997; 19:211-21. [PMID: 9406347 DOI: 10.1007/bf00870269] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|