1
|
Pöttgen S, Mazurek-Budzyńska M, Wischke C. The role of porosity in polyester microparticles for drug delivery. Int J Pharm 2025; 672:125340. [PMID: 39954970 DOI: 10.1016/j.ijpharm.2025.125340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Polymer microparticles are a cornerstone in the field of injectable sustained delivery systems: They allow the entrapment of various types of hydrophobic or hydrophilic drugs including biopharmaceuticals. Microparticles can be prepared from the material of choice and tailored to specific target sizes. Importantly, they can retain the drug at the local administration site to achieve a sustained drug release for long-term therapeutic effects. This review focuses on the role of porosity of microparticles as a tremendously important property. Principles to prepare porous carriers via different techniques and additives are discussed, emphasizing that porosity is not a static property but can be dynamic, e.g., for particles from polylactide or poly(lactide-co-glycolide). Considering the contribution of porosity in the overall assessment of drug carrier systems, as well as their manipulation/alteration post-production such as by pore closing, will enlarge the understanding of polymer microparticles as an important class of modern pharmaceutical dosage forms.
Collapse
Affiliation(s)
- Simon Pöttgen
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Kurt-Mothes-Str. 3 06120 Halle, Germany
| | | | - Christian Wischke
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Kurt-Mothes-Str. 3 06120 Halle, Germany.
| |
Collapse
|
2
|
Zero-order drug delivery: State of the art and future prospects. J Control Release 2020; 327:834-856. [PMID: 32931897 DOI: 10.1016/j.jconrel.2020.09.020] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/21/2023]
Abstract
Pharmaceutical drugs are an important part of the global healthcare system, with some estimates suggesting over 50% of the world's population takes at least one medication per day. Most drugs are delivered as immediate-release formulations that lead to a rapid increase in systemic drug concentration. Although these formulations have historically played an important role, they can be limited by poor patient compliance, adverse side effects, low bioavailability, or undesirable pharmacokinetics. Drug delivery systems featuring first-order release kinetics have been able to improve pharmacokinetics but are not ideal for drugs with short biological half-lives or small therapeutic windows. Zero-order drug delivery systems have the potential to overcome the issues facing immediate-release and first-order systems by releasing drug at a constant rate, thereby maintaining drug concentrations within the therapeutic window for an extended period of time. This release profile can be used to limit adverse side effects, reduce dosing frequency, and potentially improve patient compliance. This review covers strategies being employed to attain zero-order release or alter traditionally first-order release kinetics to achieve more consistent release before discussing opportunities for improving device performance based on emerging materials and fabrication methods.
Collapse
|
3
|
Hernández-Giottonini KY, Rodríguez-Córdova RJ, Gutiérrez-Valenzuela CA, Peñuñuri-Miranda O, Zavala-Rivera P, Guerrero-Germán P, Lucero-Acuña A. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: effects of formulation parameters. RSC Adv 2020; 10:4218-4231. [PMID: 35495261 PMCID: PMC9049000 DOI: 10.1039/c9ra10857b] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
This study presents the influence of the primary formulation parameters on the formation of poly-dl-lactic-co-glycolic nanoparticles by the emulsification-solvent evaporation, and the nanoprecipitation techniques. In the emulsification-solvent evaporation technique, the polymer and tensoactive concentrations, the organic solvent fraction, and the sonication amplitude effects were analyzed. Similarly, in the nanoprecipitation technique the polymer and tensoactive concentrations, the organic solvent fraction and the injection speed were varied. Additionally, the agitation speed during solvent evaporation, the centrifugation speeds and the use of cryoprotectants in the freeze-drying process were analyzed. Nanoparticles were characterized by dynamic light scattering, laser Doppler electrophoresis, and scanning electron microscopy, and the results were evaluated by statistical analysis. Nanoparticle physicochemical characteristics can be adjusted by varying the formulation parameters to obtain specific sizes and stable nanoparticles. Also, by adjusting these parameters, the nanoparticle preparation processes have the potential to be tuned to yield nanoparticles with specific characteristics while maintaining reproducible results.
Collapse
Affiliation(s)
| | | | | | - Omar Peñuñuri-Miranda
- Department of Chemical and Metallurgical Engineering, University of Sonora Hermosillo Mexico +52-662-259-2105
| | - Paul Zavala-Rivera
- Department of Chemical and Metallurgical Engineering, University of Sonora Hermosillo Mexico +52-662-259-2105
| | - Patricia Guerrero-Germán
- Department of Chemical and Metallurgical Engineering, University of Sonora Hermosillo Mexico +52-662-259-2105
| | - Armando Lucero-Acuña
- Department of Chemical and Metallurgical Engineering, University of Sonora Hermosillo Mexico +52-662-259-2105
| |
Collapse
|
4
|
Dusankova M, Pummerova M, Sedlarik V. Microspheres of essential oil in polylactic acid and poly(methyl methacrylate) matrices and their blends. J Microencapsul 2019; 36:305-316. [PMID: 31159647 DOI: 10.1080/02652048.2019.1623337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study is focussed on micro-encapsulation of essential oils in polylactic acid (PLA) and a poly(methyl methacrylate) (PMMA) matrix as well as blends of the same. Microspheres were prepared by the solvent evaporation technique and characterised by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and Fourier transform infra-red spectroscopy (FTIR). The encapsulation efficiencies and release profiles of the essential oils were studied by gas chromatography mass spectrometry (GC-MS) and head-space solid-phase microextraction GC-MS, respectively. Furthermore, the microspheres were tested for antibacterial activity against both Gram-negative and Gram-positive bacterial strains. The results showed that the microspheres compositions (PLA/PMMA ratio) have significant effect on their characteristics. The process adopted for preparing the microspheres promoted formation of spherical particles at the sizes of 1.5-9.5 µm. The highest encapsulation efficiency of the prepared microspheres was observed in systems consisting of linalool (81.10 ± 10.0 wt. % for PLA system and 76.0 ± 3.3 wt. % for PMMA system). Confirmation was also made that the release rate of the microspheres was affected by the size of the same.
Collapse
Affiliation(s)
- Miroslava Dusankova
- a Centre of Polymer Systems , University Institute, Tomas Bata University in Zlin, tr. T , Czech Republic
| | - Martina Pummerova
- a Centre of Polymer Systems , University Institute, Tomas Bata University in Zlin, tr. T , Czech Republic
| | - Vladimir Sedlarik
- a Centre of Polymer Systems , University Institute, Tomas Bata University in Zlin, tr. T , Czech Republic
| |
Collapse
|
5
|
Optimization of preparation method by W/O/W emulsion for entrapping metformin hydrochloride into poly (lactic acid) microparticles using Box-Behnken design. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Chen J, Hu J, Zuo P, Su X, Liu Z, Yang M. Tailor-made spider-eggcase-silk spheres for efficient lysosomal drug delivery. RSC Adv 2018; 8:9394-9401. [PMID: 35541844 PMCID: PMC9078666 DOI: 10.1039/c8ra00232k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
Spider silks are attractive biopolymers due to their excellent mechanical properties and biomimetic potential. To optimize the electrostatic interaction for lysosomal drug delivery, a spider-eggcase-silk protein was genetically engineered using 5× His Tag with a tailor-made isoelectric point of 4.8. By a facile HFIP-on-oil method, silk spheres were assembled as rapidly as 10 s. After the post-treatment of ethanol, silk spheres were determined with an improved compressive modulus by AFM indentation. Under incubation of silk spheres in a Doxorubicin solution, a maximum of 35% loading and average of 30% loading efficiency were determined. In the cytotoxicity experiment, silk spheres exhibited intrinsic biocompatibility and showed good control of the loaded drug in the neutral PBS solution. Significantly, by 96 h, the accumulative drug release at pH 4.5 was approximately 4.5-fold higher than that at pH 7.4. By conducting the platelet adhesion and hemolysis assay, Doxorubicin-loaded silk spheres exhibited good hemocompatibility. To further demonstrate this release behavior, within 24 h, Doxorubicin-loaded silk spheres were efficiently delivered to lysosomes and then released the payload to the nuclei of Hela cells. Recombinant spider-eggcase-silk spheres are facilely prepared as drug carriers with a tailor-made isoelectric point specifically for lysosomal delivery.![]()
Collapse
Affiliation(s)
- Jianming Chen
- Institute of Textiles and Clothing
- The Hong Kong Polytechnic University
- Kowloon
- Hong Kong
| | - Jinlian Hu
- Institute of Textiles and Clothing
- The Hong Kong Polytechnic University
- Kowloon
- Hong Kong
| | - Peijun Zuo
- Nano and Advanced Materials Institute
- The Hong Kong University of Science and Technology
- Kowloon
- Hong Kong
| | - Xiaoqian Su
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Zhigao Liu
- Shenzhen PKU-HKUST Medical Center
- Shenzhen
- China
| | - Mo Yang
- Department of Biomedical Engineering
- The Hong Kong Polytechnic University
- Kowloon
- Hong Kong
| |
Collapse
|
7
|
Holcapkova P, Hrabalikova M, Stoplova P, Sedlarik V. Core–shell PLA–PVA porous microparticles as carriers for bacteriocin nisin. J Microencapsul 2017. [DOI: 10.1080/02652048.2017.1324919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Pavlina Holcapkova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Zlin, Czech Republic
| | - Martina Hrabalikova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Zlin, Czech Republic
| | - Petra Stoplova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Zlin, Czech Republic
| | - Vladimir Sedlarik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Zlin, Czech Republic
| |
Collapse
|
8
|
Gilert A, Baruch L, Bronshtein T, Machluf M. PLGA-Listeriolysin O microspheres: Opening the gate for cytosolic delivery of cancer antigens. Biomed Microdevices 2016; 18:23. [PMID: 26888439 DOI: 10.1007/s10544-016-0050-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Strategies for cancer protein vaccination largely aim to activate the cellular arm of the immune system against cancer cells. This approach, however, is limited since protein vaccines mostly activate the system's humoral arm instead. One way to overcome this problem is to enhance the cross-presentation of such proteins by antigen-presenting cells, which may consequently lead to intense cellular response. Here we examined the ability of listeriolysin O (LLO) incorporated into poly-lactic-co-glycolic acid (PLGA) microspheres to modify the cytosolic delivery of low molecular weight peptides and enhance their cross-presentation. PLGA microspheres were produced in a size suitable for uptake by phagocytic cells. The peptide encapsulation and release kinetics were improved by adding NaCl to the preparation. PLGA microspheres loaded with the antigenic peptide and incorporated with LLO were readily up-taken by phagocytic cells, which exhibited an increase in the expression of peptide-MHC-CI complexes on the cell surface. Furthermore, this system enhanced the activation of a specific T hybridoma cell line, thus simulating cytotoxic T cells. These results establish, for the first time, a proof of concept for the use of PLGA microspheres incorporated with a pore-forming agent and the antigen peptide of choice as a unique cancer protein vaccination delivery platform.
Collapse
Affiliation(s)
- Ariel Gilert
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Limor Baruch
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Tomer Bronshtein
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Marcelle Machluf
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
9
|
Shi G, Liu Y, He Z, Zhou J. Chemical treatment and chitosan coating of yeast cells to improve the encapsulation and controlled release of bovine serum albumin. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1-9. [PMID: 27684360 DOI: 10.1080/21691401.2016.1216855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We investigate the encapsulation of bovine serum albumin (BSA) in chemical-treated and chitosan-coated yeast cells, Saccharomyces cerevisiae (S. cerevisiae), for the controlled release of BSA. The chemical treatment can sufficiently enlarge the small-sized cell-wall cavities and/or break the integrity for the entrance of BSA to the interior of yeast cells, and the additional chitosan coating can well prevent the rapid release of encapsulated BSA from the yeast-derived microcapsules. The sodium hydroxide pretreated S. cerevisiae gives a maximum encapsulation yield of (10.1 ± 0.2)% for BSA. An additional coating of S. cerevisiae with chitosan can reduce the initial burst release of BSA and extend the release period from 24 h in the chitosan-free case to 48 h in phosphate buffer at pH 7.4. The prepared microcapsules can well keep the shapes and sizes of yeast cells and thus show uniform sizes of 3.85 ± 0.81 μm. The encapsulated BSA well retains its pristine ultraviolet spectroscopic and chromatographic behaviors. The present microencapsulation protocol has the advantages of convenient and mild operation, high encapsulation efficiency, and organic solvent-free nature, which is of reference value for establishing high-performance controllable biomacromolecule-delivery systems.
Collapse
Affiliation(s)
- Guorong Shi
- a College of Science, Hunan Agricultural University , Changsha , China.,b Tobacco Research Institute, Hunan Agricultural University , Changsha , China
| | - Yating Liu
- a College of Science, Hunan Agricultural University , Changsha , China.,b Tobacco Research Institute, Hunan Agricultural University , Changsha , China
| | - Zijun He
- a College of Science, Hunan Agricultural University , Changsha , China
| | - Jihen Zhou
- b Tobacco Research Institute, Hunan Agricultural University , Changsha , China
| |
Collapse
|
10
|
Zuo J, Dong B, Xing F, Luo C, Chen D. Preparation of polystyrene/sodium monofluorophosphate microcapsules by W/O/W solvent evaporation method. ADV POWDER TECHNOL 2016. [DOI: 10.1016/j.apt.2016.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
An T, Choi J, Kim A, Lee JH, Nam Y, Park J, Sun BK, Suh H, Kim CJ, Hwang SJ. Sustained release of risperidone from biodegradable microspheres prepared by in-situ suspension-evaporation process. Int J Pharm 2016; 503:8-15. [DOI: 10.1016/j.ijpharm.2016.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 02/14/2016] [Indexed: 02/05/2023]
|
12
|
Balmert SC, Zmolek AC, Glowacki AJ, Knab TD, Rothstein SN, Wokpetah JM, Fedorchak MV, Little SR. Positive Charge of "Sticky" Peptides and Proteins Impedes Release From Negatively Charged PLGA Matrices. J Mater Chem B 2015; 3:4723-4734. [PMID: 26085928 PMCID: PMC4465798 DOI: 10.1039/c5tb00515a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The influence of electrostatic interactions and/or acylation on release of charged ("sticky") agents from biodegradable polymer matrices was systematically characterized. We hypothesized that release of peptides with positive charge would be hindered from negatively charged poly(lactic-co-glycolic acid) (PLGA) microparticles. Thus, we investigated release of peptides with different degrees of positive charge from several PLGA microparticle formulations, with different molecular weights and/or end groups (acid- or ester-terminated). Indeed, release studies revealed distinct inverse correlations between the amount of positive charge on peptides and their release rates from each PLGA microparticle formulation. Furthermore, we examined the case of peptides with net charge that changes from negative to positive within the pH range observed in degrading microparticles. These charge changing peptides displayed counterintuitive release kinetics, initially releasing faster from slower degrading (less acidic) microparticles, and releasing slower from the faster degrading (more acidic) microparticles. Importantly, trends between agent charge and release rates for model peptides also translated to larger, therapeutically relevant proteins and oligonucleotides. The results of these studies may improve future design of controlled release systems for numerous therapeutic biomolecules exhibiting positive charge, ultimately reducing time-consuming and costly trial and error iterations of such formulations.
Collapse
Affiliation(s)
- Stephen C. Balmert
- Department of Bioengineering, University of Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
| | - Andrew C. Zmolek
- Department of Chemical Engineering, University of Pittsburgh, PA, USA
| | - Andrew J. Glowacki
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
- Department of Chemical Engineering, University of Pittsburgh, PA, USA
| | - Timothy D. Knab
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
- Department of Chemical Engineering, University of Pittsburgh, PA, USA
| | - Sam N. Rothstein
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
- Department of Chemical Engineering, University of Pittsburgh, PA, USA
| | | | - Morgan V. Fedorchak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
- Department of Chemical Engineering, University of Pittsburgh, PA, USA
- Department of Ophthalmology, University of Pittsburgh, PA, USA
| | - Steven R. Little
- Department of Bioengineering, University of Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
- Department of Chemical Engineering, University of Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, PA, USA
| |
Collapse
|
13
|
Quantitative three-dimensional analysis of poly (lactic-co-glycolic acid) microsphere using hard X-ray nano-tomography revealed correlation between structural parameters and drug burst release. J Pharm Biomed Anal 2015; 112:43-9. [PMID: 25951620 DOI: 10.1016/j.jpba.2015.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 11/21/2022]
Abstract
The objective of this study was to investigate the use of transmission hard X-ray nano-computed-tomography (nano-CT) for characterization of the pore structure and drug distribution in poly (lactic-co-glycolic acid) (PLGA) microspheres encapsulating bovine serum albumin and to study the correlation between drug distribution and burst release. The PLGA microspheres were fabricated using a double-emulsion method. The results of pore structure analysis accessed with nano-CT were compared with those acquired by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Surface pore interconnectivity and surface protein interconnectivity were obtained using combined nano-CT and pixel analysis. The correlation between surface protein interconnectivity with the initial burst release across various tested formulations was also analyzed. The size, shape, and distribution of the pores and protein could be clearly observed in the whole microsphere using nano-CT, whereas only the sectional information was observed using SEM or CLSM. Interconnected pores and surface connected pores could be clearly distinguished in nano-CT, which enables the quantitative analysis of surface pore interconnectivity and surface protein interconnectivity. The surface protein interconnectivity in different formulations correlated well with the burst release at 5-10h. Nano-CT provided a nondestructive, high-resolution, and three-dimensional analysis method to characterize the porous microsphere.
Collapse
|
14
|
Prajapati VD, Jani GK, Kapadia JR. Current knowledge on biodegradable microspheres in drug delivery. Expert Opin Drug Deliv 2015; 12:1283-99. [DOI: 10.1517/17425247.2015.1015985] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Elsner MB, Herold HM, Müller-Herrmann S, Bargel H, Scheibel T. Enhanced cellular uptake of engineered spider silk particles. Biomater Sci 2015. [DOI: 10.1039/c4bm00401a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Drug delivery systems allow tissue/cell specific targeting of drugs in order to reduce total drug amounts administered to an organism and potential side effects upon systemic drug delivery.
Collapse
Affiliation(s)
- Martina B. Elsner
- Lehrstuhl Biomaterialien
- Universitätsstraße 30
- Universität Bayreuth
- Bayreuth D-95447
- Germany
| | - Heike M. Herold
- Lehrstuhl Biomaterialien
- Universitätsstraße 30
- Universität Bayreuth
- Bayreuth D-95447
- Germany
| | | | - Hendrik Bargel
- Lehrstuhl Biomaterialien
- Universitätsstraße 30
- Universität Bayreuth
- Bayreuth D-95447
- Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien
- Universitätsstraße 30
- Universität Bayreuth
- Bayreuth D-95447
- Germany
| |
Collapse
|
16
|
Deshmukh RK, Naik JB. Optimization of sustained release aceclofenac microspheres using response surface methodology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 48:197-204. [PMID: 25579914 DOI: 10.1016/j.msec.2014.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 10/13/2014] [Accepted: 12/04/2014] [Indexed: 01/28/2023]
Abstract
Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14±0.015% to 85.34±0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12h. The optimized microspheres formulation showed E.E. of 84.87±0.005 with small error value (1.39). The low magnitudes of error and the significant value of R(2) in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects.
Collapse
Affiliation(s)
- Rameshwar K Deshmukh
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, North Maharashtra University, Jalgaon, 425 001 Maharashtra, India
| | - Jitendra B Naik
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, North Maharashtra University, Jalgaon, 425 001 Maharashtra, India.
| |
Collapse
|
17
|
Tu F, Lee D. Controlling the stability and size of double-emulsion-templated poly(lactic-co-glycolic) acid microcapsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:9944-52. [PMID: 22667691 DOI: 10.1021/la301498f] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The stability and size of poly(lactic-co-glycolic)acid (PLGA)-containing double emulsions and the resulting PLGA microcapsules are controlled by varying the composition of highly monodisperse water-in-oil-in-water (W/O/W) double emulsions. We propose that the basic inner phase of W/O/W double emulsions catalyzes the hydrolysis of PLGA and the ionization of carboxylic acid end groups, which enhances the surface activity of PLGA and facilitates the stabilization of the double emulsions. The size of PLGA-containing double emulsions and that of resulting microcapsules can be readily tuned by osmotic annealing, which depends on the concentration ratio of a solute in the inner and outer phases of double emulsions. The internal volume of PLGA microcapsules can be changed by more than 3 orders of magnitude using this method. This approach also overcomes the difficulty in generating monodisperse double emulsions and microcapsules over a wide range of dimensions using a single microfluidic device. The osmotic annealing method can also be used to concentrate encapsulated species such as colloidal suspensions and biomacromolecules.
Collapse
Affiliation(s)
- Fuquan Tu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
18
|
Babu VR, Reddy KM, Sairam M, Subha MCS, Mallikarjuna NN, Kulkarni PV, Aminabhavi TM. Preparation and characterization of atenolol-loaded cellulose acetate butyrate-poly(vinyl pyrrolidone) blend microspheres: in vitro release studies. Des Monomers Polym 2012. [DOI: 10.1163/156855507780378276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- V. Ramesh Babu
- a Drug Delivery Division, Center of Excellence in Polymer Science, Karnatak University, Dharwad 580 003, India
| | | | - M. Sairam
- c Drug Delivery Division, Center of Excellence in Polymer Science, Karnatak University, Dharwad 580 003, India
| | - M. C. S. Subha
- d Department of Chemistry, S.K. University, Anantapur 515 003, India
| | | | - P. V. Kulkarni
- f UT Southwestern Medical Center, Dallas, TX 75390-9058, USA
| | - T. M. Aminabhavi
- g Drug Delivery Division, Center of Excellence in Polymer Science, Karnatak University, Dharwad 580 003, India
| |
Collapse
|
19
|
|
20
|
Modification of the release characteristics of estradiol encapsulated in PLGA particles via surface coating. Ther Deliv 2012; 3:209-26. [DOI: 10.4155/tde.11.154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background: Drug-loaded poly(lactide-co-glycolide) particles (100–4500 nm in diameter) were prepared via the electrospraying method. An extensive study was then carried out to determine the parameters affecting the release profile of estradiol (the drug or active pharmaceutical ingredient) in order to facilitate minimum initial burst release of estradiol. Results and discussion: The three most important factors affecting estradiol release were identified as: particle size, coating of the particles with chitosan/gelatin and the concentration of the coating agent. It was shown that coating the particles with chitosan significantly reduced the burst and initial release without affecting the subsequent release profile. Conclusions: This work demonstrates a powerful method of generating drug-loaded polymeric particles with modified release behavior and control over the initial release phase. The surface-modified particles may be useful in controlled therapeutic delivery systems to minimize undesirable side effects.
Collapse
|
21
|
Lee M, Bae H, Lee S, Chung NO, Lee H, Choi S, Hwang S, Lee J. Freezing/thawing processing of PVA in the preparation of structured microspheres for protein drug delivery. Macromol Res 2011. [DOI: 10.1007/s13233-011-0203-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Ahmed AR, Elkharraz K, Irfan M, Bodmeier R. Reduction in burst release after coating poly(D,L-lactide-co-glycolide) (PLGA) microparticles with a drug-free PLGA layer. Pharm Dev Technol 2010; 17:66-72. [PMID: 20854130 DOI: 10.3109/10837450.2010.513989] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The high initial burst release of a highly water-soluble drug from poly (D,L-lactide-co-glycolide) (PLGA) microparticles prepared by the multiple emulsion (w/o/w) solvent extraction/evaporation method was reduced by coating with an additional polymeric PLGA layer. Coating with high encapsulation efficiency was performed by dispersing the core microparticles in peanut oil and subsequently in an organic polymer solution, followed by emulsification in the aqueous solution. Hardening of an additional polymeric layer occurred by oil/solvent extraction. Peanut oil was used to cover the surface of core microparticles and, therefore, reduced or prevented the rapid erosion of core microparticles surface. A low initial burst was obtained, accompanied by high encapsulation efficiency and continuous sustained release over several weeks. Reduction in burst release after coating was independent of the amount of oil. Either freshly prepared (wet) or dried (dry) core microparticles were used. A significant initial burst was reduced when ethyl acetate was used as a solvent instead of methylene chloride for polymer coating. Multiparticle encapsulation within the polymeric layer increased as the size of the core microparticles decreased (< 50 µm), resulting in lowest the initial burst. The initial burst could be controlled well by the coating level, which could be varied by varying the amount of polymer solution, used for coating.
Collapse
Affiliation(s)
- Abid Riaz Ahmed
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany.
| | | | | | | |
Collapse
|
23
|
Camargo JA, Sapin A, Daloz D, Maincent P. Ivermectin-loaded microparticles for parenteral sustained release:in vitrocharacterization and effect of some formulation variables. J Microencapsul 2010; 27:609-17. [DOI: 10.3109/02652048.2010.501397] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Sinha VR, Trehan A. Formulation, Characterization, and Evaluation of Ketorolac Tromethamine-Loaded Biodegradable Microspheres. Drug Deliv 2010; 12:133-9. [PMID: 16025842 DOI: 10.1080/10717540590925726] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Ketorolac tromethamine has to be given every 6 hr intramuscularly in patients for acute pain, so to avoid frequent dosing and patient inconvenience we found it to be a suitable candidate for parenteral controlled delivery by biodegradable microspheres for the present study. Ketorolac tromethamine-loaded microspheres were prepared by o/w emulsion solvent evaporation technique using different polymers: polycaprolactone, poly lactic-co-glycolic acid (PLGA 65/35), and poly lactic-co-glycolic acid (PLGA 85/15). To tailor the release profile of drug for several days, blends of PLGA 65/35 and PLGA 85/15 were prepared with polycaprolactone (PCL) in different ratios. The results revealed that microspheres made with 1:3 (PLGA65/35:PCL) blend released 97% of the drug in 5 days as compared 97% in 30 days in with pure PLGA65/35 microspheres. Microspheres made with 1:1 (PLGA65/35:PCL) and 3:1 (PLGA65/35:PCL released 98% of the drug in 30 days. In microspheres made with 1:3 (PLGA85/15:PCL), almost the entire drug was released in a week whereas in batches made with pure PLGA85/15 and 3:1 (PLGA 85/15:PCL) more than 80% of the drug was released in 60 days as compared with 96% in 60 days in 1:1 (PLGA85/15:PCL). Higher encapsulation efficiency was obtained with microspheres made with pure PLGA 65/35. These formulations were characterized for particle size analysis by Malvern mastersizer that revealed particle size in range of 12-15 micron and 12-22 micron for microspheres made with polymer blends of PLGA 65/35:PCL and PLGA85/15:PCL, respectively. In pure PLGA65/35 and PLGA85/15, particle size was 28 micron and 8 micron, respectively. Surface topography was studied by scanning electron microscopy that revealed a spherical shape of microspheres. From our study it as concluded that with careful selection of different polymers and their combinations, we can tailor the release of ketorolac tromethamine for long periods.
Collapse
Affiliation(s)
- Vivek Ranjan Sinha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | | |
Collapse
|
25
|
Novel microwave-assisted synthesis of poly(D,L-lactide): the influence of monomer/initiator molar ratio on the product properties. SENSORS 2010; 10:5063-73. [PMID: 22399924 PMCID: PMC3292164 DOI: 10.3390/s100505063] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 04/26/2010] [Accepted: 04/28/2010] [Indexed: 11/17/2022]
Abstract
Poly(D,L-lactide) synthesis using tin(II) 2-ethylhexanoate initiated ring-opening polymerization (ROP) takes over 30 hours in bulk at 120 °C. The use of microwave makes the same bulk polymerization process with the same initiator much faster and energy saving, with a reaction time of about 30 minutes at 100 °C. Here, the poly(lactide) synthesis was done in a microwave reactor, using frequency of 2.45 GHz and maximal power of 150 W. The reaction temperature was controlled via infra-red system for in-bulk-measuring, and was maintained at 100 °C. Different molar ratios of monomer and initiator, [M]/[I], of 1,000, 5,000 and 10,000 were used. The achieved average molar masses for the obtained polymers (determined by gel permeation chromatography) were in the interval from 26,700 to 112,500 g/mol. The polydispersion index was from 2.436 to 3.425. For applicative purposes, the obtained material was purified during the procedure of microsphere preparation. Microspheres were obtained by spraying a fine fog of polymer (D,L-lactide) solution in tetrahydrofuran into the water solution of poly(vinyl alcohol) with intensive stirring.
Collapse
|
26
|
Lee DH, Sim GS, Kim JH, Lee GS, Pyo HB, Lee BC. Preparation and characterization of quercetin-loaded polymethyl methacrylate microcapsules using a polyol-in-oil-in-polyol emulsion solvent evaporation method. J Pharm Pharmacol 2010; 59:1611-20. [DOI: 10.1211/jpp.59.12.0002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Flavonoids and related compounds exhibit a wide range of useful pharmacological properties but present challenges related to their stability and solubility in commonly available solvents. In this study, polymethyl methacrylate (PMMA) microcapsules were prepared using a novel polyol-in-oil-in-polyol (P/O/P) emulsion solvent evaporation method as a means of stabilizing the flavonoids, using quercetin as a model flavonoid drug. The morphology of the microcapsules was evaluated using a scanning electron microscope, revealing a spherical shape with a smooth surface. The cross-section image of the PMMA microcapsules prepared with an amphiphilic polymer in the inner polyol phase showed that the microcapsule was filled with several submicron microspheres. The mean diameter varied from 1.03 ± 0.12 μm to 2.39 ± 0.42 μm, and the encapsulation efficiency ranged from 12.7% to 26.9%. When free quercetin was stored at 42°C, the residual quercetin content gradually decreased to 18% over 28 days as a result of oxidation. However, when encapsulated in PMMA microcapsules with an amphiphilic polymer in the inner polyol phase, the residual quercetin content decreased to just 82%. In-vitro release studies indicated a sustained release pattern throughout the 36-h study. The release kinetics of the microcapsules with an amphiphilic polymer followed a diffusion-controlled mechanism and the microcapsule without amphiphilic polymer followed an anomalous diffusion behaviour. This study suggests that the novel P/O/P emulsion solvent evaporation method can be applied to the encapsulation of flavonoids.
Collapse
Affiliation(s)
- Dong-Hwan Lee
- R & D Center, Hanbul Cosmetics Co., 72-7, Yongsung-ri, Samsung-myun, Umsung-kun, Chungbuk 369-834, Republic of Korea
| | - Gwan-Sub Sim
- R & D Center, Hanbul Cosmetics Co., 72-7, Yongsung-ri, Samsung-myun, Umsung-kun, Chungbuk 369-834, Republic of Korea
| | - Jin-Hwa Kim
- R & D Center, Hanbul Cosmetics Co., 72-7, Yongsung-ri, Samsung-myun, Umsung-kun, Chungbuk 369-834, Republic of Korea
| | - Geun-Soo Lee
- R & D Center, Hanbul Cosmetics Co., 72-7, Yongsung-ri, Samsung-myun, Umsung-kun, Chungbuk 369-834, Republic of Korea
| | - Hyeong-Bae Pyo
- R & D Center, Hanbul Cosmetics Co., 72-7, Yongsung-ri, Samsung-myun, Umsung-kun, Chungbuk 369-834, Republic of Korea
| | - Bum-Chun Lee
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 1×5, Canada
| |
Collapse
|
27
|
Ramesh Babu V, Krishna Rao KSV, Lee YI. Preparation and characterization of nifedipine-loaded cellulose acetate butyrate based microspheres and their controlled release behavior. Polym Bull (Berl) 2010. [DOI: 10.1007/s00289-009-0238-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Yuan P, Huang Y, Wu H, Teng Z, Zhang J, Xin X. Induction of a local pseudo-pregnancy via levonorgestrel-loaded microspheres for the treatment of endometriosis in a rabbit model. Hum Reprod 2009; 25:462-9. [PMID: 19897855 DOI: 10.1093/humrep/dep386] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Endometriosis is a chronic disease that responds to systemic pseudo-pregnancy therapy. However, side effects limit their long-term use, and recurrence often occurs after cessation of medication. Reducing side effects whereas improving therapeutic efficacy of pseudo-pregnancy therapy seems contradictory, but appealing. In order to address this dilemma, the efficacy and side effects of local pseudo-pregnancy therapy were investigated for the first time in an endometriosis animal model. METHODS AND RESULTS Levonorgestrel-loaded polylactic acid microspheres (LNG-microspheres) were prepared by using an oil-in-water emulsification-solvent evaporation method. Rabbits with experimental endometriosis were randomized to treatment with local pseudo-pregnancy therapy, local blank microspheres, systemic pseudo-pregnancy therapy, ovariectomy or the control. Local pseudo-pregnancy was induced by injection of LNG-microspheres directly into endometrial cysts. Compared with the systemic pseudo-pregnancy group, significantly higher intra-cystic drug levels were maintained for at least 6 months with much lower serum levels in the local pseudo-pregnancy group (P < 0.01). The high intra-cystic levonorgestrel simulated a state of potent pregnancy, which induced size reductions and endometrial atrophy comparable to those of ovariectomy. Moreover, major metabolic parameters and ovarian function were not disturbed by local pseudo-pregnancy therapy. CONCLUSIONS Induction of a local pseudo-pregnancy could achieve therapeutic efficacy comparable to that of ovariectomy without provoking any marked side effects in a rabbit endometriosis model. Thus it may be a preferable option for patients with endometriosis.
Collapse
Affiliation(s)
- Peng Yuan
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, No. 17 Changle West Road, Xi'an, Shaan'xi 710032, China.
| | | | | | | | | | | |
Collapse
|
29
|
Zhang Y, Sophocleous AM, Schwendeman SP. Inhibition of peptide acylation in PLGA microspheres with water-soluble divalent cationic salts. Pharm Res 2009; 26:1986-94. [PMID: 19533307 DOI: 10.1007/s11095-009-9914-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 05/20/2009] [Indexed: 11/26/2022]
Abstract
PURPOSE To test the potential of water-soluble divalent cationic salts to inhibit acylation of octreotide encapsulated in poly(D,L-lactic-co-glycolic acid)-star (PLGA) microspheres. METHODS The divalent cationic salts, calcium chloride and manganese chloride, previously shown to disrupt peptide sorption, were introduced in PLGA microspheres prepared by the double emulsion-solvent evaporation method. Peptide stability was monitored by reversed-phase high performance liquid chromatography (RP-HPLC) and identified by liquid chromatography coupled with mass spectrometry (LC-MS) during microsphere degradation under physiological conditions for 4 weeks. Microsphere morphology and salt content were examined by scanning electron microscopy (SEM) and inductively coupled plasma-optical emission spectroscopy (ICP-OES), respectively. RESULTS Addition of divalent cationic salts solely to the organic phase did not provide acylation inhibition. However, addition of the salt inhibitors to both the primary emulsion and the outer water phase resulted in improved drug and salt encapsulation efficiency as well as significantly decreased salt leaching and octreotide acylation. After 28 days, the extent of acylation inhibition afforded by divalent cations was > 58% relative to 13% for the NaCl control group. CONCLUSIONS Water-soluble divalent cationic salts represent a suitable class of stabilizer of peptide acylation in PLGA microspheres and this study provides an important formulation approach to maximize stabilizer potency.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
30
|
Puapermpoonsiri U, Spencer J, van der Walle CF. A freeze-dried formulation of bacteriophage encapsulated in biodegradable microspheres. Eur J Pharm Biopharm 2008; 72:26-33. [PMID: 19118627 DOI: 10.1016/j.ejpb.2008.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 11/24/2008] [Accepted: 12/02/2008] [Indexed: 11/24/2022]
Abstract
With the emergence of widespread antibiotic resistance, there has been renewed interest in the use of bacteriophages. While their potency, safety and specificity have underpinned their clinical potential, to date, little work has been focussed on their formulation with respect to controlled release and/or passive targeting. Here, we show that bacteriophages selective for Staphylococcus aureus or Pseudomonas aeruginosa can be encapsulated into biodegradable polyester microspheres via a modified w/o/w double emulsion-solvent extraction protocol with only a partial loss of lytic activity. Loss of lytic activity could be attributed to the exposure of the bacteriophages to the water-dichloromethane interface, with the lyophilization process itself having little effect. The microspheres were engineered to have an appropriate size and density to facilitate inhalation via a dry-powder inhaler and fluorescently labeled bacteriophages were distributed entirely within the internal porous matrix. The release profile showed a burst release phase (55-63% release within 30 min), followed by a sustained release till around 6h, as appropriate for pulmonary delivery. Despite the poor shelf-life of the formulation, the work is proof-of-concept for the formulation and controlled delivery of bacteriophages, as suitable for the treatment of bacterial lung infections.
Collapse
Affiliation(s)
- U Puapermpoonsiri
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | |
Collapse
|
31
|
Machado SRP, Lunardi LO, Tristão AP, Marchetti JM. Preparation and characterization of D, L-PLA loaded 17-β-Estradiol valerate by emulsion/evaporation methods. J Microencapsul 2008; 26:202-13. [PMID: 18942000 DOI: 10.1080/02652040802233786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PLA microparticles containing 17-β-estradiol valerate were prepared by an emulsion/evaporation method in order to sustain drug release. This system was characterized concerning particle size, particle morphology and the influence of formulation and processing parameters on drug encapsulation and in vitro drug release. The biodegradation of the microparticles was observed by tissue histological analysis. Scanning electron microscopy and particle size analysis showed that the microparticles were spherical, presenting non-aggregated homogeneous surface and had diameters in the range of 718-880 nm (inert micro-particles) and 3-4 µm (drug loaded microparticles). The encapsulation efficiency was ∼80%. Hormone released from microparticles was sustained. An in vivo degradation experiment confirmed that microparticles are biodegradable. The preparation method was shown to be suitable, since the morphological characteristics and efficiency yield were satisfactory. Thus, the method of developed microparticles seems to be a promising system for sustained release of 17-β-estradiol.
Collapse
Affiliation(s)
- Silvia R P Machado
- Department of Pharmaceutical Sciences, Laboratory of Pharmaceutical Technology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
32
|
McCarron PA, Donnelly RF, Al-Kassas R. Comparison of a novel spray congealing procedure with emulsion-based methods for the micro-encapsulation of water-soluble drugs in low melting point triglycerides. J Microencapsul 2008; 25:365-78. [DOI: 10.1080/02652040802000656] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Jaraswekin S, Prakongpan S, Bodmeier R. Effect of poly(lactide-co-glycolide) molecular weight on the release of dexamethasone sodium phosphate from microparticles. J Microencapsul 2008; 24:117-28. [PMID: 17454423 DOI: 10.1080/02652040701233655] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The objective of this study was to investigate the effect of poly(lactide-co-glycolide) (PLGA) molecular weight (Resomer RG 502H, RG 503H, and RG 504H) on the release behavior of dexamethasone sodium phosphate-loaded microparticles. The microparticles were prepared by three modifications of the solvent evaporation method (O/W-cosolvent, O/W-dispersion, and W/O/W-methods). The encapsulation efficiency of microparticles prepared by the cosolvent- and W/O/W-methods increased from approximately 50% to >90% upon addition of NaCl to the external aqueous phase, while the dispersion method resulted in lower encapsulation efficiencies. The release of dexamethasone sodium phosphate from PLGA microparticles (>50 microm) was biphasic. The initial burst release correlated well with the porosity of the microparticles, both of which increased with increasing polymer molecular weight (RG 504H > 503H > 502H). The burst was also dependent on the method of preparation and was in the order of dispersion method > WOW method > consolvent method. In contrast to the higher molecular weight PLGA microparticles, the release from RG 502H microparticles prepared by cosolvent method was not affected by volume of organic solvent (1.5-3.0 ml) and drug loading (4-13%). An initial burst of approximately 10% followed by a 5-week sustained release phase was obtained. Microparticles with a size <50 microm released in a triphasic manner; an initial burst was followed by a slow release phase and then by a second burst.
Collapse
Affiliation(s)
- Saowanee Jaraswekin
- Faculty of Pharmacy, Mahidol University, Sri ayudthaya road, Bangkok 10400, Thailand.
| | | | | |
Collapse
|
34
|
Dinarvand R, Moghadam SH, Sheikhi A, Atyabi F. Effect of surfactant HLB and different formulation variables on the properties of poly-D,L-lactide microspheres of naltrexone prepared by double emulsion technique. J Microencapsul 2008; 22:139-51. [PMID: 16019900 DOI: 10.1080/02652040400026392] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this work was to investigate the role of HLB of emulsifier as well as volume of the internal aqueous phase (W(1)) and presence of salt in the external aqueous phase (W(2)) on the morphology, size and encapsulation efficiency of poly(D,L-lactide) microspheres containing naltrexone HCl. PLA microparticles containing naltrexone HCl, an effective opiate antagonist, were prepared by a water-in-oil-in-water emulsification-solvent evaporation procedure. One of the five different emulsifiers: span 80, span 20, tween 85, tween 80 and tween 20, with HLB values from 4-17 were added to W(1). Presence of emulsifier in W(1) resulted in smaller particles with a more dense and uniform internal structure. Incorporation of span 80 (HLB 4.3, suitable for W/O emulsions) yield the highest encapsulation efficiency. Increasing the HLB value to 8 or 11 (span 20 or tween 85) decreased the efficiency of naltrexone HCl-loading. HLB values higher than 15 (tween 80 or tween 20) increased encapsulation efficiency unexpectedly, which could be attributed to migration of these emulsifiers to the O/W(2) interface and modifying the surface properties of microparticles. Increasing the internal water phase volume from 0.2-1.8 ml resulted in larger particle size with poor encapsulation efficiency. Addition of 10% w/w NaCl to the W(2) changed the surface morphology of microspheres from a porous form to a smooth surface. It was shown that, by selecting the appropriate HLB value of emulsifier in W(1), addition of salt to W(2) and controlling the volume of W(1), one can control the encapsulation efficiency, size and morphology of microspheres.
Collapse
Affiliation(s)
- R Dinarvand
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran.
| | | | | | | |
Collapse
|
35
|
Chen JL, Yeh MK, Chiang CH. The mechanism of surface-indented protein-loaded PLGA microparticle formation: the effects of salt (NaCl) on the solidification process. J Microencapsul 2008; 21:877-88. [PMID: 15799543 DOI: 10.1080/02652040400015387] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The purpose of this study was to evaluate ovalbumin (OVA) leakage pathways and to explore the mechanism of the surface-indented microparticle formation in the preparation of OVA-loaded microparticles. OVA-loaded poly (D,L-lactic-co-glycolic acid) (PLGA) microparticles were prepared by a water-in oil-in water (w/o/w) solvent evaporation method associated with varied NaCl (NaCl) concentrations and adjusted with urea at 1240mOsm kg(-1) in the external aqueous phase. To evaluate dichloromethane (DCM)-related OVA leakage, three stirring rates, 600, 800, 1000rpm at 25 degrees C were carried out during the solvent evaporation stage. Both DCM and OVA levels in the external phase medium and total dispersion were sampled and measured. The time course of particle characteristics was evaluated by microscopy or SEM photography. The surface adsorptive capacities of the prepared microparticles were measured by using bovine serum albumin conjugated with fluorescein isothiocyanate (FITC-BSA). The findings were that the DCM-related OVA leakage accounted for approximately 34%, of the total leakage. By combining NaCl in the external phase, a faster solidifying crust-like structure was formed as a barrier to remarkably reduce OVA loss and improve OVA content from 40.1 to 72.8 microg mg(-1). The yield and OVA content for formulations containing NaCl were much improved by the ionic effect, in addition to the osmotic effect. The total entrapment efficiency was also highly increased from 43 to 72%. The formations of the crust-like surface structure of the microparticle were affected by entrapped drugs, salt content in the external phase and aqueous volume in the inner phase. A scheme was proposed to interpret the formation mechanism of the surface-indented microparticles. In comparison to the surface-smooth microparticles, the surface adsorptive capacities of the surface-indented microparticles were highly improved from 26.6 to 87.0%, determined by the adsorption of FITC-BSA.
Collapse
Affiliation(s)
- J L Chen
- Graduate Institute of Life Sciences, Tri-Service General Hospital, Taipei (114), Taiwan
| | | | | |
Collapse
|
36
|
Whateley TL. Literature Alerts. Drug Deliv 2008. [DOI: 10.3109/10717549609031183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Samdancioglu S, Calis S, Sumnu M, Atilla Hincal A. Formulation and In Vitro Evaluation of Bisphosphonate Loaded Microspheres for Implantation in Osteolysis. Drug Dev Ind Pharm 2008; 32:473-81. [PMID: 16638686 DOI: 10.1080/03639040500528871] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Chitosan and poly(lactide-co-glycolide) acid (PLGA) microspheres loaded with alendronate sodium (AS) were prepared for orthopedic as well as dental applications. In orthopedics the aim was to make the total joint prostheses stay in the body for a long time without causing bone tissue loss, while in dentistry it was aimed to treat the alveolar bone resorption caused by periodontitis and also to make the dental treatment using implants easier by reducing the bone loss in patients with osteoporosis. Solvent evaporation method was used to prepare AS loaded PLGA microspheres and emulsion polimerization method was used to prepare AS loaded chitosan microspheres. Particle size, loading efficacy, surface characteristics, and in vitro release characteristics were examined on prepared formulations. After the examination of the scanning electron microscopy photographs of microspheres, chitosan microspheres were observed to have spherical structure and smooth surface characteristics while PLGA microspheres were observed to have spherical porous surface structure. Loading efficacy was found to be 3.30% for chitosan microspheres and 7.70% for PLGA microspheres. It was observed that 85% of AS had been released at the end of the third day from chitosan microspheres whereas 58% was released at the end of the fifth day from PLGA microspheres. It was found that chitosan microspheres gave first order release while PLGA microspheres gave zero order release.
Collapse
Affiliation(s)
- Sibel Samdancioglu
- Hacettepe University, Department of Pharmaceutical Technology, Faculty of Pharmacy, Sihhiye 06100, Ankara, Turkey
| | | | | | | |
Collapse
|
38
|
Davies OR, Marlow M, Stolnik S. Macroporous surface modified microparticles. SOFT MATTER 2008; 4:1597-1601. [PMID: 32907149 DOI: 10.1039/b805421e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Novel macroporous and surface functionalized polymeric microparticles were prepared using a modified emulsion technique. The microparticles were able to surface load DNA and have a range of potential applications in drug delivery of biologics and tissue engineering.
Collapse
Affiliation(s)
- Owen R Davies
- School of Pharmacy, University of Nottingham, University Park, Nottingham, UKNG7 2RD.
| | - Maria Marlow
- AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, UKLE12 5RH
| | - Snow Stolnik
- School of Pharmacy, University of Nottingham, University Park, Nottingham, UKNG7 2RD.
| |
Collapse
|
39
|
Singh R, Singh S, Lillard JW. Past, present, and future technologies for oral delivery of therapeutic proteins. J Pharm Sci 2008; 97:2497-523. [PMID: 17918721 PMCID: PMC4627499 DOI: 10.1002/jps.21183] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Biological drugs are usually complex proteins and cannot be orally delivered due to problems related to degradation in the acidic and protease-rich environment of the gastrointestinal (GI) tract. The high molecular weight of these drugs often results in poor absorption into the periphery when administered orally. The most common route of administration for these therapeutic proteins is injection. Most of these proteins have short serum half-lives and need to be administered frequently or in high doses to be effective. So, difficulties in the administration of protein-based drugs provides the motivation for developing drug delivery systems (DDSs) capable of maintaining therapeutic drug levels without side effects as well as traversing the deleterious mucosal environment. Employing a polymer as an entrapment matrix is a common feature among the different types of systems currently being pursued for protein delivery. Protein release from these matrices can occur through various mechanisms, such as diffusion through or erosion of the polymer matrix, and sometimes a combination of both. Encapsulation of proteins in liposomes has also been a widely investigated technology for protein delivery. All of these systems have merit and our worthy of pursuit.
Collapse
Affiliation(s)
- Rajesh Singh
- Department of Microbiology & Immunology, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | |
Collapse
|
40
|
Al Haushey L, Bolzinger MA, Bordes C, Gauvrit JY, Briançon S. Improvement of a bovine serum albumin microencapsulation process by screening design. Int J Pharm 2007; 344:16-25. [PMID: 17651928 DOI: 10.1016/j.ijpharm.2007.05.067] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/26/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
The first objective of this study was to prepare microspheres containing a model protein by double emulsion-solvent evaporation/extraction method. This method was modified to consider the fragile nature of proteins. These modifications related to the reduction of polymer loss, of agitation duration and of contact time between protein and solvent. The polymer used was poly(epsilon-caprolactone) and the model protein was bovine serum albumin. The control of the microsphere properties constituted a second objective of this project. A screening design methodology was used to evaluate the effects of the process and formulation variables on microsphere properties. Twelve operating factors were retained, and the particle properties considered were the mean size, the encapsulation efficiency, and the surface state. The statistical analysis of the results allowed determining the most influent factors. Considering the whole results, it appeared that the polymer concentration, the osmotic pressure equilibrium and the volume of the inner, outer and organic phases were the most important parameters. Following this screening study, it was possible to produce particles of small size with high entrapment efficiency (near to 80%) and smooth surface. A good batch to batch reproductibility was obtained.
Collapse
|
41
|
Silva GA, Ducheyne P, Reis RL. Materials in particulate form for tissue engineering. 1. Basic concepts. J Tissue Eng Regen Med 2007; 1:4-24. [DOI: 10.1002/term.2] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Kang J, Schwendeman SP. Pore Closing and Opening in Biodegradable Polymers and Their Effect on the Controlled Release of Proteins. Mol Pharm 2006; 4:104-18. [PMID: 17274668 DOI: 10.1021/mp060041n] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of this paper was to investigate the phenomena of pore closing and opening in microspheres of poly(lactic-co-glycolic acid) (PLGA) and PLGA-glucose star copolymer (PLGA-Glu) and their effects on protein release. We used scanning electron microscopy (SEM) and laser scanning confocal microscopy (LSCM) to visually characterize the pore state and the uptake of dextran labeled with pH-insensitive probes by microspheres, as an indicator of pore connectivity. The effect of temperature on initial protein release from microspheres was also investigated. It was found that (1) pore closing occurs in both PLGA and PLGA-Glu; (2) pore closing can take place at later time during incubation at physiological condition (37 degrees C) as well as during the initial stage; (3) pore closing is much more significant at elevated temperatures; (4) previously isolated pores can become open by, for example, osmotic-mediated events; and (5) pore closing/opening correlates with the release rate of biomacromolecules from PLGA or PLGA-Glu microspheres. The pore closing/opening appeared potentially a universal event throughout the release period dictating the kinetics of protein release from PLGA microspheres. Hence, these results strongly suggest that open and isolated pores are able to toggle back-and-forth periodically during PLGA degradation while controlling protein release; these observations imply a novel new hypothesis concerning erosion-controlled release of biomacromolecules from PLGA and related polymers.
Collapse
Affiliation(s)
- Jichao Kang
- Department of Pharmaceutical Sciences, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
43
|
Oh KS, Han SK, Lee HS, Koo HM, Kim RS, Lee KE, Han SS, Cho SH, Yuk SH. Core/Shell nanoparticles with lecithin lipid cores for protein delivery. Biomacromolecules 2006; 7:2362-7. [PMID: 16903683 DOI: 10.1021/bm060362k] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Core/shell nanoparticles with lipid core, were prepared and characterized as a sustained delivery system for protein. The lipid core is composed of protein-loaded lecithin and the polymeric shell is composed of Pluronics (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer, F-127). Based on the preparation method in the previous report by us, the freeze-drying of protein-loaded lecithin was performed in the F-127 aqueous solution containing trehalose used as a cryoprotectant to form stabilized core/shell nanoparticles. Cryo-TEM (transmittance electron microscopy) and a particle size analyzer were used to observe the formation of stabilized core/shell nanoparticles. For the application of core/shell nanoparticles as a protein drug carrier, lysozyme and vascular endothelial growth factor (VEGF) were loaded into the core/shell nanoparticles by electrostatic interaction, and the drug release pattern was observed by manipulating the polymeric shell.
Collapse
Affiliation(s)
- Keun Sang Oh
- Department of Polymer Science and Engineering, Hannam University, 133 Ojeong Dong, Daedeog Ku, Taejeon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Moghadam SH, Dinarvand R, Cartilier LH. The focused ion beam technique: A useful tool for pharmaceutical characterization. Int J Pharm 2006; 321:50-5. [PMID: 16790327 DOI: 10.1016/j.ijpharm.2006.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 05/04/2006] [Accepted: 05/04/2006] [Indexed: 11/28/2022]
Abstract
Focused ion beam (FIB) instrumentation, a hybrid of the scanning electron micrsocope, ion milling and computer-aided design systems, has special uses in the electronic and semiconductor industries as a tool for failure analysis and device development. This paper examines the pharmaceutical applications of the FIB, particularly microscopic analysis of microspheres. With the FIB, microsphere structures were peeled off, layer by layer, and the structure of each layer was simultaneously observed under scanning microscopy. The particles had a wrinkled but non-porous surface. Going deeper, some holes appeared, with size and numbers increasing toward the particle center. This unique method precisely investigated the inner structure of particles, layer by layer. Then, by FIB milling, samples were extracted with an accuracy of localization of 50nm from specific parts of the microspheres and prepared to a 200nm uniform thickness film for examination under transmission electron microscopy. The FIB method also has the potential for a wide range of other quantitative and qualitative analysis of dosage forms and materials.
Collapse
Affiliation(s)
- Shadi H Moghadam
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Que., Canada H3C 3J7
| | | | | |
Collapse
|
45
|
Luan X, Bodmeier R. Modification of the tri-phasic drug release pattern of leuprolide acetate-loaded poly(lactide-co-glycolide) microparticles. Eur J Pharm Biopharm 2006; 63:205-14. [PMID: 16621485 DOI: 10.1016/j.ejpb.2005.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 12/21/2005] [Indexed: 11/15/2022]
Abstract
Leuprolide acetate-loaded poly(lactide-co-glycolide) (PLGA RG503H) microparticles prepared by the solvent evaporation method had a tri-phasic drug release pattern over a duration of up to 2 months. An initial release was followed by a slow drug release phase and a final rapid drug release. The objective of this study was to identify parameters, which shift the release profile from the tri-phasic to a more continuous release profile. Varying formulation and processing parameters (e.g., drug loading, volume of the external aqueous phase, using low molecular weight PLGA, different microparticle drying methods) affected the initial release (burst) but did not influence the drug release thereafter. The addition of the hydrophilic polymer polyvinylpyrrolidone (PVP) led to the formation of more porous microparticles. This influenced the initial release but did not change the tri-phasic drug release pattern. The inclusion of medium chain triglycerides (MCT) successfully shifted the tri-phasic pattern to a continuous release profile. MCT accelerated the leuprolide release in the second, slow release phase and reduced it in the final rapid release phase. MCT led to the formation of microparticles with an irregular surface and a highly porous inner structure. Differential scanning calorimetry (DSC) revealed a high encapsulation efficiency of MCT (88-105%) in the microparticles and an unchanged glass transition temperature (Tg) of PLGA.
Collapse
Affiliation(s)
- Xiaosong Luan
- College of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
46
|
Yushu H, Venkatraman S. The effect of process variables on the morphology and release characteristics of protein-loaded PLGA particles. J Appl Polym Sci 2006. [DOI: 10.1002/app.23933] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Luan X, Bodmeier R. In situ forming microparticle system for controlled delivery of leuprolide acetate: influence of the formulation and processing parameters. Eur J Pharm Sci 2005; 27:143-9. [PMID: 16243496 DOI: 10.1016/j.ejps.2005.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 08/23/2005] [Accepted: 09/04/2005] [Indexed: 11/16/2022]
Abstract
The objective of present study was to control the delivery of leuprolide acetate using in situ forming microparticle (ISM) systems. A solution of leuprolide acetate and poly(lactide-co-glycolide) (PLGA RG 503H) or poly(lactide) (PLA R 202H) in N-methyl-2-pyrrolideone (NMP) was emulsified into an external oil phase using a two-syringe/connector system. After injection into an aqueous environment, NMP diffusion led to polymer precipitation and microparticle formation in situ. ISM-systems were characterized with respect to particle morphology and the influence of formulation and processing parameters on the in vitro release. ISM from RG 503H showed a high initial release (approximately 40%), which could be attributed to the high porosity of microparticles. The initial release could be reduced by increasing the polymer concentration, increasing the amount and viscosity of the oil phase, and decreasing the drug loading. ISM-systems from R 202H had a much lower initial release (approximately 9%) compared to that from RG 503H, which was followed by a slow and continuous drug release. In comparison to conventional microparticles prepared by a solvent evaporation method, ISM from R 202H showed a lower initial release and a more linear continuous release.
Collapse
Affiliation(s)
- Xiaosong Luan
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany
| | | |
Collapse
|
48
|
Dittrich M, Pokorová D, Kladnícková I, Hampl J. Some basic parameters of microspheres fabricated from a branched oligoester by a rapid procedure. J Microencapsul 2005; 21:593-606. [PMID: 15762317 DOI: 10.1080/02652040400000470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Microspheres were prepared from a branched copolymer of DL-lactic acid with mannitol containing native albumin and albumin labelled with fluorescein isothiocyanate, using a rapid method of distribution of methylformate as the solvent of the copolymer from the intermediate phase of the multiple w/o/w emulsion. The primary w/o emulsion was prepared by the method of homogenization with a turbine or, alternatively, by the method of dispersion with ultrasound in modified vessels. Different additives in the external aqueous phase, such as polyvinyl alcohol or the gelatin hydrolyzate as emulsifiers were tested. Ammonium sulphate, methylformate or ethyl acetate were used as moderators of solidification of microspheres. The effect of these selected formulation parameters on the size, encapsulation efficiency, yield of microspheres and on the course of the BSA and FITC-BSA release in vitro conditions were examined.
Collapse
Affiliation(s)
- M Dittrich
- Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ 500 05, Hradec Králové, Czech Republic.
| | | | | | | |
Collapse
|
49
|
|
50
|
Wang J, Wang BM, Schwendeman SP. Mechanistic evaluation of the glucose-induced reduction in initial burst release of octreotide acetate from poly(d,l-lactide-co-glycolide) microspheres. Biomaterials 2004; 25:1919-27. [PMID: 14738856 DOI: 10.1016/j.biomaterials.2003.08.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
One major obstacle for development of injectable biodegradable microspheres for controlled peptide and protein delivery is the high initial burst of drug release occurring over the first day of incubation. We describe here the significant reduction in initial burst release of a highly water-soluble model peptide, octreotide acetate, from poly(D,L-lactide-co-glycolide) microspheres by the co-encapsulation of a small amount of glucose (e.g., 0.2%w/w), i.e., from 30+/-20% burst - glucose to 8+/-3% + glucose (mean+/-SD, n=4). This reduction is unexpected since hydrophilic additives are known to increase porosity of microspheres, causing an increase in permeability to mass transport and a higher burst. Using the double emulsion-solvent evaporation method of encapsulation, the effect of glucose on initial burst in an acetate buffer pH 4 was found to depend on polymer concentration, discontinuous phase/continuous phase ratio, and glucose content. Extensive characterization studies were performed on two microsphere batches, +/-0.2% glucose, to elucidate the mechanism of this effect. However, no significant difference was observed with respect to specific surface area, porosity, internal and external morphology and drug distribution. Continuous monitoring of the first 24-h release of octreotide acetate from these two batches disclosed that even though their starting release rates were close, the microspheres + glucose exhibited a much lower release rate between 0.2 and 24h compared to those - glucose. The microspheres + glucose showed a denser periphery and a reduced water uptake at the end of 24-h release, indicating decreased permeability. However, this effect at times was offset as glucose content was further increased to 1%, causing an increase in surface area and porosity. In summary, we conclude that the effect of glucose on initial burst are determined by two factors: (1) increased initial burst due to increased osmotic pressure during encapsulation and drug release, and (2) decreased initial burst due to decreased permeability of microspheres.
Collapse
Affiliation(s)
- Juan Wang
- Pharmaceutical Analytical and Development Department, Novartis Pharmaceuticals Corp., 59 Route 10, East Hanover, NJ 07936, USA
| | | | | |
Collapse
|