1
|
White MR, Yates DT. Dousing the flame: reviewing the mechanisms of inflammatory programming during stress-induced intrauterine growth restriction and the potential for ω-3 polyunsaturated fatty acid intervention. Front Physiol 2023; 14:1250134. [PMID: 37727657 PMCID: PMC10505810 DOI: 10.3389/fphys.2023.1250134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Intrauterine growth restriction (IUGR) arises when maternal stressors coincide with peak placental development, leading to placental insufficiency. When the expanding nutrient demands of the growing fetus subsequently exceed the capacity of the stunted placenta, fetal hypoxemia and hypoglycemia result. Poor fetal nutrient status stimulates greater release of inflammatory cytokines and catecholamines, which in turn lead to thrifty growth and metabolic programming that benefits fetal survival but is maladaptive after birth. Specifically, some IUGR fetal tissues develop enriched expression of inflammatory cytokine receptors and other signaling cascade components, which increases inflammatory sensitivity even when circulating inflammatory cytokines are no longer elevated after birth. Recent evidence indicates that greater inflammatory tone contributes to deficits in skeletal muscle growth and metabolism that are characteristic of IUGR offspring. These deficits underlie the metabolic dysfunction that markedly increases risk for metabolic diseases in IUGR-born individuals. The same programming mechanisms yield reduced metabolic efficiency, poor body composition, and inferior carcass quality in IUGR-born livestock. The ω-3 polyunsaturated fatty acids (PUFA) are diet-derived nutraceuticals with anti-inflammatory effects that have been used to improve conditions of chronic systemic inflammation, including intrauterine stress. In this review, we highlight the role of sustained systemic inflammation in the development of IUGR pathologies. We then discuss the potential for ω-3 PUFA supplementation to improve inflammation-mediated growth and metabolic deficits in IUGR offspring, along with potential barriers that must be considered when developing a supplementation strategy.
Collapse
Affiliation(s)
| | - Dustin T. Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
2
|
Hoy AJ, Balaban S, Saunders DN. Adipocyte-Tumor Cell Metabolic Crosstalk in Breast Cancer. Trends Mol Med 2017; 23:381-392. [PMID: 28330687 DOI: 10.1016/j.molmed.2017.02.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/19/2017] [Accepted: 02/24/2017] [Indexed: 01/04/2023]
Abstract
The tumor stroma is a heterogeneous ecosystem comprising matrix, fibroblasts, and immune cells and has an important role in cancer progression. Adipocytes constitute a major component of breast stroma, and significant emerging evidence demonstrates a reciprocal metabolic adaptation between stromal adipocytes and breast cancer (BC) cells. Recent observations promote a model where adipocytes respond to cancer cell-derived endocrine and paracrine signaling to provide metabolic substrates, which in turn drive enhanced cancer cell proliferation, invasion, and treatment resistance. Further defining the mechanisms that underpin this dynamic interaction between stromal adipocytes and BC cells, especially in the context of obesity, may identify novel therapeutic strategies. These will become increasingly important in addressing the clinical challenges presented by obesity and metabolic syndromes.
Collapse
Affiliation(s)
- Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, University of Sydney, NSW 2006, Australia.
| | - Seher Balaban
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, University of Sydney, NSW 2006, Australia
| | - Darren N Saunders
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
3
|
Docanto MM, Ham S, Corbould A, Brown KA. Obesity-Associated Inflammatory Cytokines and Prostaglandin E2 Stimulate Glucose Transporter mRNA Expression and Glucose Uptake in Primary Human Adipose Stromal Cells. J Interferon Cytokine Res 2015; 35:600-5. [PMID: 25839190 DOI: 10.1089/jir.2014.0194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Obesity is associated with chronic low-grade inflammation. This occurs largely as a result of the infiltration of immune cells within the obese adipose, which produce a number of inflammatory factors, including interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNFα), and prostaglandin E(2) (PGE(2)). These factors have previously been shown to affect insulin-mediated glucose uptake in differentiated adipocytes. However, the insulin-independent effect of inflammation on adipocyte precursors, the adipose stromal cells, has not been explored. This study therefore aimed to examine the effect of obesity-associated inflammatory factors on the expression of insulin-independent glucose transporters (GLUT1 and GLUT3) and on the uptake of glucose within adipose stromal cells. Primary human subcutaneous adipose stromal cells were isolated from abdominoplasty, and the effect of inflammatory cytokines (IL-6, IL-1β, and TNFα) and PGE(2) on GLUT mRNA expression and glucose transport was assessed using real-time polymerase chain reaction and radiolabeled deoxyglucose uptake assays, respectively. Results demonstrate that all four inflammatory mediators caused a dose-dependent increase in GLUT1 mRNA expression and glucose uptake. GLUT3 mRNA expression was also upregulated by IL-6 (0.5 ng/mL), TNFα (0.1 and 10 ng/mL), and PGE(2) (0.1 μM). Overall, these results demonstrate that obesity-associated inflammation increases insulin-independent glucose transporter expression and glucose uptake in undifferentiated adipose stromal cells.
Collapse
Affiliation(s)
- Maria M Docanto
- 1 Metabolism & Cancer Laboratory, Centre for Cancer Research, MIMR-PHI Institute of Medical Research , Victoria, Australia
| | - Seungmin Ham
- 1 Metabolism & Cancer Laboratory, Centre for Cancer Research, MIMR-PHI Institute of Medical Research , Victoria, Australia
| | - Anne Corbould
- 1 Metabolism & Cancer Laboratory, Centre for Cancer Research, MIMR-PHI Institute of Medical Research , Victoria, Australia .,2 Department of Physiology, Monash University , Clayton, Victoria, Australia
| | - Kristy A Brown
- 1 Metabolism & Cancer Laboratory, Centre for Cancer Research, MIMR-PHI Institute of Medical Research , Victoria, Australia .,2 Department of Physiology, Monash University , Clayton, Victoria, Australia .,3 Department of Molecular and Translational Sciences, Monash University , Clayton, Victoria, Australia
| |
Collapse
|
4
|
Motohashi N, Alexander MS, Shimizu-Motohashi Y, Myers JA, Kawahara G, Kunkel LM. Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis. J Cell Sci 2013; 126:2678-91. [PMID: 23606743 DOI: 10.1242/jcs.119966] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle possesses a strong ability to regenerate following injury, a fact that has been largely attributed to satellite cells. Satellite cells are skeletal muscle stem cells located beneath the basal lamina of the myofiber, and are the principal cellular source of growth and regeneration in skeletal muscle. MicroRNAs (miRNAs) play key roles in modulating several cellular processes by targeting multiple mRNAs that comprise a single or multiple signaling pathway. Several miRNAs have been shown to regulate satellite cell activity, such as miRNA-489, which functions to maintain satellite cells in a quiescent state. Although muscle-specific miRNAs have been identified, many of the molecular mechanisms that regulate myogenesis that are regulated by miRNAs still remain unknown. In this study, we have shown that miR-128a is highly expressed in brain and skeletal muscle, and increases during myoblast differentiation. MiR-128a was found to regulate the target genes involved in insulin signaling, which include Insr (insulin receptor), Irs1 (insulin receptor substrate 1) and Pik3r1 (phosphatidylinositol 3-kinases regulatory 1) at both the mRNA and protein level. Overexpression of miR-128a in myoblasts inhibited cell proliferation by targeting IRS1. By contrast, inhibition of miR-128a induced myotube maturation and myofiber hypertrophy in vitro and in vivo. Moreover, our results demonstrate that miR-128a expression levels are negatively controlled by tumor necrosis factor α (TNF-α). TNF-α promoted myoblast proliferation and myotube hypertrophy by facilitating IRS1/Akt signaling via a direct decrease of miR-128a expression in both myoblasts and myotubes. In summary, we demonstrate that miR-128a regulates myoblast proliferation and myotube hypertrophy, and provides a novel mechanism through which IRS1-dependent insulin signaling is regulated in skeletal muscle.
Collapse
Affiliation(s)
- Norio Motohashi
- Program in Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
5
|
Vraskou Y, Roher N, Díaz M, Antonescu CN, MacKenzie SA, Planas JV. Direct involvement of tumor necrosis factor-α in the regulation of glucose uptake in rainbow trout muscle cells. Am J Physiol Regul Integr Comp Physiol 2010; 300:R716-23. [PMID: 21191000 DOI: 10.1152/ajpregu.00514.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proinflammatory cytokine TNF-α is known to have a direct action on skeletal muscle in mammals. However, little is known regarding the potential effects of cytokines on nonimmune tissues, particularly in skeletal muscle, in fish. The aim of this study was to investigate the effects of recombinant trout TNF-α (rtTNF-α) on skeletal muscle carbohydrate metabolism in rainbow trout (Oncorhynchus mykiss). We used a primary cell culture of muscle cells from rainbow trout to show that rtTNF-α stimulates glucose uptake in myoblasts and myotubes at concentrations that do not affect the viability of the cells, requiring de novo protein synthesis as shown by the impairment of rtTNF-α-stimulated glucose uptake by cycloheximide. With the use of specific inhibitors, we show that rtTNF-α-stimulated glucose uptake is mediated by the p38MAPK, NF-κB, and JNK pathways. Additionally, we provide evidence that the stimulatory effects of rtTNF-α on glucose uptake in trout skeletal muscle cells may be caused, at least in part, by an increase in the amount of GLUT4 at the plasma membrane. Incubation of trout muscle cells with conditioned medium from LPS-stimulated trout macrophages, enriched in TNF-α, increased glucose uptake. Our results indicate that recombinant, as well as native trout TNF-α, directly stimulates glucose uptake in trout muscle cells and provide evidence, for the first time in nonmammalian vertebrates, for a potential regulatory role of TNF-α in skeletal muscle metabolism.
Collapse
Affiliation(s)
- Yoryia Vraskou
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Hommelberg PPH, Plat J, Sparks LM, Schols AMWJ, van Essen ALM, Kelders MCJM, van Beurden D, Mensink RP, Langen RCJ. Palmitate-induced skeletal muscle insulin resistance does not require NF-κB activation. Cell Mol Life Sci 2010; 68:1215-25. [PMID: 20820848 PMCID: PMC3056136 DOI: 10.1007/s00018-010-0515-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 07/16/2010] [Accepted: 08/17/2010] [Indexed: 12/14/2022]
Abstract
Palmitate activates the NF-κB pathway, and induces accumulation of lipid metabolites and insulin resistance in skeletal muscle cells. Little information is available whether and how these processes are causally related. Therefore, the objectives were to investigate whether intra-cellular lipid metabolites are involved in FA-induced NF-κB activation and/or insulin resistance in skeletal muscle and to investigate whether FA-induced insulin resistance and NF-κB activation are causally related. Inhibiting DGAT or CPT-1 by using, respectively, amidepsine or etomoxir increased DAG accumulation and sensitized myotubes to palmitate-induced insulin resistance. While co-incubation of palmitate with etomoxir increased NF-κB transactivation, co-incubation with amidepsine did not, indicating that DAG accumulation is associated with insulin resistance but not with NF-κB activation. Furthermore, pharmacological or genetic inhibition of the NF-κB pathway could not prevent palmitate-induced insulin resistance. In conclusion, we have demonstrated that activation of the NF-κB pathway is not required for palmitate-induced insulin resistance in skeletal muscle cells.
Collapse
Affiliation(s)
- Pascal P. H. Hommelberg
- Department of Human Biology, Nutrim School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
- Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Jogchum Plat
- Department of Human Biology, Nutrim School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lauren M. Sparks
- Department of Human Biology, Nutrim School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Annemie M. W. J. Schols
- Department of Respiratory Medicine, Nutrim School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Anon L. M. van Essen
- Department of Respiratory Medicine, Nutrim School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Marco C. J. M. Kelders
- Department of Respiratory Medicine, Nutrim School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Denis van Beurden
- Department of Human Biology, Nutrim School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ronald P. Mensink
- Department of Human Biology, Nutrim School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
- Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Ramon C. J. Langen
- Department of Respiratory Medicine, Nutrim School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
7
|
Roher N, Samokhvalov V, Díaz M, MacKenzie S, Klip A, Planas JV. The proinflammatory cytokine tumor necrosis factor-alpha increases the amount of glucose transporter-4 at the surface of muscle cells independently of changes in interleukin-6. Endocrinology 2008; 149:1880-9. [PMID: 18162526 DOI: 10.1210/en.2007-1045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TNFalpha is a proinflammatory cytokine secreted by macrophages in response to bacterial infection. Recently new evidence has emerged suggesting that stressed or injured myocytes produce TNFalpha that then acts as an autocrine and/or paracrine mediator. TNFalpha receptors types 1 and 2 are present in skeletal muscle cells, and muscle cells can secrete, in addition to TNFalpha, other cytokines such as IL-1beta or IL-6. Furthermore, the plasma concentration of TNFalpha is elevated in insulin-resistant states associated with obesity and type 2 diabetes. Here we show that TNFalpha increased the amount of glucose transporter (GLUT)-4 at the plasma membrane and also glucose uptake in the L6 muscle cell line stably expressing GLUT4 tagged with the c-myc epitope. Regardless of the state of differentiation of the L6 cells, TNFalpha did not affect the rate of proliferation or of apoptosis. The stimulatory effects of TNFalpha on cell surface GLUT4 and glucose uptake were blocked by nuclear factor-kappaB and p38MAPK pathway specific inhibitors (Bay 11-7082 and SB220025), and these two pathways were stimulated by TNFalpha. Furthermore, although TNFalpha increased IL-6 mRNA and protein expression, IL-6 did not mediate the effects of TNFalpha on cell surface GLUT4 levels, which also did not require de novo protein synthesis. The results indicate that TNFalpha can stimulate glucose uptake in L6 muscle cells by inducing GLUT4 translocation to the plasma membrane, possibly through activation of the nuclear factor-kappaB and p38MAPK signaling pathways and independently of the production of IL-6.
Collapse
Affiliation(s)
- Nerea Roher
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Kita A, Yamasaki H, Kuwahara H, Moriuchi A, Fukushima K, Kobayashi M, Fukushima T, Takahashi R, Abiru N, Uotani S, Kawasaki E, Eguchi K. Identification of the promoter region required for human adiponectin gene transcription: Association with CCAAT/enhancer binding protein-beta and tumor necrosis factor-alpha. Biochem Biophys Res Commun 2005; 331:484-90. [PMID: 15850785 DOI: 10.1016/j.bbrc.2005.03.205] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Indexed: 01/12/2023]
Abstract
Adiponectin, an adipose tissue-specific plasma protein, is involved in insulin sensitizing and has anti-atherosclerotic properties. Plasma levels of adiponectin are decreased in obese individuals and patients with type 2 diabetes with insulin resistance. Tumor necrosis factor-alpha (TNF-alpha) decreases the expression of adiponectin in adipocytes. The aims of the present study were: (1) to identify the promoter region responsible for basal transcription of the human adiponectin gene, and (2) to investigate the mechanism by which adiponectin was regulated by TNF-alpha. The human adiponectin promoter (2.1kb) was isolated and used for luciferase reporter analysis by transient transfection into 3T3-L1 adipocytes. Deletion analysis demonstrated that the promoter region from -676 to +41 was sufficient for basal transcriptional activity. Mutation analysis of putative response elements for sterol regulatory element binding protein (SREBP) (-431 to -423) and CCAAT/enhancer binding protein (C/EBP) (-230 to -224) showed that both elements were required for basal promoter activity. Adiponectin transcription was increased 3-fold in cells that over-expressed constitutively active C/EBP-beta. Electrophoretic mobility shift assay, using nuclear extract from 3T3-L1 cells and the -258 to -199 region as a probe, demonstrated specific DNA-protein binding, which was abolished by TNF-alpha treatment. The present data indicate that the putative response elements for SREBP and C/EBP are required for human adiponectin promoter activity, and that suppression by TNF-alpha may, at least in part, be associated with inactivation of C/EBP-beta.
Collapse
Affiliation(s)
- Atsushi Kita
- Unit of Metabolism/Diabetes and Clinical Nutrition, Nagasaki University, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- A J Stears
- Endocrine and Metabolism Unit, School of Medicine, University of Southampton, UK
| | | |
Collapse
|
10
|
Benigni F, Atsumi T, Calandra T, Metz C, Echtenacher B, Peng T, Bucala R. The proinflammatory mediator macrophage migration inhibitory factor induces glucose catabolism in muscle. J Clin Invest 2000; 106:1291-300. [PMID: 11086030 PMCID: PMC381433 DOI: 10.1172/jci9900] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Severe infection or tissue invasion can provoke a catabolic response, leading to severe metabolic derangement, cachexia, and even death. Macrophage migration inhibitory factor (MIF) is an important regulator of the host response to infection. Released by various immune cells and by the anterior pituitary gland, MIF plays a critical role in the systemic inflammatory response by counterregulating the inhibitory effect of glucocorticoids on immune-cell activation and proinflammatory cytokine production. We describe herein an unexpected role for MIF in the regulation of glycolysis. The addition of MIF to differentiated L6 rat myotubes increased synthesis of fructose 2,6-bisphosphate (F2,6BP), a positive allosteric regulator of glycolysis. Increased expression of the enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) enhanced F2,6BP production and, consequently, cellular lactate production. The catabolic effect of TNF-alpha on myotubes was mediated by MIF, which served as an autocrine stimulus for F2, 6BP production. TNF-alpha administered to mice decreased serum glucose levels and increased muscle F2,6BP levels; pretreatment with a neutralizing anti-MIF mAb completely inhibited these effects. Anti-MIF also prevented hypoglycemia and increased muscle F2,6BP levels in TNF-alpha-knockout mice that were administered LPS, supporting the intrinsic contribution of MIF to these inflammation-induced metabolic changes. Taken together with the recent finding that MIF is a positive, autocrine stimulator of insulin release, these data suggest an important role for MIF in the control of host glucose disposal and carbohydrate metabolism.
Collapse
Affiliation(s)
- F Benigni
- The Picower Institute for Medical Research, Manhasset, New York 10030, USA
| | | | | | | | | | | | | |
Collapse
|