1
|
Daoutsali E, Hailu TT, Buijsen RAM, Pepers BA, van der Graaf LM, Verbeek MM, Curtis D, de Vlaam T, van Roon-Mom WMC. Antisense Oligonucleotide-Induced Amyloid Precursor Protein Splicing Modulation as a Therapeutic Approach for Dutch-Type Cerebral Amyloid Angiopathy. Nucleic Acid Ther 2021; 31:351-363. [PMID: 34061681 PMCID: PMC8823675 DOI: 10.1089/nat.2021.0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dutch-type cerebral amyloid angiopathy (D-CAA) is a monogenic form of cerebral amyloid angiopathy and is inherited in an autosomal dominant manner. The disease is caused by a point mutation in exon 17 of the amyloid precursor protein (APP) gene that leads to an amino acid substitution at codon 693. The mutation is located within the amyloid beta (Aβ) domain of APP, and leads to accumulation of toxic Aβ peptide in and around the cerebral vasculature. We have designed an antisense oligonucleotide (AON) approach that results in skipping of exon 17, generating a shorter APP isoform that lacks part of the Aβ domain and the D-CAA mutation. We demonstrate efficient AON-induced skipping of exon 17 at RNA level and the occurrence of a shorter APP protein isoform in three different cell types. This resulted in a reduction of Aβ40 in neuronally differentiated, patient-derived induced pluripotent stem cells. AON-treated wild-type mice showed successful exon skipping on RNA and protein levels throughout the brain. These results illustrate APP splice modulation as a promising therapeutic approach for D-CAA.
Collapse
Affiliation(s)
- Elena Daoutsali
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Barry A Pepers
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Linda M van der Graaf
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Marcel M Verbeek
- Departments of Neurology and Laboratory Medicine, Radboud Alzheimer Centre, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Daniel Curtis
- Amylon Therapeutics, Leiden, the Netherlands.,Atalanta Therapeutics, Boston, Massachusetts, USA
| | | | | |
Collapse
|
2
|
Azria D, Blanquer S, Verdier JM, Belamie E. Nanoparticles as contrast agents for brain nuclear magnetic resonance imaging in Alzheimer's disease diagnosis. J Mater Chem B 2017; 5:7216-7237. [PMID: 32264173 DOI: 10.1039/c7tb01599b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nuclear Magnetic Resonance Imaging (MRI) of amyloid plaques is a powerful non-invasive approach for the early and accurate diagnosis of Alzheimer's disease (AD) along with clinical observations of behavioral changes and cognitive impairment. The present article aims at giving a critical and comprehensive review of recent advances in the development of nanoparticle-based contrast agents for brain MRI. Nanoparticles considered for the MRI of AD must comply with a highly stringent set of requirements including low toxicity and the ability to cross the blood-brain-barrier. In addition, to reach an optimal signal-to-noise ratio, they must exhibit a specific ability to target amyloid plaques, which can be achieved by grafting antibodies, peptides or small molecules. Finally, we propose to consider new directions for the future of MRI in the context of Alzheimer's disease, in particular by enhancing the performances of contrast agents and by including therapeutic functionalities following a theranostic strategy.
Collapse
Affiliation(s)
- David Azria
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, Equipe Matériaux Avancés pour la Catalyse et la Santé, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
3
|
Ayton S, Lei P, Bush AI. Metallostasis in Alzheimer's disease. Free Radic Biol Med 2013; 62:76-89. [PMID: 23142767 DOI: 10.1016/j.freeradbiomed.2012.10.558] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/30/2012] [Accepted: 10/30/2012] [Indexed: 12/22/2022]
Abstract
2012 has been another year in which multiple large-scale clinical trials for Alzheimer's disease (AD) have failed to meet their clinical endpoints. With the social and financial burden of this disease increasing every year, the onus is now on the field of AD researchers to investigate alternative ideas to deliver outcomes for patients. Although several major clinical trials targeting Aβ have failed, three smaller clinical trials targeting metal interactions with Aβ have all shown benefit for patients. Here we review the genetic, pathological, biochemical, and pharmacological evidence that underlies the metal hypothesis of AD. The AD-affected brain suffers from metallostasis, or fatigue of metal trafficking, resulting in redistribution of metals into inappropriate compartments. The metal hypothesis is built upon a triad of transition elements: iron, copper, and zinc. The hypothesis has matured from early investigations showing amyloidogenic and oxidative stress consequences of these metals; recently, disease-related proteins, APP, tau, and presenilin, have been shown to have major roles in metal regulation, which provides insight into the pathway of neurodegeneration in AD and illuminates potential new therapeutic avenues.
Collapse
Affiliation(s)
- Scott Ayton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Peng Lei
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
4
|
Belyaev ND, Kellett KAB, Beckett C, Makova NZ, Revett TJ, Nalivaeva NN, Hooper NM, Turner AJ. The transcriptionally active amyloid precursor protein (APP) intracellular domain is preferentially produced from the 695 isoform of APP in a {beta}-secretase-dependent pathway. J Biol Chem 2010; 285:41443-54. [PMID: 20961856 DOI: 10.1074/jbc.m110.141390] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Amyloidogenic processing of the amyloid precursor protein (APP) by β- and γ-secretases generates several biologically active products, including amyloid-β (Aβ) and the APP intracellular domain (AICD). AICD regulates transcription of several neuronal genes, especially the Aβ-degrading enzyme, neprilysin (NEP). APP exists in several alternatively spliced isoforms, APP(695), APP(751), and APP(770). We have examined whether each isoform can contribute to AICD generation and hence up-regulation of NEP expression. Using SH-SY5Y neuronal cells stably expressing each of the APP isoforms, we observed that only APP(695) up-regulated nuclear AICD levels (9-fold) and NEP expression (6-fold). Increased NEP expression was abolished by a β- or γ-secretase inhibitor but not an α-secretase inhibitor. This correlated with a marked increase in both Aβ(1-40) and Aβ(1-42) in APP(695) cells as compared with APP(751) or APP(770) cells. Similar phenomena were observed in Neuro2a but not HEK293 cells. SH-SY5Y cells expressing the Swedish mutant of APP(695) also showed an increase in Aβ levels and NEP expression as compared with wild-type APP(695) cells. Chromatin immunoprecipitation revealed that AICD was associated with the NEP promoter in APP(695), Neuro2a, and APP(Swe) cells but not APP(751) nor APP(770) cells where AICD was replaced by histone deacetylase 1 (HDAC1). AICD occupancy of the NEP promoter was replaced by HDAC1 after treatment of the APP(695) cells with a β- but not an α-secretase inhibitor. The increased AICD and NEP levels were significantly reduced in cholesterol-depleted APP(695) cells. In conclusion, Aβ and functional AICD appear to be preferentially synthesized through β-secretase action on APP(695).
Collapse
Affiliation(s)
- Nikolai D Belyaev
- Proteolysis Research Group, Faculty of Biological Sciences, Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Beher D, Graham SL. Protease inhibitors as potential disease-modifying therapeutics for Alzheimer’s disease. Expert Opin Investig Drugs 2005; 14:1385-409. [PMID: 16255678 DOI: 10.1517/13543784.14.11.1385] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The current lack of an effective treatment for Alzheimer's disease (AD) has fuelled an intense search for novel therapies for this neurodegenerative condition. Aberrant production or decreased clearance of amyloid-beta peptides is widely accepted to be causative for AD. Amyloid-beta peptides are produced by sequential processing of the beta-amyloid precursor protein by the two aspartyl-type proteases beta-secretase and gamma-secretase. Because proteases are generally classified as druggable, these secretases are a centre of attraction for various drug discovery efforts. Although a large number of specific drug-like gamma-secretase inhibitors have been discovered, progress towards the clinic has been slowed by the broad substrate specificity of this unusual intramembrane-cleaving enzyme. In particular, the Notch receptor depends on gamma-secretase for its signalling function and, thus, gamma-secretase inhibition produces distinct phenotypes related to a disturbance of this pathway in preclinical animal models. The main task now is to define the therapeutic window in man between desired central efficacy and Notch-related side effects. In contrast, most studies with knockout animals have indicated that beta-secretase inhibition may have minimal adverse effects; however, the properties of the active site of this enzyme make it difficult to find small-molecule inhibitors that bind with high affinity. In most instances, inhibitors are large and peptidic in nature and, therefore, unsuitable as drug candidates. Thus, there are many issues associated with the development of protease inhibitors for AD that must be addressed before they can be used to test the 'amyloid cascade hypothesis' in the clinic. The outcomes of such trials will provide new directions to the scientific community and hopefully new treatment options for AD patients.
Collapse
Affiliation(s)
- Dirk Beher
- Department of Molecular & Cellular Neuroscience, Merck Sharp & Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, UK.
| | | |
Collapse
|
6
|
Barrachina M, Dalfó E, Puig B, Vidal N, Freixes M, Castaño E, Ferrer I. Amyloid-beta deposition in the cerebral cortex in Dementia with Lewy bodies is accompanied by a relative increase in AbetaPP mRNA isoforms containing the Kunitz protease inhibitor. Neurochem Int 2004; 46:253-60. [PMID: 15670642 DOI: 10.1016/j.neuint.2004.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 07/17/2004] [Accepted: 08/30/2004] [Indexed: 12/21/2022]
Abstract
Deposition of amyloid-beta, the fibrillogenic product of the cell surface protein AbetaPP (amyloid-beta protein precursor), occurs in the cerebral cortex of patients with Dementia with Lewy bodies (DLB). Amyloid deposition, basically in the form of senile plaques, occurs not only in the common form (DLBc), which is defined by changes consistent with diffuse Lewy body disease accompanied by Alzheimer's disease (AD), but also in the pure form (DLBp), in which neurofibrillary tangles are absent. The present study analyses the expression of AbetaPP mRNA isoforms with (AbetaPP751 and AbetaPP770) and without (AbetaPP695) the Kunitz-type serine protease inhibitor (KPI) domain, in the cerebral cortex in DLBc (n=4), DLBp (n=4), Parkinson's disease (PD, n=5), AD (n=3 stages I-IIA, and n=4 stage VC of Braak and Braak), amyloid angiopathy (AA, n=2) and progressive supranuclear palsy (PSP, n=4) compared with age-matched controls (n=6). For this purpose, TaqMan RT-PCR assay was used on frozen post-mortem samples of the frontal cortex (area 8) obtained with short post-mortem delays (8.29+/-4.57 h) and strict RNA preservation (A260/280 of 1.78+/-0.15). A 3.66-fold, 6.67-fold, 4.28-fold and 5.24-fold increases, in the (AbetaPP751+AbetaPP770)/AbetaPP695 mRNA ratio were found in DLBc, DLBp, AD stage VC and AA, respectively, when compared with controls. No modifications in the ratio were found in PD, AD stage I-IIA and PSP. These findings suggest that alternative splicing of the AbetaPP mRNA may play a role in betaA4 amyloidogenesis in DLBp, DLBc, AD stage VC and Amyloid angiopathy.
Collapse
Affiliation(s)
- Marta Barrachina
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, carrer Feixa Llarga sn, 08907 L'Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Beyer K, Lao JI, Carrato C, Mate JL, López D, Ferrer I, Ariza A. Upregulation of amyloid precursor protein isoforms containing Kunitz protease inhibitor in dementia with Lewy bodies. ACTA ACUST UNITED AC 2004; 131:131-5. [PMID: 15530662 DOI: 10.1016/j.molbrainres.2004.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2004] [Indexed: 12/28/2022]
Abstract
Amyloid precursor protein (APP) is involved in the accumulation of alpha-synuclein, the main component of Lewy bodies. It is currently unknown, however, whether any of the APP isoforms is instrumental in alpha-synuclein deposition in dementia with Lewy bodies (DLB). Using real-time RT-PCR, we have studied relative mRNA expression levels of APP isoforms in frozen postmortem frontal cortices of DLB patients, Alzheimer disease (AD) patients, and control subjects. Of the three main APP isoforms, the two with a Kunitz protease inhibitory (KPI) motif (APP770 and APP751) were found to be specifically overexpressed in the frontal cortices of DLB patients when compared with controls and AD patients. These findings suggest a specific role of APP isoforms containing Kunitz protease inhibitor in DLB pathogenesis.
Collapse
Affiliation(s)
- Katrin Beyer
- Department of Pathology, Hospital Universitari Germans Trias i Pujol, Autonomous University of Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
8
|
Shepherd CE, Bowes S, Parkinson D, Cambray-Deakin M, Pearson RC. Expression of amyloid precursor protein in human astrocytes in vitro: isoform-specific increases following heat shock. Neuroscience 2000; 99:317-25. [PMID: 10938437 DOI: 10.1016/s0306-4522(00)00197-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The beta-amyloid protein deposited in senile plaques and cerebral blood vessels in the Alzheimer's disease brain is derived from the larger transmembrane spanning amyloid precursor protein. The present study investigates the effects of heat shock on the expression and processing of amyloid precursor protein in a normal human fetal astrocytic cell line CC2565 using reverse transcription-polymerase chain reaction, in situ hybridization histochemistry and western blot analysis. Heat shock led to an increase in the messenger RNA encoding Kunitz protease inhibitor isoforms of amyloid precursor protein, which peaked at 4h post-heat shock. This increase was confined to the messenger RNA encoding amyloid precursor protein-751, with a decrease in amyloid precursor protein-770 and no change in amyloid precursor protein-695. This shift in splicing was accompanied by a significant decrease in secreted amyloid precursor protein and an increase in beta-secretase processing within the cell. These findings demonstrate that astrocytes in vitro demonstrate a striking response to heat shock. This is unlikely to be due to a direct action on the promoter region of the gene, since the response is specific for one splice variant; amyloid precursor protein-751 messenger RNA. This increase in expression is further accompanied by a decrease in secretion of amyloid precursor protein, implying a shift in processing towards an intracellular route, possibly via the actions of the beta-secretase enzyme, which is known to be potentially amyloidogenic. Such a mechanism may contribute to amyloidosis in the intact brain in response to cellular stress, such as head injury.
Collapse
Affiliation(s)
- C E Shepherd
- Department of Biomedical Science, University of Sheffield, Western Bank, S10 2TN, Sheffield, UK
| | | | | | | | | |
Collapse
|
9
|
Panegyres PK, Zafiris-Toufexis K, Kakulas BA. Amyloid precursor protein gene isoforms in Alzheimer's disease and other neurodegenerative disorders. J Neurol Sci 2000; 173:81-92. [PMID: 10675649 DOI: 10.1016/s0022-510x(99)00311-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Differential expression of the amyloid precursor protein gene (APP) may be important in the development of amyloidosis in Alzheimer's disease (AD) and experimentally in the brain's response to injury. Controversial data suggests that APP isoforms containing the Kunitz protease inhibitor isoform (APP KPI+) are over expressed in the brains of patients with AD when compared to the non-Kunitz protease inhibitor containing isoforms (APP KPI-). We have investigated this hypothesis using a quantitative analysis of gene expression on brain tissue collected at post-mortem. In situ hybridization has been used with synthetic oligonucleotide probes labelled with 35S to detect the two principal splice variants of APP: APP 695 (KPI-) and APP 751 (KPI+). A prospective brain bank of frozen brain specimens has been established and includes pathologically proven AD (n=15) and other neurodegenerative disorders as controls (n=18). The controls consist of frontal lobe atrophy (n=4), Huntington's disease (n=5), Parkinson's disease (n=4), motor neuron disease (n=2), multi-infarct dementia (n=1), multisystem atrophy (n=1), and subacute sclerosing panencephalitis (n=1). We have observed no significant differences in the expression of APP 695 KPI- mRNA in frontal lobe: 17.49+/-3.26 optical density (OD) units of mRNA expression in AD vs. 16.13+/-1.76 OD units mRNA in controls (P=0.80, linear regression); or temporal lobe: 14.73+/-2.96 in AD vs. 16.49+/-2.15 in controls (P=0.55). No significant differences have been found in APP 751 KPI+ in frontal lobe: 12.86+/-2.98 in AD vs. 13.70+/-2.88 in controls (P=0.97); and temporal lobe: 13.31+/-4.93 in AD vs. 11.07+/-1.99 in controls (P=0. 65). Analysis of the ratios of APP 751 KPI+ OD units of mRNA to APP 695 KPI- mRNA revealed a trend to an increased ratio which did not reach statistical significance: frontal lobe APP 751 KPI+/APP 695 KPI- 1.92+/-1.04 in AD vs. 0.86+/-0.17 in controls (P=0.54); temporal lobe 2.54+/-1.59 in AD vs. 0.96+/-0.11 controls (P=0.34). Our data has not revealed differential expression of APP mRNA isoforms in AD and supports the hypothesis that post-translational events in APP metabolism are important in amyloidogenesis and the pathogenesis of AD.
Collapse
Affiliation(s)
- P K Panegyres
- Department of Neuropathology, Royal Perth Hospital, Perth, Australia.
| | | | | |
Collapse
|
10
|
Breen KC, Coughlan CM, Hayes FD. The role of glycoproteins in neural development function, and disease. Mol Neurobiol 1998; 16:163-220. [PMID: 9588627 DOI: 10.1007/bf02740643] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycoproteins play key roles in the development, structuring, and subsequent functioning of the nervous system. However, the complex glycosylation process is a critical component in the biosynthesis of CNS glycoproteins that may be susceptible to the actions of toxicological agents or may be altered by genetic defects. This review will provide an outline of the complexity of this glycosylation process and of some of the key neural glycoproteins that play particular roles in neural development and in synaptic plasticity in the mature CNS. Finally, the potential of glycoproteins as targets for CNS disorders will be discussed.
Collapse
Affiliation(s)
- K C Breen
- Neurosciences Institute, Department of Pharmacology and Clinical Pharmacology, University of Dundee, Ninewells Hospital Medical School, Scotland, UK
| | | | | |
Collapse
|
11
|
Moir RD, Lynch T, Bush AI, Whyte S, Henry A, Portbury S, Multhaup G, Small DH, Tanzi RE, Beyreuther K, Masters CL. Relative increase in Alzheimer's disease of soluble forms of cerebral Abeta amyloid protein precursor containing the Kunitz protease inhibitory domain. J Biol Chem 1998; 273:5013-9. [PMID: 9478949 DOI: 10.1074/jbc.273.9.5013] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although a number of studies have examined amyloid precursor protein (APP) mRNA levels in Alzheimer's disease (AD), no clear consensus has emerged as to whether the levels of transcripts for isoforms containing a Kunitz protease inhibitory (KPI)-encoded region are increased or decreased in AD. Here we compare AD and control brain for the relative amounts of APP protein containing KPI to APP protein lacking this domain. APP protein was purified from the soluble subcellular fraction and Triton X-100 membrane pellet extract of one hemisphere of AD (n = 10), normal (n = 7), and neurological control (n = 5) brains. The amount of KPI-containing APP in the purified protein samples was determined using two independent assay methods. The first assay exploited the inhibitory action of KPI-containing APP on trypsin. The second assay employed reflectance analysis of Western blots. The proportion of KPI-containing forms of APP in the soluble subcellular fraction of AD brains is significantly elevated (p < 0.01) compared with controls. Species containing a KPI domain comprise 32-41 and 76-77% of purified soluble APP from control and AD brains, respectively. For purified membrane-associated APP, 72-77 and 65-82% of control and AD samples, respectively, contain a KPI domain. Since KPI-containing species of APP may be more amyloidogenic (Ho, L., Fukuchi, K., and Yonkin, S. G. (1996) J. Biol. Chem. 271, 30929-30934), our findings support an imbalance of isoforms as one possible mechanism for amyloid deposition in sporadic AD.
Collapse
Affiliation(s)
- R D Moir
- Department of Pathology, The University of Melbourne, Parkville, 3052, Australia and The Mental Health Research Institute of Victoria, Parkville 3052, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gillian AM, McFarlane I, Lucy FM, Overly C, McConlogue L, Breen KC. Individual isoforms of the amyloid beta precursor protein demonstrate differential adhesive potentials to constituents of the extracellular matrix. J Neurosci Res 1997; 49:154-60. [PMID: 9272638 DOI: 10.1002/(sici)1097-4547(19970715)49:2<154::aid-jnr4>3.0.co;2-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The amyloid beta precursor protein (AbetaPP) can exist as a membrane-bound glycoprotein which modulates neural cell adhesion. The adhesion of clones of the AtT20 mouse pituitary cell line, transfected with cDNA coding for the 695 (AbetaPP695) and 751 (AbetaPP751) amino acid forms of the protein, to individual components of the extracellular matrix was determined using a centrifugal shear assay. On laminin, poly-L-lysine, fibronectin, and uncoated glass substrata, the cells transfected with AbetaPP695 (6A1 cells) demonstrated a 50% increase in adhesivity over nontransfected cells, while those transfected with AbetaPP751 (7A1 cells) showed a significant decrease in adhesion. There was, however, a significant increase in the adhesive strength of the 7A1 cells to collagen type IV with no change in the adhesivity of the 6A1 cells when compared with control. These changes in adhesivity could be attributed to changes in the levels of the membrane-bound protein and were not due to the interaction of soluble AbetaPP with elements of the extracellular matrix. These studies provide evidence for differential adhesivities of the constituent AbetaPP isoforms and the possible role of the Kunitz protease inhibitor (KPI) domain in influencing the adhesive properties of the protein backbone.
Collapse
Affiliation(s)
- A M Gillian
- Neurosciences Institute, Department of Pharmacology and Clinical Pharmacology, University of Dundee, Ninewells Hospital Medical School, Scotland
| | | | | | | | | | | |
Collapse
|
13
|
DeGiorgio LA, Bernstein JJ, Manuelidis L, Blass JP. Human A beta-amyloid and amyloid precursor protein accumulates in rat brain cells after cultured human leptomeningeal fibroblast implants. Brain Res 1997; 752:35-44. [PMID: 9106438 DOI: 10.1016/s0006-8993(96)01175-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cultured human leptomeningeal fibroblasts grafted into rat frontal cortex were localized to the implant pocket and to adjacent host leptomeninges. Immunohistochemical studies using a panel of human-specific and domain-specific APP antibodies revealed that all grafted cells expressed both APP and A beta in situ. Remarkably, these antibodies also labeled rat pial and ependymal cells as well as reactive astrocytes adjacent to vessels. In addition, apical projections and cell bodies of many cortical pyramidal neurons contained human-specific APP immunoreactive material. Groups of subcortical neurons, particularly those of the amygdala, hippocampal formation and suprachiasmatic nuclei, were similarly labeled. The presence of human APP in host brains was confirmed by immunoblotting. Birefringent Congo Red staining was observed in the cortical neuropil and in leptomeningeal vessels. These data indicate that grafted leptomeningeal fibroblasts hyperexpress APP and A beta which can diffuse into parenchyma and be taken up by specific rat cells.
Collapse
Affiliation(s)
- L A DeGiorgio
- Will Rogers Institute, Cornell University Medical College, White Plains, NY 10605, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Mutations in genes encoding related proteins, termed presenilin 1 (PS1) and presenilin 2 (PS2), are linked to the majority of cases with early-onset familial Alzheimer's disease (FAD). To clarify potential function(s) of presenilins and relationships of presenilin expression to pathogenesis of AD, we examined the expression of PS1 and PS2 mRNA and PS1 protein in human and mouse. Semi-quantitative PCR of reverse-transcribed RNA (RT-PCR) analysis revealed that PS1 and PS2 mRNA are expressed ubiquitously and at comparable levels in most human and mouse tissues, including adult brain. However, PS1 mRNA is expressed at significantly higher levels in developing brain. In situ hybridization studies of mouse embryos revealed widespread expression of PS1 mRNA with a neural expression pattern that, in part, overlaps that reported for mRNA encoding specific Notch homologs. In situ hybridization analysis in adult mouse brain revealed that PS1 and PS2 mRNAs are enriched in neurons of the hippocampal formation and entorhinal cortex. Although PS1 and PS2 mRNA are expressed most prominently in neurons, lower but significant levels of PS1 and PS2 transcripts are also detected in white matter glial cells. Moreover, cultured neurons and astrocytes express PS1 and PS2 mRNAs. Using PS1-specific antibodies in immunoblot analysis, we demonstrate that PS1 accumulates as approximately 28 kDa N-terminal and approximately 18 kDa C-terminal fragments in brain. Immunocytochemical studies of mouse brain reveal that PS1 protein accumulates in a variety of neuronal populations with enrichment in somatodendritic and neuropil compartments.
Collapse
|
15
|
Johnston JA, Norgren S, Annerén G, Cowburn RF, Lannfelt L. A new quantitative solution hybridisation-RNase protection assay for APP and APLP2 mRNA. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 43:77-84. [PMID: 9037521 DOI: 10.1016/s0169-328x(96)00160-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Amyloid precursor protein (APP) and amyloid precursor-like protein 2 (APLP2) are members of a multigene family of proteins implicated in the pathogenesis of Alzheimer's disease. We describe the development of an RNA-RNA solution hybridisation-RNase protection assay to quantify APP mRNA. APP mRNA splice forms containing the Kunitz-type protease inhibitor (KPI) insert, and APLP2 mRNA in total nucleic acid extracts from a range of tissue types. Solution hybridisation-RNase protection assay enables absolute quantification of target mRNA, by conversion of the hybridisation signal to pg mRNA using a standard curve. The assay is sensitive, capable of detecting 1 pg target mRNA, and reproducible, with an inter-assay variability of less than 10% and an intra-assay variability of 3-4%. We quantified APP and APLP2 mRNA in cell lines and post-mortem human brain tissue samples. To test whether we could detect physiological differences in APP mRNA levels, a fibroblast cell line with a paternal chromosome 21 deletion of the region including the APP gene was analysed and found to express half as much APP mRNA as control fibroblasts. In addition, a reversible, approx. 30% increase in APP mRNA levels was detected in human lymphoblastoid cell lines following heat shock, a physical stimulus previously shown to increase APP expression. Regional differences in the expression of APP and APLP2 were seen in human post-mortem cerebral cortex and cerebellum. Levels of APP and APLP2 mRNA were highest in the temporal cortex, slightly lower in frontal and occipital cortices, and lowest in the cerebellum. The highest proportion of KPI-containing APP was seen in the frontal and temporal cortices. The ratio of APP:APLP2 mRNA was 1:0.3 in the cortical tissue and 1:0.8 in the cerebellum. In conclusion, quantitative solution hybridisation-RNase protection assay of total APP. APP KPI and APLP2 mRNA provides a new tool to improve the resolution of studies of potentially subtle alterations in the expression of these genes in both cell culture model systems and Alzheimer's disease post-mortem human brain tissue.
Collapse
Affiliation(s)
- J A Johnston
- Department of Clinical Neuroscience and Family Medicine, Karolinska Institute, Novun KFC, Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
16
|
Johnston JA, Norgren S, Ravid R, Wasco W, Winblad B, Lannfelt L, Cowburn RF. Quantification of APP and APLP2 mRNA in APOE genotyped Alzheimer's disease brains. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 43:85-95. [PMID: 9037522 DOI: 10.1016/s0169-328x(96)00161-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Amyloid precursor protein (APP) is metabolised to produce A beta, a peptide found aggregated in Alzheimer's disease neuritic plaques. APP is a member of a multigene protein family which includes amyloid precursor-like protein 2 (APLP2). Since A beta accumulation can be triggered by factors acting up- or downstream of APP processing, we investigated whether APP mRNA expression was altered in Alzheimer's disease post-mortem cerebral cortex. In addition, we characterised cortical APLP2 mRNA levels. Quantitative RNA-RNA solution hybridisation-RNase protection was used to assay total APP. APP containing the Kunitz-type protease inhibitor (KPI) insert and APLP2 mRNA in mid-temporal and superior frontal cortices from apolipoprotein E-genotyped subjects with Alzheimer's disease, other neurological diseases and non-demented controls. Approximately 3 times more APP than APLP2 mRNA was detected and about 70% of total APP mRNA contained the KPI insert in the control subjects. Total APP and APLP2 mRNA levels were significantly reduced in Alzheimer's disease mid-temporal, but not superior frontal cortex, suggesting that regional reductions in these mRNA correlate with severity of disease pathology. A small significant increase in the proportion of APP KPI mRNA was seen in both cortical regions in Alzheimer's disease. Apolipoprotein E genotype did not influence cortical levels of total APP, APP KPI or APLP2 mRNA. Alzheimer's disease-related increases in tissue DNA content were seen in both regions studied, while tissue RNA levels were reduced in the positive disease controls. In summary, these results indicate that Alzheimer's disease is not associated with over-expression of either APP or APLP2 mRNA. Our findings reveal a disease-associated increase in the proportion of APP KPI-containing isoforms, and further investigation should clarify whether this predisposes affected individuals to A beta production and aggregation, or reflects later events such as gliosis and neuronal cell death.
Collapse
Affiliation(s)
- J A Johnston
- Department of Clinical Neuroscience and Family Medicine, Karolinska Institute, Novum KFC, Huddinge, Sweden.
| | | | | | | | | | | | | |
Collapse
|
17
|
Greenberg BD, Savage MJ, Howland DS, Ali SM, Siedlak SL, Perry G, Siman R, Scott RW. APP transgenesis: approaches toward the development of animal models for Alzheimer disease neuropathology. Neurobiol Aging 1996; 17:153-71. [PMID: 8744397 DOI: 10.1016/0197-4580(96)00001-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Rockenstein EM, McConlogue L, Tan H, Power M, Masliah E, Mucke L. Levels and alternative splicing of amyloid beta protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer's disease. J Biol Chem 1995; 270:28257-67. [PMID: 7499323 DOI: 10.1074/jbc.270.47.28257] [Citation(s) in RCA: 208] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Abnormal expression of human amyloid precursor protein (hAPP) gene products may play a critical role in Alzheimer's disease (AD). Recently, a transgenic model was established in which platelet-derived growth factor (PDGF) promoter-driven neuronal expression of an alternatively spliced hAPP minigene resulted in prominent AD-type neuropathology (Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., Donaldson, T., Gillespie, F., Guido, T., Hagopian, S., Johnson-Wood, K., Khan, K., Lee, M., Leibowitz, P., Lieberburg, I., Little, S., Masliah, E., McConlogue, L., Montoya-Zavala, M., Mucke, L., Paganini, L., and Penniman, E. (1995) Nature 373, 523-527). Here we compared the levels and alternative splicing of APP transcripts in brain tissue of hAPP transgenic and nontransgenic mice and of humans with and without AD. PDGF-hAPP mice showed severalfold higher levels of total APP mRNA than did nontransgenic mice or humans, whereas their endogenous mouse APP mRNA levels were decreased. This resulted in a high ratio of mRNAs encoding mutated hAPP versus wild-type mouse APP. Modifications of hAPP introns 6, 7, and 8 in the PDGF-hAPP construct resulted in a prominent change in alternative splice site selection with transcripts encoding hAPP770 or hAPP751 being expressed at substantially higher levels than hAPP695 mRNA. Frontal cortex of humans with AD showed a subtle increase in the relative abundance of hAPP751 mRNA compared with normal controls. These data identify specific intron sequences that may contribute to the normal neuronspecific alternative splicing of APP pre-mRNA in vivo and support a causal role of hAPP gene products in the development of AD-type brain alterations.
Collapse
Affiliation(s)
- E M Rockenstein
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
19
|
Robinson CA, Clark AW, Parhad IM, Fung TS, Bou SS. Gene expression in Alzheimer neocortex as a function of age and pathologic severity. Neurobiol Aging 1994; 15:681-90. [PMID: 7891822 DOI: 10.1016/0197-4580(94)90049-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous studies have shown a marked decline in neuronal and an increase in glial gene expression in Alzheimer's disease (AD) neocortex. Severity of pathologic changes may be greater in presenile AD (PAD) than in senile AD (SAD). We evaluated whether changes in transcript expression were altered as a function of age or pathologic severity. Northern analysis revealed a marked (> 50%) decline in expression of transcripts for the neurofilament light subunit and the major amyloid precursor protein (APP) isoforms in both PAD and SAD. Expression of these neuronal transcripts declined as a function of age in AD and control cases. Expression of the glial fibrillary acidic protein (GFAP) transcript was increased in AD, particularly in the presenile group. AD cases with larger numbers of neurofibrillary tangles had higher levels of GFAP transcript; AD cases with larger numbers of senile plaques had higher levels of APP695 transcript. We conclude that the neuronal mRNA decrements of AD are superimposed on an age-related decline. Age-related shift in expression of certain genes may account for the differences in pathologic severity of PAD and SAD.
Collapse
Affiliation(s)
- C A Robinson
- Department of Pathology, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
20
|
Pardue S, White CL, Bigio EH, Morrison-Bogorad M. Anomalous binding of radiolabeled oligonucleotide probes to plaques and tangles in Alzheimer disease hippocampus. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1994; 22:1-24. [PMID: 7916765 DOI: 10.1007/bf03160091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several reports indicate that Alzheimer disease (AD) brain contains elevated levels of heat shock 70 proteins. To determine the cellular localization of the heat shock 70 mRNAs, specific oligonucleotide probes were in situ hybridized to AD and control brains. When oligonucleotides were in situ hybridized to brain sections with no AD neuropathology, hybridization was cell-specific and prior ribonuclease (RNase) treatment of adjacent sections resulted in no hybridization signal. However, in situ hybridization to AD hippocampus resulted in heavy grain deposition over senile plaques and neurofibrillary tangles. Despite altering a number of experimental variables, we observed a similar pattern of grain deposition with most of the oligonucleotides tested, including one oligonucleotide specific for glutamic acid decarboxylase mRNA. In situ hybridization with either an RNA probe for glutamic acid decarboxylase or an oligonucleotide probe specific for 18S rRNA did not show this pattern of grain deposition. In control studies a sense hsc70 oligonucleotide showed no grain deposition in either cerebellum or hippocampus. Sections from AD hippocampus pretreated with RNase prior to in situ hybridization demonstrated enhanced grain deposition with the majority of probes tested. Anomalous in situ hybridization to AD hippocampus was usually eliminated by removing formamide from the posthybridization washes, although post-RNase sticking often remained intense. These findings indicate that artifactual probe binding to senile plaques and neurofibrillary tangles may complicate the analysis of in situ hybridization studies using oligonucleotide probes to determine mRNA distribution in AD brain.
Collapse
Affiliation(s)
- S Pardue
- Department of Neurology, University of Texas Southwestern Medical Center at Dallas 75235-9115
| | | | | | | |
Collapse
|
21
|
Solà C, García-Ladona FJ, Sarasa M, Mengod G, Probst A, Palacios G, Palacios JM. Beta APP gene expression is increased in the rat brain after motor neuron axotomy. Eur J Neurosci 1993; 5:795-808. [PMID: 8281291 DOI: 10.1111/j.1460-9568.1993.tb00931.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The response of the beta APP gene to neuronal injury was studied in the facial and hypoglossal nerve nuclei of the rat after corresponding nerve axotomy. Increased levels of beta APP 695, 714, 751 and 770 mRNAs were observed after either facial or hypoglossal nerve axotomy in the parent ipsilateral motor neurons. The increase was gradual, with maximal values 7 days after axotomy. beta APP mRNA expression returned to normal values 60 days after the lesion. Increased beta APP immunostaining was also detected in ipsilateral chromatolytic motor neurons. No change in beta APP immunoreactivity was observed in oligodendrocytes, another cell type expressing beta APP under normal conditions. A rapid increase in the expression of the GFAP gene was observed in reactive astrocytes surrounding chromatolytic neurons in the ipsilateral facial or hypoglossal nuclei. Thus, in contrast with other models of neuronal injury, where only the Kunitz protease inhibitor-containing beta APP mRNA isoforms are increased, all beta APP mRNAs are increased in the axotomy model. Furthermore, although beta APP expression has been shown to be increased in reactive astrocytes following neuronal injury, in the present study the increase was essentially found in the motor neurons reacting to axotomy.
Collapse
Affiliation(s)
- C Solà
- Department of Pharmacology and Toxicology, CID, CSIC, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Oyama F, Shimada H, Oyama R, Titani K, Ihara Y. Beta-amyloid protein precursor and tau mRNA levels versus beta-amyloid plaque and neurofibrillary tangles in the aged human brain. J Neurochem 1993; 60:1658-64. [PMID: 8473889 DOI: 10.1111/j.1471-4159.1993.tb13388.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To learn whether or not the levels of beta-amyloid protein precursor (APP) and tau mRNAs are related to the formation of beta-amyloid and neurofibrillary tangles, we quantified these mRNA levels in three cortical regions of 38 aged human brains, which were examined immunocytochemically for beta-amyloid and tangles. Marked individual variabilities were noted in APP and tau mRNA levels among elderly individuals. The mean APP mRNA level was slightly reduced in the beta-amyloid plaque (+2) group, but not in the plaque (+) group, compared to the plaque (-) group. Some brains in the plaque (-) group showed increased APP expression, the extent of which was not seen in the plaque (+) or (+2) group. The differences in the mean tau mRNA levels were not statistically significant among the tangle (-), (+), and (+2) groups. These results show that beta-protein and tau deposition do not accompany increased expression of the APP and tau genes, respectively, and thus suggest that factors other than gene expression may be at work in the progression of beta-amyloid and/or tangle formation in the aged human brain.
Collapse
Affiliation(s)
- F Oyama
- Division of Biomedical Polymer Science, School of Medicine, Fujita Health University, Aichi, Japan
| | | | | | | | | |
Collapse
|
23
|
Solà C, Mengod G, Probst A, Palacios JM. Differential regional and cellular distribution of beta-amyloid precursor protein messenger RNAs containing and lacking the Kunitz protease inhibitor domain in the brain of human, rat and mouse. Neuroscience 1993; 53:267-95. [PMID: 8469310 DOI: 10.1016/0306-4522(93)90304-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The beta-amyloid precursor protein is the precursor of the main component of senile plaques (the beta-amyloid peptide or beta/A4) found in the brain of aged humans and, in higher amounts, in the brain of Alzheimer's disease and Down's syndrome subjects. Four different forms of beta-amyloid precursor protein messenger RNAs have been described in humans and rodents: beta-amyloid precursor protein 695, beta-amyloid precursor protein 714, beta-amyloid precursor protein 751 and beta-amyloid precursor protein 770 messenger RNAs (numbers corresponding to the number of encoded amino acids). The two latter forms are characterized by containing in their sequence a region with high homology to the Kunitz family of serine protease inhibitors. We have used oligonucleotide probes to study the distribution of the different messenger RNAs encoding each of the four beta-amyloid precursor proteins by in situ hybridization histochemistry in human, rat and mouse brain. We found that beta-amyloid precursor protein 695, beta-amyloid precursor protein 714 and beta-amyloid precursor protein 751 messenger RNAs were widely distributed in the human, rat and mouse brain and that their distribution was roughly similar in most brain areas in these three species. The distribution of beta-amyloid precursor protein 770 messenger RNA was not so wide and differed among the three species studied. beta-amyloid precursor protein 751 and 770 messenger RNAs were the only forms present at significant levels in rodent choroid plexus and meninges, while beta-amyloid precursor protein messenger RNA isoforms containing and lacking the Kunitz domain were detected in the human choroid plexus. We also observed that the relative levels of beta-amyloid precursor protein 751 and 770 messenger RNAs in the rat cerebral white matter as well as in the mouse and human striatum were higher than those of the beta-amyloid precursor protein messenger RNAs lacking the Kunitz domain. While the most abundant beta-amyloid precursor protein messenger RNAs in the brain of all three species under study were, in descending order, beta-amyloid precursor protein 695 and beta-amyloid precursor protein 751 messenger RNAs, the least abundant form was not the same for all species: in human it was beta-amyloid precursor protein 714 messenger RNA and in rat and mouse brain it was beta-amyloid precursor protein 770 messenger RNA. Our results show differences both inter- and intraspecies of the relative abundance and distribution of four beta-amyloid precursor protein messenger RNAs in rat, mouse and human brain.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C Solà
- Department of Neurochemistry, CID, CSIC, Barcelona, Spain
| | | | | | | |
Collapse
|
24
|
Mattson MP, Cheng B, Culwell AR, Esch FS, Lieberburg I, Rydel RE. Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron 1993; 10:243-54. [PMID: 8094963 DOI: 10.1016/0896-6273(93)90315-i] [Citation(s) in RCA: 630] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The beta-amyloid precursor protein (beta APP) is a membrane-spanning glycoprotein that is the source of the beta-amyloid peptide (beta AP) which accumulates as senile plaques in the brains of patients with Alzheimer's disease. beta APP is normally processed such that a cleavage occurs within the beta AP, liberating secreted forms of beta APP (APPss) from the cell. The neuronal functions of these forms are unknown. We now report that APPss have a potent neuroprotective action in cultured rat hippocampal and septal neurons and in human cortical neurons. APPs695 and APPs751 protected neurons against hypoglycemic damage, and the neuroprotection was abolished by antibodies to a specific region common to both APPs695 and APPs751. APPss caused a rapid and prolonged reduction in [Ca2+]i and prevented the rise in [Ca2+]i that normally mediated hypoglycemic damage. APPss also protected neurons against glutamate neurotoxicity, effectively raising the excitotoxic threshold. APPss may normally play excitoprotective and neuromodulatory roles. Alternative processing of APPss in Alzheimer's disease may contribute to neuronal degeneration by compromising the normal function of APPss and by promoting the deposition of beta AP.
Collapse
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536-0230
| | | | | | | | | | | |
Collapse
|
25
|
Hoyer S. Brain oxidative energy and related metabolism, neuronal stress, and Alzheimer's disease: a speculative synthesis. J Geriatr Psychiatry Neurol 1993; 6:3-13. [PMID: 8422269 DOI: 10.1177/002383099300600101] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A reduction in the cerebral metabolic rate of glucose is one of the most predominant abnormalities generally found in the Alzheimer brain, whereas the cerebral metabolic rate of oxygen is diminished only slightly or not at all at the beginning of this dementive disorder. From the cerebral metabolic rates of oxidized glucose and oxygen, the cerebral adenosine triphosphate (ATP) formation rate was calculated in incipient early-onset, incipient late-onset, and stable advanced dementia of the Alzheimer type (DAT). A reduction in ATP formation by various amounts was found, ranging from at least 7% in incipient early-onset DAT, from around 20% in incipient late-onset DAT, and from 35% up to more than 50% in stable advanced dementia. The cerebral diminution in energy availability, along with a loss of functionally important amino acids, ammonia toxicity, supposed membrane damage, dysregulation of Ca2+ homeostasis, and glycogen accumulation in the incipient stages of DAT are assumed to be stress-related abnormalities capable of inducing the formation of heat shock proteins. These events may lead to an enhanced generation of amyloid precursor protein in earlier states of DAT. If abnormally cleaved, amyloid A4 protein may be produced in increased amounts. From the results discussed in this article it is deduced as a speculative synthesis that perturbations in brain oxidative energy and related metabolism may precede the generation of amyloid precursor protein and the formation of plaques in the brain affected by incipient DAT.
Collapse
Affiliation(s)
- S Hoyer
- Department of Pathochemistry and General Neurochemistry, Universität of Heidelberg, FRG
| |
Collapse
|
26
|
Willoughby DA, Johnson SA, Pasinetti GM, Tocco G, Najm I, Baudry M, Finch CE. Amyloid precursor protein mRNA encoding the Kunitz protease inhibitor domain is increased by kainic acid-induced seizures in rat hippocampus. Exp Neurol 1992; 118:332-9. [PMID: 1306490 DOI: 10.1016/0014-4886(92)90191-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A 168-nucleotide exon, found in alternatively spliced amyloid precursor protein (APP) mRNAs, encodes a Kunitz protease inhibitor (KPI) domain. Kainic acid (ip) caused a selective increase of KPI mRNA in rat hippocampus. By in situ hybridization, KPI mRNA was induced in the neuronal layers of the hippocampus 11-12 h after the onset of kainate-induced seizures. The kainate-induced elevation of the KPI-containing APP-770 mRNA was blocked by pretreatment with the anticonvulsant pentobarbital. These data suggest that kainate-induced seizures cause alterations in APP RNA stability and/or processing in rat hippocampal neurons.
Collapse
Affiliation(s)
- D A Willoughby
- Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles 90089-0191
| | | | | | | | | | | | | |
Collapse
|
27
|
Tanaka S, Liu L, Kimura J, Shiojiri S, Takahashi Y, Kitaguchi N, Nakamura S, Ueda K. Age-related changes in the proportion of amyloid precursor protein mRNAs in Alzheimer's disease and other neurological disorders. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1992; 15:303-10. [PMID: 1331685 DOI: 10.1016/0169-328x(92)90122-r] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the human brain, alternative splicing of amyloid precursor protein (APP) gene transcript generates at least three types of mRNA coding for APP770, APP751 and APP695. The former two types harbor, but the latter one lacks a domain of Kunitz-type serine protease inhibitor (KPI). We studied, by using the RNase protection technique, the expression of APP mRNAs in brains of Alzheimer's disease (AD) and other neurological disorders with special reference to aging. We found that the ratio of (APP770 mRNA+APP751 mRNA)/APP695 mRNA in the frontal cortex increased approximately 1.5-fold in AD compared with other neurodegenerative or cerebrovascular disorders. The ratio in other neurological disorders did not change significantly from control even in their affected brain regions. On the other hand, we found a positive correlation between the ratio and age; the ratio (y) increased gradually with the advance of age (x) as expressed by y = 0.005x + 0.014 (r = 0.372) for the AD group, and y = 0.004x -0.037 (r = 0.486) for the non-AD group. These correlations indicate that the AD brain reached the same ratio of KPI-harboring to lacking APP mRNAs a few decades earlier than the non-AD brain in senescence. This finding of AD-specific and age-related change led us to the idea that a relative increase in KPI-harboring APPs over a KPI-lacking APP may perturb normal degradation of APPs, thereby leading to deposition of beta A4 protein as amyloid.
Collapse
Affiliation(s)
- S Tanaka
- Department of Clinical Science and Laboratory Medicine, Kyoto University Faculty of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Moir RD, Martins RN, Bush AI, Small DH, Milward EA, Rumble BA, Multhaup G, Beyreuther K, Masters CL. Human brain beta A4 amyloid protein precursor of Alzheimer's disease: purification and partial characterization. J Neurochem 1992; 59:1490-8. [PMID: 1402900 DOI: 10.1111/j.1471-4159.1992.tb08465.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The major component of the amyloid deposition that characterizes Alzheimer's disease is the 4-kDa beta A4 protein, which is derived from a much larger amyloid protein precursor (APP). A procedure for the complete purification of APP from human brain is described. The same amino terminal sequence of APP was found in two patients with Alzheimer's disease and one control subject. Two major forms of APP were identified in human brain with apparent molecular masses of 100-110 kDa and 120-130 kDa. Soluble and membrane fractions of brain contained nearly equal amounts of APP in both humans and rats. Immunoprecipitation with carboxyl terminus-directed antibodies indicates that the soluble forms of APP are truncated. Carboxyl terminus truncation of membrane-associated forms of human brain APP was also found to occur during postmortem autolysis. The availability of purified human brain APP will facilitate the investigation of its normal function and the events that lead to its abnormal cleavage in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- R D Moir
- Department of Pathology, University of Melbourne, Parkville, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Oyama F, Shimada H, Oyama R, Titani K, Ihara Y. A novel correlation between the levels of beta-amyloid protein precursor and tau transcripts in the aged human brain. J Neurochem 1992; 59:1117-25. [PMID: 1494902 DOI: 10.1111/j.1471-4159.1992.tb08354.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
beta-Amyloid protein precursor (APP) and tau are implicated in the pathogenesis of Alzheimer's disease. We quantified the levels of APP and tau transcripts in the three cortical regions of 38 aged human brains obtained from consecutive autopsied patients. The level of APP mRNA was directly proportional to that of tau mRNA to a remarkable extent, suggesting coordinate expression of the APP and tau genes, whereas much weaker correlations were noted among mRNAs encoding other neuronal proteins. From the previous data on the differential expression of APP and tau mRNAs, the levels of APP-751 and -695 mRNAs were calculated and found to be proportional to those of four-repeat and three-repeat tau mRNAs, respectively, whereas that of APP-770 mRNA was rather constant. These results suggest that the mRNA concentrations of APP isoforms are linked to those of tau isoforms in the aged human brain.
Collapse
Affiliation(s)
- F Oyama
- Division of Biomedical Polymer Science, School of Medicine, Fujita Health University, Aichi, Japan
| | | | | | | | | |
Collapse
|
30
|
Mizuguchi M, Ikeda K, Kim SU. Differential distribution of cellular forms of beta-amyloid precursor protein in murine glial cell cultures. Brain Res 1992; 584:219-25. [PMID: 1515940 DOI: 10.1016/0006-8993(92)90898-j] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The production and localization of cell-associated forms of beta-amyloid precursor protein (APP) of Alzheimer's disease was investigated in primary cultures of mouse glial cells. In both oligodendrocytes and astrocytes, immunofluorescence staining with an antibody against the carboxy terminus of APP revealed an intense cytoplasmic immunoreactivity. Immunoblotting of the cell extracts detected differences in the composition of APP between oligodendrocytes and astrocytes, notably the abundance of 107 kDa subtype in oligodendrocytes. Differences in immunoblot patterns were also noted between two buffer-insoluble, membrane-rich subcellular fractions of the glial cells, nuclear-mitochondrial and microsomal; the 119 kDa APP was enriched in the former, whereas the 73 and 115 kDa APPs in the latter. The results suggest that each APP subspecies may play a distinct functional role in different cell types and subcellular fractions.
Collapse
Affiliation(s)
- M Mizuguchi
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
31
|
Milward EA, Papadopoulos R, Fuller SJ, Moir RD, Small D, Beyreuther K, Masters CL. The amyloid protein precursor of Alzheimer's disease is a mediator of the effects of nerve growth factor on neurite outgrowth. Neuron 1992; 9:129-37. [PMID: 1632967 DOI: 10.1016/0896-6273(92)90228-6] [Citation(s) in RCA: 322] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The beta A4 protein, the major component of the amyloid deposition characterizing Alzheimer's disease, derives from the amyloid protein precursor (APP), an integral membrane protein with soluble derivatives. The function of APP is unknown. Both soluble and membrane-associated human brain APP (10(-10) M) significantly increased (P less than 0.025) neurite length and branching in pheochromocytoma PC12 cells, but did not affect the number of neurites per cell. At higher concentrations, APP was cytotoxic, with a half-maximal concentration of 5 x 10(-9) M. Nerve growth factor (NGF) is known to affect APP expression in vivo and in vitro. Antibodies to APP specifically diminished the effects of NGF on neurite length and branching. Thus APP may act to mediate neurite outgrowth promotion by NGF.
Collapse
Affiliation(s)
- E A Milward
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
Kim T, Choi BH, Choe W, Kim RC, Van Nostrand W, Wagner S, Cunningham D. Expression of protease nexin-II in human dorsal root ganglia. A correlative immunocytochemical and in situ hybridization study. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1992; 16:225-39. [PMID: 1418219 DOI: 10.1007/bf03159972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protease nexin-II (PN-II) is a potent chymotrypsin inhibitor that forms SDS-stable inhibitory complexes with epidermal growth factor binding protein, the gamma-subunit of nerve growth factor, and trypsin, and represents the secreted form of the amyloid beta-protein precursor (APP) that contains the Kunitz-type protease inhibitor domain. To determine the expression of PN-II within the peripheral nervous system, human dorsal root ganglia were processed for immunocytochemistry using well-characterized monoclonal antibodies against PN-II and for in situ hybridization studies using 35S-RNA PN-II probes for both APP751 and APP770. Highly specific immunoperoxidase staining of PN-II was demonstrated within the cytoplasm of dorsal root ganglia neurons and their processes in cryostat (fresh frozen) and vibratome (paraformaldehyde-fixed) sections. In situ hybridization using an anti-sense 35S-RNA PN-II probe demonstrated the presence of intense neuronal labeling. Labeling was not observed when the corresponding sense 35S-RNA PN-II probe was used. Although the precise functional role of PN-II/APP is not clear, the accumulation of amyloid beta-protein within the neuropil appears to be one of the earliest events in the pathogenesis of Alzheimer's disease (AD). Thus knowledge of the cell populations expressing the PN-II/APP gene would certainly be helpful for studies of the molecular mechanisms leading to the morphological and functional changes of AD. The results of this study clearly establish the expression of PN-II and its mRNA within the dorsal root ganglia neurons and their processes, and provide another point of departure for studies of the molecular mechanisms underlying the deposition of amyloid beta-protein and its relationships to the formation of neuritic plaques and neurofibrillary tangles.
Collapse
Affiliation(s)
- T Kim
- Department of Pathology, University of California, Irvine 92717
| | | | | | | | | | | | | |
Collapse
|
33
|
Mizuguchi M, Ikeda K, Kim SU. beta-Amyloid precursor protein of Alzheimer's disease in cultured bovine oligodendrocytes. J Neurosci Res 1992; 32:34-42. [PMID: 1629942 DOI: 10.1002/jnr.490320105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The production of beta-amyloid precursor protein (beta APP) in cultured oligodendrocytes isolated from adult bovine brains was examined by immunohistochemistry and immunoblotting. Immunostaining of oligodendrocytes with antibodies specific for the carboxy terminus of beta APP demonstrated positive immunoreactivity of oligodendroglial cytoplasm. Immunoblot analysis of cellular extracts detected two distinct bands with estimated molecular weight of 118 and 105 kDa. The amount of these beta APP subspecies increased considerably in response to their attachment to the poly-L-lysine substratum.
Collapse
Affiliation(s)
- M Mizuguchi
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
34
|
Jacobsen JS, Blume AJ, Vitek MP. Quantitative measurement of alternatively spliced amyloid precursor protein mRNA expression in Alzheimer's disease and normal brain by S1 nuclease protection analysis. Neurobiol Aging 1991; 12:585-92. [PMID: 1722874 DOI: 10.1016/0197-4580(91)90090-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have used an S1 nuclease protection strategy to measure alternatively spliced amyloid precursor protein (APP) mRNAs associated with Alzheimer's disease (AD) to determine whether the expression of either one or more of the transcripts correlate with observed amyloid plaque pathology. Comparison of AD with normal cortex reveals that increasing plaque density parallels an increase in the fraction of APP-695 and a corresponding decrease in APP-770 and 751 mRNA fractions. A specific increase of APP-695, the protease inhibitor-lacking APP RNA form, in those brain regions most involved with amyloid plaque formation, suggests that an imbalance in the protease inhibitor is potentially significant in the disease. These data are consistent with cellular/tissue region-specific regulation of alternative splicing accounting for AD-related changes in the expression of APP mRNA forms.
Collapse
Affiliation(s)
- J S Jacobsen
- Central Nervous System Biological Research Department, American Cyanamid Company, Pearl River, NY 10965
| | | | | |
Collapse
|
35
|
Beyreuther K, Masters CL. Amyloid precursor protein (APP) and beta A4 amyloid in the etiology of Alzheimer's disease: precursor-product relationships in the derangement of neuronal function. Brain Pathol 1991; 1:241-51. [PMID: 1669714 DOI: 10.1111/j.1750-3639.1991.tb00667.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- K Beyreuther
- Center for Molecular Biology, University of Heidelberg, Federal Republic of Germany
| | | |
Collapse
|
36
|
Chapter 24. Amyloidogenesis as a Therapeutic Target in Alzheimer's Disease. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1991. [DOI: 10.1016/s0065-7743(08)61211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
37
|
Tu GF, Cole T, Southwell BR, Schreiber G. Expression of the genes for transthyretin, cystatin C and beta A4 amyloid precursor protein in sheep choroid plexus during development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1990; 55:203-8. [PMID: 1701364 DOI: 10.1016/0165-3806(90)90201-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The levels of mRNA for transthyretin, cystatin C, and beta A4 amyloid precursor protein were measured in the choroid plexus of sheep embryos during different stages of development, using specific cDNA probes and Northern blot analysis. The 3 different mRNAs were detectable in the brain of very young embryos with a crown-rump length of 1 cm, corresponding to only a few days of gestation. The choroid plexus increased in weight very rapidly in the first half of gestation and much more slowly in the second half. The level of transthyretin mRNA in choroid plexus increased during the first half of gestation and stayed constant thereafter until birth, at a level of about 70% of that in choroid plexus of adult sheep. The proportion of mRNA for the proteinase inhibitor cystatin C in total RNA from choroid plexus increased throughout gestation to adult levels at birth. The concentration of the mRNA for beta A4 amyloid precursor protein in choroid plexus early in development was already as high as in adults and remained at this level throughout gestation. Messenger RNA for cystatin C or mRNA for beta A4 amyloid precursor protein was not detected in adult sheep liver.
Collapse
Affiliation(s)
- G F Tu
- Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Vict., Australia
| | | | | | | |
Collapse
|
38
|
Neve RL, Rogers J, Higgins GA. The Alzheimer amyloid precursor-related transcript lacking the beta/A4 sequence is specifically increased in Alzheimer's disease brain. Neuron 1990; 5:329-38. [PMID: 2400606 DOI: 10.1016/0896-6273(90)90169-g] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The deposition of cerebrovascular and plaque amyloid in the CNS is a primary feature of Alzheimer's disease and aged Down's syndrome pathology. The localization of the Alzheimer amyloid protein precursor (APP) gene on chromosome 21, along with its overexpression in Down's syndrome brain compared with normal brain, suggests that alterations in APP gene expression may play a role in the development of the neuropathology common to the two diseases. In the present report, we demonstrate that a specific spliced form of mRNA that is transcribed from the APP gene and that lacks the beta/A4 sequence is elevated in the nucleus basalis, occipitotemporal cortex, and parahippocampal gyrus in Alzheimer's disease brain relative to controls. These results are based on combined data from RNA slot blot analysis, in situ hybridization, and polymerase chain reaction quantification of specific mRNAs taken directly from tissue sections.
Collapse
Affiliation(s)
- R L Neve
- Department of Psychobiology, University of California, Irvine 92717
| | | | | |
Collapse
|
39
|
Goedert M, Spillantini MG. Molecular neuropathology of Alzheimer's disease: in situ hybridization studies. Cell Mol Neurobiol 1990; 10:159-74. [PMID: 2110505 PMCID: PMC11567306 DOI: 10.1007/bf00733642] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/1989] [Accepted: 09/12/1989] [Indexed: 12/30/2022]
Abstract
1. Abundant senile plaques and neurofibrillary tangles in certain brain regions constitute the major neuropathological characteristics of Alzheimer's disease. Recent work has established that the amyloid beta protein, which is derived from a large precursor, constitutes the major constituent of plaque amyloid, whereas the microtubule-associated protein tau is a component of the paired helical filament, the major constituent of neurofibrillary tangles. 2. Multiple isoforms of amyloid beta protein precursor and tau protein are produced from a single gene through alternative RNA splicing. By Northern blotting amyloid beta protein precursor transcripts are found throughout central and peripheral tissues, whereas tau protein transcripts are only found in the nervous system. 3. In the central nervous system the cellular localization of amyloid beta protein precursor and tau protein transcripts is neuronal. The cells affected in Alzheimer's disease patients produce both types of transcripts; however, the various transcripts are also found in cells not affected in the course of the disease. At present, there exists no evidence to suggest that an overproduction of amyloid beta protein precursor or tau protein is the reason for plaque and tangle formation. The formation of the latter probably results from posttranslational events.
Collapse
Affiliation(s)
- M Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, U.K
| | | |
Collapse
|