1
|
Differences between RNA and DNA due to RNA editing in temporal lobe epilepsy. Neurobiol Dis 2013; 56:66-73. [PMID: 23607937 DOI: 10.1016/j.nbd.2013.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/02/2013] [Indexed: 01/21/2023] Open
Abstract
To investigate whether alterations in RNA editing (an enzymatic base-specific change to the RNA sequence during primary transcript formation from DNA) of neurotransmitter receptor genes and of transmembrane ion channel genes play a role in human temporal lobe epilepsy (TLE), this exploratory study analyzed 14 known cerebral editing sites in RNA extracted from the brain tissue of 41 patients who underwent surgery for mesial TLE, 23 with hippocampal sclerosis (MTLE+HS). Because intraoperatively sampled RNA cannot be obtained from healthy controls and the best feasible control is identically sampled RNA from patients with a clinically shorter history of epilepsy, the primary aim of the study was to assess the correlation between epilepsy duration and RNA editing in the homogenous group of MTLE+HS. At the functionally relevant I/V site of the voltage-gated potassium channel Kv1.1, an inverse correlation of RNA editing was found with epilepsy duration (r=-0.52, p=0.01) but not with patient age at surgery, suggesting a specific association with either the epileptic process itself or its antiepileptic medication history. No significant correlations were found between RNA editing and clinical parameters at other sites within glutamate receptor or serotonin 2C receptor gene transcripts. An "all-or-none" (≥95% or ≤5%) editing pattern at most or all sites was discovered in 2 patients. As a secondary part of the study, RNA editing was also analyzed as in the previous literature where up to now, few single editing sites were compared with differently obtained RNA from inhomogenous patient groups and autopsies, and by measuring editing changes in our mouse model. The present screening study is first to identify an editing site correlating with a clinical parameter, and to also provide an estimate of the possible effect size at other sites, which is a prerequisite for power analysis needed in planning future studies.
Collapse
|
2
|
Czöndör K, Thoumine O. Biophysical mechanisms regulating AMPA receptor accumulation at synapses. Brain Res Bull 2012; 93:57-68. [PMID: 23174308 DOI: 10.1016/j.brainresbull.2012.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/05/2012] [Indexed: 11/25/2022]
Abstract
Controlling the number of AMPA receptors at synapses is fundamental for fast synaptic transmission as well as for long term adaptations in synaptic strength. In this review, we examine the biophysical mechanisms implicated in regulating AMPAR levels at the cell surface and at synapses. We first describe the structure and function of AMPARs, as well as their interactions with various proteins regulating their traffic and function. Second we review the vesicular trafficking mechanism involving exocytosis and endocytosis, by which AMPARs reach the cell surface and are internalized, respectively. Third, we examine the properties of lateral diffusion of AMPARs and their trapping at post-synaptic densities. Finally, we discuss how these two parallel mechanisms are integrated in time and space to control changes in synaptic AMPAR levels in response to plasticity protocols. This review highlights the important role of the extra-synaptic AMPAR pool, which makes an obligatory link between vesicular trafficking and trapping or release at synapses.
Collapse
|
3
|
Palmer CL, Cotton L, Henley JM. The molecular pharmacology and cell biology of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Pharmacol Rev 2005; 57:253-77. [PMID: 15914469 PMCID: PMC3314513 DOI: 10.1124/pr.57.2.7] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) are of fundamental importance in the brain. They are responsible for the majority of fast excitatory synaptic transmission, and their overactivation is potently excitotoxic. Recent findings have implicated AMPARs in synapse formation and stabilization, and regulation of functional AMPARs is the principal mechanism underlying synaptic plasticity. Changes in AMPAR activity have been described in the pathology of numerous diseases, such as Alzheimer's disease, stroke, and epilepsy. Unsurprisingly, the developmental and activity-dependent changes in the functional synaptic expression of these receptors are under tight cellular regulation. The molecular and cellular mechanisms that control the postsynaptic insertion, arrangement, and lifetime of surface-expressed AMPARs are the subject of intense and widespread investigation. For example, there has been an explosion of information about proteins that interact with AMPAR subunits, and these interactors are beginning to provide real insight into the molecular and cellular mechanisms underlying the cell biology of AMPARs. As a result, there has been considerable progress in this field, and the aim of this review is to provide an account of the current state of knowledge.
Collapse
Affiliation(s)
- Claire L Palmer
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, Bristol University, Bristol, UK
| | | | | |
Collapse
|
4
|
Yeo GW, Van Nostrand E, Holste D, Poggio T, Burge CB. Identification and analysis of alternative splicing events conserved in human and mouse. Proc Natl Acad Sci U S A 2005; 102:2850-5. [PMID: 15708978 PMCID: PMC548664 DOI: 10.1073/pnas.0409742102] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Indexed: 12/29/2022] Open
Abstract
Alternative pre-mRNA splicing affects a majority of human genes and plays important roles in development and disease. Alternative splicing (AS) events conserved since the divergence of human and mouse are likely of primary biological importance, but relatively few of such events are known. Here we describe sequence features that distinguish exons subject to evolutionarily conserved AS, which we call alternative conserved exons (ACEs), from other orthologous human/mouse exons and integrate these features into an exon classification algorithm, acescan. Genome-wide analysis of annotated orthologous human-mouse exon pairs identified approximately 2,000 predicted ACEs. Alternative splicing was verified in both human and mouse tissues by using an RT-PCR-sequencing protocol for 21 of 30 (70%) predicted ACEs tested, supporting the validity of a majority of acescan predictions. By contrast, AS was observed in mouse tissues for only 2 of 15 (13%) tested exons that had EST or cDNA evidence of AS in human but were not predicted ACEs, and AS was never observed for 11 negative control exons in human or mouse tissues. Predicted ACEs were much more likely to preserve the reading frame and less likely to disrupt protein domains than other AS events and were enriched in genes expressed in the brain and in genes involved in transcriptional regulation, RNA processing, and development. Our results also imply that the vast majority of AS events represented in the human EST database are not conserved in mouse.
Collapse
Affiliation(s)
- Gene W Yeo
- Department of Biology and Center for Biological and Computational Learning, Massachusetts Institute of Technology, Cambridge, MA 02319, USA
| | | | | | | | | |
Collapse
|
5
|
Rabinovici R, Kabir K, Chen M, Su Y, Zhang D, Luo X, Yang JH. ADAR1 Is Involved in the Development of Microvascular Lung Injury. Circ Res 2001; 88:1066-71. [PMID: 11375277 DOI: 10.1161/hh1001.090877] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
—Deamination of adenosine on pre-mRNA to inosine is a recently discovered process of posttranscription modification of pre-mRNA, termed A-to-I RNA editing, which results in the production of proteins not inherent in the genome. The present study aimed to identify a role for A-to-I RNA editing in the development of microvascular lung injury. To that end, the pulmonary expression and activity of the RNA editase ADAR1 were evaluated in a mouse model of endotoxin (15 mg/kg IP)–induced microvascular lung injury (n=5) as well as in cultured alveolar macrophages stimulated with endotoxin, live bacteria, or interferon. ADAR1 expression and activity were identified in sham lungs that were upregulated in lungs from endotoxin-treated mice (at 2 hours). Expression was localized to polymorphonuclear and monocytic cells. These events preceded the development of pulmonary edema and leukocyte accumulation in lung tissue and followed the local production of interferon-γ, a known inducer of ADAR1 in other cell systems. ADAR1 was found to be upregulated in alveolar macrophages (MH-S cells) stimulated with endotoxin (1 to 100 μg/mL), live Escherichia coli (5×10
7
colony-forming units), or interferon-γ (1000 U/mL). Taken together, these data suggest that ADAR1 may play a role in the pathogenesis of microvascular lung injury possibly through induction by interferon.
Collapse
Affiliation(s)
- R Rabinovici
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Bernard A, Ferhat L, Dessi F, Charton G, Represa A, Ben-Ari Y, Khrestchatisky M. Q/R editing of the rat GluR5 and GluR6 kainate receptors in vivo and in vitro: evidence for independent developmental, pathological and cellular regulation. Eur J Neurosci 1999; 11:604-16. [PMID: 10051761 DOI: 10.1046/j.1460-9568.1999.00479.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kainate (KA) is a potent neuroexcitatory agent in several areas of the adult brain, with convulsant and excitotoxic properties that increase as ontogeny proceeds. Besides its depolarizing actions, KA may enhance intracellular accumulation of Ca2+ to promote selective neuronal damage. The effects of KA are mediated by specific receptors recently considered to be involved in fast neurotransmission and that can be activated synaptically. KA receptors, e.g. GluR5 and GluR6 have been characterized by molecular cloning. Structure-function relationships indicate that in the MII domain of these KA receptors, a glutamine (Q) or arginine (R) residue determines ion selectivity. The arginine stems from post-transcriptional editing of the GluR5 and GluR6 pre-RNAs, and the unedited and edited versions of GluR6 elicit distinct Ca2+ permeability. Using a PCR-based approach, we show that in vivo, Q/R editing in the GluR5 and GluR6 mRNAs is modulated during ontogeny and differs substantially in a variety of nervous tissues. GluR5 editing is highest in peripheral nervous tissue, e.g. the dorsal root ganglia, where GluR6 expression is barely detectable. In contrast, GluR6 editing is maximal in forebrain and cerebellar structures where GluR5 editing is lower. Intra-amygdaloid injections of KA provide a model of temporal lobe epilepsy, and we show that following seizures, the extent of GluR5 and GluR6 editing is altered in the hippocampus. However, in vitro, high levels of glutamate and potassium-induced depolarizations have no effect on GluR5 and GluR6 Q/R editing. GluR6 editing is rapidly enhanced to maximal levels in primary cultures of cerebellar granule neurons but not in cultured hippocampal pyramidal neurons. Finally, we show that cultured glial cells express partially edited GluR6 mRNAs. Our results indicate that Q/R editing of GluR5 and GluR6 mRNAs is structure-, cell type- and time-dependent, and suggest that editing of these mRNAs is not co-regulated.
Collapse
Affiliation(s)
- A Bernard
- Université René Descartes Paris V, INSERM Unité 29, Paris, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Grigorenko EV, Bell WL, Glazier S, Pons T, Deadwyler S. Editing status at the Q/R site of the GluR2 and GluR6 glutamate receptor subunits in the surgically excised hippocampus of patients with refractory epilepsy. Neuroreport 1998; 9:2219-24. [PMID: 9694203 DOI: 10.1097/00001756-199807130-00013] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The editing status of mRNA at the Q/R site of the glutamate receptor subunits GluR2 and GluR6 modulates channel conductivity and ion selectivity of ionotropic AMPA/KA receptors. Alteration of the editing process may be involved in the debilitating effects of epilepsy. The ratio of unedited/edited (Q/R) forms of GluR2 and GluR6 subunits was examined in conjunction with the expression of two double-stranded RNA-specific adenosine deaminases (DRADA) in surgically excised hippocampus from patients with refractory epilepsy compared with that of control samples. In the majority of patients with long histories of epilepsy, the GluR2 transcript was detected in the completely edited form, however, in two (out of 16 tested) hippocampal samples of young subjects (2 and 10 years old) we were able to identify the unedited transcript of GluR2 subunit. The proportion of unedited fraction of GluR6(Q) subunit was decreased to 9% compared to control human hippocampus. We conclude that the editing process in epileptic specimens is selectively affected by seizure activity in the epileptic focus.
Collapse
Affiliation(s)
- E V Grigorenko
- Department of Physiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
8
|
d'Aldin CG, Ruel J, Assié R, Pujol R, Puel JL. Implication of NMDA type glutamate receptors in neural regeneration and neoformation of synapses after excitotoxic injury in the guinea pig cochlea. Int J Dev Neurosci 1997; 15:619-29. [PMID: 9263038 DOI: 10.1016/s0736-5748(96)00116-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the adult mammalian cochlea, the ability of nerve fibres to regenerate has been observed following disruption of the organ of Corti by various means, or transsection of the cochlear nerve in the internal auditory meatus. Based upon the implication of glutamate as a neurotransmitter at synapses between sensory hair cells and terminal dendrites of the auditory nerve in the mammalian cochlea, we have developed, in a previous study, an in vivo model of neural regeneration and formation of synapses after the destruction of the afferent nerve endings by local application of the glutamate agonist alpha-amino-3-hydroxy-5-methyl-isoxazol-propionic acid (AMPA). In situ hybridization experiments performed during the re-innervation process revealed an overexpression of mRNA coding for NR1 subunit of N-methyl-D-aspartate (NMDA) receptors in the spiral ganglion neurons, suggesting that these receptors are implicated in neural regenerative processes. The present study has been designed to study the functional implication of NMDA receptors in the regrowth and synaptic repair of auditory dendrites in the guinea pig cochlea, by blocking the NMDA receptors during the period of normal functional recovery. In a first set of experiments, we recorded compound action potential after acute perilymphatic perfusion of cumulative doses (0.03-10mM) of DL 2-amino-5-phosphonovalerate (D-AP5), a NMDA antagonist, to determine the efficiency of the drug. In a second set of experiments, the auditory dendrites were destroyed by local application of the glutamate agonist AMPA. The blockage of NMDA by the antagonist D-AP5 applied with an osmotic micropump delayed the functional recovery and the regrowth of auditory dendrites. The findings of our study support the hypothesis that, in addition to acting as a fast transmitter, glutamate has a neurotrophic role via the activation of NMDA receptors.
Collapse
Affiliation(s)
- C G d'Aldin
- INSERM U.254 Université de Montpellier, Laboratoire de Neurobiologie de l'Audition-Plasticité synaptique, CHR Saint Charles, France
| | | | | | | | | |
Collapse
|
9
|
Puel JL, d'Aldin C, Ruel J, Ladrech S, Pujol R. Synaptic repair mechanisms responsible for functional recovery in various cochlear pathologies. Acta Otolaryngol 1997; 117:214-8. [PMID: 9105452 DOI: 10.3109/00016489709117773] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In some cochlear pathologies, temporary hearing loss can be followed by complete or partial functional recovery. Our previous findings suggest the involvement of an excitotoxic (glutamate-related) disruption of inner hair cell (IHC)-auditory nerve synapses, followed by synaptic regeneration. It is essential to understand the molecular mechanisms responsible for this synaptic repair if new therapeutic strategies are to be developed. In guinea pig cochleas, acute synaptic excitotoxic damage (mimicking what occurs with acoustic trauma or local ischemia) is achieved by locally applying AMPA, a glutamate agonist. This results in a total disruption of all IHC-auditory dendrite synapses, together with a disappearance of cochlear potentials. Within the next 5 days, however, a recovery of both the normal pattern of IHC innervation and the physiological responses is observed. The fact that the blockage of the NMDA receptors during functional recovery delayed the regrowth of neurites and the restoration of hearing suggests that glutamate plays a neurotrophic role via activation of NMDA receptors. Experiments are in progress to investigate, among other factors, the role of other glutamate receptor subunits. A reversible in vivo antisense strategy is being developed to overcome the lack of specificity of some antagonists. First results bode well for future pharmacological therapies in cochlear pathologies where glutamatergic synapses are likely to be involved; i.e., noise trauma, ischemia-related sudden deafness, and neural presbycusis.
Collapse
Affiliation(s)
- J L Puel
- INSERM U.254 et Université de Montpellier I, Laboratoire de Neurobiologie de l'Audition-Plasticité synaptique, France.
| | | | | | | | | |
Collapse
|
10
|
Abstract
The physiological model for glutamate receptor mediated excitotoxicity entails elevation of intraneuronal calcium levels. Excessive activation of the NMDA receptor leads to excitotoxicity by prolonged calcium influx via its calcium channel. The purpose of this research was to examine the mechanism of non-NMDA glutamate receptor mediated excitotoxicity. Mammalian AMPA receptors do not show significant calcium conductance. However, some kainate receptors show significant calcium conductance. The hypothesis of this research states that non-NMDA glutamate agonists (quisqualate (5 microliters of 2 mg/ml i.c.v.), AMPA (4 microliters of 1 mg/ml i.c.v.), and kainate (15 mg/kg i.p.)) produce significant heat shock gene, hsp70, induction via glutamate release with subsequent opening of the NMDA receptor calcium channel. PCP (phencyclidine) and ketamine are noncompetitive blockers of the NMDA calcium channel. They act to prevent significant NMDA receptor excitotoxicity. PCP (20 mg/kg i.p.) and ketamine (60 mg/kg i.p.) both diminished quisqualate and AMPA hsp70 induction in the CA1, CA2, CA3 areas of the hippocampus, in the polymorph area of the dentate gyrus, and in the parietal neocortex. PCP significantly (P < 0.05) diminished kainate hsp70 induction only in the CA1 area and the neocortex. Ketamine failed to reduce kainate hsp70 induction. AMPA receptors appear to result in excitotoxic damage via glutamate release. Glutamate opens NMDA receptor calcium channels which increases intraneuronal calcium levels. Kainate receptors probably mediate excitotoxicity via direct calcium conductance with glutamate release being important in the CA1 area and neocortex.
Collapse
Affiliation(s)
- J W Sharp
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan 66506, USA.
| |
Collapse
|
11
|
Arts GJ, Benne R. Mechanism and evolution of RNA editing in kinetoplastida. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1307:39-54. [PMID: 8652667 DOI: 10.1016/0167-4781(96)00021-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- G J Arts
- E.C. Slater Institute, University of Amsterdam, Academic Medical Centre, The Netherlands
| | | |
Collapse
|
12
|
Abstract
The immature human brain undergoes remarkable organizational changes during intrauterine and postnatal life. These changes create potential temporal 'windows' of selective vulnerability to damage. For example, the temporary germinal matrix is vulnerable to hemorrhage in the third trimester fetus and premature infant. The immature oligodendroglia present in developing white matter of the fetus are also vulnerable to injury producing periventricular leukomalacia. Similar changes take place in the synapses that make up the infant's neuronal circuitry. In human cerebral cortex, synapses are produced in greater than adult numbers by postnatal age 2 years and then reduced over the next decade. Over the same period receptors for glutamate, the most important excitatory neurotransmitter, change their characteristics to allow them to participate in activity dependent synaptic plasticity. For example, the immature N-methyl-D-aspartate (NMDA) type glutamate receptor/channel complex, which plays important roles in long term potentiation (LTP), neuronal migration and synaptic pruning, contains subunits that allow the channel to be opened more easily for a longer period than adult channels. These developmental changes make the immature brain selectively vulnerable to NMDA receptor overstimulation that can occur during hypoxia-ischemia and other insults. Several types of neuropathology in the developing brain can be understood on the basis of these organizational principles.
Collapse
Affiliation(s)
- M V Johnston
- Department of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Ross DT, Brasko J, Patrikios P. The AMPA antagonist NBQX protects thalamic reticular neurons from degeneration following cardiac arrest in rats. Brain Res 1995; 683:117-28. [PMID: 7552336 DOI: 10.1016/0006-8993(95)00344-p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Thalamic reticular (RT) neurons are selectively vulnerable to degeneration following global ischemia. The degenerative mechanism is thought to involve an excitotoxic component, mediated in part by sustained post-ischemic activation of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate) type excitatory amino acid (EAA) receptors. In order to test this hypothesis, the selective competitive AMPA type EAA antagonist NBQX (2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F) quinoxalinedione) was administered at 30 mg/kg to rats 1, 3, and 6 h after resuscitation from 10 min cardiac arrest. NBQX treatment resulted in a 2-fold increase of spared RT neurons, from a mean density of 3.6 +/- 0.8 x 10(3) neurons/mm3 in cardiac arrest cases to 7.4 +/- 1.1 x 10(3) neurons/mm3 in the NBQX treated group, which represents sparing of 41.7% of the normal population of RT neurons, and protection of 26.9% of vulnerable RT neurons. Neurons within the central core of the RT manifest both a higher degree of vulnerability to ischemic degeneration, > 92% loss, and a higher sensitivity to sparing following NBQX administration, 460% increased sparing, than neuronal sub-populations in the medial or lateral 1/3 of the RT. Protection by post-arrest administration of NBQX suggests that sustained post-arrest stimulation of AMPA receptors is an important component in the process of ischemic degeneration of RT neurons.
Collapse
Affiliation(s)
- D T Ross
- Head Injury Center, University of Pennsylvania, Philadelphia 19104-4283, USA
| | | | | |
Collapse
|
14
|
Eastwood SL, McDonald B, Burnet PW, Beckwith JP, Kerwin RW, Harrison PJ. Decreased expression of mRNAs encoding non-NMDA glutamate receptors GluR1 and GluR2 in medial temporal lobe neurons in schizophrenia. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 29:211-23. [PMID: 7609609 DOI: 10.1016/0169-328x(94)00247-c] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Schizophrenia is associated with a complex pattern of alterations in the glutamatergic system of the brain. Previous studies have shown a reduced density of some hippocampal non-N-methyl-D-aspartate (non-NMDA) receptors which is accompanied by a loss of encoding receptor mRNA. We have extended this work using in situ hybridization histochemistry with oligonucleotide probes specific for two non-NMDA receptor transcripts, GluR1 and GluR2, in right and left medial temporal lobe sections from 9 schizophrenics and 14 matched normal controls. Both mRNAs were found to be decreased bilaterally and to a similar degree in the hippocampal formation in schizophrenia. Analysis of autoradiograms showed a regional loss of GluR1 and GluR2 mRNAs in dentate gyrus, CA4, CA3 and subiculum. GluR2 mRNA was also reduced in parahippocampal gyrus. These reductions ranged from 25% to 70% in terms of 35S nCi/g tissue equivalents. Additionally we measured grain density for the mRNAs over individual pyramidal neurons in each area. GluR1 and GluR2 mRNAs were less abundant per neuron in CA4 and CA3 in schizophrenia than in controls. GluR2 mRNA was also reduced significantly in parahippocampal gyrus neurons, with an increase in the proportion of GluR1 mRNA to GluR2 mRNA in this cell population. No asymmetries in expression of GluR1 and GluR2 were found in normal or schizophrenic brains. These data further the evidence for reduced non-NMDA receptor expression in the medial temporal lobe in schizophrenia. They confirm the decrease in GluR1 mRNA and show that there are similar losses of GluR2 mRNA in the hippocampal formation. The pattern of changes in the two mRNAs suggests a common mechanism which is unknown but which may be a correlate of the neurodevelopmental abnormalities postulated to underlie the disease. The reduction of GluR2 mRNA but not GluR1 mRNA in parahippocampal gyrus neurons in schizophrenia may have functional consequences given the calcium permeability of non-NMDA receptors lacking the GluR2 subunit.
Collapse
Affiliation(s)
- S L Eastwood
- University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | | | | | | | | | | |
Collapse
|
15
|
Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB. Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J Biol Chem 1995; 270:4640-9. [PMID: 7876235 DOI: 10.1074/jbc.270.9.4640] [Citation(s) in RCA: 414] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Synthesis of soluble A, B, H, and Lewis b blood group antigens in humans is determined by the Secretor (Se) (FUT2) blood group locus. Genetic, biochemical, and molecular analyses indicate that this locus corresponds to an alpha(1,2)fucosyltransferase gene distinct from the genetically-linked H blood group alpha(1,2)fucosyltransferase locus. The accompanying paper (Rouquier, S., Lowe, J. B., Kelly, R. J., Fertitta, A. L., Lennon, G. G., and Giorgi, D. (1995) J. Biol. Chem. 270, 4632-4639) describes the molecular cloning and mapping of two human DNA segments that are physically linked to, and cross-hybridize with, the H locus. We present here an analysis of these two new DNA segments. One of these, termed Sec1, is a pseudogene, because translational frameshifts and termination codons interrupt potential open reading frames that would otherwise share primary sequence similarity with the H alpha(1,2)fucosyltransferase. The other DNA segment, termed Sec2, predicts a 332-amino acid-long polypeptide, and a longer isoform, that share 68% sequence identity with the COOH-terminal 292 residues of the human H blood group alpha(1,2)fucosyltransferase. Sec2 encodes an alpha(1,2)fucosyltransferase with catalytic properties that mirror those ascribed to the Secretor locus-encoded alpha(1,2)fucosyltransferase. Approximately 20% of randomly-selected individuals were found to be apparently homozygous for an enzyme-inactivating nonsense allele (Trp143-->ter) at this locus, in correspondence to the frequency of the non-secretor phenotype in most human populations. Furthermore, each of six unrelated non-secretor individuals are also apparently homozygous for this null allele. These results indicate that Sec2 corresponds to the human Secretor blood group locus (FUT2) and indicate that homozygosity for a common nonsense allele is responsible for the nonsecretor phenotype in many non-secretor individuals.
Collapse
Affiliation(s)
- R J Kelly
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor 48109-0650
| | | | | | | | | |
Collapse
|
16
|
Kamphuis W, Lopes da Silva FH. Editing status at the Q/R site of glutamate receptor-A, -B, -5 and -6 subunit mRNA in the hippocampal kindling model of epilepsy. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 29:35-42. [PMID: 7769999 DOI: 10.1016/0169-328x(94)00226-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The editing status of mRNA at the Q/R site of the glutamate receptor subtypes -A, -B, -5 and -6 modulates channel conductivity and ion selectivity of glutamate operated ion channels [4,15,26,30]. In order to investigate whether a modification of this editing process may be involved in kindling epileptogenesis, the percentage of edited variant was determined in the hippocampus of kindled rats and compared to the percentage in control animals. In the latter, GluR-A mRNA was detected only in the unedited form (with detection threshold for edited form < 0.7%), whereas GluR-B was completely edited (> 99%). For percentages were not significantly changed in Schaffer collateral/commissural pathway kindled animals that were sacrificed 24 h after the last generalized seizure. It is concluded that the increased sensitivity for the induction of seizures characteristic for Schaffer collateral kindled animals is not related to a less selective or less efficient mRNA editing process of the different glutamate receptor subunits in the hippocampus.
Collapse
Affiliation(s)
- W Kamphuis
- Graduate School of Neuroscience, Institute of Neurobiology, University of Amsterdam, The Netherlands
| | | |
Collapse
|
17
|
|
18
|
Paschen W, Djuricic B. Regional differences in the extent of RNA editing of the glutamate receptor subunits GluR2 and GluR6 in rat brain. J Neurosci Methods 1995; 56:21-9. [PMID: 7715242 DOI: 10.1016/0165-0270(94)00085-u] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The extent of RNA editing of the glutamate receptor subunits GluR2 and GluR6 was studied by using a newly developed method based on the restriction analysis of the subunit-specific polymerase chain reaction (PCR) product with the enzyme Bbv 1. Total RNA was isolated from following brain regions: cortex, striatum, hippocampus, thalamus, hypothalamus, cerebellum, pons/medulla oblongata and white matter. RNA was transcribed into cDNA, which was used as template for PCR. PCR was run with GluR2- and GluR6-specific primers to amplify a product across the edited region. The PCR products were analysed with the restriction enzyme Bbv 1 and gel electrophoresis of the restriction digest. Bbv 1 recognizes the sequence GCAGC which is identical with the sequence of the PCR product originating from unedited GluR2 or GluR6 mRNA. Thus, this enzyme splits the non-edited PCR product into two fragments while leaving the edited PCR product intact. After electrophoresis of the restriction digest and photographing gels, optical density of bands was quantified with image analysis. For quantification calibration curves were made with PCR products from constructs originating from edited and non-edited GluR6 mRNA. GluR2 mRNA was completely edited in all brain structures studied. Editing of GluR6 mRNA, in contrast, was high in gray matter structures (above 90%) but considerably lower in the pons/medulla oblongata (66%) and white matter (55%). It is, therefore, suggested that editing of GluR2 and GluR6 mRNA is performed by different enzymatic activities. Studying RNA editing of glutamate receptor subunits will extend knowledge about the role of calcium fluxes through non-NMDA glutamate receptor ion channels.
Collapse
Affiliation(s)
- W Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | |
Collapse
|
19
|
Rampersad V, Elliott CE, Nutt SL, Foldes RL, Kamboj RK. Human glutamate receptor hGluR3 flip and flop isoforms: cloning and sequencing of the cDNAs and primary structure of the proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1219:563-6. [PMID: 7918660 DOI: 10.1016/0167-4781(94)90090-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several cDNA clones encoding the human glutamate receptor subunit GluR3 flip and flop isoforms, were isolated from human hippocampus and fetal brain libraries. DNA sequence analysis revealed overlapping clones permitting the reconstruction of full-length GluR3-flip and GluR3-flop cDNAs. The GluR3 cDNAs demonstrated an 94.1-94.7% nucleotide (nt) identity with the corresponding rat cDNAs. The nt sequence of the GluR3 cDNAs would encode 894 amino acid proteins that have a 99.4% identity with the rat GluR3 isoforms. The human GluR3 cDNAs predict an additional 6 amino acid in the N-terminal signal peptide as compared to the rat GluR3.
Collapse
Affiliation(s)
- V Rampersad
- Allelix Biopharmaceuticals Inc., Mississauga, Ontario, Canada
| | | | | | | | | |
Collapse
|